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Abstract. In this paper we describe the successful application of the
ProB validation tool on an industrial case study. The case study cen-
tres on the San Juan metro system installed by Siemens. The control
software was developed and formally proven with B. However, the de-
velopment contains certain assumptions about the actual rail network
topology which have to be validated separately in order to ensure safe
operation. For this task, Siemens has developed custom proof rules for
AtelierB. AtelierB, however, was unable to deal with about 80 properties
of the deployment (running out of memory). These properties thus had
to be validated by hand at great expense (and they need to be revalidated
whenever the rail network infrastructure changes).
In this paper we show how we were able to use ProB to validate all of
the about 300 properties of the San Juan deployment, detecting exactly
the same faults automatically in around 17 minutes that were manu-
ally uncovered in about one man-month. This achievement required the
extension of the ProB kernel for large sets as well as an improved con-
straint propagation phase. We also outline some of the effort and fea-
tures that were required in moving from a tool capable of dealing with
medium-sized examples towards a tool able to deal with actual indus-
trial specifications. Notably, a new parser and type checker had to be
developed. We also touch upon the issue of validating ProB, so that it
can be integrated into the SIL4 development chain at Siemens.
Keywords: B-Method, Model Checking, Constraint-Solving, Tools, In-
dustrial Applications.

1 Background Industrial Application

Siemens Transportation Systems have been developing rail automation products
using the B-method since 1998.1 The best known example is obviously the soft-
? Part of this research has been EU funded FP7 project 214158: DEPLOY (Indus-

trial deployment of advanced system engineering methods for high productivity and
dependability).

1 At that time Siemens Transportation Systems was named MTI (Matra Transport
International).
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Fig. 1. Overview of the Constants Validity Problem

ware for the fully automatic driverless Line 14 of the Paris Métro, also called
Météor (Metro est-ouest rapide) [4]. But since then, many other train control
systems have been developed and installed worldwide by STS [7, 3, 9]. One par-
ticular development is in San Juan (Puerto Rico), which we will use as case
study in this paper. The line consists of 16 stations, 37 trains and a length of
17.2 km, transporting 115,000 passengers per day. Several entities of Siemens
produced various components of this huge project, such as the rolling stock and
the electrification. STS developed the ATC (Automatic Control System) named
SACEM (Système d’Aide à la Conduite, à l’Exploitation et à la Maintenance).

STS are successfully using the B-method and have over the years acquired
considerable expertise in its application. STS use Atelier B [19], together with
in-house developed automatic refinement tools. In this paper, we describe one
aspect of the current development process which is far from optimal, namely
the validation of properties of parameters only known at deployment time. The
parameters are typically constants in the B model. Figure 1 gives an overview
of this issue. Note, the figure is slightly simplified as there are actually two code
generators and data redundancy check during execution. The track is divided
into several sub-sections, each sub-section is controlled by a safety critical soft-
ware. In order to avoid multiple developments, each software is made from a
generic B-model and parameters that are specific to a sub-section. The proofs
of the generic B-model rely on assumptions that formally describe the topology
properties of the track. We therefore have to make sure that the parameters used
for each sub-section actually verify the formal assumptions.



For example, in case of the San Juan development, about 300 assumptions
were made.2 It is vital that these assumptions are checked when the system is
put in place, as well as whenever the rail network topology changes (e.g., due to
line extension or addition or removal of certain track sections).

For this, Siemens Transportation Systems (STS) have developed the following
approach:

1. The topology is extracted from the ADA program and encoded in B syntax,
written into AtelierB definition files.

2. The relevant part of the B model is extracted and conjoined with the defi-
nition files containing the topology.

3. The properties and assertions3 are proven with Atelier B, using custom proof
rules and tactics.

There are two problems with this approach.

– If the proof of a property fails, the feedback of the prover is not very useful
in locating the problem (and it may be unclear whether there actually is a
problem with the topology or “simply” with the power of the prover).

– The constants are very large (relations with thousands of tuples) and the
properties so complex (see Figure 2) that Atelier B quite often runs out of
memory. For example, for the San Juan development, 80 properties (out of
the 300) could not be checked by Atelier B.

The second point means that these properties have to be checked by hand
(e.g., by creating huge spreadsheets on paper for the compatibility constraints
of all possible itineraries). For the San Juan development, this meant about one
man month of effort, which is likely to grow much further for larger developments
such as [9].

