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Abstract

We present ECCE and LOGEN, two partial evaluators for Prolog us-
ing the online and offline approach respectively. We briefly present
the foundations of these tools and discuss various applications. We
also present new implementations of these tools, carried out in Ciao
Prolog. In addition to a command-line interface new user-friendly
web interfaces were developed. These enable non-expert users to
specialise logic programs using a web browser, without the need
for a local installation.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; D.1.6 [Programming Tech-
niques]: Logic Programming; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic — logic programming;
1.2.2 [Artificial Intelligence]: Automatic Programming; 1.2.3 [Ar-
tificial Intelligence]: Deduction and Theorem Proving — logic pro-
gramming

Keywords Partial evaluation, partial deduction, Prolog, program
transformation, logic programming, web programming

1. Introduction

Partial evaluation [18] is an automatic technique for program opti-
misation which works by specialising a given source program for
a particular application. The main idea is to pre-evaluate the given
source program as much as possible, given part of the input values
for the program. Partial evaluation thus generalises traditional com-
piler optimisation techniques such as inlining and constant folding.
It can obtain bigger improvements than these techniques, but it is
also more difficult to control.

Partial evaluators can be broadly classified into online and of-
fline systems, depending on how the specialisation process is con-
trolled. An offline system works in two phases: the first phase pro-
duces an annotated version of the source program. In the second
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phase the annotated source program, together with the partial in-
put, can be used to efficiently generate the specialised program. An
online system, on the other hand, requires no preliminary annota-
tion phase and takes all its decisions automatically during speciali-
sation.

Both the online and offline approach have advantages and dis-
advantages when compared against each other. Online systems are
easy to use and since all processing takes place in one run, they
can use highly flexible strategies for local and global control that
make full use of all available information. Thus online systems can,
in principle, achieve better specialisations than (pure) offline sys-
tems, where the binding time analysis has to be independent of the
actual values of the available input. The drawback of this is the
higher complexity of the specialisation. The advantage of offline
specialisers is that, once a suitable annotation of the source pro-
gram is found, programs can be specialised much faster than with
online specialisers. On reason is that it is possible to generate a spe-
cialised specialiser for a given source program via self-application
or by using the cogen approach. The presence of the annotation
makes it also more easy to predict the actual outcome of the spe-
cialisation (i.e., it can be determined whether a certain computation
will be specialised away in all cases).

In this paper we present two specialisers: ECCE, an online spe-
cialiser and LOGEN, a specialiser based on offline BTA but ex-
tended with some features of online specialisers.

2. The Ecce System

ECCE is an online specialiser for logic programs. Its input are
pure Prolog programs (with built-ins, as long as they are used in
a declarative manner). The control of ECCE is separated into two
components [38]:

e The global control (also called control of polyvariance) decides
which specialised predicates are present in the residual program
and ensures that all calls that occur at runtime are an instance
of some specialised atom.

e The local control (also called unfolding) is responsible for the
construction of the residual clauses for each specialised atom.

Some of the particularities of the ECCE system are:

— For the local control ECCE uses determinacy (with lookahead)
to decide which atoms should be unfolded and homeomorphic
embedding (see, e.g., [23]) to ensure termination (i.e., decide
which ones should not be unfolded).

— For the global control ECCE uses both characteristic trees and
homeomorphic embedding [32, 33]. The characteristic trees



[10] are used to capture the specialisation performed for an
atom, and are used to control the polyvariance: if two atoms
have a different characteristic tree then they are specialised in

a different way and combining them would result in a loss of

specialisation. The homeomorphic embedding relation is used

to ensure that only finitely many atoms are specialised. For
generalisation, the most specific generalisation (msg) [21] is
used.

— ECCE caters for conjunctive partial deduction [26, 8]. Essen-
tially, this makes it possible to specialise a conjunction of atoms
together rather than in isolation, opening up the door for opti-
misations such as deforestation (getting rid of intermediate data
structures) and tupling (merging multiple visits of the same data
structure).

— Redundant argument filtering [35] is another ingredient of
ECCE which filters out various useless arguments in the spe-
cialised programs.

Various abstract interpretation techniques have been integrated
into ECCE (more specific version calculation [37] in [25], and reg-
ular types in [27]). It is also possible to develop custom local and
global control predicates, as well as override various other compo-
nents of ECCE. Note that ECCE does not support non-declarative
Prolog programs (i.e., Prolog programs which rely on the left-to-
right selection rule): while this restricts the applicability of ECCE,'
it also enables ECCE to perform more powerful optimisations (e.g.,
replacing infinite by finite failure). However, ECCE is still guaran-
teed (in default settings) to preserve the order of solutions.

