
Coverability of Reset Petri Nets and other
Well-Structured Transition Systems

by Partial Deduction

Michael Leuschel and Helko Lehmann

Department of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
{mal,hel99r}@ecs.soton.ac.uk

www: http://www.ecs.soton.ac.uk/~mal

Abstract. In recent work it has been shown that infinite state model
checking can be performed by a combination of partial deduction of logic
programs and abstract interpretation. It has also been shown that par-
tial deduction is powerful enough to mimic certain algorithms to decide
coverability properties of Petri nets. These algorithms are forward al-
gorithms and hard to scale up to deal with more complicated systems.
Recently, it has been proposed to use a backward algorithm scheme in-
stead. This scheme is applicable to so–called well–structured transition
systems and was successfully used, e.g., to solve coverability problems
for reset Petri nets. In this paper, we discuss how partial deduction can
mimic many of these backward algorithms as well. We prove this link in
particular for reset Petri nets and Petri nets with transfer and doubling
arcs. We thus establish a surprising link between algorithms in Petri net
theory and program specialisation, and also shed light on the power of
using logic program specialisation for infinite state model checking.

1 Introduction

Recently there has been interest in applying logic programming techniques to
model checking. Table-based logic programming and set-based analysis can be
used as an efficient means of performing explicit model checking [29][4]. Despite
the success of model checking, most systems must still be substantially simplified
and considerable human ingenuity is required to arrive at the stage where the
push button automation can be applied [31]. Furthermore, most software systems
cannot be modelled directly by a finite state system. For these reasons, there
has recently been considerable interest in infinite model checking. This, by its
very undecidable nature, is a daunting task, for which abstraction is a key issue.

Now, an important question when attempting infinite model checking in prac-
tice is: How can one automatically obtain an abstraction which is finite, but still
as precise as required? A solution to this problem can be obtained by using ex-
isting techniques for the automatic control of logic program specialisation [19].
More precisely, in program specialisation and partial evaluation, one faces a very

similar (and extensively studied) problem: To be able to produce efficient spe-
cialised programs, infinite computation trees have to be abstracted in a finite
but also as precise as possible way. To be able to apply this existing technology
we simply have to model the system to be verified as a logic program (by means
of an interpreter). This obviously includes finite LTS, but also allows to express
infinite state systems. This translation is often very straightforward, due to the
built-in support of logic programming for non-determinism and unification. First
successful steps in that direction have been taken in [12, 24]. [22] gave a first for-
mal answer about the power of the approach and showed that when we encode
ordinary Petri nets as logic programs and use existing program specialisation al-
gorithms, we can decide the so-called “coverability problems” (which encompass
quasi-liveness, boundedness, determinism, regularity,...). This was achieved by
showing that the Petri net algorithms by Karp–Miller [15] and Finkel [8] can be
exactly mimicked. Both algorithms are forward algorithms, i.e. they construct
an abstracted representation of the whole reachability tree of a Petri net starting
from the initial marking. However, to decide many coverability problems, such a
complete abstraction is not necessary or even not precise enough for more com-
plicated systems. To decide coverability problems for a wider class of transition
systems, namely well structured transition systems, in [1, 9, 10] a backward algo-
rithm scheme was proposed instead. This scheme has been successfully applied,
e.g., to reset Petri nets.

In this paper we discuss how partial deduction can mimic these backward
algorithms as well. We prove this correspondence in particular for reset Petri
nets, since for many problems they lie on the “border between decidability and
undecidability” [6]. Thus, in addition to establishing a link between algorithms
in Petri net theory and program specialisation, our results also shed light on the
power of using logic program analysis and specialisation techniques for infinite
state model checking.

2 (Reset) Petri Nets and the Covering Problem

In this paper we want to study the power of partial deduction based approaches
for model checking of infinite state systems. To arrive at precise results, it makes
sense to focus on a particular class of infinite state systems and properties which
are known to be decidable. One can then examine whether the partial deduc-
tion approach provides a decision procedure and how it compares to existing
algorithms. In this section, we describe such a decidable class of properties and
systems, namely covering problems for Petri nets, reset Petri nets, and well-
structured transition systems. We start out by giving definitions of some impor-
tant concepts in Petri net theory [30].

Definition 1. A Petri net Π is a tuple (S, T, F,M0) consisting of a finite set of
places S, a finite set of transitions T with S∩T = ∅ and a flow relation F which
is a function from (S × T) ∪ (T × S) to IN . A marking M for Π is a mapping
S → IN . M0 is a marking called initial.

A transition t ∈ T is enabled in a marking M iff ∀s ∈ S : M(s) ≥ F (s, t).
An enabled transition can be fired, resulting in a new marking M ′ defined by
∀s ∈ S : M ′(s) = M(s) − F (s, t) + F (t, s). We will denote this by M [t〉M ′.
By M [t1, . . . , tk〉M ′ we denote the fact that for some intermediate markings
M1, . . . ,Mk−1 we have M [t1〉M1, . . . , Mk−1[tk〉M ′.