The starting point of this paper was to try to automate this task, by using
an alternative technology. Indeed, the ProB tool [13, 15] has to be capable of
dealing with B properties in order to animate and model check B models. The
big question was, whether the technology would scale to deal with the industrial
models and the large constants in this case study.

In Section 2 we elaborate on what had to be done to be able to parse and load
large scale industrial B models into the ProB tool. In Section 3 we present the
new constraint propagation algorithms and datastructures that were required to
deal with the large sets and relations of the case study. The results of the case
study itself are presented in Section 4, while in Section 5 we present how we plan
to validate ProB for integration into the development cycle at Siemens. Finally,
in Section 6 we present more related work, discussions and an outlook.

2 Our model contains 226 properties and 147 assertions; some of the properties, how-
ever, are extracted from the ADA code and determine the network topology and
other parameters.

3 In B assertions are predicates which should follow from the properties.



cfg_ipart_cdv_dest_aig_i : t_nb_iti_partiel_par_acs --> t_nb_cdv_par_acs;

!(aa,bb).(aa : t_iti_partiel_acs & bb : cfg_cdv_aig &
aa |-> bb : t_iti_partiel_acs <| cfg_ipart_cdv_transit_dernier_i |> cfg_cdv_aig
=> bb : cfg_ipart_cdv_transit_liste_i[(cfg_ipart_cdv_transit_deb(aa)

.. cfg_ipart_cdv_transit_fin(aa))]);

cfg_ipart_pc1_adj_i~[{TRUE}] /\ cfg_ipart_pc2_adj_i~[{TRUE}] = {};

!(aa,bb).(aa : t_aig_acs & cfg_aig_cdv_encl_deb(aa) <= bb &
bb <= cfg_aig_cdv_encl_fin(aa)

=> cfg_aig_cdv_encl_liste_i(bb) : t_cdv_acs);

!(aa).(aa : t_aig_acs
=> t_cdv_acs <| cfg_aig_cdv_encl_liste_i~ |>
cfg_aig_cdv_encl_deb(aa)..cfg_aig_cdv_encl_fin(aa):t_cdv_acs +-> NATURAL);

cfg_canton_cdv_liste_i |> t_cdv_acs : seq(t_cdv_acs);

cfg_cdv_i~[{c_cdv_aig}] /\ cfg_cdv_i~[{c_cdv_block}] = {};

dom({aa,bb|aa : t_aig_acs & bb : t_cdv_acs &
bb : cfg_aig_cdv_encl_liste_i[(cfg_aig_cdv_encl_deb(aa) ..

cfg_aig_cdv_encl_fin(aa))]}) = t_aig_acs;

ran({aa,bb|aa : t_aig_acs & bb : t_cdv_acs &
bb : cfg_aig_cdv_encl_liste_i[(cfg_aig_cdv_encl_deb(aa) ..

cfg_aig_cdv_encl_fin(aa))]}) = cfg_cdv_i~[{c_cdv_aig}];

Fig. 2. A small selection of the assumptions about the constants of the San Juan
topology

2 Parsing and Loading Industrial Specifications

First, it is vital that our tool is capable of dealing with the actual Atelier B
syntax employed by STS. Whereas for small case studies it is feasible to adapt
and slightly rewrite specifications, this is not an option here due to the size and
complexity of the specification. Indeed, for the San Juan case study we received
a folder containing 79 files with a total of over 23,000 lines of B.

Improved Parser Initially, ProB [13, 15] was built using the jbtools [20]
parser. This parser was initially very useful to develop a tool that could handle
a large subset of B. However, this parser does not support all of Atelier B’s
features. In particular, jbtools is missing support for DEFINITIONS with pa-
rameters, for certain Atelier B notations (tuples with commas rather than |->)
as well as for definition files. This would have made a translation of the San
Juan example (containing 24 definition files and making heavy usage of the un-
supported features) near impossible. Unfortunately, jbtools was also difficult to
maintain and extend.4 This was mainly due to the fact that the grammar had
to be made suitable for top-down predictive parsing using JavaCC, and that it

4 We managed to somewhat extend the capabilities of jbtools concerning definitions
with parameters, but we were not able to fully support them.



used several pre- and post-passes to implement certain difficult features of B
(such as the relational composition operator ’;’, which is also used for sequential
composition of substitutions), which also prevented the generation of a clean
abstract syntax tree.

