Under consideration for publication in Formal Aspects of Computing

Automated Property Verification
for Large Scale B Models with ProB

Michael Leuschel!, Jérome Falampin?, Fabian Fritz!, Daniel Plagge!

I Universitit Diisseldorf, Universititsstr. 1, D-40225 Diisseldorf. e-mail: leuschel@cs.uni-duesseldorf.de
2 Siemens Transportation Systems, 150, avenue de la République, BP 101, 92323 Chatillon Cedex, France

Abstract.

In this paper we describe the successful application of the PROB tool for data validation in several
industrial applications. The initial case study centred on the San Juan metro system installed by Siemens.
The control software was developed and formally proven with B. However, the development contains certain
assumptions about the actual rail network topology which have to be validated separately in order to ensure
safe operation. For this task, Siemens has developed custom proof rules for Atelier B. Atelier B, however, was
unable to deal with about 80 properties of the deployment (running out of memory). These properties thus
had to be validated by hand at great expense, and they need to be revalidated whenever the rail network
infrastructure changes.

In this paper we show how we were able to use PROB to validate all of the about 300 properties of the
San Juan deployment, detecting exactly the same faults automatically in a few minutes that were manually
uncovered in about one man-month. We have repeated this task for three ongoing projects at Siemens,
notably the ongoing automatisation of the line 1 of the Paris Métro. Here again, about a man month of
effort has been replaced by a few minutes of computation.

This achievement required the extension of the PROB kernel for large sets as well as an improved con-
straint propagation algorithm. We also outline some of the effort and features that were required in moving
from a tool capable of dealing with medium-sized examples towards a tool able to deal with actual industrial
specifications. We also describe the issue of validating PROB, so that it can be integrated into the SIL4
development chain at Siemens.

Keywords: B-Method; Model Checking; Constraint-Solving; Tools; Industrial Applications

This article is an extended version of the conference paper [LFFP09]. The most important additions of
the present article are:

e This article describes the use of our technique in three active deployments, namely the upgrading of the
Paris Metro Line 1 for driverless trains, line 4 of the Sdo Paulo metro and line 9 of the Barcelona metro.
We also briefly report on experiments on the models of the CDGVAL shuttle. The paper [LFFP09] only
contained the initial San Juan case study, which was used to evaluate the potential of our approach.

Correspondence and offprint requests to: Michael Leuschel, Lehrstuhl Softwaretechnik und Programmiersprachen, Universitit
Diisseldorf, Universitatsstr. 1, D-40225 Diisseldorf. e-mail: leuschel@cs.uni-duesseldorf.de

2 Leuschel et al.

CONSTANTS properties &
.| PROPERTIES assertions
ASSERTIONS satisfied ?

Abstract
MODEL of
Controller

properties &
) assertions Rail Network Topology
refinement . H
used in . (changing)
v proof .

BO MODEL of |«g--------
Controller

Code Generation (Ada) Encoding in Ada

e

—

Fig. 1. Overview of the Constants Validity Problem

e In this article we describe the previous method adopted by Siemens in much more detail, as well as
explaining the performance issues with Atelier B.

e More comparisons and empirical evaluations with other potential approaches and alternate tools (Brama,
AnimB, BZ-TT and TLC) have been conducted.

e We provide more details about the ongoing validation process of PROB, which is required by Siemens for
it to use PROB to replace the existing method. The validation also lead to the discovery of errors in the
English version of the Atelier B reference manual.

Also, since [LFFP09], PROB itself has been further improved inspired by the application, resulting in new
optimisations in the kernel (cf. Section 3.2).

1. Background Industrial Application

Siemens Transportation Systems have been developing rail automation products using the B-method since
1998.1 The best known example is the software for the fully automatic driverless line 14 of the Paris Métro,
also called Météor (Metro est-ouest rapide) [BBFM99]. But since then, many other train control systems
have been developed and installed worldwide by STS [DEF03, BA05, ED07].

One particular development is in San Juan (Puerto Rico), which we use as one case study in this paper.
The line consists of 16 stations, 37 trains and a length of 17.2 km, transporting 115,000 passengers per day.
Several entities of Siemens produced various components of this huge project, such as the rolling stock and
the electrification. STS developed the ATC (Automatic Control System) named SACEM (Systeme d’Aide a
la Conduite, a I’Exploitation et & la Maintenance).

Currently, STS is involved in the ongoing automatisation of the line 1 of the Paris Métro, which is
historically the most heavily used line in Paris with up to 725,000 passengers per day.? Inspired by the
success of Météor, this line is being upgraded to driverless automatic trains while remaining in operation.?
Motivations are the shorter headway, leading to bigger transportation capacity, as well as improved security
compared to manual operation (i.e., better response time, safety procedures are always enforced, etc.). First

1 At that time Siemens Transportation Systems was named MTI (Matra Transport International).
2 See http://fr.wikipedia.org/wiki/Ligne_1_du métro_de Paris.
3 See nttp://fr.wikipedia.org/wiki/Automatisation de la ligne 1_dumétro_de Paris.

Automated Property Verification for B Models 3

automatic trains are scheduled to run beginning of 2011, and the upgrade is scheduled to be completed in
2012. Other ongoing projects are the metro line 4 in Sao Paulo and the metro line 9 in Barcelona.

STS are successfully using the B-method and have over the years acquired considerable expertise in its
application. STS use Atelier B [Ste09], together with in-house developed automatic refinement tools, with
great success. Indeed, starting from a high-level model of the control software, refinement is used to make the
model more concrete. Each refinement step is formally proven correct. When the model is concrete enough,
an Ada code generator is used. This results in a system ensuring a very high degree of safety, with SIL4 (see,
e.g., [Red00]) certification. Indeed, quoting [Sie09]: “Since the commissioning of line 14 in Paris on 1998,
not a single malfunction has been noted in the software developed using this principle”.

The Data Validation Problem

In this paper, we describe one aspect of the current development process which is unfortunately still prob-
lematic, namely the validation of properties of parameters only known at deployment time, such as the
rail network topology parameters. These parameters are typically represented as constants in the formal B
model.

Figure 1 gives an overview of this issue. Note, the figure is slightly simplified as there are actually two code
generators and data redundancy checks at runtime. The track is divided into several sub-sections, each sub-
section is controlled by a safety critical program. Note that each subsection has its own hardware and software,
avoiding the need for a centralised controller with long cables for the interfaces to the various equipments
(platform equipments, interlocking, signals, etc.). The decentralised control also has the advantage of better
robustness in case of failure (cut cables, for instance).

In order to avoid multiple developments, each safety critical program is made from a generic B-model
and data parameters that are specific to a sub-section and a particular deployment. These data parameters
take the form of B functions describing, e.g., the tracks, switches, traffic lights, electrical connections and
possible routes. Adapting the data parameters is also used to “tune” the system.

The proofs of the generic B-model rely on assumptions about the data parameters, e.g., assumptions
about the topology properties of the track. For example, in case of the San Juan development, about 300
assumptions were made. It is vital that these assumptions are checked when the system is put in place, as
well as whenever the rail network topology changes (e.g., due to line extension or addition or removal of
certain track sections).

Siemens Existing Process for Data Validation

To solve this problem, Siemens Transportation Systems (STS) have developed the following approach (see
also Figure 2):

1. The parameters and topology is extracted from the concrete Ada program and encoded in B syntax, and
then written into Atelier B definition files. (Definition files contain only B definitions, i.e., B macros.)
This is done with the aid of a tool written in lex.

Note, that Siemens not only wants to check that the assumptions about the data parameters hold, but
also that these have been correctly encoded in the Ada code. Hence, the data is extracted from the Ada
program, rather than from the higher-level B description (which was used to generate the Ada code).

2. The relevant part of the B model is extracted and merged with the definition files containing the topology

and the other parameters. The properties from the original B model on the concrete topology and
parameters are translated into B assertions.
In B, assertions are predicates which should follow logically from the properties; this has to be proven.
Properties themselves do not have to be proven, but can be used by the prover. By translating the
topology properties into B assertions, we thus create proof obligations which stipulate that the topology
and parameter properties must follow from the concrete values of the constants.

3. STS tries to prove the assertions with Atelier B, using custom proof rules and tactics, dedicated to dealing
with explicit data values [Boi00, Boi02].

4. Those assertions for which proof is unsuccessful are investigated manually.

Let us look at a concrete example. The following is part of an initial B model, describing a function
cfg.aig pos_defaut_i which computes the default positions of the switches in the sector under consideration:

4 Leuschel et al.

Original
B Model(s)
with
TopologyProperties

Ada Code
containing

concrete

Siemens
Extraction Tool

A\

Generated B Model
PROPERTIES

ASSERTIONS
TopologyProperties

Atelier B

| Proven | | Unproven |> ————— >

2 anual
= Inspection
TopologyProperties

Fig. 2. Overview of the Current Approach

MACHINE acs_as_env_cfg_aiguille

SEES ...

CONCRETE_CONSTANT cfg_aig_pos_defaut_i

PROPERTIES

cfg_aig_pos_defaut_i : t_nb_aig par_acs --> t_etat_aig
END

Note, that we have expressed in the properties the assumption that the constant cfg_aig pos_defaut_i is a
total function from t.nb_aig par_acs (the switches in the sector) to t_etat_aig (the possible states of a switch).
This property can and will be used in the proof of correctness of the train controller. However, the actual
concrete value of cfg aig pos_defaut_i is as of yet unknown, and will vary from one deployment and sector
to the other. If the actual value of cfg aig pos_defaut_i does not satisfy the property, the controller may not
work correctly.

Let us now look at the corresponding part of the Ada code, for one particular sector. Here, the Ada array
variable CFG_AIG_POS_DEFAUT is the realisation of the B constant cfg_aig pos_defaut_i, and it is initialised with a
concrete value:

CFG_AIG_POS_DEFAUT : constant T_CFG_AIG_POS_DEFAUT :=
T_CFG_AIG_POS_DEFAUT’ (AIG_YE5 => AIG_ACS_DIRECT,
AIG_YW5 => AIG_ACS_DIRECT,
others => AIG_ACS_DECONTROLE)

The array is initialised with the default value AIG_ACS_DECONTROLE, except at positions AIG.YES and AIG_YWS.
A lex based tool developed by Siemens extracts this information from the Ada code, and translates it into
B format. Observe that it uses the B override operator to translate the Ada construct using the default
“others” keyword:

PROPERTIES
cfg_aig_pos_defaut_i =
(T_NB_AIG_PAR_ACS) * {AIG_ACS_DECONTROLE} <+
{ AIG_YE5 |-> AIG_ACS_DIRECT,
AIG_YWS5 |-> AIG_ACS_DIRECT }

Automated Property Verification for B Models 5

ASSERTIONS
cfg_aig _pos_defaut_i : t_nb_aig_par_acs --> t_etat_aig

As a side note, the values of the integer variables AIG_YES, AIG.YW5, ... are put into a separate definition
file. Note that the definition of the concrete value for cfg aig pos_defaut_i has been put into the properties
clause, meaning that it does not have to be proven by Atelier B. However, the former property about
cfg_aig pos_defaut_i has been moved to the assertions clause, so that now we have to prove that it follows
from the properties clause. This leads to the following proof obligation:

(T_NB_AIG_PAR_ACS) * {AIG_ACS_DECONTROLE} <+
{ AIG_YE5 |-> AIG_ACS_DIRECT,
AIG_YW5 |-> AIG_ACS_DIRECT } : t_nb_aig _par_acs --> t_etat_aig

Using the values for the variables, this proof obligation is rewritten into the following one:
(0..10) * {0} <+ { 3|->1, 7|->1 } : 0..10 -=> 0..2

Which in turn gets translated by the normalisation process of Atelier B into two subgoals:
(0..10) * {0} <+ { 3|->1, 7|->1 } : 0..10 +-> 0..2

and
dom((0..10) * {0} <+ { 3I->1 , 7|->1 }) =0..10

If we manage to discharge all proof obligations of the new B machine, we will have established that the
concrete constant from the Ada code satisfies the required topology properties.
In order to discharge the proof obligations of this B machine, we could use the standard provers of Atelier
B. However, the standard provers have not been developed with large, concrete values in mind. For example,
many proof rules will duplicate parts of the goal to be proven. This frequently leads to out-of-memory
problems when the duplicated parts contain large constants. As such, custom proof rules were developed
[Boi00, Boi02] which try to prevent this blow up.
For example, one of these custom proof rules is the following one, which can be applied to the second
subgoal above:
dom(A) <: B
=>
dom(B*{a}<+ A)= B ;

Problems with the Existing Process

This approach to data validation initially worked quite well for Siemens, but has now run into considerable
problems:

e First, if the proof of a property fails, the feedback of the prover is not very useful in locating the problem
(and it may be unclear whether there actually is a problem with the data or “simply” with the power of
the prover).

e Second, and more importantly, the data parameters are nowadays becoming so large (relations with
thousands of tuples) that Atelier B quite often runs out of memory, even with the dedicated proof rules
and with maximum memory allocated. In some of the bigger, more recent models, just substituting values
for variables fails with out-of-memory conditions.

