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ABSTRACT

In recent work it has been shown that infinite state model
checking can be performed by a combination of partial de-
duction of logic programs and abstract interpretation. This
paper focuses on a particular class of problems—coverability
for (infinite state) Petri nets—and shows how existing tech-
niques and tools for declarative programs can be successfully
applied. In particular, we show that a restricted form of par-
tial deduction is already powerful enough to decide all cov-
erability properties of Petri Nets. We also prove that two
particular instances of partial deduction exactly compute
the Karp-Miller tree as well as Finkel’s minimal coverability
set. We thus establish a link between algorithms for Petri
nets and logic program specialisation.
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1. INTRODUCTION AND SUMMARY

Recently there has been interest in applying logic program-
ming techniques to model checking. Table-based logic pro-
gramming, set-based analysis, and constraint logic program-
ming can be used as an efficient means of performing model
checking [33] [4] [6, 13]. Despite the success of model check-
ing, most systems must still be substantially simplified and
considerable human ingenuity is required to arrive at the
stage where the push button automation can be applied [35].
Furthermore, most software systems cannot be modelled di-
rectly by a finite state system: as soon as some kind of
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recursion or sophisticated data structures come into play,
an infinite number of states must be verified. For these rea-
sons, there has recently been considerable interest in infinite
model checking (e.g., [1, 31, 10, 9, 39, 6]). This, by its very
undecidable nature, is a daunting task, for which abstraction
is a key issue. Indeed, abstraction allows one to approximate
an infinite system by a finite one, and if proper care is taken
the results obtained for the finite abstraction will be valid
for the infinite system.

An important question when attempting to perform infinite
model checking in practice is: How can one automatically
obtain an abstraction which is finite, but still as precise as
required? A potential solution to this problem is to apply
existing techniques for the automatic control of (logic) pro-
gram specialisation [23]. More precisely, in program special-
isation in general and partial deduction® in particular, one
faces a very similar (and quite extensively studied) problem:
To be able to produce efficient specialised programs, infinite
computation trees have to be abstracted in a finite but also
as precise as possible way.

The simplest way to apply this existing technology is to
model the system to be verified as a logic program (by means
of an interpreter). This translation is often very straightfor-
ward (e.g., due to the built-in support for non-determinism)
and enables us to express infinite state systems. First suc-
cessful steps in that direction have been taken in [14, 26],
but up to now there were no results for what systems and
properties this approach yields decision procedures and how
it relates to existing model checking algorithms. In this pa-
per we give the first formal answer to these questions, and
show that when we encode Petri nets as logic programs and
use “typical” existing program specialisation algorithms, we
get decision procedures for the so-called “coverability prob-
lems” (which encompass quasi-liveness, boundedness, deter-
minism, regularity,...). Moreover, quite surprisingly, we can
exactly mimic a well known Petri net algorithm by Karp
and Miller when slightly weakening the program specialisa-
tion techniques. These insights do not only shed light on
the power of using logic program analysis and specialisation
for infinite state model checking; they also establish a link
between algorithms in Petri net theory and program special-
isation and will hopefully lead to further insights and cross-

'Partial evaluation of logic programs is often referred to as
partial deduction.



fertilization. Already in this paper an extension of partial
deduction was inspired by another algorithm by Finkel [11].

The paper is structured as follows. In Section 2 we intro-
duce Petri nets, coverability problems and the Karp-Miller
procedure. In Section 3 we present partial deduction of logic
programs, along with a generic and two concrete algorithms.
In Section 4 we show how Petri nets can be encoded as logic
programs which enables us in Section 5 to apply partial de-
duction algorithms to Petri nets and establish the relation-
ship to coverability problems and algorithms. Finally, in
Section 6 we discuss how the partial deduction approach
can deal with more complicated systems and properties.

2. PETRI NETS AND COVERABILITY

In this paper we want to study the power of partial deduc-
tion based approaches for model checking of infinite state
systems. To arrive at precise results, it makes sense to fo-
cus on well-established classes of infinite state systems and
properties which are known to be decidable. One can then
examine whether the partial deduction approach provides
a decision procedure and how it compares to existing algo-
rithms. In this section, we describe such a decidable class
of systems and properties, namely Petri nets [34] and cover-
ability problems. We start out by giving definitions of some
important concepts in Petri net theory.

Definition 1. A Petri net Il is a tuple (S, T, F, My) con-
sisting of a finite set of places S, a finite set of transitions
T with SNT = @ and a flow relation F' which is a function
from (S x T)U (T x S) to IN. A marking m for Il is a
mapping S — IN. My is a marking called initial.

A transition t € T is enabled in a marking M iff Vs €
S : M(s) > F(s,t). An enabled transition can be fired,
resulting in a new marking M' defined by Vs : M'(s) =
M(s) — F(s,t) + F(t,s). We will denote this by M[¢t)M’.

By M[t1,... ,ts)M’' we denote the fact that for some in-
termediate markings M, ..., Mr_, we have M[t1)My, ...,
Mk_l[tk>M/.

We define the reachability tree RT(II) inductively as follows:
Let My be the label of the root node. For every node n of
RT(II) labelled by some marking M and for every transition
t which is enabled in M, add a node n’ labelled M’ such that
M([t)M' and add an arc from n to n’ labelled ¢. The set of all
labels of RT(II) is called the reachability set of 11, denoted
RS(II). The set of words given by the labels of finite paths
of RT(II) starting in the root node is called language of 1I,
written L(IT).

For convenience, we denote M > M' iff M(s) > M'(s)
for all places s € S. We also introduce pseudo-markings,
which are functions from S to IN U{w} where we also define
Vne€IN:w>nand w+n=w—-n=w+w = w. Using
this we also extend the notation Mg_1[t1,. .. ,tx) M’ for such
markings.

Finally, a sequence of markings M, Mo, ... is said to con-
verge to the pseudo-marking M’ when, for every place s € S
and for every integer n > 1, there exists k such that V&' >

k we have M;.(s) > n if M'(s) = w otherwise we have
My (s) = M'(s).2

Many interesting properties of Petri nets can be investi-
gated using the so-called Karp-Miller tree resulting from
the algorithm® below, first defined in [19]. The Karp-Miller
tree is a finite abstraction of the set of reachable mark-
ings RS(IT) with which we can decide whether it is possible
to “cover” some arbitrary marking M’ (in the sense that
IM" € RT(II) | M" > M') simply by checking whether
a node M"" in the tree covers M’ (i.e., M"' > M'). The
main idea of the algorithm is to simulate the execution of a
Petri net 11, starting from the initial marking My, until one
reaches a marking which is greater or equal than a preced-
ing one. If this marking is identical to a predecessor, i.e., it
has already been dealt with before, then the algorithm will
not treat it again. If this marking is strictly greater than a
predecessor, however, then one will generalise the marking
by putting w’s into all places where the number of tokens
has actually increased. Simulation will then proceed using
this new pseudo-marking. For example, if one can reach a
marking M> = (1,3,2,2) from M; = (1,0,2,1) by firing a
certain sequence of transitions t1,... ,t,, the algorithm will
continue the simulation from the pseudo-marking (1, w, 2, w)
and not from M,. The justification is that, due to mono-
tonicity of Petri nets, we can repeatedly fire the sequence
ti,...,tn to generate arbitrarily large number of tokens in
the places 2 and 4.