2.1 Applications of ECCE

Evaluations of ECCE’s performance on a variety of benchmarks can
be found in [33] and in [20, 8] for the conjunctive partial deduction
component. Results are compared, amongst others, against MIXTUS
[42], sP [10] and PADDY [40].

There have been many applications of ECCE outside of the
classical objective of speeding up logic programs. For example,
ECCE has been applied to program inversion [14], inductive the-
orem proving [31] and to solve planning problems of the fluent
calculus [22].

Furthermore, ECCE has been used for infinite state model check-
ing in general [34] and for the coverability problem of Petri nets
[30, 29] in particular. It has been shown that a special case of the
control algorithm of ECCE corresponds to the Karp-Miller proce-
dure for Petri nets. Recently, ECCE has also been applied for verifi-
cation of Object Petri nets in [9].

In [36] it was shown that by changing ECCE’s post-processor
it was possible to obtain a precise slicing algorithm for logic pro-
grams. Finally, ECCE has been used as a pre-processor for termina-
tion analysers [43], with the aim of proving more programs termi-
nating.

2.2 A modular implementation in
Ciao Prolog

ECCE was originally implemented in BIM Prolog and later ported
to SICStus. The majority of ECCE’s evolution has taken place while
being written in SICStus Prolog. On the advent of the ASAP EU
project we decided twofold: (a) to port the tool another time, to
Ciao Prolog, while maintaining compatibility with SICStus Prolog,
and (b) to use modularity, in order to obtain a cleaner implemen-
tation of ECCE. As a further advantage, Ciao’s compiler, ciaoc,
allows to easily create stand-alone executables and command-line
tools. The ECCE executable operates in three different modes:

— in interactive mode,

! For non-declarative programs MIXTUS [42] or LOGEN are better alterna-
tives.

— in scripted mode for benchmarking, and
— via a command-line interface (CLI).

In the interactive mode, users interact with the tool via a text-
mode menu. The mode for benchmarking was created to automate
the interaction with ECCE for specialising a larger number of exam-
ple files for specific specialisation queries and automatically eval-
uate the performance improvements. Finally, an extensive CLI was
added to ECCE in order to efficiently operate the tool from different
front-ends. Figure 1 shows the different switches that can be used
in this mode.

2.3 ECCE’s Web Interface

Based on the new command-line interface we have developed a
web interface for ECCE. The new GUI makes it possible to employ
and control ECCE via the Internet using any ordinary web-browser
without the need for a local installation. This section gives a brief
outline of the web interface and describes the steps that take place
during a typical web-ECCE session.

First the user has to provide ECCE with a Prolog source-
program. This can be done by uploading a program, by choosing
one of the ready-made examples or by typing the code in a small
text-area. Limited editing of the current program is also possible in
this text-area.

After that, the user can enter the goal-predicate that is required
for some of the transformations and toggle several options that
control internal settings of ECCE. For almost all applications the
default-settings are already the best choice.

When all preparations are done, the user can start one of several
source-to-source transformations and analyses by simply pressing
the corresponding submit button.

At the moment, there are five different transformations and
analyses that can be carried out. These are:

Specialisation Tells ECCE to specialise the source program P for
a given goal GG (and all its instances).

Slicing Strips out useless code, by analysing what clauses of P are
needed to compute the answers of G. It runs the same algorithm
as for specialise, but uses a different code generator [36].

Most Specific Version Computes the most specific version [37] of
the program, by performing a bottom-up abstract interpretation,
keeping a single success pattern per predicate and using the
msg to combine multiple success patterns. This can also be run
automatically as a post-processing, as described in [25].

Redundant Argument Filtering This allows to run the first algo-
rithm presented in [35], without having to specialise the pro-
gram (by default the algorithm is run automatically after spe-
cialisation, together with inverse redundant argument filtering).

Inverse Redundant Argument Filtering This runs the second al-
gorithm from [35], weeding out further redundant arguments.

The GUI displays the result of the transformation in a small text-
area underneath the source-program. For slicing operations, the
output is mapped back to the original prolog-program and unused
code is greyed out. All output prolog-programs can be downloaded
from the GUI for further processing by the user.