This is especially problematic, as some of the properties are very large and complicated (see Figures 3
and 4), and the prover typically fails on these properties. For example, for the San Juan development, 80
properties (out of the 300) could not be checked by Atelier B (version 3.6.2), neither automatically nor
interactively (with reasonable effort; sometimes loading the proof obligation already fails with an out-of-
memory condition).

The second point means that these properties have to be checked by hand (e.g., by creating huge spread-
sheets on paper for the compatibility constraints of all possible itineraries), which is very costly and arguably
less reliable than automated checking (see, e.g., Section 5.2). For the San Juan development, this meant about
one man month of effort, which is likely to grow further for larger developments such as the Carnasie line
[EDO07].

6 Leuschel et al.

cfg_ipart_cdv_dest_aig_i : t_nb_iti_partiel_par_acs --> t_nb_cdv_par_acs;

!(aa,bb).(aa : t_iti_partiel_acs & bb : cfg_cdv_aig &
aa |-> bb : t_iti_partiel_acs <| cfg_ipart_cdv_transit_dernier_i |> cfg_cdv_aig
=> bb : cfg_ipart_cdv_transit_liste_i[(cfg_ipart_cdv_transit_deb(aa)
. cfg_ipart_cdv_transit_fin(aa))]);

cfg_ipart_pcl_adj_i~ [{TRUE}] /\ cfg_ipart_pc2_adj_i~[{TRUE}] = {};

! (aa,bb).(aa : t_aig_acs & cfg_aig_cdv_encl_deb(aa) <= bb &
bb <= cfg_aig_cdv_encl_fin(aa)
=> cfg_aig_cdv_encl_liste_i(bb) : t_cdv_acs);

!(aa).(aa : t_aig_acs
=> t_cdv_acs <| cfg_aig_cdv_encl_liste_i~ [|>
cfg_aig_cdv_encl_deb(aa)..cfg_aig_cdv_encl_fin(aa):t_cdv_acs +-> NATURAL);

cfg_canton_cdv_liste_i |> t_cdv_acs : seq(t_cdv_acs);
cfg_cdv_i~[{c_cdv_aig}] /\ cfg_cdv_i~[{c_cdv_block}] = {};

dom({aa,bblaa : t_aig_acs & bb : t_cdv_acs &
bb : cfg_aig_cdv_encl_liste_i[(cfg_aig_cdv_encl_deb(aa)
cfg_aig_cdv_encl_fin(aa))]}) = t_aig_acs;

ran({aa,bblaa : t_aig_acs & bb : t_cdv_acs &
bb : cfg_aig_cdv_encl_liste_i[(cfg_aig_cdv_encl_deb(aa)
cfg_aig_cdv_encl_fin(aa))]}) = cfg_cdv_i~[{c_cdv_aigl}];

Fig. 3. A small selection of the assumptions about the constants of the San Juan topology

ran({aws_ts, troncon_rg_variant_bf | aws_ts : t_aws_ts_pas &
troncon_rg_variant_bf : (t_troncon_pas * t_rg_variant_bf) &
dom(%troncon. (troncon : t_troncon_pas &
inv_aws_ts_cm_autorise_sn_rg_variant_bf_i(aws_ts|->troncon) : t_rg_variant_bf |
inv_aws_ts_cm_autorise_sn_rg_variant_bf_i(aws_ts|->troncon)))
= inv_aws_ts_troncon[{aws_ts}] &
troncon_rg_variant_bf : Jtroncon.(troncon : t_troncon_pas &
inv_aws_ts_cm_autorise_sn_rg_variant_bf_i(aws_ts|->troncon) : t_rg_variant_bf |
inv_aws_ts_cm_autorise_sn_rg_variant_bf_i(aws_ts|->troncon))
1)
/\
ran({aws_ts, troncon_rg_variant_bf | aws_ts : t_aws_ts_pas &
troncon_rg_variant_bf : (t_troncon_pas * t_rg_variant_bf) &
dom(%troncon. (troncon : t_troncon_pas &
inv_aws_ts_dde_cm_interdit_rg_variant_bf_i(aws_ts|->troncon) : t_rg_variant_bf |
inv_aws_ts_dde_cm_interdit_rg_variant_bf_i(aws_ts|->troncon)))
= inv_aws_ts_troncon[{aws_ts}] &
troncon_rg_variant_bf : %troncon. (troncon : t_troncon_pas &
inv_aws_ts_dde_cm_interdit_rg_variant_bf_i(aws_ts|->troncon) : t_rg_variant_bf |
inv_aws_ts_dde_cm_interdit_rg_variant_bf_i(aws_ts|->troncon))})

={

Fig. 4. A pathologically large property about a rail topology

The starting point of this paper was to try to automate this task, by using alternative technology. Indeed,
the PROB tool [LB03, LB08] has to be capable of dealing with B properties in order to animate and model
check B models. The question was, whether the technology would scale to deal with the industrial models
and the large constants in this application.

In Section 2 we elaborate on what developments had to be undertaken so as to be able to parse and
load large scale industrial B models into the PROB tool. In Section 3 we present new constraint propagation
algorithms and data structures that were required to deal with the large sets and relations of the case studies.
The results of the first case study itself are presented in Section 4. In Section 5 we present the outcome of the
first real industrial applications, while in Section 6 we present how we plan to validate PROB for integration
into the development cycle at Siemens. Finally, in Section 7 we present more related work, discussions and
an outlook.

Automated Property Verification for B Models 7

2. Parsing and Loading Industrial Specifications

First, it is vital that our tool PROB is capable of dealing with the actual Atelier B syntax employed by ST'S.
Whereas for small case studies it is feasible to adapt and slightly rewrite specifications, this is not an option
here, due to the size and complexity of the specification. Indeed, for the San Juan case study we received a
folder containing 79 files with a total of over 23,000 lines of B.

2.1. Improved Parser

Initially, PrROB [LB03, LB08] was built using the pre-existing jbtools [Tat01] parser, whose XML output
provided a convenient basis for integration. Unfortunately, the jbtools parser does not support all of Atelier
B’s features. In particular, jbtools is missing support for definitions with parameters, for certain Atelier B
notations (tuples written using commas rather than |->), as well as for definition files. This would have
made a translation of the San Juan example (containing 24 definition files and making heavy usage of the
features not supported by jbtools) very cumbersome. Unfortunately, jbtools is also difficult to maintain and
extend. We managed to slightly extend the capabilities of jbtools concerning definitions with parameters,
but we were not able to fully support them and it was near impossible to generate a clean abstract syntax
tree. Indeed, jbtools is built using the JavaCC top-down recursive-descent parser generator, and as such
the B grammar has to be made suitable for top-down predictive parsing (which leads to cluttered parse
trees, see, e.g., chapter 4 of [App02]). Furthermore, jbtools uses several pre- and post-passes to implement
certain difficult features of B (such as the relational composition operator; we return to this issue below).
This approach prevents the generation of a clean abstract syntax tree. Indeed, certain of the jbtools phases
rely, e.g., on the presence of parentheses for their work. As such, we were not able to remove the parentheses
(and other syntactic “clutter”) from the concrete syntax tree (a common simplification when going from a
concrete to an abstract syntax tree).

Thus, the first step towards making PROB suitable for industrial usage, was the development of a new
parser. We used the bottom-up LALR parser generator SableCC [Gag98] rather than JavaCC to develop the
parser, which allowed us to use a cleaner and more readable grammar (as it did not have to be transformed
for predictive top-down parsing) and to provide a fully typed abstract syntax tree. Our parser was built with
extensibility in mind, and now supports almost all of the Atelier B syntax. Most areas where we deviate
from Atelier B are related to definitions.

Parsing Definitions

Definitions in B are introduced in the DEFINITIONS section of a machine. Definitions are allowed to have
parameters and, once introduced, can then be used in other contexts. A formal semantics for definitions
is not provided in [Abr96] (on page 273 it is only mentioned that the body of a definition should be a
“Formal_Text”). In Atelier B, a definition call is replaced syntactically by the corresponding definition body,
suitably instantiated for the actual definition parameters. In other words, definitions in Atelier B are treated
like macros. However, as is well known, macros can pose a wide range of subtle problems.* For example,
given the definition sm(x,y) == x+y one would expect sm(1,1)*2 to be equal to 4. Unfortunately, in Atelier
B, sm(1,1) is replaced textually by 1+1, yielding the text 1+1%2 which evaluates to 3.

We believe that in a formal specification language, these problems should be prevented. Also, to help
users in locating errors in their specifications, definitions should be parsed and type checked in isolation and
not simply be treated as a piece of text. Thus, in PROB sm(1,1)*2 evaluates to 4 as expected.’

It has already been noted earlier that B is difficult to parse, especially in light of definitions (see Chapter
2 of [Mar97]). Indeed, some of the operators in B are overloaded, such as for example:

e ; can either mean relational composition when applied to expressions or sequential composition when
applied to substitutions. Furthermore, the semicolon ; is used as a separator of operations, sets, definitions
and assertions.

4 See, e.g., http://gcc.gnu.org/onlinedocs/cpp/Macro-Pitfalls.html.
5 We plan to issue a warning to the user that a non-parenthesised definition body is used and that the result obtained by ProB
may differ from Atelier B.

8 Leuschel et al.

e || can either denote the parallel product of two relation expressions or the parallel composition of two
substitutions.
e * can either denote the Cartesian product or integer multiplication.

This on its own is not yet that problematic. However, combined with the definitions feature of B we get
ambiguity, as definition bodies can stand for expressions, predicates or substitutions. For example, the
meaning of the definition d(x) == x;x; cannot be determined on its own and depends on the context it
is being used in: d({11->2,2|->3}) represents a relational composition expression (with value {1|->3})
whereas d(d(y:=y+1)) denotes a substitution, (whose effect is to increment the variable y by 4).

The solution proposed in [Mar97] is to avoid the overloading and use different syntactic representations
(e.g., ;; for relational composition). Our solution is to require parentheses around sequential composition.
For example, (x;y) is detected as relational composition and x;y as sequential composition. Indeed, normal
parentheses cannot be used for substitutions (which are bracketed using BEGIN and END). Also, our parser
will first try to parse a definition body as an expression, then as a predicate and finally as a substitution.
Only if all three passes fail, do we generate a parse error.

Comma Notation for Pairs

In Atelier B one can use the comma to denote pairs, i.e., one can write x,y instead of x|->y. This leads
to an ambiguity in the syntax: op(x,y) could denote calling the operation op with one or two parameters.
We have solved this issue by requiring parentheses around pairs written using the comma. In other words,
op(x,y) denotes calling op with two parameters and op((x,y)) denotes calling op with one parameter.

Parsing FExpressions and Predicates

In some cases our parser is more flexible than the Atelier B variant: the Atelier B parser does not distinguish
between expressions and predicates, while our parser does so and as such requires less parentheses. For
example, according to the grammar in the Appendix B of the Atelier B “B Language Reference Manual
1.8.6” [Ste09], one should be allowed to write the predicate 2=1 <=> 1=2. Our parser accepts this predicate.
However, in Atelier B this expression results in a syntax error and one has to write (2=1) <=> (1=2). The
reason is that the Atelier B parser does not distinguish between expressions and predicates, and the operator
<=> binds tighter than =.

Summary

In our experience, it is relatively rare that an Atelier-B model needs to be rewritten and thus far, this has not
been an issue in practice. Our experience has confirmed that the SableCC abstract syntax tree is much more
convenient to work with than the jbtools one. There are, however, also a few drawbacks of using SableCC.
For instance, SableCC is relatively rigid, as there are no semantic actions. This meant that in order to obtain
line and column information we needed to modify the parser classes generated by SableCC. This was done
by weaving aspects into the parser code using AspectJ, so that SableCC can be rerun, e.g., on a modified
grammar. However, this obviously complicates the building process and makes the source code more fragile
with respect to future changes of SableCC. Another drawback is the performance, which lies below that of
the jbtools parser (typically by a factor of 5; see [Fri08]). Still, the performance was sufficient to deal with
the largest industrial models we seen so far.