In Algorithm 2.1 we describe precisely how to compute the
Karp-Miller tree K M(II). Nodes in the tree are couples
(k, M), where k is a unique identifier and M is a pseudo-
marking. We also say that (k, M) is labelled by M.

Algorithm 2.1 (Karp—Miller—Tree)

Input: a Petri net IT = (S, T, F, My)
Output: a tree KM(II) of nodes labelled by pseudo-markings
Initialisation: set U := {(r, My)} of unprocessed nodes
while U # 0
select some (k, M) € U;
U:=UN{(k,M)};
if there is no ancestor node (ki,M;) of (k, M) with

M = M, then
M2 = M;
for all ancestors (ki,M;) of (k,M) such that
M; < M do
for all places p € S such that M;(p) < M(p)
do M (p) = w;
M = My,

for every transition ¢ such that M[t)M’ do
create node (k', M’);
create arc labelled ¢ from (k, M) to (k', M');
U:=UuU((k',M;

2This deviates slightly from the definition in [11], according
to which the sequence (0,0), (1,0}, (1,1),(2,1),... does not
converge to {(w,w).

®The algorithm presented here differs slightly from the orig-
inal.



In the following we list properties of Petri nets which are
known to be decidable using the Karp-Miller-tree K M (1),
and we sketch the respective decision procedures (see [11],[19],
[38]). The Karp-Miller-tree is always finite, hence it is pos-
sible to check for properties of all arcs and all nodes of

K M(ID).

1. Is RT(II) of a Petri net IT infinite? Procedure: RT(II)
is infinite iff the label of some node of K M (II) contains
an w, or, some node has an ancestor labelled by the
same marking.

2. Is RS(II) of a Petri net Il infinite? Procedure: RS(II)
is infinite iff the label of some node of K M (II) contains
an w.

3. Is a place s € S of a Petri net II = (5,7, F, My)
bounded? Procedure: s is bounded iff no node of
K M(II) is labelled by a pseudo-marking M such that
M(s)=w.

4. Is a transition ¢ € T of a Petri net II = (S5, T, F, My)
quasi-live, i.e. is there a marking in RT(II) where ¢
is enabled? Procedure: t is quasi-live iff there is
a pseudo-marking M in K M(II) such that M(s) >
F(s,t) for all s € S.

5. Does RS(II) of a Petri net II = (S,T, F,My) cover
some marking M’'? Procedure: M’ is covered iff
there is a pseudo-marking M in K M(II) such that
M > M.

6. Is L(II) of a Petri net I regular? Procedure: L(II) is
regular iff for every node n of K M (II) which is labelled
by a marking containing w and for every ancestor n,
of n such that n, is labelled by the same marking,
we have that 37, _ (Jw|:(F(¢t,s) — F(s,t))) > 0 for all
s € S, where w € TT is the path in K M(II) from ng
to n and |.|; denotes the Parikh-mapping (i.e., |w]|; is
the number of ¢’s in w).

Several other problems (e.g., control state reachability, de-
terminism) can be reduced to one of the above [11]. How-
ever, the Karp-Miller-tree of a Petri net can become very
large (in general the size of the graph is not bounded by
a primitive recursive function [32]). But, it was shown by
Finkel [11] that the above problems can also be decided us-
ing minmimal coverability sets and graphs, which are often
significantly smaller.

Definition 2. A coverability set CS(II) of a Petri net II =
(5, T,F, My) is a set of pseudo-markings such that the fol-
lowing conditions hold:

1. for every reachable marking M € RS(II), there is a
marking M’ € C'S(IT) such that M < M’,

2. for every marking M’ € C'S(IT) \ RS(IT), there is an
infinite strictly increasing sequence of reachable mark-
ings {M,,} converging to M’.

A coverability set C'S(IT) is minimal iff no proper subset of
CS(II) is a coverability set of II.

The minimal coverability set is finite and unique [11]. In
fact, the finite reachability set problem, the boundedness
problem, the covering problem, and the quasi-liveness prob-
lem are decidable using coverability sets, only. To decide the
regularity and the finite reachability tree problem, coverabil-
ity graphs can be used [11].

3. PARTIAL DEDUCTION

We will now present the essential ingredients of the logic
program specialisation techniques that were used for infi-
nite model checking in [14, 26]. As it turns out, we do
not require a separate abstract interpretation phase (as in
[14, 26]) to achieve completeness; partial deduction alone is
already powerful enough. We will return to the issue of im-
plementing Petri nets as logic programs (and thus making
them amenable to partial deduction) in Section 4.

Throughout this article, we denote variables through (strings
starting with) an uppercase symbol, while constants, func-
tions, and predicates begin with a lowercase character.

A partial evaluator [17] is given a program P along with part
of its input, called the static input. The partial evaluator
then produces a correct specialised version Ps of P which,
when given the dynamic input, produces the same output
as the original program P. In logic programming full input
to a program P consists of a goal < @ and evaluation corre-
sponds to constructing a complete SLD-tree for P U {+ Q},
i.e., a tree whose root is labelled by + @ and where children
of nodes are obtained by first selecting a literal of the node
and then resolving it with the clauses of P. For partial eval-
uation, static input takes the form of a partially instantiated
goal « Q' and the specialised program Ps should be correct
for all runtime instances < Q'8 of <~ Q' in the sense that
the computed answers of PU{+ Q'6} and PsU{+ Q'6} are
identical. A technique which achieves this is known under
the name of partial deduction, which we present below.

3.1 Generic Algorithm for Partial Deduction

The general idea of partial deduction is to construct a fi-
nite number of finite but possibly incomplete* trees which
“cover” the possibly infinite SLD-tree for P U {+ Q'} (and
thus also all SLD-trees for all instances of + @Q'). The
derivation steps in these SLD-trees are the computations
which have been pre-evaluated and the clauses of the spe-
cialised program are then extracted by constructing one spe-
cialised clause (called a resultant) per branch. These incom-
plete SLD-trees are obtained by applying an unfolding rule:

Definition 3. An unfolding rule is a function which, given
a program P and a goal « @, returns a non-trivial® and
possibly incomplete SLD-tree 7 for P U {< Q}. We also
define the set of leaves, leaves(7), to be the leaf goals of 7.

Formally, the resultant of a branch of 7 leading from the
root + @ to aleaf goal < @; via computed answer 8; is the

*An incomplete SLD-tree is a SLD-tree which, in addition
to success and failure leaves, also contains leaves where no
literal has been selected for a further derivation step.