An interesting feature of the GUI is the possibility to produce
a visualisation of the specialisation tree (see Fig. 3). This tree is
a graphical representation of the derivation of the specialised pro-
gram. Green edges labelled with unf(L,N) show the unfolding that
has been done; where L is the literal number selected and N is the
number of the clause resolved with. Blue edges denote the descen-
dency relationship at the global control level. Solid rectangles con-
taining a definition with a double equality are global tree nodes for
which code has been generate. Gray nodes are global tree nodes



% ./ecce --help
ECCE: The online partial evaluator for pure Prolog
(c) Michael Leuschel 1995-2005

USAGE:
ecce [OPTIONS] FILE
OPTIONS:

-pe "GOAL" partially evaluate FILE for GOAL
-slice "GOAL" slice FILE for GOAL
-msv run MSV Analysis on FILE
-raf GOAL run RAF Argument Filtering on FILE for GOAL
-far run FAR Argument Filtering on FILE
-o FILE write specialised program to FILE

-dot FILE write specialization graph to dot FILE (before post-processing)
-v verbose mode
-t perform self-test
-d print debugging information
-i stay in interactive mode after performing OPTIONS
-config OPT change default control settings, OPT=classic,fast,mixtus,minimal,classic-fast,deforest
-pp OPT change default postprocessor settings, OPT=off,max
Figure 1. ECCE’s Command-line Interface
Expert : ;
User ' '
Options ' cul
3 ' testl__1(AB.C) == depth_2(A,B,C,D,E) ==
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% Source unf(1,10) unf(1,3) inst
—> el
User
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Figure 2. Overall Architecture

for which no code was generated, either because the node was ab-
stracted or because it is an instance of another node. After a spe-
cialisation has been computed, clicking on a button opens a window
with the specialisation tree.

A major concern of any web interface is security. During spe-
cialisation ECCE evaluates predicates of the Prolog code submitted
by the user. To ensure that malicious Prolog code cannot corrupt the
web server, ECCE contains a whitelist of built-in predicates and the
conditions, under which it is safe to evaluate them. In addition the
computation time and the memory usage of individual specialisa-
tion processes is limited to avoid overloading the web-server. (for
complex specialisation tasks users should download and install a
local copy of ECCE.)

The implementation of the web interface is based on the
scripting-language PHP. It doesn’t rely on any particular features
of the web browser and should be compatible with any reasonable
browser. To view specialisation trees a svg-plugin is needed.

The web interface is modular and can easily be ported, e.g.
for a local installation. In addition, the interface has scope for ex-
tending ECCE’s functionality by appending extra modules that also
perform source-to-source transformations. We call these modules
plug-ins, and the system already has incorporated several, e.g. the
Regular Unary Logic (RUL) analysis (with and without magic-set
transformation) of [11], Non-Determinisitc Finite Tree Automaton
(NFTA) of [12] (again with and without magic-set transformation),
and CiaoPP with default Analysis and Specialisation options [41].

prog_clause(member(A,B).C),

depth(C.D) depth(true,A)

depth(append(A,[BIC],D).E)

unf(1,7) unf(1,1)

depth(append(A,[BIC],D).s(E)) i

unf(1,3)

prog_clause(append(A.[BIC],D).E),
depth(E,F)

unf(1,8) unf(1,9)

depth(true,A)

depth(append(A,[BIC,D).E)

unf(1,1)

Figure 3. Specialisation Tree

3. The Logen System

Let us now turn our attention to the second tool: LOGEN, a partial
evaluator developed using the cogen approach.

With the help of a self-applicable partial evaluator, one can con-
struct a compiler generator (cogen) using the third Futamura pro-
jection (see e.g. [18]). A cogen is a program that given an anno-
tated source program produces a specialised specialiser for that
program. If the source program is an interpreter, this specialiser
can be viewed as a compiler, hence the name “compiler generator.”



However, obtaining an efficient cogen by self-application is a dif-
ficult task, This has led several researchers to write the cogen by
hand [16, 17, 3, 1, 13, 44], rather than trying to obtain it by self-
application. In the setting of logic programming this idea has led to
the LOGEN system [19, 28].
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Figure 4. Illustrating the LOGEN system and the cogen approach

Figure 4 (from [24]) highlights the way the LOGEN system
works. Typically, a user would proceed as follows (more details
can be found in [24] from which part of the material is taken):

— First the source program is annotated using a binding-time
analysis (BTA), which produces an annotated source program.
The annotation essentially marks program points and predicate
arguments as static or dynamic. This annotated source program
can be further inspected, which allows the user to edit and
manually refine the annotations to get better specialisation.
Second, the LOGEN compiler generator is run on the annotated
source program and produces a specialised specialiser for the
source program, also called a generating extension.