After we had developed our parser, ClearSy have released the Atelier B parser and type checker BCOMP
on sourceforge.® Had we known earlier about the release of BCOMP, we could have tried to use it rather than
developing our own parser. The drawback would have been the absence of checking of definitions and we also
would not have uncovered the bugs and issues with the Atelier B parser described later in Sections 5 and 6.

2.2. Improved Type Inference

In the previous version of PROB, the type inference was relatively limited, meaning that additional typing
predicates had to be added with respect to Atelier B (see [LB03]). Again, for a large industrial development

6 http://sourceforge.net/projects/bcomp/

Automated Property Verification for B Models 9

this would have become a major hurdle. Hence, we have also implemented a complete type inference and
checking algorithm for B within PROB. We are making use of the source code locations provided by the new
parser to precisely pinpoint type errors. Like the main part of PROB, the type checker has been implemented
in Prolog and the algorithm is based upon Prolog unification, in the style of the Hindley-Milner type inference
algorithm [Mil78]. As such, this is more powerful than Atelier B’s type checker, which proceeds strictly
from left-to-right. It is also more powerful than the Rodin [ABHO06] type checker for Event-B, also often
providing better error messages. Indeed, the Rodin type checker [MV09] is not unification based, but uses
a syntax-directed translation scheme [ALSUOQ7] based on inherited and synthesised attributes. For example,
in contrast to Atelier B and Rodin, our type checker can infer the types for x, y and z in the predicate
x CyANy CzAcard(z) € z.

The machine structuring and visibility rules of B are now also checked by the type checker. The integration
of this type checker also provides advantages in other contexts: indeed, we realised that many users (e.g.,
students) were using PROB without Atelier B or a similar tool for type checking.

The new type checker also improves the performance of PROB, e.g., by disambiguating between Cartesian
product and multiplication for example. Indeed, previously the kernel of PROB contained code which had
to deal with both Cartesian product and multiplication, and had to determine at runtime which operation
was required.

2.3. Other Improvements

The scale of the specifications from STS also required a series of other efficiency improvements within PROB.
Indeed, the abstract syntax tree of the main model of the San Juan case study takes 17.6 MB in Prolog
pretty-printed form.” This was highlighting several performance issues which did not arise in smaller models.
For example, there were performance issues in syntax highlighting the textual representation of large data
values or when manipulating or displaying a very large number of predicates.

All in all, about eight man-months of effort went into the parser, type checker and the various other
improvements, so as to ensure that our tool is capable of loading industrial-sized formal specifications. The
development of the parser alone took 4-5 man months of effort.

One lesson of our paper is that it is important for academic tools to work directly on the full language
used in industry. One should not underestimate this effort, but it is well worth it for the exploitation avenues
it opens up. Indeed, one cannot expect industrial users to adapt their models to suit an academic tool.

In the next section, we address the further issue of effectively dealing with the large data values manip-
ulated upon by the STS specifications. This development took three additional man months of effort.

3. Checking Complicated Properties

In this section we investigate the major challenge of our application, namely the appearance of variables
and constants whose values are very large sets and relations, e.g., representing the topology of a railway
network. As we have seen in Section 1, this is also what was responsible for the failure of Atelier B. To
give the reader an indication, the San Juan case study contains 142 constants, the two largest of which
(ctg-ipart.pos.aig.direct.i, cfg-ipart_pos_aig-devie_i) are relations which contain 2324 tuples. Larger relations
still can arise when evaluating the properties or assertions (e.g., by computing set union or set comprehen-
sions).

3.1. Improved Data Structure
The previous version of PROB represented sets (and thus relations) as Prolog lists. For example, the set

{1,2} was represented as [int(1),int(2)]. This scheme allows to represent partial knowledge about a set
(by partially instantiating the Prolog structure). For example, after processing the predicates card(s) = 2

7 This includes position information; once loaded by Prolog it takes 3.2 MB. Note that the Prolog pretty-printed form is usually
at least by a factor of two more compact than the XML representation generated by jbtools. Also note that the SableCC abstract
syntax tree takes up 15.06 MB within the Java parser.

10 Leuschel et al.

and 1 € s, PROB would obtain [int(1),X] as its internal representation for s (where X is an unbound
Prolog variable).

However, this representation clearly breaks down with sets containing thousands or tens of thousands of
elements. We need a data structure that allows us to quickly determine whether something is an element of
a set, and we also need to be able to efficiently update sets so as to implement the various B operators on
sets and relations.

For this we have used an alternative representation for sets using AVL trees — self-balancing binary
search trees with logarithmic lookup, insertion and deletion (see, e.g., Section 6.2.3 of [Knu83]). We have
used the AVL library of SICStus Prolog 4. Note that when PROB stores the variable values of a state, they
are systematically normalised, which will translate all sets into the more efficient AVL from.

An alternative to AVL trees would have been using bit vectors. This would, however, have made represent-
ing more complicated sets (e.g., sets of sets) more difficult or even impossible (e.g., for sets of mathematical
integers).

3.2. Improved Algorithms

Since the appearance of [LFFP09], we have undertaken a thorough examination of the remaining bottlenecks
of our kernel. As such, we have optimised many of the basic B operations for our new data structure (e.g.,
the various restriction operators <[, |>, <<[, [>>).

We have also identified that the STS properties and assertion contain a lot of intervals. For exam-
ple, the property cfg.aigpos.defaut_i : tnb.aigpar.acs --> t_etat_aig from Section 1 contains two intervals
(tnb_aig par_acs = 0..10 and t_etat_aig = 0..2). The fact that the domain of cfg_aig pos defaut_i lies within 0. .10
can actually be checked very efficiently. Indeed, our AVL representation stores the elements of sets in lexico-
graphic order. We can obtain the minimum mn — ¢; and maximum max — t5 elements of cfg aig pos_defaut_i
in logarithmic time. Due to the lexicographic ordering used, we know that mn is the minimum of the domain
and mx the maximum of the domain of cfg aig pos_defaut_i. Hence, we can check dom(cfg aig pos_defaut_i) <:
0..10 in logarithmic time by checking that mn > 0 and mz < 10. Doing a similar check for the range of
cfg aig pos_defaut_i still requires traversing the whole set, as t; is probably not the minimum of the range,
and ty probably not the maximum of the range. We have implemented various specialised algorithms for
subset and domain checking involving intervals and AVL trees.

These further improvements have led to a factor 20 speedup over [LFFP09] for the San Juan case study,
and prepares our tool for larger future applications (see Section 7).

3.3. A Performance Experiment

We want to get an idea of the performance of our algorithms for manipulating large sets and relations. For
this we performed a small experiment using PROB and a variety of other tools. All experiments were run on
a MacBook Pro with 2.33 GHz Core2 Duo processor and 3 GB of RAM.

In our experiment, we measured the time to compute the effect of the following assignment, coming from
a B formalisation of the Sieve of Eratosthenes. We assume that numbers has been initialised to 2..limit
and that cur=2 (i.e., we measure the first step in the Sieve algorithm, which removes all even numbers).

numbers := numbers - ran()n.(n:cur..limit/cur|cur*n))

With limit=10,000 the previous version of PROB ran out of memory after about 2 minutes. With the
new data structure this operation, involving the computation of a lambda expression, taking the range and
performing a set difference operation, is now almost instantaneous (0.2 seconds) in PROB 1.3.2. For limit
= 10,000 it requires 0.09 seconds, for limit = 100,000 it requires 0.91 seconds, while for limit = 1,000,000
PRrROB 1.3.2 requires about 9.60 seconds. These numbers suggest that PROB scales almost linearly for this
example.

Let us compare this performance with that of other formal methods tools. First, we have repeated the
above experiment with AnimB [Mét10], an animator for Event-B written in Java. We used version 0.1.1 of
AnimB running within Rodin 1.2. The results are summarised in Figures 5 and 6. For example, for limit=
20,000, it took AnimB 5 minutes 8 seconds to compute numbers := numbers - ran(%n.(n:cur..limit/cur|cur+n)),

Automated Property Verification for B Models 11

limit PRrROB 1.3.2 AnimB Kodkod TLC CoreASM
5,000 0.05 s 18 s 85.78 s 3s 1.8 s
10,000 0.09 s 75 s 363.18 s 5s 2.7 s
20,000 0.19 s 308 s 1530.49 s 11s 6.5 s
100,000 091 s - - 259 s 216.4 s
1,000,000 9.60 s - - > 16200 s -

Fig. 5. Some figures of the Sieve experiment (time to compute the first transition)

compared to 0.19 seconds for PROB 1.3.2. We can see thus that there are three orders of magnitude difference
for 20,000 elements, and we also see in the log-log plot of Figure 6 that AnimB does not scale linearly (it
seems to scale roughly quadratically).

We have also reprogrammed the above experiment in TLA' [Lam02] and used the TLC model checker
(version 3.5 of the TLA Toolbox) [YML99]. Indeed, TLA" and the B-Method share a common basis of
predicate logic and set theory. The time to run the first step of the Sieve algorithm again be found in
Figures 5 and 6. Timings for TLC were obtained using a stopwatch. As one can see, TLC performs better
than AnimB, but there is still a considerable performance gap compared to PROB (a factor of 284 for
n=100,000). Note that for 1,000,000 numbers, TLC had not yet finished after 4 hours and 30 minutes.

Note that running the entire Sieve Algorithm to find the 2,262 prime numbers until 20,000 takes 4
minutes and 26 seconds with TLC, compared to 2.36 seconds with PROB. Again, note that we measure just
one particular performance aspect here: the efficiency of treating large sets. There are other applications
where TLC will be more efficient than PROB.

Roozbeh Farahbod has encoded the Sieve experiment using CoreASM [FGGO7] for us. The CoreASM
tool (Carma version 0.7.1 and CoreASM Engine 1.1.0-alpha, written in Java) took 6.5 seconds for the first
step of the Sieve algorithm with limit=20,000, and roughly 3 minutes 36 seconds for 100,000 elements; i.e.,
it was slightly faster than TLC but still considerably slower than PROB.

Our last experiment involved Kodkod [TJ07] which provides a high-level interface to SAT-solvers, and is
also at the heart of Alloy [Jac02]. We are currently investigating using Kodkod [TJ07] as an alternative engine
to solve or evaluate certain complicated constraints within PROB. Indeed, for certain complicated constraints
over first-order relations, Kodkod can be much more efficient than PROB. However, Alloy is based upon the
“small scope hypothesis” [Jac06], which obviously does not apply for the particular industrial application
of formal methods in this paper. As such, Kodkod is probably not the right tool to manipulate relations
containing thousands or tens of thousands of elements. We encoded the above experiment using Kodkod,
and it is indeed about two orders of magnitude slower than PROB for 1,000 elements and three orders of
magnitude for 10,000 elements; see Figure 5, as well as the log-log plot in Figure 6.

In summary, the performance of PROB when manipulating large sets seems to be much better than other
existing formal methods tools. Later, in Section 7, we will compare PROB’s performance for large sets with
a few more formal methods tools. Also, in Section 3.5, we examine the constraint solving capabilities of the
various tools.

3.4. Improved Constraint Propagation

There is one caveat, however: the new AVL-tree data structure can (for the moment) only be used by PROB
for fully determined values, as ordering is relevant to store and retrieve values in the AVL tree. For example,
we cannot represent the term [int (1) ,X] from above as an AVL tree, as we do not know whether X will be
greater or smaller than 1. Hence, for partially known values, the old-style list representation still has to be
used. There are thus the following set representations currently in use by PROB:

partially known sets stored as (possibly only partially instantiated) Prolog lists,

fully known sets stored as AVL-trees,

fully known sets representing an entire base type (i.e., a complete deferred or enumerated set, as well as
BOOL and INTEGER), or one of the predefined sets of integers (INT, NAT, NATURAL, NAT1, NATURAL1).
fully known sets stored as closures, to represent certain large sets symbolically (e.g., the set of partial
functions over a certain domain and range, or the set of numbers within an interval).