5A trivial SLD-tree has a single node where no literal has
been selected for resolution.



formula Q8; < Q. Partial deduction uses the resultants for
a given set of atoms § to construct the specialised program
(and for each atom in S a different specialised predicate def-
inition will be generated). Given closedness (all leaves are
an instance of a specialised atom) and independence (no two
specialised atoms have a common instance), correctness of
the specialised program is guaranteed [28]. Independence
is usually (e.g. [25, 5]) ensured by a renaming transforma-
tion which maps dependent atoms to new predicate symbols
(and often filters out constant parts as well). Closedness is
more difficult to ensure, but can be satisfied using the fol-
lowing generic algorithm based upon [25]. This algorithm
structures the atoms to be specialised in a global tree: i.e., a
tree whose nodes are labelled by atoms and where A is a de-
scendant of B iff specialising B lead to the specialisation of
A. Apart from the missing treatment of conjunctions [5] the
following is the algorithm implemented in the ECCE system
[21] which we will employ later on.

Algorithm 3.1 (generic partial deduction algorithm)

Input: a program P and a goal < A

Output: a set of atoms or conjunctions A and a global tree ~

Initialisation: v := a “global” tree with a single unmarked
node, labelled by A
repeat

pick an unmarked or abstracted leaf node L in ~
if covered (L,v) then mark L as processed
else
W = whistle(L,~)
if W # fail then
if parent_abstraction = true then
remove all descendants of W and mark W as abstracted
label (W) := abstract(L, W,~)
else
mark L as abstracted
label(L) := abstract(L, W,~)
else
mark I as processed
for all Q € leaves(U(P,label(L))) do
for all A € partition(Q) do
add a new unmarked child C' of L to
label(C) := A
until all nodes are processed

output A := {label(A) | A € v} and ~

As can be seen, the algorithm is parametrised by a boolean
constant parent_abstraction, an unfolding rule U, a parti-
tioning function partition, a predicate covered(L, ), a whis-
tle function whistle(L,v) and an abstraction function

abstract(L, W, ~).

Intuitively, covered(L,~) is a way of checking whether L
or a generalisation of L has already been treated in the
global tree v. Formally, covered(L,~) = true must im-
ply that IM € ~ such that M is processed or abstracted
and for some substitution 6: label(M)8 = label(L). A
particular implementation can decide to be more demand-
ing and, e.g., return true only if there is another node in

v labelled by a variant of L. The purpose of partition
is to divide leaf goals into individual atoms. For “classi-
cal” partial deduction we would simply define: partition(+
A1,y An) = {A1, ..., A, }.% However, it is possible to per-
form some abstraction—independent of the particular global
tree v— at that stage. Formally, whenever partition(+
Q) ={Ai, ..., A} then for some 61, ..., 6; we must have that
— @ 1s identical to « A16q,..., Anby (up to reordering of
atoms).

The other two parameters are used to ensure termination.
Intuitively, the whistle(L,v) is used to detect whether the
branch of v ending in L is “dangerous”, in which case it
returns a value different from fail (i.e., it “blows”). This
value should be an ancestor W of L compared to which L
looked dangerous (e.g., L is bigger than W in some sense).
The abstraction operation will then compute a generalisa-
tion of L and W, less likely to lead to non-termination.
Formally, abstract(L,W,~) must be an atom which is more
general than both L and W. Depending on the parameter
parent _abstraction this generalisation will either replace the
label of W or L in the global tree +.

If the Algorithm 3.1 terminates then the closedness condi-
tion of [28] is satisfied, i.e., it is ensured that together the
SLD-trees 71,... , 7T, form a complete description of all pos-
sible computations that can occur for all concrete instances
+ Af of the goal of interest [22]. We can then produce a
totally correct specialised program.

Note that Algorithm 3.1 can be seen as a special kind of for-
wards abstract interpretation (see [22]), where each atom in
v actually denotes all its instances (i.e., the concretisations
7(A) of an atom A are all the instances of A).

On its own, Algorithm 3.1 does not ensure termination (so
its strictly speaking not an algorithm but a procedure). To
ensure termination, we have to use an unfolding rule that
builds finite SLD-trees only. We also have to guarantee that
infinite branches in the global tree v will be spotted by the
whistle and that the abstraction can not be repeated in-
finitely often.

3.2 Concrete Algorithms

We now present two concrete partial deduction algorithms.
These algorithms are online (as opposed to offline) in the
sense that they take their control decisions during the con-
struction of 4 and not beforechand. They are also rather
naive (e.g., they do not use characteristic trees [25] nor do
they cater for conjunctive partial deduction [5]; also the
generic Algorithm 3.1 does not include recent improvements
such as constraints or abstract interpretation). However,
they are easier to comprehend (and analyse) and will ac-
tually be sufficiently powerful to solve several interesting
problems.

Unfolding Rule

In this paper we will use a very simple method for ensuring
that each individual SLD-tree constructed by U is finite: we
always do just a single unfolding step! Practical systems use
much more refined approaches.

5For conjunctive partial deduction one can return entire con-
junctions instead of just single atoms.



Whistle

To ensure that no infinite global tree v is being built-up,
we will use a more refined approach based upon well-quasi
orders:

Definition 4. A sequence si,82,... of elements of S is
called admissible wrt a binary relation <g on S x S iff there
are no ¢ < j such that s; <5 s;. We say that <g is a
well-quasi relation (wqr) iff there are no infinite admissible
sequences wrt <g. A well quasi order (wqo) is a reflexive
and transitive wqr.

In our context we will use a wqo to ensure that no infinite
tree v is built up in Algorithm 3.1 by setting whistle # fail
whenever the sequence of labels on the current branch is not
admissible.

Definition 5. Given a wqo <X we define whistlex as fol-
lows: whistle<(L,v) = M iff M is the farthest ancestor of
L such that label(M) < label(L) and whistle<(L,~) = fail

if there is no such ancestor.

A particularly useful wqo i1s the homeomorphic embedding
[16, 20]. The following is the definition from [37], which
adapts the pure homeomorphic embedding from [7] by adding
a rudimentary treatment of variables.

Definition 6. The (pure) homeomorphic embedding rela-
tion < on expressions is inductively defined as follows (i.e.
< is the least relation satisfying the rules):

1. X <Y for all variables X,Y

2. s f(t1,... ,tn) if s < ¢; for some 1
3. (81, 8n) Q (b, ... tn) i Ve € {1,... ,n} we
have s; < ¢t;.

Notice that n is allowed to be 0 and we thus have ¢ < ¢ for
all constant and proposition symbols. The intuition is that
A<4Biff A can be obtained from B by “striking out” certain
parts, or said another way, the structure of A reappears
within B. We have f(a,b) <p(f(g(a),b)) but p(a) Ap(b)
and f(a,b) Ap(f(a,c), f(c,b)).

The relation <is a wqo on the set of expressions over a finite
alphabet [16, 20]. We also define the weak homeomorphic
embedding relation <7 on expressions by replacing rule 1.
of Definition 6 by:

1. t < X for all variables X

<7 is weaker in the sense that less sequences are admissible
(and hence it is a wqr; it is not a wqo as it is not transitive),
but 1t will be useful in establishing exact relationships to
existing algorithms for Petri nets.