This generating extension can now be used to specialise the
source program for some static input. Note that the same gener-
ating extension can be used for different static inputs (i.e., there
is no need to regenerate the generating extension unless the an-
notated source program changes).

— As soon as the remainder of the input is known, the specialised
program can be run and will produce the same output as the
original source program. Note again, that the same specialised
program can be run for different dynamic inputs; the specialised
program only has to be regenerated if the static input changes
(or the original program itself changes).

The particularities of the LOGEN system are:

Efficient specialisation through the use of specialised specialis-
ers.

Support for partially static data, with user-definable binding-
types. For example, the following defines a list of variable
bindings, with statically known variable names but unknown
(at specialisation time) variable values:

i type env ---> [] ;
[ bind(static,dynamic) | type(env)].

— Support for almost full Prolog, e.g., the if-then-else, negation,
disjunction, findall, the cut, built-ins, modules, higher-order
calls,...

— An automatic BTA [6] which ensures termination of the un-
folding process. The BTA uses the binary clause semantics to
identify potential infinite loops in the specialised specialiser. In
addition, LOGEN contains two simple BTAs which annotate ev-
erything as static and unfold/call or dynamic and memo/rescall
respectively. These can be used in circumstances where the au-
tomatic BTA cannot be used, e.g., in cases where the source pro-
gram is large and the automatic BTA is too expensive. The auto-
matic BTA can also be used just to propagate the static/dynamic
information without trying to infer terminating clause annota-
tions.

— A watchdog mode which detects non-terminating annotations
as well as support for online unfold annotations and online
binding-types using online control techniques such as the
homeomorphic embedding relation.

— Extensions for Constraint Logic Programming [5], as well as
support for co-routining (when declarations) [4] are available.

— A self-tuning resource aware specialisation method that adapts
the annotations for a particular architecture and set of represen-
tative sample queries [7].

3.1 Applications of LOGEN

Various experimental evaluations of the LOGEN system have been
reported; see for example [28]. In essence, specialisation without
the binding-time analysis turns out to be very fast (several orders
of magnitude faster than online specialisers). The quality of the
specialisation of course depends highly on the annotation, but the
experiments show that with the proper annotations specialisation
can be on par with online specialisers.

LOGEN has been applied to numerous interpreters. [24] contains
a systematic study on how to apply LOGEN to interpreters in gen-
eral, and how to achieve “Jones optimality” in particular.

In [2] LOGEN has been succesfully applied to a flexible meta-
interpreter for access control checks on deductive databases. By
specialisation of this interpreter one obtains flexible access control
with virtually zero overhead.

In [45] LOGEN has been used towards the goal of provably cor-
rect compilation by specialising denotational semantics language
specifications expressed in Horn logic and definite clause gram-
mars. In particular, the semantics for the SCR specification lan-
guage was expressed, and LOGEN generated target code in a prov-
ably correct manner.

LOGEN has also been used as a preprocessor to achieve effi-
cient model checking for domain specific specification languages.
For example, in [34] a CTL model checker was specialised for par-
ticular systems and specific temporal logic formulas. In [30, 29]
LOGEN was used to precompile a Petri net interpreter for later in-
finite model checking. In [9] an interpreter for Object Petri nets
was specialised together with the CTL model checker to achieve
efficient verification. LOGEN is also currently being applied to im-
prove the efficiency of the expressive pointcut language for aspect-
orientation from [39]. Recently, in the ASAP project (EU FET IST-
2001-38059) LOGEN was used to specialise an emulator (written
by Kim Henriksen and John Gallagher) for the machine language
of PIC processors, for analysis purposes [15].

3.2 Re-implementation in Ciao

The very first version of LOGEN [19] was implemented in BIM
Prolog. LOGEN was then ported to SICStus Prolog. Within the
ASAP EU project LOGEN was also re-implemented in Ciao Prolog,



with similar motivations as for ECCE. Of crucial importance was the
fact that with Ciao Prolog one can include the compiler in runtime
systems” enables a user to produce generating extensions which are
fully stand-alone, without any further need for the LOGEN system.
Indeed, this is one of the often cited advantages of the COGEN
approach, which has thus come true in this new version.