12 Leuschel et al.

10000
1000

100

0.1

0.01

0.001
100 1,000 10,000 100,000 1,000,000 10,000,000

+ Kodkod AnimB O TLC % Core ASM < ProB1.3.2

Fig. 6. Log-log Plot of the performance of PROB compared to Kodkod, TLC and AnimB for manipulating large sets

For efficiency, it is important to try to use the fully determined storage formats for large sets as much
as possible. For example, in our STS application, not all constants are explicitly valued. As we have already
seen, some have to be computed (e.g., using the override operator, as seen in Section 1). Furthermore, the
models also contain abstract constants, which do not appear in the Ada code, and hence have to be inferred
by our tool using the gluing invariants.

Example 1. For example, the harder model from Section 4 contains, amongst others, the abstract constants
cfg_cdv_block and cfg_cdv_aig which are not explicitly valued. The properties of the model contain the
following relevant conjuncts (in that order):

& cfg_cdv_i = (0 .. 56) * {2} <+ {1 |-> 0,2 |-> 0,3 |-> 0,4 |-> 0,56 |-> 0,6 |-> 0,7 |-> 0,8 |-> 0,9 |-> 0,
10 |-> 0,11 |-> 0,12 |-> 0,13 |-> 0,14 |-> 0,15 |-> 0,16 |-> 0,17 |-> 0,18 |-> 0,19 |-> O,
20 |-> 1,21 |-> 1,22 |-> 1,23 |-> 1,24 |-> 1,25 |-> 1,26 |-> 1,27 |-> 1,28 |-> 1,29 |-> 1,
30 |-> 1,31 |-> 1,32 |-> 1,33 |-> 1,34 |-> 1}

& cfg_cdv_aig <: t_cdv_acs /* Property 1 */

& cfg_cdv_block <: t_cdv_acs /* Property 2 */

& cfg_cdv_aig /\ cfg_cdv_block = {} /* Property 3 */

& cfg_cdv_aig \/ cfg_cdv_block = t_cdv_acs /* Property 4 */

& cfg_cdv_aig = cfg_cdv_i"[{c_cdv_aig}] /* Property 5 */
& cfg_cdv_block = cfg_cdv_i~[{c_cdv_block}] /* Property 6 */

c_cdv_aig = 0
c_cdv_block

IS
]
-

& t_cdv_acs =1 .. 34

Automated Property Verification for B Models 13

As we can see, there are six properties which talk directly about cfg_cdv_block and cfg_cdv_aig. The last
one can be used to compute the abstract constant cfg_cdv_block efficiently, provided we use the information
that c_cdv_block = 1, which appears later in the properties. The challenge is to find a way to compute the
abstract (and concrete) constants in an efficient way, ideally using the new data structures from Section 3.1.

To address this challenge, we have improved the constraint propagation mechanism inside the PROB
kernel. The previous version of PROB [LBO08] basically had three constraint propagation phases: deterministic
propagation, non-deterministic propagation and full enumeration. The new kernel now has a much more fine-
grained constraint propagation, with arbitrary priorities. Every kernel computation gets a priority value,
which is the estimated branching factor of that computation. A priority number of 1 corresponds to a
deterministic computation. For example, the kernel computation associated with the predicate x = z would
have a priority value of 1, while the predicate x € {1,2,3} would have a priority value of 3. A value of 0
indicates that the computation will yield a fully determined value. At every step, the kernel chooses the
computation with the lowest priority value.

Take for example the predicate x:NAT +-> NAT & x={y|->2} & y=3. Here, y=3 (priority value 0) would
actually be executed before x={y|->2}, and thus ensure that afterwards a fully determined AVL-tree would
be constructed for x. The check x:NAT +-> NAT is executed last, as it has the highest priority value (and
thus the lowest priority).

In Example 1 above, the equality concerning cfg_cdv_i would be executed first, resulting in an AVL-tree
representation of the relation (containing 57 tuples). Then c_cdv_block = 1 would be executed, where-
after the properties 5 and 6 would be executed, resulting in AVL-tree representation for cfg_cdv_aig and
cfg_cdv_block. Finally, properties 1-4 would be verified.

Compared to the old approach, enumeration can now be mixed with other computations and may even
occur before other computations if this is advantageous. Also, there is now a much more fine-grained selection
among the non-deterministic computations. Take for example, the following predicate:
s1 = 9..100000 & s2 = 5..100000 & s3 = 1..10 & x:s1 & x:82 & x:83. The old version of PrROB
would have executed x:s1 before x:s2 and x:s3. Now, x:s3 is chosen first, as it has the smallest possible
branching factor. As such, PROB very quickly finds the two solutions z = 9 and x = 10 of this predicate.

Finite Domain Constraints

One further challenge arose in the Paris Line 1 models (see Section 5.1). These contained universally quan-
tified formulas such as the following one:

! (aa,bb).(aa : type_a & bb : INTEGER & inv_deb(aa) <= bb & bb <= inv_fin(aa)
=>
bb : type_1)

Let us assume that type_a has a cardinality of 123 (which it actually does in the concrete example).
When expanding the universal quantifier, our constraint kernel would chose to execute aa : type_a first,
but it would still be left with 232 possibilities for bb for every value of aa; most values of bb would make the
predicate inv_deb(aa) <= bb & bb <= inv_fin(aa) false.

Our solution is to store domain information for every integer value, whose precise value is not yet known.
Initially, when examining the premise of the universal quantifier, the predicate bb : INTEGER would set
the domain of bb to —2147483648..2147483647. Once the value of d = inv_deb(aa) is known, this then
gets narrowed down by the first comparison inv_deb(aa) <= bb to d..2147483647. The second comparison
would then narrow down the domain further to d..f, once the value f = inv_fin(aa) is known. As a
consequence, bb would be enumerated in a much tighter range (sometimes even not at all, in case d > f).

To store the domain information, we have tied in the CLP(FD) solver of SICStus Prolog [CO97]. Note
that this provides further advantages for a broad range of applications.

14 Leuschel et al.

3.5. Advantages and Difficulties of Constraint Propagation

The constraint propagation as employed by PROB has big advantages in solving complicated predicates,
e.g., arising in the industrial applications in this paper. Let us illustrate this advantage on the well-known
n-Queens puzzle? expressed in B as follows:

g:l.n—>1.n AV(E,5).(:L.nAj:2.nANf>i=q0)+5—i#q() Nqgli) —j+1i#q(jh))

PROB can now deal with this problem quite effectively, taking, e.g., 0.01 seconds to find the first solution
for n = 8 and solving the predicate for up to n = 17 in less than 0.1 seconds each on a MacBook Pro 3.06
GHz Core2 Duo. For n = 70 it is solved in about 9 seconds by PROB 1.3.2.9 A tool such as AnimB [Mét10],
which is written in Java and evaluates predicates from left-to-right, can only solve this for n = 5. (Strangely,
AnimB cannot solve it for n = 4; nor can it determine that there are no solutions for n = 3. Changing the
order of the predicates does not help either.) In a similar fashion, AnimB cannot solve the predicate from
Example 1 stemming from our San Juan case study either.

In TLAT [Lam02] the above predicate can be expressed as follows:

/\ @’ \in [1..n -> 1..n]
/ANNA i \in 1..n @ (\A j \in 2..n : i<j => q’[i] # q’[j] /\ @’ [il+i-j # q’[j1 /\ q’[il-i+j # q’[3])

The model checker TLC (version 3.5 of the TLA Toolbox) [YML99)], is written in Java and is capable of
evaluating complicated predicates and finding solutions for variables. Like AnimB, TLC deals with conjuncts
from left-to-right (see page 239 in Chapter 14 of [Lam02]). (One cannot change the order of the two conjuncts
in the above example, otherwise TLC complains that ¢ is undefined.) TLC can solve this predicate for n
up to 6 quickly, but already takes 10 seconds for n = 7 and 4 minutes and 3 seconds for n = 8 (again on
a MacBook Pro 3.06 GHz Core2 Duo), i.e., four orders of magnitude slower than PROB. For n = 9, TLC
took over 1 hour and 45 minutes, i.e., more than 5 orders of magnitude slower than PROB (0.02 seconds).
Note that we are only testing TLC’s capability to solve predicates, not its (very effective) disk-based model
checking capabilities.

We have also experimented with Alloy [Jac02] (version 4.1.10), which does not treat conjuncts from
left-to-right, but translates the predicates to propositional logic formulas fed to a SAT solver. Solving the
equivalent Alloy model for n = 8 takes 0.80 seconds with the default SAT4J sat solver. With minisat rather
than SAT4J as backend, Alloy takes 0.24 seconds. In both cases, this is considerably faster than TLC. For
n = 15 it takes Alloy 9.84 seconds with the default SAT4J solver and 2.08 seconds with minisat (compared
to 0.06 seconds with PROB). For n = 32 it takes Alloy 32 minutes and 5 seconds with the default SAT4J
solver and 4 minutes 5 seconds with minisat (compared to 0.52 seconds with PROB). (Note that the Alloy
model uses the built-in Int type with a bit width of 5 for n up to 15, a bit width of 6 for n > 15 and n < 32,
etc.)

The reader may also be interested in examining the article [BPV09], where the n-Queens problem is
translated to SMT formulas and then solved by various SMT solvers. For n = 24, Z3 takes 6.67 seconds,
Yices 23.54 seconds, MathSAT 197.63 seconds, Barcelogic 298.50 seconds and CVC3 times out (on quite
similar hardware than ours). In our experiments, Alloy with minisat takes 31.50 seconds, while PROB takes
0.22 seconds to solve the problem for n = 24.

As another small experiment, let us check whether two graphs with n = 9 nodes of out-degree exactly
one are isomorphic by checking for the existence of a permutation p with p € 1.n» 1L.n AVi.(i € 1.n =
p(graphl(i)) = graph2(p(i))). For the two graphs graphl = {1+ 3,2+ 3,3~ 6,4 — 6,5 — 6,8+— 9,9 —
8,6+— 6,7+— 7} and graph2 ={2—53+—54—56—4,7—4,1—99— 15— 58— 8}, TLC finds
a permutation ([6,7,4,2,3,5,8,1,9]) after 2 hours 6 minutes and 28 seconds; PROB takes 0.06 seconds to
find the same solution for p, (and 0.1 seconds to find all 8 solutions for p), while Alloy takes 0.11 seconds
with SAT4J and 0.05 seconds with minisat.

These small examples highlight the potential of constraint propagation approaches for solving logical
predicates (but the example is by no means meant to reflect on the general performance for the various tools

8 http://en.wikipedia.org/wiki/Eight_queens_puzzle
9 The yet to be released version 1.3.3 solves it in 3.43 seconds. Unless explicitly stated otherwise, all experiments were still
conducted with version 1.3.2.

Automated Property Verification for B Models 15

studied). However, the flexible constraint propagation of PROB also comes at a price compared to other
tools (such as AnimB, Brama or TLC) which evaluate predicates strictly from left-to-right:

e Unsatisfiable predicates:

If a predicate is unsatisfiable (such as the guard of an operation or the properties clause of a machine),
it is more difficult to pinpoint which conjunct(s) caused the predicate to become unsatisfiable.

To address this issue, certain predicates (such as the properties of a machine) are decomposed into
connected components by PROB. This improves efficiency but also helps the user pinpointing unsatisfiable
components. Furthermore, PROB provides a debugging command for predicates, which adds the conjuncts
from left-to-right until no solution can be found. Finally, PROB’s graphical formula viewer [LSBLO0S]
computes a “maximal” satisfiable subpredicate.

e Time-out:
It is not possible to “time out” on individual conjuncts. In other words, one cannot simply skip over
conjuncts which take too long to solve, as the constraint solving of all conjuncts is intertwined. (However,
it is possible to skip over components which take too long to solve.)

e Well-Definedness:
It is more difficult to detect undefined expressions. Take for example the predicate y # 0 A z/y = 1; it
could happen that x/y is computed before y # 0 prunes the computation. As such, we cannot simply
raise an error message if a division by zero (or other undefined operation) occurs. PROB employs two
solutions for this problem:

— when a division by zero is encountered, then PROB raises a conditional error message. This error
message will suspend until the enumeration of all values has finished; if the surrounding predicate
fails then no error message will be raised.

— for efficiency reasons, some well-definedness errors are not caught by default, but the computation fails.
This is the case for applying a function outside of its domain.'® Thus, the evaluation of {11->1}(2)=3
will fail, as will its negation not ({1]->1}(2)=3). Therefore, by evaluating a predicate both positively
and negatively, we can detect undefined predicates. This technique is applied by our formula viewer,
as well as the assertion checking for the industrial applications in this paper.