We define the reachability tree RT (Π) inductively as follows: Let M0 be the
label of the root node. For every node n of RT (Π) labelled by some marking
M and for every transition t which is enabled in M , add a node n′ labelled M ′

such that M [t〉M ′ and add an arc from n to n′ labelled t. The set of all labels
of RT (Π) is called the reachability set of Π, denoted RS(Π). The set of words
given by the labels of finite paths of RT (Π) starting in the root node is called
language of Π, written L(Π).

For convenience, we denote M ≥ M ′ iff M(s) ≥ M ′(s) for all places s ∈ S.
We also introduce pseudo-markings, which are functions from S to IN ∪ {ω}
where we also define ∀n ∈ IN : ω > n and ω + n = ω − n = ω + ω = ω. Using
this we also extend the notation Mk−1[t1, . . . , tk〉M ′ for such markings.

Reset Petri Nets and WSTS’s One can extend the power of Petri nets by
adding a set of reset arcs R ⊆ (S × T) from places to transitions: when the
associated transition fires the number of tokens in the originating place is reset
to zero. Such nets were first introduced in [2], and we adapt all of the above
concepts and notations in the obvious way.

Well-structured transition systems (WSTS) [9, 10] are a further generalisation
of Petri nets. They cover reset Petri nets but also Petri nets with transfer arcs,
post self-modifying nets, as well as many formalisms not directly related to Petri
nets (Basic Process Algebras, Context-free grammars, Timed Automata,. . .). To
define WSTS we first need the concept of a well-quasi order:

Definition 2. A sequence s1, s2, . . . of elements of S is called admissible wrt a
binary relation ≤S on S×S iff there are no i < j such that si ≤S sj. We say that
≤S is a well-quasi relation (wqr) iff there are no infinite admissible sequences
wrt ≤S. A well quasi order (wqo) is a reflexive and transitive wqr.

A well-structured transition system (WSTS) [9, 10] is a structure 〈S,→,≤〉
where S is a (possibly infinite) set of states,→⊆ S×S a set of transitions, and:
(1) ≤⊆ S × S is a wqo and
(2) ≤ is (upward) compatible wrt →: for all s1 ≤ t1 and s1 → s2 there exists a

sequence t1 →∗ t2 such that s2 ≤ t2.
Reset Petri nets can be modelled as a WSTS 〈S,→,≤〉 with S being the set

of markings, M →M ′ if for some t we have M [t〉M ′ and using the corresponding
≤ order on markings seen as vectors of numbers (this order is a wqo).

Coverability Analysis The covering problem is a classical problem in Petri
net theory and is also sometimes referred to as the control-state reachability
problem. The question is: given a marking M is there a marking M ′ in RS(Π)

which covers M , i.e., M ′ ≥M . This problem can be analysed using the so-called
Karp-Miller-tree KM(Π) [15], which is computed as follows:
1.start out from a tree with a single node labelled by the initial marking M0; 2.
repeatedly pick an unprocessed leaf labelled by some M ; for every transition t
such that M [t〉M ′ and such that there is no ancestor M ′′ = M ′ do: a. generalise
M ′ by replacing all M ′(p) by ω such that there is an ancestor M ′′ < M ′ and
M ′′(p) < M ′(p) b. create a child of M labelled by M ′.

The intuition behind step 2a. is that if from M ′′ we can reach the strictly
larger marking M ′ we then extrapolate the growth by inserting ω’s. For example
for M ′′ = 〈0, 1, 1〉 and M ′ = 〈1, 2, 1〉 we will produce 〈ω, ω, 1〉. This is sufficient
to ensure termination of the procedure and thus finiteness of KM(Π).

Some of the properties of ordinary Petri nets decidable by examining KM(Π)
are:1 boundedness, place-boundedness, quasi-liveness of a transition t (i.e. is
there a marking in RT (Π) where t is enabled), and regularity of L(Π) (cf.
[8],[15], [35]).

The quasi-liveness question is a particular instance of the covering problem,
which can be decided using the Karp-Miller tree simply by checking whether
there is a pseudo-marking M ′ in KM(Π) such that M ′ ≥ M . For example if
there is a marking 〈ω, ω, 1〉 in KM(Π) then we know that we can, e.g., reach a
marking greater or equal to 〈10, 55, 1〉.

The reason why this approach is correct is the monotonicity of ordinary
Petri nets: if M [t1, . . . , tk〉M ′ and M ′′ > M (the condition to introduce ω) then
M ′′[t1, . . . , tk〉M ′′′ for some M ′′′ > M ′ (i.e., we can repeat the process and
produce ever larger markings and when an ω is generated within KM(Π) for a
particular place s we can generate an arbitrarily large number of tokens in s2).

Unfortunately, this monotonicity criterion is no longer satisfied for Petri nets
with reset arcs! More precisely, when we have M [t1, . . . , tk〉M ′ with M ′ > M
(the condition to introduce ω) we still have that M ′[t1, . . . , tk〉M ′′ for some M ′′

but we no longer have M ′′ > M ′ (we just have M ′′ ≥ M ′). This means that,
when computing the Karp-Miller tree, the generation of ω places is sound but no
longer “precise,” i.e., when we generate an ω we are no longer guaranteed that
an unbounded number of tokens can actually be produced. The Karp-Miller tree
can thus no longer be used to decide boundedness or coverability.