Abstraction

Once the whistle has identified a potential non-termination
one will usually compute generalisations which are as precise
as possible (for partial deduction): The most specific gener-
alisation of a finite set of expressions S, denoted by msg(.5),

is the most specific expression M such that all expressions
in S are instances of M. A much less precise generalisation
than the msg, which we henceforth call nmsg (naive msg),
is defined as follows on terms:

o nmsg(s,t) =s if s =t and both s and ¢ are ground

terms

o nmsg(s,t) = X otherwise, where X is a fresh variable
For two atoms p(s1,...,sx) and p(t1, ..., tx) we define:

o nmsg(p(s1,-..,sx),p(t1, ..., tx)) =

p(nmsg(si,t1),...,nmsg(sk, tr)).

This will always produce a more general expression, but not
the most specific one. Note that nmsg is both associative
and commutative, and we can therefore extend it to sets of
atoms by defining:

o nmsg({A1, ..., Ar}) = nmsg(.. . nmsg(A1, A2)... ), Ax)

We can also use nmsg to implement a naive partitioning
function (where A’ € Q means that A’ is an atom in Q):
natve _partition(Q) = {A | A’ € Q and A = nmsg(A’, A)}.
This partitioning function will split any conjunction into
individual atoms and will replace non-ground terms by a
fresh variable. For example, we have that naive_partition(+

P(0), q(s(X), X, 5(0))) = {p(0), a(V, W, (0))}.

Due to their naivety, neither nmsg nor naive_partition are
used (to our knowledge) in existing online” partial deduction
systems, but it will allow us to more easily establish precise
relationships to algorithms over Petri nets.

Putting it all together
Based upon the concepts we can now define our first concrete
partial deduction algorithm:

Algorithm 3.2 We define an instance of Algorithm 3.1 ob-
tained by using:

parent_abstraction = false

U unfolds just once

partition(Q) = naive_partition(Q)

covered(L,~) = true if there exists an ancestor
node of L in 4 which is different from L and whose
label is a variant of label(L)
o whistle(L,~) = fail if L is marked as abstracted and

whistle(L,v) = whistle 4— (L,v) otherwise
o abstract(L, W, v) = nmsg({label(M1), ... , label(My})
where {M;i,... , My} are all the ancestors of L with
label(M;) 47 label(L).

From a partial deduction perspective this algorithm is sub-
optimal: covered only looks at ancestors (normally one would
look anywhere in the tree), partition and nmsg explicitly
throw information away, the whistle is much cruder than in
most partial deduction algorithms (and is also “disabled”
on already abstracted nodes, which in general could endan-
ger termination [but it does not do so here]). Its interest
is that it mimics exactly the construction of the so-called

" naive_partition is quite close to what offline systems (such

s [18]) do.



Karp-Miller coverability tree, which will enable us to prove
completeness results for partial deduction in Section 5.

The following algorithm is a more “natural” partial deduc-
tion variant,in which parent_abstraction, covered and whastle
are modified.

Algorithm 3.3 We define an instance of Algorithm 3.1 by
modifying the concrete Algorithm 3.2 as follows:

o parent_abstraction = true

o covered(L,~) = true if there exists a processed node
in v whose label is more general than label(L)

o whistle(L,~) = whistle4- (L, v)

e in addition, after Algorithm 3.1 is complete: remove
all nodes L (and their subtrees) for which covered(L, v)
= true.

This algorithm is more natural in the sense that covered
looks for variants (and more general atoms) in the entire
tree; the whistle i1s also more natural as it is not disabled for
already abstracted nodes. Also, when the whistle blows the
parent node gets abstracted which usually results in much
shorter, and more natural specialised programs.

ProposiTioN 1. Algorithm 3.3 terminates for any pro-
gram P and goal + A.

Proor. This algorithm is a much simplified version of the algo-
rithms in [25] and termination can be proven in a straightforward
manner by simplified version of the proofs in [25] or using the
termination framework of [36].

For Algorithm 3.2 the whistle is disabled for already ab-
stracted atoms. This actually means that the algorithm does
not always terminate! However, it will terminate for Petri
nets encoded as logic programs.® We will return to this issue
later in the paper.

4. PETRI NETS AS LOGIC PROGRAMS

It is very easy to implement Petri nets as (non—deterministic)
logic programs. Figure 2 contains a particular encoding of
the Petri Net on the right in Figure 1 (taken from [11])
and a simple predicate reachable searching for reachable
markings in RS(II). Other Petri Nets can be encoded by
changing the trans/3 facts and the initial marking fact.
Based upon such a translation, [14, 26] pursued the idea
that model checking of safety properties amounts to show-
ing that there exists no trace which leads to an unsafe state.
In other words, one can translate the interpreter in Fig. 2
into a simple model checker of safety properties by adding
a condition to the fact reachable([],State,State) which
detects unsafe states. E.g., if we want to verify that there
should never be tokens in the places p2 and p4 at the same
time, we would write in Fig. 2:

8When investigating the termination of Algorithm 3.2 we
actually found a small mistake in the Karp_Miller_Tree Al-
gorithm in [11], in the sense that it never terminates for
unbounded Petri nets. We have presented a corrected ver-
sion in this paper.

reachable([],State,State) :-
State = [P1,s(P2),P3,s(P4),P5].

Proving that no trace leads to a state where reachable/3
holds is then achieved by a semantics-preserving program
specialisation and analysis technique, reducing the predicate
reachable/1 to the empty program. For this, an instance
of Algorithm 3.1 was applied to several systems (other for-
malisms such as CCS, CSP, or the w-calculus can be tackled
by providing different interpreters), followed by an abstract
interpretation in the style of [29] (which we do not need in
the present paper). “

4 t6
pl tl 3
2 "
P2 2 P P>

Figure 1: A simple Petri net

reachable(R) :-

initial_marking (M), reachable(Tr,R,M).
reachable([]1,State,State).
reachable ([Action|As] ,Reach,InState) :-

trans (Action,InState,NewState),

reachable (As,Reach,NewState) .
initial_marking([s(0),0,0,0,0]).
trans(t1l, [s(X),X2,X3,X4,X5],[X,s(X2),X3,X4,X5]).
trans(t2, [s (X) ,X2,X3,X4,X5],[X,X2,X3,s(X4) ,X5]).
trans (t3, [X,s(X2),X3,X4,X5],[X,X2,s(s(X3)),X4,X5]).
trans(t4,[X,X2,s(X3),X4,X5],[X,s(X2),X3,X4,X5]).
trans (t5,[X,X2,X3,s(X4),X5],[X,X2,X3,X4,s(s(X5))1).
trans(t6,[X,X2,X3,X4,s(X5)],[X,X2,X3,s(X4) ,X5]).

Figure 2: Encoding a Petri net as a logic program

We now show that this approach gives a decision procedure
for the properties of Sect. 2 and that there is a tight link
with existing Petri net algorithms.