Both of these solutions provide a very liberal notion of well-definedness for conjunctions, which is basically
independent of the order of the conjuncts. Le., both y Z0Az/y =1 and 2/y = 1 Ay # 0 are considered
to be well-defined. For conjunctions, our approach thus corresponds to the D-system of [AMO02], where a
conjunct P A @ is considered well-defined if either both P and @ are well-defined, P is well-defined and
false, or @ is well-defined and false. However, for disjunctions PROB is not so liberal and our approach
corresponds to the L-system of [AMO02], where P = @ is well-defined if P is well defined and @Q is well-
defined whenever P is true. In summary, PROB supports the L-system of [AMO02] (also being used by
Rodin), even though some formulas well-defined under the D-system are also accepted.

3.6. Summary

In summary, driven by the requirements of the industrial application, we have improved the scalability of
the PROB kernel. This required the development of a new data structure to represent and manipulate large
sets and relations. A new, more fine grained constraint propagation algorithm was also required to ensure
that this data structure could actually be used in the industrial application.

4. The San Juan Case Study

As already mentioned, in order to evaluate the feasibility of using PROB for checking the topology properties,
Siemens sent the STUPS team at the University of Diisseldorf the models for the San Juan case study on the
8th of July 2008. There were 23,000 lines of B spread over 79 files, two of which were to be analysed: a simpler
model (acs_as_env_cfg_aiguille.mch) and a complete model (acs_as_env_cfg_ipart.mch). The complete model

10 Even though PROB has a preference were well-definedness checking for function application can be turned on.

16 Leuschel et al.

Activity Resource Usage

B source files
(12 Machines, 23 Definition files)
1

1. Parsing: 13.7 sec

Prolog }LS'T File 17.6 MB

2. Lozlxding: 19.16 sec

3. Type Checking;: 3.59 sec

typed internal Prollog data structure 7 MB

4. Properties Solvirllg (225 properties): 0.33 sec
values for all concrete and abstract constants 0.69 MB
5. Assertion Checkilng (148 assertions): 40.49 sec

Fig. 7. Some statistics about the most complicated machine (acs_as_env_cfg_ipart.mch) of the San Juan Case study

acs_as_env_cfg_ipart.mch contains 226 properties and 147 assertions. It then took us a while to understand
the models and get them through our new parser, whose development was being finalised at that time.

On 14th of November 2008 we were able to animate and analyse the first model. This uncovered one error
in the assertions. However, at that point it became apparent that a new data structure would be needed
to validate bigger models. Thus, the developments described in Section 3 were undertaken. On the 8th of
December 2008 we were finally able to animate and validate the complete model acs_as_env_cfg_ipart.mch.
This revealed four errors.

Note that we (the STUPS team) were not told about the presence of errors in the models (they were
not even hinted at by Siemens), and initially we believed that there was still a bug in PROB. Luckily, the
errors were in the concrete data values. Furthermore, PROB found ezactly the same errors that Siemens had
uncovered themselves by manual inspection.

The manual inspection of the properties took Siemens several weeks (about a man month of effort).
Checking the properties took 4.15 seconds, and checking the assertions took 1017.7 seconds (i.e., roughly 17
minutes) using PROB 1.3.0-final.4 on a MacBook Pro with 2.33 GHz Core2 Duo. With version 1.3.1, the
runtime was further improved, to below 5 minutes, and now with version 1.3.2 on a more recent laptop the
assertion checking is done in less than a minute. Statistics for the complete process, from parsing to assertion
checking can be found in Figure 7. Note that PROB was not used in its capacity as a model checker here:
PROB was used to find values for the concrete and abstract constants which satisfy the properties clause
and then was used to verify the truth-value of all 148 assertions. Note that all properties and assertions
were checked twice, both positively and negatively, in order to detect undefined predicates (e.g., 0/0 = 1 is
undefined). We return to this issue in Section 6.

The four false formulas found by PROB are the following ones (see also Figure 8):

1. ran(cfg aig cdv_encl) = cfg_cdv_aig
2. cfg ipart_aig tild liste.i : t_liste_acs_2 --> tnb_iti_partiel par._acs
3. dom(t_iti_partiel_acs <| cfg ipart_cdv.dest.aig-i |> cfg.cdv_aig) \/
dom(t_iti_partiel_acs <| cfg_ipart_cdv.dest_saig i |> cfg_cdv_block)
= t_iti_partiel_acs

4. ran({aa,bblaa:t_aig_acs & bb:t_cdv_acs &
bb:cfg aig cdv_encl liste.i[(cfg-aig_cdv_encl. deb(aa)..cfg aig-cdv_encl_fin(aa))]})
= cfgcdv_ i~ [{c_cdv_aig}]

Inspecting the Formulas

Once our tool has uncovered unexpected properties of a model, the user obviously wants to know more
information about the exact source of the problem.

Automated Property Verification for B Models 17

ProB 1.3.2-final: [acs_as_env_cfg_ipart.mch]

; cfg ipart iprinc tild liste i |> t_iti partiel acs : seg(t_iti_partiel acs)
!{aa,bb).(aa : t_iti principal acs

bb : INTEGER

cfg _ipart iprine tild deb(aa) <= bb

bb <= cfg ipart iprinc tild fin(aa)
> bb : t_liste_acs

—_— e

!(aa,bb).(aa : t_iti principal acs
& bb : INTEGER
& cfg_ipart iprinc_tild deb(aa) <= bb
&

bb <= cfg ipart_iprinc tild_fin(aa)
> cfg_ipart_iprinc tild liste i(bb) : t_iti partiel_acs

; laa.(aa : t i@ OVO) Analysing ASSERTIONS
t_iti pg
cfg_ipa: (Non-Typing) Conjuncts of ASSERTIONS:
t_iti pe
) ran{{aa,bbl(aa : t_aig_ocs & bb : t_cdv_acs) & bb : cfg_aig_cdv_encl_liste_i[cf
_aig_cdv_encl_deb{aa) .. cfg_aig_cdv_encl_fin{aa = cfg_cdv_i~[{c_cdv_aig}
/+ Implémentatit g__ \%alse Caa) g_aig Caa)1}) a [L at]
/*
i cfg_ipart| xx). (xx @ t_cdv_acs -> cfg_cdv_zdest_suppl_pcl_i{xx) : t_cdv_acs W/ {c_cdv_in)
| | deth |
— | == TRUE | =
State Propertie | B
invariant ok I(xx).(xx 1 t_cdv_ocs -» cfg_cdv_zdest_suppl_pc2_i(xx) : t_cdv_acs %/ {c_cdv_in
= 1 !
t_cdv_acs = {2"[]z": 1 .. dffJ?li e wiz
t_aig_acs = {z"[2": 1 .. h
t_canton_acs = {z"[z" :] ran({t_cdv_acs =| cfg_cdv_zdest_suppl_pcl_i) |= t_ecdv_acs) /% ran{(t_cdv_acs =<|
t_br_cdv_acs = {z"[|z" : 1 cfg_cdv_zdest_suppl_pc2_i) |- t_cdv_acs) = {}
t_aig_config_acs = {2"|z == TRUE m
t_liste_acs = {2"|z" : 0 ..
cfg_aig_cdv_encl_indice| ran{{t_olg_acs <| cfg_aig_config_i) |- t_aig_config_acs) = t_aig_config_acs
L » == TRUE A

cfg_aig_cdv_encl_indice|
cfg_aig_cdv_encl_indice|
cfg_aig_cdv_encl_indice| fDoned
cfg_aig_cdv_encl_indice| —

. -3 P
cfg_aig_cdv_encl_indicelop=opmm —&5_env_Typ_Dr_Cav_argy.1re_or |
cfg_aig_cdv_encl_indice(7) = {7} _ |using(acs_as_env_typ_br_cdv_aig).lire_bij{_
cfg_aig_cdv_encl_indice(8) = {8} a usinglacs_as_env_typ_br_cdv_aig).encode| a
L A eV il ML & 4k 4

Fig. 8. Analysing the Assertions

This was one problem in the Atelier B approach: when a proof fails it is very difficult to find out why
the proof has failed, especially when large and complicated constants are present.

To address this issue, we have developed an algorithm to inspect the truth-values of B predicates, as well
as all sub-expressions and sub-predicates. The whole is assembled into a graphical tree representation. (An
earlier version of the graphical viewer is described in [LSBLOS].)

A graphical visualisation of the fourth false formula is shown in Figure 9. For each expression, we have
two lines of text: the first indicates the type of the node, i.e., the top-level operator. The second line gives
the value of evaluating the expression. For predicates, the situation is similar, except that there is a third
line with the formula itself and that the nodes are coloured: true predicates are green and false predicates
are red.

Note that the user can type custom predicates to further inspect the state of the variables of a specifica-
tion. Thus, if the difference between the range expression and cfg.cdv_i~[{c_cdv_aig}] is not sufficiently clear,
one can evaluate the set difference between these two expressions. This is shown in Figure 10, where we can
see that the number 19 is an element of cfg cdv_i~[{c_cdv_aig}] but not of the range expression.

In summary, the outcome of this case study was extremely positive: a man-month of effort has been
replaced by a few minutes of computation on a laptop. Siemens are now planning to incorporate PROB into
their development life cycle, and they are hoping to save a considerable amount of resources and money. For
this, validation of the PROB tool is an important aspect, which we discuss in Section 6.

18

ran
{1.23,4,5,6,789,10,11,12,13,14,15,16,

comprehension_set
[11223456,7,789,10,10,11,11,12,
13,14,12,15,16,17,17,18]

17,18}

image
{123456,7.89,10,11,12,13,14,15,16.

17,18,19} !

{(01->1),01->2),01->3),(01->4),(01->5)

{01>6).(01->7) (01->8) (01->9) (01->10

201> 11)(01->12) (01->13),01->14) (0
1->15)(01->16),(01->17),(01->18) (0> 1
9),(11->20) (11->21) (11>22) (11->23) (
1124) (11>25)(11>26) (11->27) (11>
28),(11->29).(11->30) (11>31) (11->32),
(11>33)(11->34),(21-50),(21->35) (21>
36),(21->37),(21->38),(21->39) (21->40),
(21>41),(21->42) (21->43) (21->44) 2I-

cfg_cdv_i
{(01>2),(110),(210) (31>0) (41->0)
(51->0)(61-0).(71->0).(81->0) (91->0)
(101->0),(111->0),(121->0) (131->0) (14
1->0) (151->0) (161->0).(171-50) (18>0
)(19150),201->1),211->1),(221>1).2.
31>1),241>1),251->1) (261->1),271>
1).(281->1).(29>1).(301>1),(311->1)(
320->1),(331->1),(341->1),(351->2),(361-
>2),(371->2),(381->2),(391->2) (401->2),
(411>2)(421->2),(431->2) (441->2) (451

set_extension
{0}

Fig. 9. Analysing the fourth false assertion from acs_as_env_cfg_ipart

{(01>1),(01->2),(01->3) (01->4) (01->5)
(01->6) (01->7) (01->8),(01->9).(01->10

)01>11)(01->12),(01->13) (01>14) (0
1->15) (01->16) (01->17) (0->18) (01->1
9).(11->20) (11->21) (11:>22)(11->23)(
11->24) (11>25) (11->26) (11->27)(11->

28),(11->29) (11->30),(11->31) (11->32),

cfg_cdv_i
{(01->2),(11-50),21>0) (31->0) (41->0)
(51->0),(61->0) (71->0).(81->0).(91->0)
(101>0).(111->0),(121->0).(131->0) (14
1-50) (151-0) (161->0).(171->0) (18>0
).(19150) (201> 1) 211>1) (221> 1),2

T 3i1),a>1) (25151). 2615 1,271

Leuschel et al.

1),(281->1),291->1),(301->1),(311->1) (
(11->33),(11->34),(21->0; 321>1 341->1)(351->2),(361-

2)
>
36),(21->37),(21->38)(2I-

36) [).(21->39),(21->40),
/ (21>41) (21>42) (21->43) (21->44) 21~

image
{123456,789,10,11,12,13,14,15,16,
17.,18,19)

21

381->2) (391->2) (401->2),
2),(431->2) (441->2) (451

ran comprehension_set
{123456789.10.11,12,13,14,15.16, [112234.56.7.789.10.10.1,11,12,
17.18) 13,14,12,15,16,17,17,18]

Fig. 10. Analysing a variation of the fourth false assertion

5. First Industrial Applications
5.1. Paris Line 1 Deployment

In October 2009, PROB was applied for the first time on an active development, concurrently to the classical
approach using Atelier B and manual inspection (cf., Fig. 2).