Example 1. Take for example a simple reset Petri net with two transitions t1, t2
and two places s1, s2 depicted in Fig. 1. Transition t1 takes one token in s1 and
putting one token in s2 and resetting s1. Transition t2 takes one token from s2

and producing 2 tokens in s1. Then we have 〈1, 0〉 [t1〉 〈0, 1〉 [t2〉 〈2, 0〉 and the
Karp-Miller procedure generates a node labelled with 〈ω, 0〉 even though the net
is bounded!

1 It was shown in [8] that these problems can also be decided using minimal coverability
graphs, which are often significantly smaller.

2 However, it does not guarantee that we can generate any number of tokens. To decide
whether we can, e.g., reach exactly the marking 〈10, 55, 1〉 the Karp-Miller tree is
not enough.

Fig. 1. Reset Petri from Ex. 1

It turns out that boundedness (as well as reachability) is actually undecidable
for Petri nets with reset arcs [6]. However, the covering problem (and thus, e.g.,
quasi-liveness) is still decidable using a backwards algorithm [1, 9, 10], which
works for any WSTS for which ≤ and pb(.) (see below) can be computed.

Given a WSTS 〈S,→,≤〉 and a set of states I ∈ S we define:
– the upwards-closure ↑ I = {y | y ≥ x ∧ x ∈ I}
– the immediate predecessor states of I: Pred(I) = {y | y → x ∧ x ∈ I}
– all predecessor states of I, Pred∗(I) = {y | y →∗ x ∧ x ∈ I}
– pb(I) =

⋃
x∈I pb(x) where pb(x) is a finite basis of ↑ Pred(↑ {x}) (i.e., pb(x)

is a finite set such that ↑ pb(x) =↑ Pred(↑ {x})).
The covering problem for WSTS is as follows: given two states s and t can

we reach t′ ≥ t starting from s. Provided that ≤ is decidable and pb(x) exists
and can be effectively computed, the following algorithm [1, 9, 10] can be used
to decide the covering problem:
1. Set K0 = {t} and j = 0
2. Kj+1 = Kj ∪ pb(Kj)
3. if ↑ Kj+1 6= ↑ Kj then increment j and goto 2.
4. return true if ∃s′ ∈ Kj with s′ ≤ s and false otherwise

This procedure terminates and we also have the property that ↑
⋃

i Ki =
Pred∗(↑ {t}) [10]. At step 4. we test whether s ∈↑ Kj , which thus corresponds
to s ∈ Pred∗(↑ {t}) (because we have reached the fixpoint), i.e., we indeed check
whether s→∗ t′ for some t′ ≥ t.

pb(M) can be effectively computed for Petri nets and reset Petri nets by
simply executing the transitions backwards and setting a place to the minimum
number of tokens required to fire the transition if it caused a reset on this place:

pb(M) = { P ′ | ∃t ∈ T : (P [t〉M ∧
∀s ∈ S : P ′(s) = (F (s, t) if (s, t) ∈ R else P (s))) }

We can thus use the above algorithm to decide the covering problem. In the
remainder of the paper we will show that, surprisingly, the exact same result can
be obtained by encoding the (reset) Petri net as a logic program and applying a
well-established program specialisation technique!

3 Partial Evaluation and Partial Deduction

We will now present the essential ingredients of the logic program specialisation
techniques that were used for infinite model checking in [12, 24].

Throughout this article, we suppose familiarity with basic notions in logic
programming. Notational conventions are standard. In particular, we denote
variables through (strings starting with) an uppercase symbol, while constants,
functions, and predicates begin with a lowercase character.

In logic programming full input to a program P consists of a goal ← Q and
evaluation corresponds to constructing a complete SLD-tree for P ∪{← Q}, i.e.,
a tree whose root is labeled by ← Q and where children of nodes are obtained
by first selecting a literal of the node and then resolving it with the clauses of P .
For partial evaluation, static input takes the form of a partially instantiated goal
← Q′ and the specialised program should be correct for all runtime instances
← Q′θ of ← Q′. A technique which achieves this is known under the name of
partial deduction, which we present below.

3.1 Generic Algorithm for Partial Deduction

The general idea of partial deduction is to construct a finite number of finite
but possibly incomplete3 trees which “cover” the possibly infinite SLD-tree for
P∪{← Q′} (and thus also all SLD-trees for all instances of← Q′). The derivation
steps in these SLD-trees are the computations which have been pre-evaluated
and the clauses of the specialised program are then extracted by constructing one
specialised clause (called a resultant) per branch. These incomplete SLD-trees
are obtained by applying an unfolding rule:

Definition 3. An unfolding rule is a function which, given a program P and a
goal ← Q, returns a non-trivial4 and possibly incomplete SLD-tree τ for P ∪{←
Q}. We also define the set of leaves, leaves(τ), to be the leaf goals of τ .