Thus, the first step towards making ProB suitable for industrial usage, was
the development of a new parser. This parser was built with extensibility in
mind, and now supports almost all of the Atelier B syntax. We used SableCC
rather than JavaCC to develop the parser, which allowed us to use a cleaner
and more readable grammar (as it did not have to be suitable for predictive
top-down parsing) and to provide fully typed abstract syntax tree.

There are still a few minor differences with Atelier B syntax (which only
required minimal changes to the model, basically adding a few parentheses). In
fact, in some cases our parser is actually more powerful than the Atelier B variant
(the Atelier B parser does not distinguish between expressions and predicates,
while our parser does and as such requires less parentheses).

Improved Type Inference In the previous version of ProB, the type inference
was relatively limited, meaning that additional typing predicates had to be added
with respect to Atelier B. Again, for a large industrial development this would
have become a major hurdle. Hence, we have also implemented a complete type
inference and checking algorithm for ProB, also making use of the source code
locations provided by the new parser to precisely pinpoint type errors. The
type inference algorithm is based upon Prolog unification, and as such is more
powerful than Atelier B’s type checker,5 and we also type check the definitions.
The machine structuring and visibility rules of B are now also checked by the type
checker. The integration of this type checker also provides advantages in other
contexts: indeed, we realised that many users (e.g., students) were using ProB
without Atelier B or a similar tool for type checking. The new type checker
also provides performance benefits to ProB, e.g., by disambiguating between
Cartesian product and multiplication for example.

The scale of the specifications from STS also required a series of other ef-
ficiency improvements within ProB. For example, the abstract syntax tree of
the main model takes 16.7 MB in Prolog form, which was highlighting several
performance issues which did not arise in smaller models.

All in all, about eight man-months of effort went into these improvements,
simply to ensure that our tool is capable of loading industrial-sized formal spec-
ifications. The development of the parser alone took 4-5 man months of effort.

One lesson of our paper is that it is important for academic tools to work
directly on the full language used in industry. One should not underestimate this
effort, but it is well worth it for the exploitation avenues opened up. Indeed, only
in very rare circumstances can one expect industrialists to adapt their models
to suit an academic tool.

5 It is even more powerful than the Rodin [1] type checker, often providing better error
messages.



In the next section we address the further issue of effectively dealing with
the large data values manipulated upon by these specifications.

3 Checking Complicated Properties

The San Juan case study contains 142 constants, the two largest of which
(cfg ipart pos aig direct i, cfg ipart pos aig devie i) contain 2324 tuples. Larger
relations still can arise when evaluating the properties (e.g., by computing set
union or set comprehensions).

The previous version of ProB represented sets (and thus relations) as Prolog
lists. For example, the set {1, 2} would be represented as [int(1),int(2)]. This
scheme allows to represent partial knowledge about a set (by partially instan-
tiating the Prolog structure). E.g., after processing the predicates card(s) = 2
and 1 ∈ s, ProB would obtain [int(1),X] as its internal representation for s
(where X is an unbound Prolog variable).

However, this representation clearly breaks down with sets containing thou-
sands or tens of thousands of elements. We need a datastructure that allows us
to quickly determine whether something is an element of a set, and we also need
to be able to efficiently update sets to implement the various B operations on
sets and relations.

For this we have used an alternative representation for sets using AVL trees
— self-balancing binary search trees with logarithmic lookup, insertion and dele-
tion.

To get an idea of the performance, take a look at the following operation,
coming from a B formalisation of the Sieve of Eratosthenes, where numbers was
initialised to 2..limit and where cur=2:

numbers := numbers - ran(%n.(n:cur..limit/cur|cur*n))

With limit=10,000 the previous version of ProB ran out of memory after
about 2 minutes on a MacBook Pro with 2.33 GHz Core2 Duo processor and 3
GB of RAM. With the new datastructure this operation, involving the compu-
tation of a lambda expression, the range of it and a set difference, is now almost
instantaneous (0.2 seconds). For limit = 100,000 it requires 2.1 seconds, for limit
= 1,000,000 ProB requires about 21.9 seconds, and for limit = 10,000,000 ProB
requires about 226.8 seconds. Figure 3 contains an log-log plot of the runtime for
various values of limit, and clearly shows that ProB’s operations scale quasi
linearly with the size of the sets operated upon (as the slope of the runtime curve
is one).