Siemens is involved in the automatisation of the Line 1 of the Paris Métro. The line will be gradually
upgraded to driverless trains, while the line remains in operation. So far, we have inspected the first com-
ponent to be delivered by Siemens, namely the PAL (Pilote Automatique Ligne). The B models of the PAL
consisted of 74 files with over 10,000 lines of B. In all 2024 assertions about the concrete data of the PAL
needed to be checked.

Again, PROB found all problems (12 in all) in under 5 minutes. These problems have of course been
examined and fixed by Siemens before delivery. There were again no false alarms or mistakes by PROB,
compared to the validation done by Siemens.

Initially, few minor tweaks were required to get the models through our type checker. Indeed, some of the
models introduced definitions which were overwriting visible constants from included machines. PROB did
consider this to be an error, whereas Atelier B accepts this. This has been fixed now: PROB only generates
a warning in those cases. Now, the PAL models can be loaded without modification into PROB.

Also note that we had to improve the PROB kernel for a few operators not yet encountered in the San
Juan models (such as the iterate operator for relations, which did not yet use our new data structure for
large relations). This took only about a couple of hours.

In response to a Siemens requirement, we have also made assertion checking possible from within a
command-line version of PROB. This allows to run our tool in batch mode on a large number of files,
and collect the results. Below is the summary information obtained by running our tool on the main PAL
files: (runtimes are in milliseconds and only measure the time spent checking the assertions using the 64-bit
command line version of ProB 1.3.2):

Automated Property Verification for B Models

SUMMARY of checking ASSERTIONS

total: Total number of conjuncts

true: Total number of true conjuncts

false: Total number of false conjuncts

unknown: Total number of unknown conjuncts (because of timeout or undefinedness)
timeout: Total number of conjuncts were time_out occurred (in true or false branch)
runtime: Total runtime in ms for checking conjuncts
cbtc_mes_as_env_inv_easitf_bs.mch

--> [total/127,true/127,false/0,unknown/0,timeout/0,runtime/370]
cbtc_mes_as_env_inv_etors_bs.mch

--> [total/142,true/142,false/0,unknown/0,timeout/0,runtime/1230]
cbtc_mes_as_env_inv_stors_bs.mch

--> [total/148,true/147,false/1,unknown/0,timeout/0,runtime/80]
parl_mes_as_env_inv_etors_bs.mch

--> [total/125,true/125,false/0,unknown/0,timeout/0,runtime/40]
parl_pans_as_env_inv_etors_bs.mch

--> [total/188,true/188,false/0,unknown/0,timeout/0,runtime/50]
parl_pans_as_env_inv_etors_dist_bs.mch

--> [total/184,true/184,false/0,unknown/0,timeout/0,runtime/80]
parl_pans_as_env_inv_mesitf_bs.mch

--> [total/182,true/182,false/0,unknown/0,timeout/0,runtime/40]
parl_pans_as_env_inv_pasitf_bs.mch

--> [total/177,true/176,false/1,unknown/0,timeout/0,runtime/30]
parl_pans_as_env_inv_se_dj_bs.mch

--> [total/176,true/174,false/2,unknown/0,timeout/0,runtime/30]
parl_pans_as_env_inv_ss_bs.mch

--> [total/192,true/192,false/0,unknown/0,timeout/0,runtime/340]
parl_pans_as_env_inv_stors_bs.mch

--> [total/192,true/192,false/0,unknown/0,timeout/0,runtime/50]
parl_pans_as_env_inv_tcs_bs.mch

--> [total/191,true/183,false/8,unknown/0,timeout/0,runtime/70]

TOTALS: total/2024 true/2012 false/12 unknown/O timeout/O runtime/2410

5.2. Sao Paulo Line 4

The next task was the validation of the CBTC Ground controller for Line 4 of Sao Paulo, which began

operation in May 2010.

The first author received the models on March 11 2010, because Siemens was unable to validate one
crucial property (neither with Atelier B, nor by “hand”). The models consisted of 210 files with over 30,000
lines of B and over 2500 assertions. It then took about a day of the first author’s time to validate the crucial

property using PROB.
The reasons the validation took a day rather than minutes were the following:

The generated B models contained syntax errors and locating the error within 210 files was difficult. The
parser of PROB has now been improved to also output information about the file containing the error.
The syntax errors (missing semicolons after definition file imports) were not found by Atelier B due to a
bug in the parser. Siemens have now fixed their tool to avoid those syntax errors in the future.

The models highlighted performance and memory issues with some of the B operators. Indeed, these
operators were not required in the previous case studies and were not yet using the new data structures
(meaning that the AVL tree representation for sets were expanded into the old list representation). The
PROB kernel has again been improved to deal with those operators.

The models contained many inconsistencies inside the properties. This makes starting PROB more diffi-
cult. Note that the Paris Line 1 models from Section 5.1 contained no inconsistencies, and the San Juan
case study contained only a single inconsistency.

To address this issue better in future applications, PROB now partitions the properties into independent
components and detects inconsistent components. This helps the user to isolate the problem more quickly.

Some of the other B machines of the Sdo Paulo Line 4 made use of infinite “complement” sets (e.g., setting
= INTEGER - {x} and then later checking y:s). PROB now detects those infinite complement sets and

keeps them symbolic, even if PROB is not in symbolic mode. There is also support for performing certain

20 Leuschel et al.

B operations on those complement sets (union, intersection, membership test, ...). All of the additional
improvements to PROB took about a week to implement.
The crucial property which defied validation by Atelier B and by humans was the following one.
liti_ztr.(iti_ztr: t_iti_ztr_pas =>
V'(cv_ztrl,cv_ztr2).(cv_ztrl: t_cv_ztr & cv_ztr2: t_cv_ztr &
cv_ztrl: {aa,bb | aa: t_iti_ztr_pas & bb: t_cv_ztr &
bb: inv_iti_ztr_cv_liste_il[inv_iti_ztr_cv_deb(aa)..inv_iti_ztr_cv_fin(aa)l}[{iti_ztr}] &
cv_ztr2: {aa,bb | aa: t_iti_ztr_pas & bb: t_cv_ztr &
bb: inv_iti_ztr_cv_liste_il[inv_iti_ztr_cv_deb(aa)..inv_iti_ztr_cv_fin(aa)]}[{iti_ztr}] &
not(cv_ztrl = cv_ztr2)
=>
inv_ztr_cv_pas_i(inv_iti_ztr_pas_i(iti_ztr)|->cv_ztrl)
|->inv_ztr_cv_pas_i(inv_iti_ztr_pas_i(iti_ztr)|->cv_ztr2)

dom(inv_cv_sens_orientation)))

The crucial property is related to routes from one zone controller to another one: each route is decomposed
into virtual blocks, each virtual block is linked with another virtual block by a function, and each pair of
blocks has a direction. This property checks the coherence of all these items. This property involves several
large functions, with images of images of functions, and has a double universal quantifier. All this lead to a
proof tree and a goal size that is beyond the capabilities of Atelier B.

A graphical visualisation of the PROB analysis result for this property can be found at the following site:
http://www.stups.uni—duesseldorf.de/ProB/index.php5/SiemensComplicatedProp.It was used in the official Siemens
validation report. PROB was also applied to other properties, and for the first time PROB also detected
errors that were not detected by the existing approach of Siemens.

5.3. Barcelona Line 9 and CDGVAL

After the delivery of the Sdo Paulo line, PROB was applied in May 2010 to validate the data of the zone
controller of the Barcelona Line 9, which “will be one of the longest automatic metro lines in Europe.”!!.

First, PROB detected syntax errors in the definitions of the generated B machines. For example, one
definition file contained the following line, where an operator is missing:

co_nb_max_heure_il_par_pas == 2 xx 24 1

These errors were not detected by the Atelier B parser, as the offending definitions were not actually
used in the rest of the model.

Once the syntax errors were corrected, the data validation was performed independently and with success
by Siemens. As a minor improvement, we made sure that PROB tries to detect infinite lambda expressions
and set comprehensions, ensuring that those are not expanded, even if PROB is not in symbolic mode. For
example, the following two lambda expressions appear in the Barcelona Line 9 models:

abs = Y%xx.(xx : INTEGER | max ({xx, -xx})) &
sqrt = %xx.(xx : NATURAL | max({yy | yy : INTEGER & yy * yy <= xx}))

After that, Siemens used PROB for data validation for the CDGVAL (Charles de Gaulle Véhicle Au-
tomatique Léger) automated shuttle at the Charles de Gaulle airport in Paris. The validation was performed
completely independently and successfully by Siemens; no adaptation of PROB was performed.

6. Validation of ProB

In the above case studies, PROB was compared with Atelier B. For this specific use, the performance of
PROB is far better than the performance of Atelier B. However, in contrast to Atelier B, PROB is not yet
qualified for use within a development life cycle producing SIL 4 (the highest safety integrity level; see, e.g.,
[Red00]) certified systems. To be able to routinely use PROB, Siemens have to be able to rely on PROB’s
output if it evaluates a property to true. There are two ways this can be achieved:

Il http://en.wikipedia.org/wiki/Barcelona Metro_line 9

Automated Property Verification for B Models 21

e Using a second, independently developed tool to validate the data properties.

One possibility would be Atelier B, but as we have already seen it is currently not capable to deal
with the more complicated properties. Another possibility would be to use another animator, such as
Brama [Ser07] or AnimB [Mét10]. These tools were developed by different teams using very different
programming languages and technology, and as such it would be a strong safety argument if our tool
and either Brama or AnimB returned the same verdict. This avenue is being investigated, but note that
Brama and AnimB are much less developed as far as the constraint solving capabilities are concerned.
We discuss these two tools in more detail later in Section 7.

e Validate PROB, at least those parts of PROB that have been used for checking the properties.
There are no general requirements for using a tool within a SIL 4 development chain; the amount of
validation depends on the criticality of the tool in the development or validation chain. In this case,
Siemens require:

— a list of all critical modules of the PROB tool, i.e., modules used by the data validation task, that
can lead to a property being marked wrongly as fulfilled

— a complete coverage of these modules by tests.

— a validation report, with description of PROB’s functions, and a classification of functions into critical
and non-critical, as long with a detailed description of the various techniques used to ensure proper
functioning of PROB.

We are currently pursuing the second option, and provide some details in the remainder of this section.
Validation Techniques

The source code of PROB contains >40,000 lines of Prolog, >7,000 lines of Tcl/Tk, > 5,000 lines of C (for
LTL and symmetry reduction), 1,216 lines of SableCC grammar along with 9,025 lines of Java for the parser
(which are expanded by SableCC into 91,000 lines of Java). In addition, there are > 5,000 lines of Haskell
code for the CSP parser and about 50, 000 lines of Java code for the Rodin [ABHO06] plugin. These statistics
concern version 1.3.0 of PROB.

1. Unit Tests:
PROB contains over a 1,000 manually entered unit tests at the Prolog level. For instance, these check
the proper functioning of the various core predicates operating on B’s data structures. For example, it is
checked that {1} U {2} evaluates to {1, 2}.
In addition, we have now also added an automatic unit test generator, which tests the PROB kernel
predicates with many different scenarios and set representations. For example, starting from the call
union([int(1)], [int(2)], [int(1),int(2)]1), the test generator will derive 1358 unit tests. It will use AVL
or closure representations of the sets; it will swap the order of the first two arguments, as union is
commutative; it will check various orderings in which the information about the sets can arrive, e.g., it
could be that first the result of the union is known, then the second argument.

2. Run Time Checking:
The Prolog code contains a monitoring module which — when turned on — will check pre- and post-
conditions of certain predicate calls and also detect unexpected failures. Many kernel predicates also
check for unexpected arguments. All of this overcomes to some extent the fact that Prolog has no static
typing.

3. Integration and Regression Tests:
PRrROB contains 220 regression tests which are made up of B models along with saved animation traces.
These models are loaded, the saved animation traces replayed and the models are also run through the
model checker. These tests have turned out to be extremely valuable in ensuring that a bug once fixed
remains fixed. They are also very effective at uncovering errors in arbitrary parts of the system (e.g., the
parser, type checker, the interpreter, the PROB kernel, ...).