Given closedness (all leaves are an instance of a specialised atom) and inde-
pendence (no two specialised atoms have a common instance), correctness of the
specialised program is guaranteed [25]. Independence is usually (e.g. [23, 5]) en-
sured by a renaming transformation. Closedness is more difficult to ensure, but
can be satisfied using the following generic algorithm based upon [27, 23]. This
algorithm structures the atoms to be specialised in a global tree: i.e., a tree whose
nodes are labeled by atoms and where A is a descendant of B if specialising B
lead to the specialisation of A. Apart from the missing treatment of conjunctions
[5] the following is basically the algorithm implemented in the ecce system [23,
5] which we will employ later on.

Algorithm 3.1 (generic partial deduction algorithm)

3 An incomplete SLD-tree is a SLD-tree which, in addition to success and failure leaves,
also contains leaves where no literal has been selected for a further derivation step.

4 A trivial SLD-tree has a single node where no literal has been selected for resolution.

Input: a program P and a goal ← A

Output: a set of atoms or conjunctions A and a global tree γ

Initialisation: γ := a “global” tree with a single unmarked node, labelled by A

repeat
pick an unmarked leaf node L in γ

if covered(L, γ) then mark L as processed

else

W = whistle(L, γ)

if W 6= fail then

label(L) := abstract(L, W, γ)5

else

mark L as processed

for all atoms A ∈ leaves(U(P, label(L))) do

add a new unmarked child C of L to γ

label(C) := A

until all nodes are processed

output A := {label(A) | A ∈ γ} and γ

The above algorithm is parametrised by an unfolding rule U , a predicate
covered(L, γ), a whistle function whistle(L, γ) and an abstraction function
abstract(L,W, γ). Intuitively, covered(L, γ) is a way of checking whether L or
a generalisation of L has already been treated in the global tree γ. Formally,
covered(L, γ) = true must imply that ∃M ∈ γ such that M is processed or
abstracted and for some substitution θ: label(M)θ = label(L). A particular im-
plementation could be more demanding and, e.g., return true only if there is
another node in γ labelled by a variant of L.

The other two parameters are used to ensure termination. Intuitively, the
whistle(L, γ) is used to detect whether the branch of γ ending in L is “danger-
ous”, in which case it returns a value different from fail (i.e., it “blows”). This
value should be an ancestor W of L compared to which L looked dangerous (e.g.,
L is bigger than W in some sense). The abstraction operation will then compute
a generalisation of L and W , less likely to lead to non-termination. Formally,
abstract(L,W, γ) must be an atom which is more general than both L and W .
This generalisation will replace the label of W in the global tree γ.
If the Algorithm 3.1 terminates then the closedness condition of [25] is satisfied,
i.e., it is ensured that together the SLD-trees τ1, . . . , τn form a complete descrip-
tion of all possible computations that can occur for all concrete instances ← Aθ
of the goal of interest [20, 18]. We can then produce a totally correct specialised
program. On its own, Algorithm 3.1 does not ensure termination (so its strictly
speaking not an algorithm but a procedure). To ensure termination, we have to
use an unfolding rule that builds finite SLD-trees only. We also have to guaran-
tee that infinite branches in the global tree γ will be spotted by the whistle and
that the abstraction can not be repeated infinitely often.
5 Alternatively one could remove all descendants of W and change the label of W .

This is controlled by the parent abstraction switch in ecce.

3.2 Concrete Algorithm

We now present a concrete partial deduction algorithm, which is online (as
opposed to offline) in the sense that control decisions are taken during the
construction of γ and not beforehand. It is also rather näıve (e.g., it does not
use characteristic trees [23]; also the generic Algorithm 3.1 does not include
recent improvements such as conjunctions [5], constraints [21, 16] or abstract
interpretation [18]). However, it is easier to comprehend (and analyse) and will
actually be sufficiently powerful for our purposes (i.e., decide covering problems
of reset Petri nets and other WSTS’s).
Unfolding Rule In this paper we will use a very simple method for ensuring
that each individual SLD-tree constructed by U is finite: we ensure that we
unfold every predicate at most once in any given tree!
Whistle To ensure that no infinite global tree γ is being built-up, we will use
a more refined approach based upon well-quasi orders: In our context we will
use a wqo to ensure that no infinite tree γ is built up in Algorithm 3.1 by
setting whistle to true whenever the sequence of labels on the current branch
is not admissible. A particularly useful wqo (for a finite alphabet) is the pure
homeomorphic embedding [33, 23]:

Definition 4. The (pure) homeomorphic embedding relation � on expressions
is inductively defined as follows (i.e. � is the least relation satisfying the rules):

1. X � Y for all variables X, Y
2. s � f(t1, . . . , tn) if s � ti for some i
3. f(s1, . . . , sn) � f(t1, . . . , tn) if ∀i ∈ {1, . . . , n} : si � ti.