We will first perform a preliminary compilation of the par-
ticular Petri net and task (Fig. 2). This will get rid of
some of the interpretation overhead and also give us a more
straightforward equivalence between markings of the Petri
net and atoms encountered during the partial deduction
phase proper. We will use the LOGEN offline partial deduc-
tion system [18] to that effect (but any other scheme which
has a similar effect can be used). This system allows one
to annotate calls in the original program as either reducible
(executed by LOGEN) or non-reducible (not executed and
thus kept in the specialised plroglram).9 In our case we will
annotate all calls to trans and initialmarking as reducible.
After that, the LOGEN system will (efficiently) produce a
compiled version of Fig. 2: As can be seen in Fig. 3, the
compilation gives us a predicate reachable_1 with one ar-
gument each for the action label and the result, plus one
argument per Petri net place. Observe that LOGEN (and
ECCE as well) adds two underscores and a unique identi-
fier to existing predicate names. reachable_1 contains one

9LOGEN is offline: the control decisions have been taken be-
forehand (and are encoded in the annotations).



clause per transition of the Petri net plus one fact (for the
marking reached). The initial marking is encoded in the one
clause for reachable_0.

reachable__0(R) :- reachable__1(C,R,s(0),0,0,0,0).
reachable__1([],[B,C,D,E,F],B,C,D,E,F).
reachable__1([t1|A],R,s(B),C,D,E,F) :-
reachable__1(A,R,B,s(C),D,E,F).
reachable__1([t2|A],R,s(B),C,D,E,
reachable__1(A,R,
reachable__1([t3|A],R,B,s(C),D,E,
9R9

C,D,s(E),F).

F
B
F
B

. e N

reachable__1(A C,s(s(D)),E,F).
reachable__1([t4|A],R,B,C,s(D),E,F) :-
reachable__1(A,R,B,s(C),D,E,F).
reachable__1([t5|A],R,B,C,D,s(E),F) :-
reachable__1(A,R,B,C,D,E,s(s(F))).
reachable__1([t6|A],R,B,C,D,E,s(F)) :-
reachable__1(A,R,B,C,D,s(E),F).

Figure 3: Compiled Petri net

We now apply our partial deduction algorithms of Sect. 3
(using ECCE) to this compiled interpreter. The facts and
rules of the resulting specialised program (see Appendix B)
have the following form (apart from the top-level rule): Facts
are of the form reachable__1__NW(...) where ¥ is a num-
ber (generated by ECCE) and the last parameter is a rep-
resentation of a pseudo-marking. Rules are of the form
reachable__1__N1(...) :-reachable__1__HW2(...) where N1,02

are numbers and the first parameter of reachable__1__N1(...)
contains a name of a transition. In Fig. 4 the facts gener-
ated from the code in Fig. 3 are represented as nodes and
the generated rules as edges between these nodes. (The term

r_11 is a shortcut for reachable_1_1.)

r_1_2(11((0),0,0,0,0))
t1 12
r_1_3(1110,5(0),0,0,0]) r_1_4([1,[0,0,0,5(0),0])
13 15
r_1_10([1,10,0,s(s(0)),0,01) r_1.5([1,[0,0,0,0,5(s(0))])
4 16
r_1_11(0,A,[0,5(0),A,0,01) r_1_6([1,A,[0,0,0,s(0),A])
¥ |l 15

13 4 6
L1712([],Am m,IO,A,B,0,0]) r_1_8(1A,B|[0,0,0,AB)  r_1_7(1,A10,0,0,0,A)

" <_> 16
r_1_14([1,A,B,[0,A,B,0,0]) 13,14 15,16 r_1_9(1,A,B,[0,0,0,A,B))

13,14 15,16

Figure 4: The result of applying EccE to Fig. 3.

This graph bears a striking resemblance to the Karp—Miller
tree for the above Petri net as given in [11]. In particular, all
coverability problems which are decidable using the Karp-
Miller tree can also be decided using the graph of Fig. 4. For
example, from the existence of a fact for r_1_13 with unbound
variables for places 2 and 3 we can actually deduce that the
places p2 and p3 are not bounded.

In the next section we prove that the relation between the
code generated by Algorithm 3.2 and the Karp—Miller tree is
not a coincidence. Furthermore, partial deduction can also
be used to generate minimal coverability sets: The graph
below was generated by Algorithm 3.3 applied to the exam-
ple. Each node corresponds to one element of the minimal
coverability set.

r_1_2([1,[s(0),0,0,0,0])
f1 12

r_1_4(0,AB,[0,A,B,0,0) r_1_3(T,A,B,[0,0,0,AB])

13,14 15,16

Using more natural (and powerful) settings of Algorithm 3.1,
we can also handle problems which cannot be handled by
any algorithm in [11]. For example, in [26], we applied Al-
gorithm 3.1 to the manufacturing system used in [3] and
were able to prove absence of deadlocks for parameter val-
ues of e.g., 1,2,3. When leaving the parameter unspecified,
the system was unable to prove the absence of deadlocks
and produced a residual program with facts. And indeed,
for parameter value > 9 the system can actually deadlock.
The timings seem to compare favourably with HyTech [15].

5. COMPLETENESS RESULTS

We will now formally prove that the algorithms from Sect. 3
can be used to decide the coverability problems of Sect. 2.
For this we need to establish a link between pseudo-markings
from within the coverability sets of Section 2 and the atoms
produced by our partial deduction algorithms.

First, we will denote by C(II, My) the logic program ob-
tained by applying LOGEN to (a variation of ) Fig. 2 encoding
the Petri net II with the initial marking My. The encoding
of natural numbers as terms used by C(II, My) is:

¢ [i]=0 ifi=0
o [i] =s([1—1]) otherwise

Now, queries and goals for C'(II, Mp) may also contain vari-
ables, which actually enables us to mimic the w from Sect. 2.
Hence, we extend our notation [.] to IN U {w} by defining
[w] = X, where X is a fresh variable.

From now on, we suppose that the order of the places in
My 1s the same as in the encoding in Fig. 2. We can now
establish a precise relationship between firing sequences of
a Petri net and SLD-derivations of the above logic program
translation:

LEMMA 1. Let II be Petri Net, and let My and M, =
(m1,... ,my) be two (pseudo) markings for II.
Then Mo[t1,...  tx)My iff there exists an SLD-refutation
for C(I1, My) U {+ reachable__0(X)} with computed answer
CXlmid, e [l
Also, Mo[t1, ... txYMy iff there exists an SLD-derivation
for C(II, Mo) U {+ reachable__0(X)} leading to (a variant
of ) + reachable_ 1(T, X, [m1],...,[myn]). Furthermore,
the refutation and the derivation will both always be of length
k+1.

Next, recall that an atom for partial deduction denotes that
all its instances. So, if during partial deduction we encounter
reachable_1(T,R,M1,...,Mk) this means that any (ordi-
nary) marking in {(m1,...,mz) | 39Vi : Mif = [m;]} is (po-
tentially) reachable. In particular, if any Mi is an unbound
variable X this denotes that all values are potentially pos-
sible for that place. However, partial deduction atoms are



more expressive than pseudo-markings: e.g., we can repre-
sent all (mi,m2) such that m; > 0 and m2 = m; + 1 by
reachable_1(T,R,s(X),s(s(X))). In other words, we can
establish a link between the number of tokens in several
places via shared variables and we can represent minimum
values for places.'® However, this information will be thrown
away by nmsg and naive_partition (but not by partial de-
duction in general).