4. Self-Model Check:
With this approach we use PROB’s model checker to check itself, in particular the PROB kernel and
the B interpreter. The idea is to formulate a wide variety of mathematical laws and then use the model
checker to ensure that no counterexample to these laws can be found.
Concretely, PROB now checks itself for over 500 mathematical laws. There are laws for booleans (39

22

Leuschel et al.

laws), arithmetic laws (40 laws), laws for sets (81 laws), relations (189 laws), functions (73 laws) and
sequences (61 laws), as well as some specific laws about integer ranges (24 laws) and the various basic
integer sets (7 laws). Figure 11 contains some of these laws about functions.

The self-model check has been very effective at uncovering errors in the PROB kernel and interpreter.
So much so, that even two errors in the underlying SICStus Prolog compiler were uncovered via this
approach:

e The Prolog findall did sometimes drop a list constructor, meaning that instead of [[]] it sometimes
returned []. In terms of B, this meant that instead of {@} we received the empty set &. This violated
some of our mathematical laws about sets. For example, the PROB model checker found the value of
ss = {{}.{{}}} , violating the following two laws:

— POW1(SS) = POW(SS) - {{}}
— FIN1(SS) = FIN(SS) - {{}}

This bug was reported to SICS and it was fixed in SICStus Prolog 4.0.2.

e A bug in the AVL library (notably in the predicate avl max computing the maximum element of an
AVL-tree) was found and reported to SICS. The bug was fixed in SICStus Prolog 4.0.5.

Note: these problems would not have been detected by validating or proving the code of PROB correct.
It was essential to test the actual code of PROB. The model checker together with the mathematical laws
enabled this testing to be performed very effectively.

Positive and Negative Evaluation:

As already mentioned, all properties and assertions were checked twice, both positively and negatively.
Indeed, PROB has two Prolog predicates to evaluate B predicates: one positive version which will succeed
and enumerate solutions if the predicate is true and a negative version, which will succeed if the predicate
is false and then enumerate solutions to the negation of the predicate. The reason for the existence of
these two Prolog predicates is that Prolog’s built-in negation is generally unsound and cannot be used to
enumerate solutions of negated subgoals. For example, given the Prolog rule p(eq(X,Y)) :- X=Y. the
query not (p(eq(X,0))) would fail, i.e., one could erroneously conclude that there is no value X which is
different from 0. In PROB, we have a dedicated predicate for the negation, which will suspend until it can
determine the result correctly. For the above example, one could write not_p(eq(X,Y)) :- dif(X,Y).
(where dif is a built-in Prolog predicate for inequality which suspends until its outcome can be decided).
With these two predicates we can uncover undefined predicates: if for a given B predicate both the
positive and negative Prolog predicates fail then the formula is undefined. For example, the property x
= 2/y & y = x-x over the constants x and y would be detected as being undefined.

In the context of validation, this approach has another advantage: for a formula to be classified as true
the positive Prolog predicate must succeed and the negative Prolog predicate must fail, introducing a
certain amount of redundancy (admittedly with common error modes). In fact, if both the positive and
negative Prolog predicates would succeed for a particular B predicate then a bug in PROB would have
been uncovered.

This validation aspect can detect errors in the predicate evaluation parts of PROB i.e., the treatment of
the Boolean connectives V, A, =, =, <, quantification V, 3, and the various predicate operators such as
€, ¢, =, #, <, ... This redundancy can not detect bugs inside expressions (e.g., +, —, ...) or substitutions
(but the other validation aspects mentioned above can).

Code Coverage

The above validation techniques are complemented by code coverage analysis techniques. In particular, we
try to ensure that Points 1 and 4 above cover all predicates and clauses of the PROB kernel. As we are not
aware of any tool that computes code coverage for Prolog, we have developed our own code coverage tool for
SICStus Prolog (see, e.g., [Kril0]). The tool uses Prolog’s term expansion facility to keep a record of which
program points are covered. With our tool we can detect:

e completely uncovered Prolog predicates,
e clauses of a Prolog predicate that are never called (i.e., no call unifies with the head of the clause),
e clauses of a Prolog predicate that never succeed,

Automated Property Verification for B Models 23

lawl == (dom(£ff\/gg) = dom(ff) \/ dom(gg));
law2 == (ran(£ff\/gg) = ran(ff) \/ ran(gg));
law3 == (dom(ff/\gg) <: dom(ff) /\ dom(gg));
law4 == (ran(ff/\gg) <: ran(ff) /\ ran(gg));
laws == ((ff \/ gg)~ = ££~ \/ gg™);

law6 == (dom((ff ; (gg™))) <: dom(ff));

lawl0 == (ff : setX >->> setY <=> (ff : setX >-> setY & ff~: setY >-> setX));
lawll == (ff : setX >+> setY <=> (ff: setX +-> setY &
1 (xx,yy) . (xx:setX & yy:setX & xx/=yy & xx:dom(ff) &
yy: dom(ff) => ff(xx)/=£ff(yy)))) ;
lawl2 == (ff : setX +->> setY <=> (ff: setX +-> setY &
lyy. (yy:setY => yy: ran(££))));

Fig. 11. A small selection of the laws about B functions

e choice points inside a clause which are not completely covered,
e execution paths through a clause which are not covered.

Our tool also contains a graphical front-end that visualises the information on the source code. So far, this
has been very useful in extending our unit tests and mathematical laws. As an example, 96.5 % of the clauses
of the kernel mappings module are now covered by the unit tests and the mathematical laws. The only
uncovered clauses relate to the Z compaction operator, and one error condition that was not triggered by
the tests. In summary, the code coverage has helped us write better tests and has allowed us to uncover a
few undetected errors in the kernel.

Infrastructure Validation

We cannot hope to validate the entire environment in which PROB is run (Prolog compiler, operating system,
hardware,...). But note that some of our tests exercise PROB with the complete infrastructure. As such, we
have identified a bug in the parser (FIN was treated like FIN1), as well as the SICStus Prolog bugs mentioned
above. The parser and type checker are two further components of PROB which we try to validate separately:

1. Validation of the parser:

We execute our parser on a large number of our regression tests and pretty print the internal represen-
tation. We then parse the internal representation and pretty print it again, verifying (with diff) that
we get exactly the same result. This type of validation can easily be applied to a large number of B ma-
chines, and will detect if the parser omits, reorders or modifies expressions, provided the pretty printer
does not compensate errors of the parser. On the downside, the validation will only detect those errors in
machines generated by the pretty printer, which may prevent us from catching errors which only appear
in non-pretty printed machines, e.g. when parentheses in expressions are set incorrectly.

2. Validation of the type checker:

For the moment we also read in a large number of our regression tests and pretty print the internal
representation, this time with explicit typing information inserted. We now run this automatically gen-
erated file through the Atelier B parser and type checker Bcomp. With this, we test whether the typing
information inferred by our tool is compatible with the Atelier B type checker. (Of course, we cannot
use this approach in cases where our type checker detects a type error.) Also, as the pretty printer only
prints the minimal number of parentheses, we also ensure to some extent that our parser is compatible
with the Atelier B parser (see below). Again, this validation can easily be applied to a large number of
B machines. More importantly, it can be systematically applied to those machines that PROB validates
for Siemens: provided the parser and pretty printer are correct, this gives us a guarantee that the typing
information for those machines is correct. The latest version of PROB has a command to cross check the
typing of the internal representation with Atelier B in this manner.

During validation of the type checker we found errors in the Atelier B English documentation. Indeed,
the parser BCOMP of Atelier B does not accept the following predicate, even though it should parse according
to the English version of the Atelier B “B Language Reference Manual 1.8.6” [Ste09] (with the priorities of
=> <=> being 30, that of : 60, and that of |-> being 160)

1 (xx,yy).(xx : Nodes & yy : Nodes => ((xx |-> yy : graphl) <=> (prm(xx) |-> prm(yy)) : graph2))

24 Leuschel et al.

All in all there are 26 errors in the English reference manuals, upon which our pretty printer and BParser
was based. We have now fixed these issues by adapting our parser and pretty printer, using the priorities
from the French version of the Atelier B reference manual. As a side note, we also detected that BCcoOMP
reports a lexical error (“illegal token |-") if the vertical bar (|) of a lambda abstraction is followed directly
by the minus sign.

7. More Related Work, Conclusion and Outlook
More Related Work: Brama, and BZ-TT

We have already mentioned the Brama [Ser07] and AnimB [Mét10] animators. They both use the same predi-
cate and expression evaluator for B expressions written in Java: a package called com.clearsy.predicateB).
Both Brama and AnimB require all constants to be fully valued, AnimB for the moment is not capable of
enumerating functions, etc. Hence, these tools can not be used directly to validate all the properties in our
case studies and industrial applications (e.g., AnimB cannot solve the predicate shown in Example 1). It
should, however, be possible to apply AnimB or Brama only on those properties that apply fully valued
concrete constants. Indeed, the transit operator RATP for Paris are doing just that, using the tool Ovado
developed by ClearSy and using the underlying engine of Brama to cross-check the results provided by ST'S.
Furthermore, like PROB, Ovado has the capability to keep set comprehensions in a symbolic form. Unfortu-
nately, we do not have access to experience reports or performance results of RATP. However, we were able
to compare PROB’s output with Ovado’s output for a particular benchmark model of ClearSy, confirming
that both tools obtained the same validation result.

We have rerun the experiment from Section 3.3 using Brama. Brama does not run on the latest Rodin
release nor on the latest Mac OS X operating system (which we used for the earlier experiments). Hence, we
experimented with Brama version 0.0.22 on Rodin 0.9.2.1 on a 1.83 GHz, 2GB Mac Mini Core2 Duo running
Mac OS X 10.5.8. As is to be expected, performance of Brama is very similar to AnimB. For limit=10,000,
it takes Brama 1 minute 22 seconds to compute numbers := numbers - ran(%n.(n:cur..limit/cur|cur*n)). PROB
1.3.2 took 0.15 seconds on the same hardware. For limit=20,000 it takes Brama 5 minutes 23 seconds,
compared to PROB which takes 0.30 seconds on the same hardware.

In addition to the animators Brama and AnimB we would like to mention BZ-TT [LPU02], a test
generation tool for B and Z specifications. A specification is translated into constraints and the CLPS-B
constraint solver [BLP02] is used to find boundary values and to determine test sequences [ABC*02]. BZ-
TT is now part of a commercial product named Leirios Test Generator. Like PROB, the core of BZ-TT is
written in Prolog.

The BZ-TT tool is focused on test generation; many of the features required for the Siemens case studies
are not supported by BZ-TT (e.g., set comprehensions, machine structuring, definitions and definition files).
Also, unfortunately, BZ-T'T is no longer available for download. Still, we managed to obtain version BETA
1.00 of BZ-TT for Linux, which we ran on Ubuntu 9.4 with 512 MB using Parallels Desktop. We could not
apply BZ-TT to the same Sieve experiment as above, due to the lack of support for lambda abstractions
by BZ-TT. We thus experimented with a simplified version. Generally speaking, when working with sets
larger than a thousand elements, BZ-TT would often fail to start up the animator.'? When successful, it
took BZ-TT, e.g., 87 seconds to compute yy := 2..5000 and then another 108 seconds to compute xx :=
yy - {2,3,5,6,11,13,17,19,23,27}. PROB took less than 0.01 seconds for the first operation and 0.04
seconds for the second one, on the same hardware. When doubling the set size, the runtimes were more
than multiplied by four: computing yy := 2..10000 took over 6 minutes (368 seconds) and xx := yy -
{2,3,5,6,11,13,17,19,23,27} took about 8 and a half minutes (509 seconds). On the same hardware,
PROB took less than 0.01 seconds for the first operation and 0.09 seconds for the second one. These exper-
iments show that the BZ-TT set operations do not scale linearly, and indicate a performance difference of
more than four orders of magnitude compared with our new version of PROB for sets between 5,000 and
10,000 elements.

In summary, none of the existing alternative animators for B seem to be able to deal well with large sets
and relations.

12 The message being shown is {ERROR: Memory allocation failed (upper 4 bits do not match MallocBase)}.

Automated Property Verification for B Models 25

Alternative Approaches

We have been — and still are — investigating alternative approaches for scalable validation of models,
complementing PROB’s constraint solving approach.