Notice that n is allowed to be 0 and we thus have c � c for all constant and
proposition symbols. The intuition behind the above definition is that A � B iff
A can be obtained from B by “striking out” certain parts, or said another way,
the structure of A reappears within B. We have f(a, b) � p(f(g(a), b)).
Abstraction Once the whistle has identified a potential non-termination one
will usually compute generalisations which are as precise as possible (for partial
deduction): The most specific generalisation of a finite set of expressions S,
denoted by msg(S), is the most specific expression M such that all expressions
in S are instances of M . E.g., msg({p(0, s(0)), p(0, s(s(0)))}) = p(0, s(X)). The
msg can be computed [17].

Algorithm 3.2 We define an instance of Algorithm 3.1 as follows:
– U unfolds every predicate just once
– covered(L, γ) = true if there exists a processed node in γ whose label is
more general than L

– whistle(L, γ) = M iff M is an ancestor of L such that label(M) � label(L)
and whistle�(L, γ) = fail if there is no such ancestor.

– abstract(L,W, γ) = msg(L, W).

Algorithm 3.2 terminates for any program P and goal ← Q (this can be
proven by simplified versions of the proofs in [23] or [32]).

4 Encoding (Reset) Petri Nets as Logic Programs

It is very easy to implement (reset) Petri nets as (non-deterministic) logic pro-
grams (see also [11]). Figure 2 contains a particular encoding of the reset Petri
Net from Ex. 1 and a simple predicate reachable searching for reachable mark-
ings in RS(Π). To model a reset arc (as opposed to an ordinary arc), one simply
allows the trans/3 facts to carry a 0 within the post-marking. Other nets can
be encoded by changing the trans/3 facts and the initial marking fact.

Based upon such a translation, [12, 24] pursued the idea that model check-
ing of safety properties amounts to showing that there exists no trace which
leads to an invalid state, i.e., exploiting the fact that ∀2safe ≡ ¬∃3(¬safe).
Proving that no trace leads to a state where ¬safe holds is then achieved by a
semantics-preserving program specialisation and analysis technique. For this, an
instance of Algorithm 3.1 was applied to several systems, followed by an abstract
interpretation based upon [26] (we will return to [26] later in the paper).

reachable(R) :- initial_marking(M), reachable(Tr,R,M).

reachable([],State,State).

reachable([Action|As],Reach,InState) :-

trans(Action,InState,NewState),reachable(As,Reach,NewState).

trans(t1, [s(S1),S2],[0,s(S2)]).

trans(t2, [S1,s(S2)],[s(s(S1)),S2]).

initial_marking([s(0),0]).

Fig. 2. Encoding a Reset Petri net as a logic program

As was shown in [22], this approach actually gives a decision procedure for
coverability, (place-)boundedness, regularity of ordinary Petri nets. One can even
establish a one-to-one correspondence between the Karp-Miller tree KM(Π) and
the global tree produced by (an instance of) partial deduction [22].

As we have seen, boundedness is undecidable for Petri nets with reset arcs
[6] so the partial deduction approach, although guaranteed to terminate, will
no longer give a decision procedure. (However, using default settings, ecce can
actually prove that the particular Reset net of Fig. 1 is bounded.)

But let us turn towards the covering problem which is decidable, but using
the backwards algorithm we presented in Section 2. To be able to use partial
deduction on this problem it seems sensible to write an “inverse” interpreter for
reset Petri nets. This is not very difficult, as shown in Fig. 3, exploiting the fact
that logic programs can be run backwards.

We can use this program in Prolog to check whether a particular marking
such as 〈2, 0〉 can be reached from the initial marking:

| ?- search_initial(T,[s(s(0)),0]).

T = [t2,t1]

Unfortunately, we cannot in general solve covering problems using Prolog or
even XSB-Prolog due to their inability of detecting infinite failures. For example,

search_initial([],State) :- initial_marking(State).

search_initial([Action|As],InState) :-

trans(Action,PredState,InState),search_initial(As,PredState).

trans(t1,[s(P1),P2],[0,s(P2)]).

trans(t2,[P1,s(P2)],[s(s(P1)),P2]).

initial_marking([s(0),0]).

Fig. 3. Backwards Interpreter for Reset Petri nets

the query ?-search initial(T,[s(s(s(X1))), X2]), checking whether 〈3, 0〉 can
be covered from the initial situation will loop in both Prolog or XSB-Prolog.
However, the logic program and query is still a correct encoding of the covering
problem: indeed, no instance of search initial(T,[s(s(s(X1))), X2]) is in the
least Herbrand model. Below, we will show how this information can be extracted
from the logic program using partial deduction, even to the point of giving us a
decision procedure.

We will denote by C(Π,M0) the variation of the logic program in Fig. 3
encoding the particular (reset) Petri net Π with the initial marking M0.6

5 Coverability of Reset Petri Nets by Partial Deduction

We will now apply our partial deduction algorithm to decide the covering prob-
lem for reset Petri nets. For this we need to establish a link between markings
and atoms produced by partial deduction.