There is one caveat, however: this datastructure can (for the moment) only
be used for fully determined values, as ordering is relevant to store and retrieve
values in the AVL tree. For example, we cannot represent the term [int(1),X]
from above as an AVL tree, as we do not know which value X will take on.
Hence, for partially known values, the old-style list representation still has to be
used. For efficiency, it is thus important to try to work with fully determined
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Fig. 3. Performance of the new ProB datastructure and operations on large sets

values as much as possible. For this we have improved the constraint propa-
gation mechanism inside the ProB kernel. The previous version of ProB [15]
basically had three constraint propagation phases: deterministic propagation,
non-deterministic propagation and full enumeration. The new kernel now has a
much more fine-grained constraint propagation, with arbitrary priorities. Every
kernel computation gets a priority value, which is the estimated branching fac-
tor of that computation. A priority number of 1 corresponds to a deterministic
computation. For example, the kernel computation associated with, x = z would
have a priority value of 1 while x ∈ {1, 2, 3} would have a priority value of 3. A
value of 0 indicates that the computation will yield a fully determined value. At
every step, the kernel chooses the computation with the lowest priority value.

Take for example the predicate x:NAT +-> NAT & x={y|->2} & y=3. Here,
y=3 (priority value 0) would actually be executed before x={y|->2}, and thus
ensure that afterward a fully determined AVL-tree would be constructed for x.
The check x:NAT +-> NAT is executed last, as it has the highest priority value.

Compared to the old approach, enumeration can now be mixed with other
computations and may even occur before other computations if this is advan-
tageous. Also, there is now a much more fine-grained selection among the non-
deterministic computations. Take for example, the following predicate:
s1 = 9..100000 & s2 = 5..100000 & s3 = 1..10 & x:s1 & x:s2 & x:s3.
The old version of ProB would have executed x:s1 before x:s2 and x:s3. Now,
x:s3 is chosen first, as it has the smallest possible branching factor. As such,
ProB very quickly finds the two solutions x = 9 and x = 10 of this predicate.

In summary, driven by the requirements of the industrial application, we have
improved the scalability of the ProB kernel. This required the development of a



new datastructure to represent and manipulate large sets and relations. A new,
more fine grained constraint propagation algorithm was also required to ensure
that this datastructure could actually be used in the industrial application.

4 The Case Study

As already mentioned, in order to evaluate the feasibility of using ProB for
checking the topology properties, Siemens sent the STUPS team at the Univer-
sity of Düsseldorf the models for the San Juan case study on the 8th of July
2008. There were 23,000 lines of B spread over 79 files, two of which were to be
analysed: a simpler model and a hard model. It then took us a while to under-
stand the models and get them through our new parser, whose development was
being finalised at that time.

On 14th of November 2008 we were able to animate and analyse the first
model. This uncovered one error in the assertions. However, at that point it
became apparent that a new datastructure would be needed to validate bigger
models. At that point the developments described in Section 3 were undertaken.
On the 8th of December 2008 we were finally able to animate and validate the
complicated model. This revealed four errors.

Note that we (the STUPS team) were not told about the presence of errors in
the models (they were not even hinted at by Siemens), and initially we believed
that there was still a bug in ProB. Luckily, the errors were genuine and they
were exactly the same errors that Siemens had uncovered themselves by manual
inspection.

The manual inspection of the properties took Siemens several weeks (about a
man month of effort). Checking the properties takes 4.15 seconds, and checking
the assertions takes 1017.7 seconds (i.e., roughly 17 minutes) using ProB 1.3.0-
final.4 on a MacBook Pro with 2.33 GHz Core2 Duo (see also Figure 4).

Note that all properties and assertions were checked twice, both positively
and negatively, in order to detect undefined predicates (e.g., 0/0 = 1 is unde-
fined). We return to this issue in Section 5.