One candidate was the bddbddb package [WL04], which provides a simple relational interface to binary
decision diagrams and has been successfully used for scalable static analysis of imperative programs. However,
we found out that for dealing with the B language, the operations provided by the bddbddb package were too
low level (every value has to be mapped to bit vectors), and we abandoned this avenue of research relatively
quickly.

We are also investigating whether the SMT solver Yices [DAMO06] could be used to complement PROB’s
constraint solving engine. First experiments with SAL (which is based upon Yices) were only partially
successful: some simple examples with arithmetic give big speedups, but for more complicated data structures
the translation to SAL breaks down (see also the translation from Z to SAL in [DNS06] and the discussion
about the performance compared to PROB in [LP07]). However, not all features of SAL are required and
some useful features of Yices are not accessible via SAL. So, we plan to investigate this research direction
further.

Conclusion and Outlook

In order to overcome the challenges of this industrial application, various research and development issues
had to be addressed. We had to develop a new parser with an integrated type checker, and we had to devise
a new data structure for large sets and relations along with an improved constraint propagation algorithm.
The result of this study shows that PROB is now capable of dealing with large scale industrial models and is
more efficient than Atelier B for dealing with large data sets and complex properties. About a man month
of effort has been replaced by a few minutes of computation on standard hardware. Furthermore, PROB
provides help in locating the faulty data when a property is not fulfilled. The latest version of PROB can
therefore be used for debugging large industrial models.

In the future, Siemens plans to replace Atelier B by PROB for this specific use (data proof regarding
formal properties). STS and the University of Diisseldorf will validate PROB in order to enable STS to use it
within its development cycle for producing systems with SIL4 certification. We have described the necessary
steps towards validation. In particular, we are using PROB’s model checking capabilities to check PROB
itself, which has amongst others uncovered two errors in the underlying Prolog compiler.

We also plan to work on even bigger specifications such as the model of the Canarsie line (the complete
B model of which contains 273,000 lines of B [ED07], up from 100,000 lines for Météor [BBFM99]). As far as
runtime is concerned, there are still possibilities for further improvement. Initially, it took PROB 17 minutes
[LFFP09] to check all properties and assertions of the San Juan case study. With the additional improvements
in the algorithms described in Section 3.2, we have already reduced this time to less than a minute. Further
improvements in the PROB kernel are probably still possible. Parallelisation is also a potential avenue of
further performance improvement: the individual assertions could actually be easily shared out amongst
several computers. As far as memory consumption is concerned, for one universally quantified property we
were running very close to the available memory (3 GB) in [LFFP09]. The new improved algorithms from
Section 3.2 have alleviated this issue. Furthermore, we can compile PROB for a 64 bit system to increase
the amount of available memory. We are also investigating the use PROB’s symmetry reduction techniques
[LBSTO7, TLSBO07] inside quantified formulas, as a further way to improve PROB’s performance.

Acknowledgements

First, we would like to thank the anonymous referees of FM’2009 and of Formal Aspects of Computing for
their extensive and very thorough feedback, which helped us considerably to improve paper. We also would
like to thank Jens Bendisposto and Sebastian Krings for assisting us in various ways in writing the paper. We
are also grateful to Roozbeh Farahbod and Stefan Hallerstede for encoding the Sieve Algorithm in CoreASM
and TLA™ for us. Finally, part of this research has been funded by the EU FP7 project 214158: DEPLOY
(Industrial deployment of advanced system engineering methods for high productivity and dependability).

26

Leuschel et al.

References

[ABC1t02] F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, M. Utting, and N. Vacelet. BZ-testing-
tools: A tool-set for test generation from Z and B using constraint logic programming. In Proceedings of FATES’ 02,
pages 105-120, August 2002. Technical Report, INRIA.

[ABHO06] Jean-Raymond Abrial, Michael Butler, and Stefan Hallerstede. An open extensible tool environment for Event-B.
In Zhiming Liu and Jifeng He, editors, Proceedings ICFEM’06, LNCS 4260, pages 588-605. Springer-Verlag, 2006.

[Abr96] Jean-Raymond Abrial. The B-Book. Cambridge University Press, 1996.

[ALSUO07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles, Techniques, and Tools
(Second Edition). Addison Wesley, 2007.

[AMO02] Jean-Raymond Abrial and Louis Mussat. On using conditional definitions in formal theories. In Didier Bert,
Jonathan P. Bowen, Martin C. Henson, and Ken Robinson, editors, Proceedings ZB’2002, LNCS 2272, pages
242-269. Springer-Verlag, 2002.

[App02] Andrew W. Appel. Modern Compiler Implementation in Java (Second Edition). Cambridge University Press,
2002.

[BAO5] Frédéric Badeau and Arnaud Amelot. Using B as a high level programming language in an industrial project:
Roissy VAL. In Helen Treharne, Steve King, Martin Henson, and Steve Schneider, editors, Proceedings ZB’2005,
LNCS 3455, pages 334-354. Springer-Verlag, 2005.

[BBFM99] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Météor: A successful application of B in a
large project. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, World Congress on Formal Methods,
LNCS 1708, pages 369-387. Springer-Verlag, 1999.

[BLP02] F. Bouquet, B. Legeard, and F. Peureux. CLPS-B - a constraint solver for B. In J.-P. Katoen and P. Stevens, editors,
Tools and Algorithms for the Construction and Analysis of Systems, LNCS 2280, pages 188-204. Springer-Verlag,
2002.

[Boi00] Olivier Boite. Méthode B et validation des invariants ferroviaires. Master’s thesis, Université Denis Diderot, 2000.
Mémoire de DEA de logique et fondements de I'informatique.

[Boi02] Olivier Boite. Automatiser les preuves d’un sous-langage de la méthode B. Technique et Science Informatiques,
21(8):1099-1120, 2002.

[BPVO09] Miquel Bofill, Miquel Palahi, and Mateu Villaret. A system for CSP solving through satisfiability modulo theories.
In IX Jornadas sobre Programacién y Lenguajes (PROLE’09), pages 303-312, Donostia, Spain, 2009.

[CO9T7] M. Carlsson and G. Ottosson. An open-ended finite domain constraint solver. In Hugh Glaser Glaser, Pieter H.
Hartel, and Herbert Kuchen, editors, Proc. Programming Languages: Implementations, Logics, and Programs,
LNCS 1292, pages 191-206. Springer-Verlag, 1997.

[DAMO6] Bruno Dutertre and Leonardo Mendonga de Moura. A fast linear-arithmetic solver for DPLL(T). In Thomas Ball
and Robert B. Jones, editors, Proceedings CAV’06, LNCS 4144, pages 81-94. Springer-Verlag, 2006.

[DEF03] Daniel Dollé, Didier Essamé, and Jérome Falampin. B dans le tranport ferroviaire. L’expérience de Siemens
Transportation Systems. Technique et Science Informatiques, 22(1):11-32, 2003.

[DNS06] John Derrick, Siobhédn North, and Tony Simons. Issues in implementing a model checker for Z. In Zhiming Liu
and Jifeng He, editors, Proceedings ICFEM’06, LNCS 4260, pages 678-696. Springer-Verlag, 2006.

[EDO7] Didier Essamé and Daniel Dollé. B in large-scale projects: The Canarsie line CBTC experience. In Jacques Julliand
and Olga Kouchnarenko, editors, Proceedings B’2007, LNCS 4355, pages 252-254. Springer-Verlag, 2007.

[FGGO07] Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glasser. CoreASM: An extensible ASM execution engine. Fundam.
Inform., 77(1-2):71-103, 2007.

[Fri0g] Fabian Fritz. An object oriented parser for B specifications. Bachelor’s thesis, Institut fiir Informatik, Universitat
Diisseldorf, 2008.

[Gag98] Etienne Gagnon. SableCC, an object-oriented compiler framework. Master’s thesis, McGill University, Montreal,
Canada, 1998. Available at http://www.sablecc.org.

[Jac02] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions on Software Engineering and
Methodology, 11:256-290, 2002.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language and Analysis. MIT Press, 2006.

[Knu83| Donald Knuth. The Art of Computer Programming, Volume 3. Addison-Wesley, 1983.

[Kri10] Sebastian Krings. Code coverage analysis for Prolog. Bachelor’s thesis, Institut fir Informatik, Universitéit
Diisseldorf, 2010.

[Lam02] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

[LBO3] Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro Araki, Stefania Gnesi, and Dino
Mandrioli, editors, FMFE 2003: Formal Methods, LNCS 2805, pages 855—-874. Springer-Verlag, 2003.

[LBOS§] Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for the B method. STTT, 10(2):185—
203, 2008.

[LBSTO07] Michael Leuschel, Michael Butler, Corinna Spermann, and Edd Turner. Symmetry reduction for B by permutation
flooding. In Jacques Julliand and Olga Kouchnarenko, editors, Proceedings B’2007, LNCS 4355, pages 79-93,
Besancon, France, 2007. Springer-Verlag.

[LFFP09] Michael Leuschel, Jérome Falampin, Fabian Fritz, and Daniel Plagge. Automated property verification for large
scale B models. In A. Cavalcanti and D. Dams, editors, Proceedings FM 2009, LNCS 5850, pages 708-723. Springer-
Verlag, 2009.

[LPO7] Michael Leuschel and Daniel Plagge. Seven at a stroke: LTL model checking for high-level specifications in B,

Automated Property Verification for B Models 27

[LPU02]
[LSBLOS]
[Mar97]

[Mét10]
[Mil78]

[MV09]

[Red00]

[Ser07]

[Sie09]
[Ste09]

[Tat01]
[TJ07]
[TLSBO7]

[WLO04]

[YML99]

Z, CSP, and more. In Yamine Ait Ameur, Frédéric Boniol, and Virginie Wiels, editors, Proceedings Isola 2007,
volume RNTI-SM-1 of Revue des Nouwvelles Technologies de I’Information, pages 73-84. Cépadués—Editions, 2007.
B. Legeard, F. Peureux, and Mark Utting. Automated boundary testing from Z and B. In L.-H. Eriksson and
P. Lindsay, editors, Proceedings FME’02, LNCS 2391, pages 21-40. Springer-Verlag, 2002.

Michael Leuschel, Mireille Samia, Jens Bendisposto, and Li Luo. Easy Graphical Animation and Formula Viewing
for Teaching B. The B Method: from Research to Teaching, pages 17-32, 2008.

George Mariano. Evaluation de Logiciels Critiques Développés par la Méthode B: Une Approche Quantitive. PhD
thesis, Université de Valenciennes et Du Hainaut-Cambrésis, December 1997.

Christophe Métayer. AnimB 0.1.1, 2010. Available at http://wiki.event-b.org/index.php/AnimB.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences,
17:348-375, 1978.

Christophe Métayer and Laurent Voisin. The Event-B mathematical language. Available at
http://wiki.event-b.org/index.php/Event-B_Mathematical_Language, 2009.

Felix Redmill. Safety integrity levels — theory and problems. In Lessons in System Safety: Pro-
ceedings of the FEighth Safety-critical Systems Symposium, Southampton, UK, 2000. Available at
http://www.csr.ncl.ac.uk/FELIX_Web/new_index.html.

Thierry Servat. Brama: A new graphic animation tool for B models. In Jacques Julliand and Olga Kouchnarenko,
editors, Proceedings B’2007, LNCS 4355, pages 274-276. Springer-Verlag, 2007.

Siemens. B method - optimum safety guaranteed. Imagine, 10:12—13, June 2009.

France Steria, Aix-en-Provence. Atelier B, User and Reference Manuals, 2009. Available at
http://wuw.atelierb.eu/.

Bruno Tatibouet. The jbtools package. Available at http://lifc.univ-fcomte.fr/PEOPLE/tatibouet/JBTOOLS/
BParser_en.html, 2001.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Orna Grumberg and Michael Huth,
editors, Proceedings TACAS’07, LNCS 4424, pages 632—647. Springer-Verlag, 2007.

Edd Turner, Michael Leuschel, Corinna Spermann, and Michael Butler. Symmetry reduced model checking for B.
In Proceedings TASE 2007, pages 25—34, Shanghai, China, June 2007. IEEE.

John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis using binary decision
diagrams. In William Pugh and Craig Chambers, editors, Proceedings PLDI’0/4, pages 131-144, New York, NY,
USA, 2004. ACM Press.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLAT specifications. In Laurence Pierre and
Thomas Kropf, editors, Proceedings CHARME’99, LNCS 1703, pages 54-66. Springer-Verlag, 1999.