First, recall that an atom for partial deduction denotes all its instances. So,
if during the partial deduction we encounter search initial(T,[M1,...,Mk])
this represents all markings 〈m1, ...,mk〉 such that for some substitution θ we
have ∀i: Miθ = dmie. For example the term s(s(s(X))) corresponds to the set
represented by the number 3 in Section 2 (where a number n represents all
numbers m ≥ n). The following is a formalisation of the encoding of natural
numbers as terms that will occur when specialising C(Π,M0):

– die = X if i = 0 and where X is a fresh variable
– die = s(di− 1e) otherwise

From now on, we also suppose that the order of the places in M0 is the same as
in the encoding in Figures 2, 3 and define d〈m1, . . . ,mk〉e = [dm1e, . . . , dmke].

Lemma 1. Let M and M ′ be two markings. Then:
1. M ≤M ′ iff dMe is more general than dM ′e.
2. M ≤M ′ iff dMe� dM ′e.
3. M < M ′ iff dMe is strictly more general than dM ′e.
4. ↑ {M} = {M ′ | ∃θ with dM ′e = dMeθ}.

6 To keep the presentation as simple as possible, contrary to [22], we do not perform
a preliminary compilation. We compensate this by using a slightly more involved
unfolding rule (in [22] only a single unfolding step is performed).

We can now establish a precise relationship between the computation of pb(.)
and SLD-derivations of the above logic program translation:

Lemma 2. Let Π be Petri Net with reset arcs, and M be a marking for Π.
Then Mi ∈ pb(M) iff there exists an incomplete SLD-derivation of length 2 for
C(Π,M0) ∪ {← search initial(T, dMe)} leading to ← search initial(T ′, dMie).
Also, M0 ∈↑ {M} iff there exists an SLD-refutation of length 2 for C(Π,M0) ∪
{← search initial(T, dMe)}.

However, partial deduction atoms are more expressive than markings: e.g., we
can represent all 〈m1,m2,m3〉 such that m1 > 0, m2 = m1 + 1, and m3 = 1 by:
search initial(T,[s(X),s(s(X)),s(0)]). In other words, we can establish a
link between the number of tokens in several places via shared variables and
we can represent exact values for places.7 However, such information will never
appear, because a) we start out with a term which corresponds exactly to a
marking, b) we only deal with (reset) Petri nets and working backwards will yield
a new term which corresponds exactly to a marking (as proven in Lemma 2)
c) the generalisation will never be needed, because if our whistle based upon
� blows then, by Lemma 1, the dangerous atom is an instance of an already
processed one.8

Theorem 1. Let Π be Petri Net with reset arcs with initial marking M0 and let
P be the residual program obtained by Algorithm 3.2 applied to C(Π,M0) and
← search initial(T ′, dMce). Then P contains facts iff there exists a marking M ′

in RT (Π) which covers Mc, i.e., M ′ ≥Mc

The above theorem implies that when we perform a bottom-up abstract in-
terpretation after partial deduction using, e.g., [26] (as done in [24]), we will
be able to deduce failure of ← search initial(T ′, dMce) if and only if RT (Π)
does not cover Mc! The following example illustrates this. When applying Al-
gorithm 3.2 (using the ecce system) to specialise the program in Fig. 3 for
← search initial(T ′, d〈3, 0〉e) we get:

/* Specialised Predicates:

search_initial__1(A,B,C) :- search_initial(C,[s(s(s(B))),A]).

search_initial__2(A,B) :- search_initial(B,[s(A),s(C1)]).

search_initial__3(A,B) :- search_initial(B,[A,s(s(C1))]). */

search_initial(A,[s(s(s(B))),C]) :- search_initial__1(C,B,A).

search_initial__1(A,B,[t2|C]) :- search_initial__2(B,C).

search_initial__2(s(A),[t2|B]) :- search_initial__3(A,B).

search_initial__3(0,[t1|A]) :- search_initial__2(B,A).

search_initial__3(s(s(A)),[t2|B]) :- search_initial__3(A,B).

7 More precisely, each atom represents a linear set L ⊆ INk of markings L = {b +∑r

i=1
nip

i | ni ∈ IN} with b, pi ∈ INk and the restriction that
∑r

i=1
pi ≤ 〈1, . . . , 1〉.

8 This also implies that a similar result to Theorem 1, for reset Petri nets, might be
obtained by using OLDT abstract interpretation in place of partial deduction.

After which the most specific version abstract interpretation [26] imple-
mented in ecce will produce:

search_initial(A,[s(s(s(B))),C]) :- fail.

It turns out that Algorithm 3.2, when expanding the global tree γ in a
breadth-first manner, can actually mimic an improved version of the backwards
algorithm from [10] (see Section 2): provided that we improve the backwards al-
gorithm to not compute pb(.) of markings which are already covered, we obtain
that the set of labels in γ = {search initial(T, dMe) | M ∈ Kj}, where Kj is
the set obtained by the improved backwards algorithm.

6 Other Well-Structured Transition Systems

Let us now turn to another well-known Petri net extension which does not violate
the WSTS character [10]: transfer arcs [13, 6] which enable transitions to transfer
tokens from one place to another, doubling arcs which double the number of
tokens in a given place, or any mixture thereof. Take for example the following
simple fact:

trans(t3,[P1,s(P2)],[P2,P2]).