For a pseudo-marking M = (m,... ,my) we can now define
[M1p® = p(t, [mi1],...,[mx]) (where the t are just some
extra arguments not directly related to the marking; in the
previous section the encodings contained one extra argument
registering the firing trace and one for the result). For exam-
ple, we have [{0,w, 2, w)]p = p(¢£,0,X,5(5(0)),Y). Finally,

as [.] is injective we can define the (partial)'! inverse [.]7!.

THEOREM 1. Let vy be produced by applying to C(II, Mo)
and reachable__0(X) any instance of Algorithm 3.1 which
uses naive_partition, a one-step unfolding rule, and where
whistle(L,y) = A = A <7 L, and abstract(L,W,~) =
nmsg({label(My), ..., label(M}y}) for some ancestors M; of
L with label(M;) <~ label(L). Then {[label(A)]™' | A € v}

18 a coverability set.

The above theorem establishes that Algorithms 3.3 and 3.2
or any other valid instance of Algorithm 3.1(e.g., using more
powerful whistles based upon <l and characteristic trees),
can be used as a decision procedure for the finite reacha-
bility set problem, the boundedness problem, the covering
problem, and the quasi-liveness problem (see Sect. 2). For
example, to decide whether RS(II) is infinite we report true
as soon as the whistle blows; if the algorithm completes with-
out any whistle blowing we report false.

For the quasi-liveness and the covering problem we can make
the decision more explicit. For instance, to decide whether
a a transition ¢ € T of a Petri net II = (S, T, F, My) is
quasi-live, we simply adapt the initial code from Fig. 2:

reachable([],State,State) :- trans(t,State, ).

and mark this trans call as reducible for LOGEN. We then
run the same process as above, and if the final specialised
program contains a fact then we report true, otherwise we
report false. Note that in the latter case, the bottom-up
abstract interpretation [29] used in [14, 26] will produce the
empty program. We have thus established a class of infinite
state systems and properties for which the approach of [14,
26] arrives at a definite, precise result. We now go even fur-
ther and establish a 1-1 correspondence to the Karp-Miller
procedure:

1%More precisely, each atom represents a linear set L C IN*
of markings L = {b+ >_/_, nip' | ns € IN} with b, p' € IN*
and the restriction that >-7_, pr< {1, 1),

1 As mentioned above, all pseudo-markings have an en-
coding as an atom but not all atoms (generated by arbi-
trary instances of Algorithm 3.1) have an equivalent pseudo-
marking.

THEOREM 2. Algorithm 3.2 applied to C(II, My) and
reachable_0(X) will produce a global tree v which is iso-
morphic to a Karp-Miller coverability tree of I1 for the initial
marking Mo .

As we have seen earlier on one example, Algorithm 3.2 does
indeed reproduce exactly the same result as the one pre-
sented in [11].

Now, while Algorithm 3.2 mimics the Karp-Miller proce-
dure, Algorithm 3.3 was designed to mimic Finkel’s mini-
mal coverability algorithm [11]. Indeed, for the example in
Sect. 4 it actually does so (cf. Appendix C). Unfortunately,
this is not always the case. The problem is that Finkel’s
algorithm “drops” a marking (e.g., (0}) if there is a bigger
marking (e.g., (1)) somewhere else in the tree. In the case
of partial deduction, this “optimisation” corresponds to not
specialising a call p(0) if we have already specialised p(s(0)).
Unfortunately, for logic programs in general this is unsound,
and hence is not performed by partial deduction! Take for
example the program:

p(0) « true
p(s(0)) « false

Here + p(0) succeeds while < p(s(0)) fails and the above
“optimisation” would lose a computed answer and produce
an incorrect specialised program. For Petri nets, however,
such an optimisation is correct due to the following mono-
tonicity property: if Mlt1,... ,tx)M' and M"YM then
M"[t1,... . tx)M" for some M"' > M'. This is reflected in
the logic program encoding (cf. Fig. 2 and its compilation).
Indeed, M > M' implies that whenever [M'] unifies with a
clause, so does [M]. Syntactically, this corresponds to the
fact that the pre-condition for firing a transition for a place
is either a variable X or a term of the form s(...s(X)...)
(where X is not shared with another place). This insight
leads to the following definition:

Definition 7. Let < be a quasi-order on atoms and let P
be a logic program. Then < is a valid covering relation for
P iff A < B implies that whenever A unifies via the mgu 6
with the head H of a clause H + Aj,..., A of P then

e B also unifies with H
e for some mgu o of B and H we have that Vj €
{1,...,m}: A;6 < Ajo.

The above ensures that if we analyse B we will also cover (in
the sense of <) all computations that A can perform. The
relations “instance of” and “variant of” are valid covering
relations for any program P. However, for a particular pro-
gram or class of programs stronger covering relations can be
used.

This means that we can use a valid covering relation <
within Algorithm 3.1 and still ensure correctness of our ana-
lysis (and correctness of the residual program if we adapt the
renaming function). This is a very special instance of the
abstract partial deduction framework in [22] and is actually



what we need to fully mimic Finkel’s minimal coverability
algorithm by using =<1 for the covered-test where: [m],
=< [mp@ il m < m'. <[ is a valid covering relation for
programs of the form C(II, M) (but not for programs in
general).

THEOREM 3. Algorithm 3.3 using <[ for covered ap-
plied to P = C(II, My) and @ = reachable__0(X) will con-
struct the minimal coverability set of I1 for the initial mark-
g Mo.

6. FUTURE WORK

One big advantage of the partial deduction approach to
model checking is it scales up to any formalism expressible
as a logic program. More precisely, proper instantiations of
Algorithm 3.1 will terminate for any system and will pro-
vide safe approximations of properties under consideration.
However, as is to be expected, we might no longer have a
decision procedure.

First, the partial deduction can handle a rather straightfor-
ward extension of [19, 11]. We can prove properties for infi-
nite numbers of Petri nets by allowing w’s to be put into the
initial markings. This was successfully used in [26] to prove
a mutual exclusion safety property for an infinite family of
systems. [26] discusses how to extend the model checking
approach to liveness properties and full CTL. Some simple
examples are solved. Reachability can be decided in some
but not all cases using the present algorithms. In future we
want to examine the relationship to Mayr’s algorithm [30]
and whether it can be mimicked by abstract partial deduc-
tion [22].

There are many extensions of the basic Petri net model.
It turns out that most of these can be handled very easily
within our approach by simple extensions to our interpreter.
Boundedness is undecidable for Petri nets with reset arcs
[8]. However, coverability and quasi-liveness is still decid-
able using a backwards algorithm [1, 12]. Tt turns out that
our generic partial deduction algorithm can mimic this al-
gorithm as well and thus provides a decision procedure for
the coverability problem of Petri nets with reset arcs! For
this we have to write an “inverse” interpreter and analyse it
using partial deduction (but using msg instead of nmsg and
not using naive_partition). In the companion paper [24] we
study such Petri net extensions as well as the class of so-
called well-structured transition systems. In future work
we aim to analyse our approach in the context of other for-
malisms such as process algebras (first experiments with the
n-calculus have been performed).