The four false formulas found by ProB are the following ones:

1. ran(cfg aig cdv encl) = cfg cdv aig

2. cfg ipart aig tild liste i : t liste acs 2 --> t nb iti partiel par acs

3. dom(t iti partiel acs <| cfg ipart cdv dest aig i |> cfg cdv aig) \/

dom(t iti partiel acs <| cfg ipart cdv dest saig i |> cfg cdv block)

= t iti partiel acs

4. ran(aa,bb|aa:t aig acs & bb:t cdv acs & bb:cfg aig cdv encl liste i[

(cfg aig cdv encl deb(aa)..cfg aig cdv encl fin(aa))]) =

cfg cdv i~[c cdv aig]

Inspecting the Formulas Once our tool has uncovered unexpected properties
of a model, the user obviously wants to know more information about the exact
source of the problem.



Fig. 4. Analysing the Assertions

This was one problem in the Atelier B approach: when a proof fails it is
very difficult to find out why the proof has failed, especially when large and
complicated constants are present.

To address this issue, we have developed an algorithm to compute values of
B expressions and the truth-values of B predicates, as well as all sub-expressions
and sub-predicates. The whole is assembled into a graphical tree representation.

A graphical visualisation of the fourth false formula is shown in Figure 5.
For each expression, we have two lines of text: the first indicates the type of the
node, i.e., the top-level operator. The second line gives the value of evaluating the
expression. For predicates, the situation is similar, except that there is a third
line with the formula itself and that the nodes are coloured: true predicates are
green and false predicates are red. (An earlier version of the graphical viewer is
described in [17].)

Note that the user can type custom predicates to further inspect the state
of the specification. Thus, if the difference between the range expression and
cfg cdv i [c cdv aig] is not sufficiently clear, one can evaluate the set difference
between these two expressions. This is shown in Figure 6, where we can see
that the number 19 is an element of cfg cdv i [c cdv aig] but not of the range
expression.



Fig. 5. Analysing the fourth false assertion

Fig. 6. Analysing a variation of the fourth false assertion

In summary, the outcome of this case study was extremely positive: a man-
month of effort has been replaced by 17 minutes computation on a laptop.
Siemens are now planning to incorporate ProB into their development life cycle,
and they are hoping to save a considerable amount of resources and money. For
this, validation of the ProB tool is an important aspect, which we discuss in
the next section.

5 Validation of ProB

In this case study, ProB was compared with Atelier B. For this specific use, the
performances of ProB are far better than the performances of Atelier B, but
ProB is not yet qualified for use within a SIL 4 (the highest safety integrity level)
development life cycle. If ProB evaluates an assumption to be true, Siemens
would like to be able to rely on this result and not have to investigate the
correctness of this assumption manually.

There are two ways this issue can be solved:



– Use a second, independently developed tool to validate the assumptions. One
possibility would be Atelier B, but as we have already seen it is currently not
capable to deal with the more complicated assumptions. Another possibility
would be to use another animator, such as Brama [18] or AnimB. These
tools were developed by different teams using very different programming
languages and technology, and as such it would be a strong safety argument
if both of these tools agreed upon the assumptions. This avenue is being
investigated, but note that Brama and AnimB are much less developed as far
as the constraint solving capabilities are concerned.6 Hence, it is still unclear
whether they can be used for the complicated properties under consideration.

– Validate ProB, at least those parts of ProB that have been used for check-
ing the assumptions. We are undertaking this avenue, and provide some
details in the remainder of this section.

The source code of ProB contains >40,000 lines of Prolog, >7,000 lines
of Tcl/Tk, > 5,000 lines of C (for LTL and symmetry reduction), 1,216 lines
of SableCC grammar along with 9,025 lines of Java for the parser (which are
expanded by SableCC into 91,000 lines of Java).7

1. Unit Tests:
ProB contains over a 1,000 unit tests at the Prolog level. For instance, these
check the proper functioning of the various core predicates operating on B’s
datastructures. E.g., it is checked that {1} ∪ {2} evaluates to {1, 2}.

2. Run Time Checking:
The Prolog code contains a monitoring module which — when turned on —
will check pre- and post-conditions of certain predicate calls and also detect
unexpected failures. This overcomes to some extent the fact that Prolog has
no static typing.