This transition employs a combination of a reset arc (removing the number
of tokens P1 present in place 1) and a kind of transfer arc (transferring all but
one token from place 2 to place 1). Transitions like these will not pose a problem
to our partial deduction algorithm: it can be used as is as a decision procedure
for the covering problem and Theorem 1 holds for this extended class of Petri
nets as well. In fact, a similar theorem should hold for any post self-modifying
net [34, 10] and even Reset Post G-nets [6]. (However, the theorem is not true
for Petri nets with inhibitor arcs.)

Another class of WSTS are basic process algebras (BPP’s) [7], a subset of
CCS without synchronisation. Below, we try to analyse them using our partial
deduction approach. Plugging the following definitions into the code of Fig. 3 we
encode a process algebra with action prefix ., choice +, and parallel composition
||, as well as a process starting from (a.stop + b.stop)||c.stop):

trans(A,pre(A,P),P).

trans(A,or(X,_Y),XA) :- trans(A,X,XA).

trans(A,or(_X,Y),YA) :- trans(A,Y,YA).

trans(A,par(X,Y),par(XA,Y)) :- trans(A,X,XA).

trans(A,par(X,Y),par(X,YA)) :- trans(A,Y,YA).

initial_marking(par(or(pre(a,stop),pre(b,stop)),pre(c,stop))).

Compared to the WSTS’s we have studied so far, the term representation of
states gets much more complex (we no longer have lists of fixed length of natural
numbers but unbounded process expressions). Our � relation is of course still
a wqo on processes in this algebra, and it is also upwards compatible. Unfortu-
nately we no longer have the nice correspondence between � and the instance-of

relation (as in Lemma 1 for reset nets). For instance, we have pre(a, stop)�stop,
but pre(a, stop) is not more general than stop and partial deduction will not re-
alise that it does not have to analyse stop if has already analysed pre(a, stop)
(indeed, in general it would be unsound not to examine stop). This means that
the partial deduction approach will contain some “redundant” nodes. It also
means that we cannot in general formulate covering problems as queries; al-
though we can formulate reachability questions (for reset Petri nets we could
do both). Nonetheless, specialising the above code using Algorithm 3.2 and [26],
e.g., for the reachability query search initial(A,stop), we get:

search_initial(A,stop) :- fail.

This is correct: we can reach stop||stop but not stop itself. However, despite
the success on this particular example, we believe that to arrive at a full solution
we will need to move to an abstract partial deduction [18] algorithm: this will
enable us to re-instate the correspondence between the wqo of the WSTS and
the instance-of relation of the program specialisation technique, thus arriving at
a full-fledged decision procedure.

7 Future Work and Conclusion

One big advantage of the partial deduction approach to model checking is it
scales up to any formalism expressible as a logic program. More precisely, proper
instantiations of Algorithm 3.1 will terminate for any system and will provide safe
approximations of properties under consideration. However, as is to be expected,
we might no longer have a decision procedure.

[24] discusses how to extend the model checking approach to liveness prop-
erties and full CTL. Some simple examples are solved. E.g., the approach was
applied to the manufacturing system used in [3] and it was able to prove absence
of deadlocks for parameter values of, e.g., 1,2,3. When leaving the parameter un-
specified, the system was unable to prove the absence of deadlocks and produced
a residual program with facts. And indeed, for parameter value ≥ 9 the system
can actually deadlock. The timings compare favourably with HyTech [14].

Reachability can be decided in some but not all cases using the present
partial deduction algorithm. In future we want to examine the relationship to
Mayr’s algorithm [28] for ordinary Petri nets and whether it can be mimicked
by abstract partial deduction [18].

Finally, an important aspect of model checking of finite state systems is the
complexity of the underlying algorithms. We have not touched upon this issue
in the present paper, but plan to do so in future work.

Conclusion We have examined the power of partial deduction (and abstract in-
terpretation) for a particular class of infinite state model checking tasks, namely
covering problems for reset Petri nets. The latter are particularly interesting as
they lie on the “border between decidability and undecidabilty” [6]. We have
proven that a well-established partial deduction algorithm based upon � can be

used as a decision procedure for these problems and we have unveiled a surprising
correspondence with an existing algorithm from the Petri net area.

We have also shown that this property of partial deduction holds for other
Petri net extensions which can be viewed as WSTS’s. We have also studied other
WSTS’s from the process algebra arena. For these we have shown that, to arrive
at a full-fledged decision procedure, we will need to move to the more powerful
abstract partial deduction [18].

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In Proceedings LICS’96, pages 313–321, July 1996.
IEEE Computer Society Press.

2. T. Araki and T. Kasami. Some decision problems related to the reachability prob-
lem for Petri nets. Theoretical Computer Science, 3:85–104, 1977.

3. B. Bérard and L. Fribourg. Reachability analysis of (timed) petri nets using real
arithmetic. In Proceedings Concur’99, LNCS 1664, pages 178–193. Springer-Verlag,
1999.

4. W. Charatonik and A. Podelski. Set-based analysis of reactive infinite-state sys-
tems. In B. Steffen, editor, Proceedings TACAS’98, LNCS 1384, pages 358–375.
Springer-Verlag, March 1998.