An important aspect of model checking of finite state sys-
tems 1s the complexity of the underlying algorithms. We
have not touched upon this issue in the present paper, but
plan to do so in future work. Omne can draw, however, a
quite interesting conclusion about the worst-case complexity
of some existing program specialisation techniques. Indeed,
it should not be very difficult to adapt the arguments in this
paper to show that not only partial deduction based upon <
[25] but also supercompilation with < [37] or partial evalu-
ation of functional-logic programs with < [2] can be used to
decide the boundedness problem of Petri nets. Now, as the

boundedness problem is known to be exponential-space hard
[27], this means that above techniques should better not be
used as is in a context (such as within a compiler) where
a tight upper-bound on memory and time requirements is
essential.

Another future direction is to move from pure logic program-
ming to constraint logic programming. The latter allows for
a more natural encoding of time (and arguably of Petri net
markings) and has already proven to be useful on its own
(i-e., without specialisation or analysis) for model checking
6, 13].
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APPENDIX

A. PROOFS

LEMMA 2. For i,7 € IN U {w} we have that i < 7 tff
[i] €7 [4]. Similarly, for two pseudo-markings M, M' and
two atoms A, B such that A<\~ B we have that M < M’ iff
[M]a 97 [M']5.

LEMMA 3. Given two pseudo-markings M, M’ define the
pseudo-marking M" by: M"(p) = M(p) «f M(p) = M'(p)
and M"(p) = w otherwise.

Then [M" 0 = nmsg([Mpm, [Mpm)-

We from now on write s = [M] if [M], = s for some
atom p(t).

THEOREM 1 Let v be produced by applying to C(II, Mo)
and reachable__0(X) any instance of Algorithm 3.1 which
uses natve_partition, a one-step unfolding rule, and where
whistle(L,v) = A = A <7 L, and abstract(L,W,~) =
nmsg({label(M1), ... ,label(M}}) for some ancestors M; of
L with label(M;) <~ label(L). Then {[label(A)]™" | A € v}

is a coverability set.

PROOF. (Sketch) First, it can easily be proven by induction
that all the labels of any ~ arising during the execution of the
algorithm can be associated with a pseudo-marking of P in the
sense that L € v = label(L) & [M]. (Obviously this holds for
the initial tree v and will not be violated by abstract as it uses
nmsg nor by adding children due to correctness of the unfolding
step [28] and because naive_partition will replace any non-ground
term by a fresh variable corresponding to w.)

The first condition for being a coverability set (Definition 2) is
that all markings of the reachability set are covered. This is a
straightforward consequence of a) the fact that termination of our
algorithm implies closedness and thus also correctness of partial
deduction [28], b) the fact the we use a 1-step unfolding rule (and
hence no intermediate markings can be hidden) and c) of the
correctness of our interpreter (Lemma 1).

The second condition is a consequence of the following: let M =
[label(A)]~! (which is defined by our first point above) with A €
~. If M has no w then M itself is a reachable marking as a) our
interpreter (Lemma 1) is correct, b) partial deduction is sound
and c) in this case also complete (as no abstraction has occurred

to reach M). Indeed, for c):

e the only abstraction performed by nmsg and naive _partition
is to introduce w;

e once an w has been introduced it can never disappear,

e concerning partition all leaf goals are atoms so there is no
abstraction required to split the leaf goals into individual
atoms).
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If M contains an w then we know that a fresh variable was at
some point introduced by nmsg within a call to abstract(L,~)
(if partition puts in an w then an w was already present be-
fore). By Definition 5 we know that abstract(L,~v) = nmsg(...
(nmsg(label(L), label(My)) ... ),label(My)) where My,... , My
are ancestors of L (not necessarily all) with label(M;) 1~ label(L).
By Lemma 2 we know that [label(M;)] ™1 < [label(L)] 7. We
also know that for an w to be introduced we must have for some
¢’s (and we can actually ignore the others without changing the
result of abstract) that label(M;) and label(L) are not variants.

12For Petri nets with reset arcs this is no longer the case.

This implies that for those i’s: [label(M;)] ™! < [label(L)] 1.
Hence by the monotonicity of Petri nets'® we can construct an
infinite sequence of transitions whose limit is the generalisation

M.

THEOREM 2 Algorithm 3.2 applied to P = C(II, My) and
Q = reachable__0(X) will produce a global tree v which is
isomorphic to a Karp-Miller coverability tree of II for the
initial marking Mo.

PROOF. (Sketch) We have (see proof of Theorem 1) that L € ~
= label(L) = [M].

Let us now examine all the cases of the Karp-Miller algorithm and
prove that they are mimicked by the partial deduction algorithm.

Case 1 is mimicked by the covered test as M = M; implies that
[M1p5 is a variant of [M1] ().

If case 2 applies, we have by Lemma 2 that the whistle blows (the
extra argument 1 is a fresh variable, and the extra argument 2
is always the same [and usually a fresh variable as well], which
implies that the condition A <~ B of Lemma 2 is satisfied). We
also know by the same lemma that covered does not hold. Let
us first assume that there is only one ancestor (k1,M;). In that
case we can directly apply Lemma 3 to show that for the new
label A computed by abstract we have exactly A &~ [Mz]. In
case there are more than one ancestor (k;,M;) the same can be
proven using a straightforward induction on the number of such
ancestors.

If case 3 applies we know by Lemma 2 that neither covered nor
whistle are true in the partial deduction algorithm. For markings
without w, we know by correctness of unfolding and Lemma 1
we know that the partial deduction algorithm will add exactly
the same children as the Karp-Miller procedure (and will also
label them using a clause corresponding to the same transition).
For markings with w we also get the same children as with the
Karp-Miller procedure because naive_partition will replace any
non-ground term by a fresh variable corresponding to w.

THEOREM 3 Algorithm 3.3 using <1 for covered applied to
P = C(Il, My) and @ = reachable__0(X) will construct the

minimal coverability set of II for the initial marking M.

PROOF. (Sketch) We can show that Algorithm 3.3 mimics all
the 4 cases of “minimal_coverability tree” procedure in [11] for
a currently selected node with marking m. Let L be the node
selected in Algorithm 3.3 corresponding to m, i.e., [label(L)] = m
and let us examine the 4 cases:

1. if there is a node with marking m1 = m then covered (L,~)
= true and the node I will thus be marked as processed

2. if there is a node with marking m1 < m then covered (L, ~)
= true and the node L will thus be marked as processed.
Here it is important that covered is extended using <.

3. let us first consider the case that there is an ancestor of m
such that m1 < m. In that case the whistle(L,~) will blow
(by Lemma 2) and return the first node on the path from
the root such that m; < m (mi; = m is not possible as
case 1 hasn’t been applied) By Lemma 3 abstract(L, W,~)
we now know that abstract(L,W,~) will give exactly mo

Ble., Mlt, ..., tg)M’  and
M"[ty,... ,tg)M" for some M'"YM’.