3. Integration and Regression Tests:
ProB contains over 180 regression tests which are made up of B models
along with saved animation traces. These models are loaded, the saved ani-
mation trace replayed and the model is also run through the model checker.
These tests have turned out to be extremely valuable in ensuring that a bug
once fixed remains fixed. They are also very effective at uncovering errors in
arbitrary parts of the system (e.g., the parser, type checker, the interpreter,
the ProB kernel, ...).

4. Self-Model Check:
With this approach we use ProB’s model checker to check itself, in particular
the ProB kernel and the B interpreter. The idea is to formulate a wide
variety of mathematical laws and then use the model checker to ensure that
no counter example to these laws can be found.
Concretely, ProB now checks itself for over 500 mathematical laws. There
are laws for booleans (39 laws), arithmetic laws (40 laws), laws for sets (81

6 Both Brama and AnimB require all constants to be fully valued, AnimB for the
moment is not capable of enumerating functions, etc.

7 In addition, there are > 5,000 lines of Haskell code for the CSP parser and about
50, 000 lines of Java code for the Rodin [1] plugin.



laws), relations (189 laws), functions (73 laws) and sequences (61 laws), as
well as some specific laws about integer ranges (24 laws) and the various basic
integer sets (7 laws). Figure 7 contains some of these laws about functions.
These tests have been very effective at uncovering errors in the ProB kernel
and interpreter. So much so, that even two errors in the underlying SICStus
Prolog compiler were uncovered via this approach.

5. Positive and Negative Evaluation:
As already mentioned, all properties and assertions were checked twice, both
positively and negatively. Indeed, ProB has two Prolog predicates to eval-
uate B predicates: one positive version which will succeed and enumerate
solutions if the predicate is true and a negative version, which will succeed
if the predicate is false and then enumerate solutions to the negation of the
predicate. With these two predicates we can uncover undefined predicates:8

if for a given B predicate both the positive and negative Prolog predicates
fail then the formula is undefined. For example, the property x = 2/y & y =

x-x over the constants x and y would be detected as being undefined, and
would be visualised by our graphical formula viewer as in Figure 8 (yellow
and orange parts are undefined).
In the context of validation, this approach has another advantage: for a
formula to be classified as true the positive Prolog predicate must succeed
and the negative Prolog predicate must fail, introducing a certain amount
of redundancy (admittedly with common error modes). In fact, if both the
positive and negative Prolog predicates would succeed for a particular B
predicate then a bug in ProB would have been uncovered.

In order to complete the validation of ProB we are planning to do the
following steps:

1. Validation of the parser (via pretty-printing and re-parsing and ensuring
that a fixpoint is reached).

2. Validation of the type checker.
3. The development of a formal specification of core parts of ProB and its

functionality.
4. An analysis of the statement coverage of the Prolog code via the above

unit, integration and regression tests. In case the coverage is inadequate, the
introduction of more tests to ensure satisfactory coverage at the Prolog level.

5. The development of a validation report, with description of ProB’s func-
tions, and a classification of functions into critical and non-critical, and a
detailed description of the various techniques used to ensure proper func-
tioning of ProB.

8 Another reason for the existence of these two Prolog predicates is that Prolog’s built-
in negation is generally unsound and cannot be used to enumerate solutions in case
of failure.



law1 == (dom(ff\/gg) = dom(ff) \/ dom(gg));
law2 == (ran(ff\/gg) = ran(ff) \/ ran(gg));
law3 == (dom(ff/\gg) <: dom(ff) /\ dom(gg));
law4 == (ran(ff/\gg) <: ran(ff) /\ ran(gg));
law5 == ( (ff \/ gg)~ = ff~ \/ gg~);
law6 == (dom((ff ; (gg~))) <: dom(ff));
...
law10 == (ff : setX >->> setY <=> (ff : setX >-> setY & ff~: setY >-> setX));
law11 == (ff : setX >+> setY <=> (ff: setX +-> setY &

!(xx,yy).(xx:setX & yy:setX & xx/=yy & xx:dom(ff) &
yy: dom(ff) => ff(xx)/=ff(yy)))) ;

law12 == (ff : setX +->> setY <=> (ff: setX +-> setY &
!yy.(yy:setY => yy: ran(ff))));

Fig. 7. A small selection of the laws about B functions

Fig. 8. Visualising an undefined property

6 More Related Work, Conclusion and Outlook

More Related Work In addition to the already discussed approach using Ate-
lier B and proof, and the animators Brama and AnimB we would like to mention
the BZ-TT [12], a test generation tool for B and Z specifications. A specification
is translated into constraints and the CLPS-B constraint solver [5] is used to
find boundary values and to determine test sequences [2]. BZ-TT is now part of
a commercial product named LEIRIOS Test Generator. The tool is focused on
test generation; many of the features required for the Siemens case study are not
supported by BZ-TT (e.g., set comprehensions, machine structuring, definitions
and definition files, ...).