5. D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H.
Sørensen. Conjunctive partial deduction: Foundations, control, algorithms and
experiments. J. Logic Progam., 41(2 & 3):231–277, November 1999.

6. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability and
undecidability. In Proceedings ICALP’98, LNCS 1443, pages 103–115. Springer-
Verlag, 1998.

7. J. Ezparza. Decidability of model-checking for infinite-state concurrent systems.
Acta Informatica, 34:85–107, 1997.

8. A. Finkel. The minimal coverability graph for Petri nets. Advances in Petri Nets
1993, LNCS 674, pages 210–243, 1993.

9. A. Finkel and P. Schnoebelen. Fundamental structures in well-structured infinite
transition systems. In Proceedings LATIN’98, LNCS 1380, pages 102–118. Springer-
Verlag, 1998.

10. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere !
Theoretical Computer Science, 2000. To appear.

11. L. Fribourg and H. Olsen. Proving Safety Properties of Infinite State Systems by
Compilation into Presburger Arithmtic. In Proceedings Concur’97, LNCS 1243,
pages 213–227. Springer-Verlag, 1997.

12. R. Glück and M. Leuschel. Abstraction-based partial deduction for solving inverse
problems – a transformational approach to software verification. In Proceedings
PSI’99, LNCS 1755, pages 93–100, 1999. Springer-Verlag.

13. B. Heinemann. Subclasses of self-modifying nets. In Applications and Theory of
Petri Nets, pages 187–192. Springer-Verlag, 1982.

14. T. A. Henzinger and P.-H. Ho. HYTECH: The Cornell HYbrid TECHnology tool.
Hybrid Systems II, LNCS 999:265–293, 1995.

15. R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3:147–195, 1969.

16. L. Lafave and J. Gallagher. Constraint-based partial evaluation of rewriting-based
functional logic programs. In N. Fuchs, editor, Proceedings LOPSTR’97, LNCS
1463, pages 168–188, July 1997.

17. J.-L. Lassez, M. Maher, and K. Marriott. Unification revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–
625. Morgan-Kaufmann, 1988.

18. M. Leuschel. Program specialisation and abstract interpretation reconciled. In
J. Jaffar, editor, Proceedings JICSLP’98, pages 220–234, Manchester, UK, June
1998. MIT Press.

19. M. Leuschel. Logic program specialisation. In J. Hatcliff, T. Æ. Mogensen, and
P. Thiemann, editors, Partial Evaluation: Practice and Theory, LNCS 1706, pages
155–188 and 271–292, 1999. Springer-Verlag.

20. M. Leuschel and D. De Schreye. Logic program specialisation: How to be more
specific. In H. Kuchen and S. Swierstra, editors, Proceedings PLILP’96, LNCS
1140, pages 137–151, September 1996. Springer-Verlag.

21. M. Leuschel and D. De Schreye. Constrained partial deduction and the preservation
of characteristic trees. New Gen. Comput. , 16:283–342, 1998.

22. M. Leuschel and H. Lehmann. Solving Coverability Problems of Petri Nets by
Partial Deduction. Submitted.

23. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems, 20(1):208–258, January 1998.

24. M. Leuschel and T. Massart. Infinite state model checking by abstract interpre-
tation and program specialisation. In A. Bossi, editor, Proceedings LOPSTR’99,
LNCS 1817, pages 63–82, Venice, Italy, September 1999.

25. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. J.
Logic Progam., 11(3& 4):217–242, 1991.

26. K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs. Annals of
Mathematics and Artificial Intelligence, 1:303–338, 1990.

27. B. Martens and J. Gallagher. Ensuring global termination of partial deduction
while allowing flexible polyvariance. In L. Sterling, editor, Proceedings ICLP’95,
pages 597–613, June 1995. MIT Press.

28. E. W. Mayr. An algorithm for the general Petri net reachability problem. Siam
Journal on Computing, 13:441–460, 1984.

29. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. Efficient model checking using tabled resolution.
In Proceedings CAV’97, LNCS 1254, pages 143–154. Springer-Verlag, 1997.

30. W. Reisig. Petri Nets - An Introduction. Springer Verlag, 1982.
31. J. Rushby. Mechanized formal methods: Where next? In Proceedings of FM’99,

LNCS 1708, pages 48–51, Sept. 1999. Springer-Verlag.
32. M. H. Sørensen. Convergence of program transformers in the metric space of trees.

In Proceedings MPC’98, LNCS 1422, pages 315–337. Springer-Verlag, 1998.
33. M. H. Sørensen and R. Glück. An algorithm of generalization in positive supercom-

pilation. In J. W. Lloyd, editor, Proceedings ILPS’95, pages 465–479, December
1995. MIT Press.

34. R. Valk. Self-modifying nets, a natural extension of Petri neets. In Proceedings
ICALP’78, LNCS 62, pages 464–476. Springer-Verlag, 1978.

35. R. Valk and G. Vidal-Naquet. Petri nets and regular languages. Journal of Com-
puter and System Sciences, 23(3):299–325, Dec. 1981.