MMM implies that



of the “minimal_coverability tree” procedure. Also, the re- reachable 9([]1,A,B,[0,0,0,4,B]).

moval of all nodes such that m; < ms will be performed reachable__1 __9([t5|A] S(B) c,D) :-
by the post-processing of Algorithm 3.3 (if the with my got reachable__1__9(4,B,s(s(C)),D).
removed then there will be another node with a marking > reachable__1 __9([t6|A] B s(C),D) :-
mo which will remove all the nodes with a marking < mq reachable_ _9(A,s(B),C,D).
as well. reachable__1__10([], [0 0 s(s(0)),0,0]).
For the case that there is no ancestor of m such that m; < m reachable__1__10([t4]|A] ,B) :-
we have that my = m. Again, the removal of all nodes such reachable__ __11(4,s(0),B).
that m; < mo will be performed by the post-processing reachable__1__11([],4,[0,s(0),4,0,0]).
of Algorithm 3.3. In this case the whistle(L,~) of Algo- reachable__ __11([t3|A] B,C) :-
rithm 3.3 does not blow but at the next iteration of the reachable__1__12(A,s(s(B)),C).
“minimal _coverability tree” procedure mo will fall into case reachable__1__11([t4]A],s(B),C) :-
4. reachable__1__13(A,s(s(0)),B,C).
4. In this case we know that the whistle(L,~) does not blow reachable__1__12([1,4,[0,0,4,0,0]).
(by Lemma 2) and similarly to Theorem 2 we can estab- reachable__1 ——12([t4|A] s(B),0) :-
lish that the partial deduction unfolding exactly mimics the reachable__1__14(4,s(0),B,C).
construction of the children in [11]. reachable__1__13([],4, B [0,4,B,0,01).
reachable__1__13([t3]A],s(B),C,D) :-
reachable__1__13(A,B,s(s(C)),D).
[] reachable__1__13([t4]A],B,s(C),D) :-
reachable__1__13(4,s(B),C,D).
B. A KARP-MILLER TREE USING ECCE reachable.1_.14( 53?5 fo.4.8,0,0)).
In this appendix we show how ECCE reconstructs precisely __re_!e_lchable 14(A,B, s(.s(C)) D).

the Karp-Miller tree for the Petri net PN1 of [11] (page 219). reachable 14(¢ [t4IA] B,s(C),D) :-

reachable__ _-14(a,s(B),C,D).
/xS ialised ted by E 1.1 %/
e Ph Gool: romihorle. Sny ey Y ReCS C. A MINIMAL COVERABILITY GRAPH
/* Parameters: Abs:n InstCheck:y Msv:n NgSlv:g Part:n USING ECCE

Prun:n Sel:c Whstl:o Raf:noFar:no Dce:no Poly:n
Dpu:no ParAbs:no Msvp:no */
/* Transformation time: 134 ms */

In this appendix we show how ECCE reconstructs precisely
the minimal coverability graph (pages 223 and 230 of [11])

/* Specialised Predicates: for the Petri net PN1 of [11].
reachable__0__1(A) :- reachable__O0(4).
reachable__1__2(A,B) :- reachable__1(A,s(0),0,0,0,0,B).
reachable__1__3(A,B) :- reachable__1(4,0,s(0),0,0,0,B). /* Specialised program generated by Ecce 1.1 */
reachable__1__4(A,B) :- reachable__1(4,0,0,0,s(0),0,B). /* PD Goal: reachable__O(A) */
reachable__1__5(A,B) :- reachable__1(4,0,0,0,0,s(s(0)),B). /* Parameters: Abs:n InstCheck:a Msv:n NgSlv:g
reachable__1__6(A,B,C) :- reachable__1(4,0,0,0,s(0),B,C). Part:n Prun:n Sel:c Whstl:n Raf:noFar:no Dce:no
reachable__l__7(A,B,C) M reachable__l(A,0,0,0,0,B,C). Poly:n Dpu:no ParAbs:yes Msvp:no */
reachable__l__8(A,B,C,D) = reachable__l(A,0,0,0,B,C,D). /* Transformation time: 83 ms */
reachable__1__9(A,B,C,D) :- reachable__1(A,0,0,0,B,C,D). /* Specialised Predicates:
reachable__1__10(A,B) :- reachable__1(4,0,0,s(s(0)),0,0,B). reachable__O__1(A) :- reachable__0(A).
reachable__1__11(A,B,C) :- reachable__1(4,0,s(0),B,0,0,C). reachable__1__2(4,B) :-
reachable__1__12(A,B,C) :- reachable__1(A,0,0,B,0,0,C). reachable__1(4,s(0),0,0,0,0,B).
reachable__1__13(A,B,C,D) :- reachable__1(A,0,B,C,0,0,D) reachable__1__3(A,B,C,D) :-
reachable__1__14(A,B,C,D) :- reachable__1(4,0,B,C,0,0,D).*/ reachable__1(4,0,0,0,B,C,D).
reachable__1__4(A,B,C,D) :-
reachable__0(A) :- reachable__O__1(4). reachable__1(A,0,B,C,0,0,D). */
reachable__0__1(A) :- reachable__1__2(B,A). reachable__0(A) :- reachable__O__1(A).
reachable__1 __2([] [s(0),0,0,0,01).
reachable__1__2([t1]|A],B) :- reachable__1__3(A,B). reachable__O__1(A) :- reachable__1__2(B,A).
reachable__1__2([t2|A],B) :- reachable__ __4(A B).
reachable__1__3([],[0,s(0),0,0,0]). reachable__1__2([],[s(0),0,0,0,0]).
reachable__1__3([t3|A],B) :- reachable__1__10(A,B). reachable__1__2([t1|A],B) :-
reachable__1__4([]1,[0,0,0,s(0),0]). reachable__1__4(A,s(0),0,B).
reachable__1__4([t5|A],B) :- reachable__1__5(A,B). reachable__1__2([t2|A],B) :-
reachable__1__5([]1,[0,0,0,0,s(s(0))]). reachable__1__3(A,s(0),0,B).
reachable__1__5([t6|A],B) :- reachable__1__6(A,s(0),B).
reachable__1__6([],4,[0,0,0,5(0),A]). reachable__1__3([],4,B,[0,0,0,4,B]).
reachable__1__6([t5|4],B,C) :- reachable__1__3([t5]4],s(B),C,D) :-
reachable__1__7(A,s(s(B)),C). reachable__1__3(4,B,s(s(C)),D).
reachable__1__6([t6]A],s(B),C) :- reachable__1__3([t6]4],B,s(C),D) :-
reachable__1__8(A,s(s(0)),B,C). reachable__1__3(4,s(B),C,D).
reachable__1__7([],4,[0,0,0,0,A]).
reachable__1__7([t6]A],s(B),C) :- reachable__1__4([],4,B,[0,4,B,0,0]).
reachable__1__9(4,s(0),B,C). reachable__1__4([t3]4A], s(B) c,D) :-
reachable__1__8([],A,B,[0,0,0,A,B]). reachable__1__4(A,B,s(s(C)),D).
reachable__1__8([t5]A], S(B) c,D) :- reachable__1 __4([t4|A] B s(C),D) :-
reachable__1__8(A,B,s(s(C)),D). reachable__1__4(4,s(B),C,D).
reachable__1 __8([t6|A] B s(C),D) :-

reachable 8(4,s(B),C,D).