Alternative Approaches We have been and still are investigating alternative
approaches for scalable validation of models, complementing ProB’s constraint
solving approach.

One candidate was the bddbddb package [23], which provides a simple rela-
tional interface to binary decision diagrams and has been successfully used for
scalable static analysis of imperative programs. However, we found out that for
dealing with the B language, the operations provided by the bddbddb package
were much too low level (everything has to be mapped to bit vectors), and we
abandoned this avenue of research relatively quickly.



We are currently investigating using Kodkod [21] as an alternative engine to
solve or evaluate complicated constraints. Kodkod provides a high-level interface
to SAT-solvers, and is also at the heart of Alloy [10]. Indeed, for certain com-
plicated constraints over first-order relations, Alloy can be much more efficient
than ProB. However, it seems unlikely that Kodkod will be able to effectively
deal with relations containing thousands or tens of thousands of elements, as it
was not designed for this kind of task. Indeed, Alloy is based upon the “small
scope hypothesis” [11], which evidently is not appropriate for the particular in-
dustrial application of formal methods in this paper. In our experience, Alloy
and Kodkod do not seem to scale linearly with the size of sets and relations. For
example, we reprogrammed the test from Figure 3 using Kodkod, and it is about
two orders of magnitude slower than ProB for 1,000 elements and three orders
of magnitude for 10,000 elements (363.2 s versus 0.21 s; see also the log-log plot
in Figure 9). In addition, the higher-order aspects of B would in all likelihood
still have to be solved by ProB (Alloy and Kodkod only support first-order
relations).
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Fig. 9. Performance of the new ProB vs Kodkod on large sets

We are also investigating whether the SMT solver Yices [8] could be used
to complement ProB’s constraint solving engine. First experiments with SAL
(which is based upon Yices) were only partially successful: some simple examples
with arithmetic give big speedups, but for more complicated datastructures the
translation to SAL breaks down (see also the translation from Z to SAL in [6]
and the discussion about the performance compared to ProB in [16]). However,
not all features of SAL are required and some useful features of Yices are not
accessible via SAL. So, we plan to investigate this research direction further.



Conclusion and Outlook In order to overcome the challenges of this case
study, various research and development issues had to be addressed. We had to
develop a new parser with an integrated type checker, and we had to devise a
new datastructure for large sets and relations along with an improved constraint
propagation algorithm. The result of this study shows that ProB is now capable
of dealing with large scale industrial models and is more efficient than Atelier
B for dealing with large data sets and complex properties. About a man month
of effort has been replaced by 17 minutes of computation. Furthermore, ProB
provides help in locating the faulty data when a property is not fulfilled. The
latest version of ProB can therefore be used for debugging large industrial
models.

In the future, Siemens plans to replace Atelier B by ProB for this specific use
(data proof regarding formal properties). STS and the University of Düsseldorf
will validate ProB in order to use it within the SIL4 development cycle at
STS. We have described the necessary steps towards validation. In particular,
we are using ProB’s model checking capabilities to check ProB itself, which
has amongst others uncovered two errors in the underlying Prolog compiler.

We also plan to work on even bigger specifications such as the model of the
Canarsie line (the complete B model of which contains 273,000 lines of B [9], up
from 100,000 lines for Météor [4]). As far as runtime is concerned, there is still a
lot of leeway. In the San Juan case study 17 minutes were required on a two year
old laptop to check all properties and assertions. The individual formulas could
actually be easily split up amongst several computers and even several hours of
runtime would still be acceptable for Siemens. As far as memory consumption is
concerned, for one universally quantified property we were running very close to
the available memory (3 GB). Luckily, we can compile ProB for a 64 bit system
and we are also investigating the use ProB’s symmetry reduction techniques
[14, 22] inside quantified formulas.
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