% logen --help
Usage: logen [Options] File.pl ["Atom."]
Possible Options are:

--help: Prints this message
-w: watch mode (supervise specialization)
-W: watch non interactive; halt at first alarm
-c: run cogen only (not the .gx file)
-s: run silently
--safe: run gx in safe sandbox mode
-v: print debugging messages
-vv: print more debugging messages
-vvv: print even more debugging messages
--compile_gx: compile the gx file using ciaoc
-m: display memo table
-g: display gx file
--logen_dir ARG1: path to logen files
-o ARG1: GX filename
--spec_file ARG1l: Spec filename
--ciao_path ARG1: Ciao binary directory
--simple_bta ARG1 ARG2 ARG3: Run simple bta
-d: debug mode for GX file
-d2: even more debugging messages in GX file
--single_process: run logen in single process

Figure 5. LOGEN’s Command-line Interface

3.3 LOGEN’s Web Interface

Previous versions of LOGEN had various graphical front ends, im-
plemented in Tcl/Tk, XEmacs, and Python/Tk respectively. Distri-
bution and installation of these front ends was not always unprob-
lematic, and we have now moved to a more elegant web interface,
providing a user-friendly interface for running LOGEN and editing
the annotations. A main advantage of the web interface over the
earlier interfaces is its portability and the ability to run LOGEN re-
motely without local installation (even though we also cater for
local execution).

The web interface provides a way to annotate programs and then
specialise them. Colour coding is used to provide visual feedback
about the annotations (e.g., static parts are marked green, dynamic
parts red). The web interface also ensures that the source file and
the annotation file are kept in sync: if the user changes the source
file the changes will be detected and only the changed parts have to
be re-annotated.

Security: Security was an important aspect in the design pro-
cess of the web interface, as allowing untrusted users access to a
LOGEN system installed on a web server could open up security
holes: in particular we need to prevent the execution of unsafe Pro-
log code submitted by users (e.g., system(’rm *.%’)). To do so,
we have extended LOGEN to produce safe generating extensions.
In such a safe generating extension, every call to a Prolog predi-
cate, is first checked against a whitelist of safe predicates. Trying
to call an unsafe predicate will cause the process to be aborted and
trigger a warning message.

Our whitelist also allows using the call predicate and solution
aggregation predicates such as findall and bagof, but only if the
predicate argument is itself in the whitelist.

2 Academic licenses of SICStus Prolog do not allow the distribution of the
Prolog compiler in packaged runtime systems. Unfortunately, the automatic
BTA still requires SICStus Prolog since we do not have a robust convex hull
solver in Ciao Prolog yet. This is packaged up as a separate binary, which
does not require access to the Prolog compiler.

Besides arbitrary code execution, the interface also has to han-
dle accidental or deliberate denial of service (DOS) attacks due to
infinite unfolding or memoization. As a counter measure, spawned
processes are automatically killed when a time limit is exceeded,
but currently there is a risk that too many simultaneous connec-
tions could overload the server and cause even legitimate processes
to time out without completing.

The interface can also be used offline on a local machine as long
as it has a web server. For this usage safe mode can be disabled.
(But it is advised to carefully restrict access to trusted users only
through server mechanisms in this case.) The specialisation time-
out can be extended in the case of more CPU-intensive code.

Displaying and Editing Annotations: As already shown in
Figure 4, the annotation system maintains two files: a source file
(Figure 7 shows append) and an annotation file (Figure 8). Our in-
terface preserves the formatting of the source code and overlays the
annotations using colours and underlining to distinguish the differ-
ent types. Converting the source and annotation file to HTML is a
two-stage process shown in Figure 6. First an XML representation
(Figure 9) is created using a Prolog program that matches the an-
notations to the source code. This process keeps the structure and
comments from the original source code. The XML is then pro-
cessed by an XSL transform which creates HTML code containing
style sheet information and Javascript hooks as shown in Figure
10. Having two stages simplifies each stage and allows a separa-
tion of skills, where a Prolog programmer can create simple struc-
tured XML in the first stage, while web programmers can control
the second without intimate knowledge of Prolog.

program.pl Annotation XML XSLT
program.pl.ann Reader (highlighter)

Figure 6. Converting source and annotation files to HTML

append([],Y,Y).
append([X|Xs],Y, [X|Zs]) :-
append(Xs,Y,Zs) .

Figure 7. Prolog source for append.pl

logen(append/3,append([]1,A,4)).
logen(append/3,append([BIC],A, [BID])) :-
logen(memo,append(C,A,D)) .
.= filter
append (dynamic,dynamic,dynamic) .

Figure 8. Annotation file for append.pl

Javascript is used extensively so that programs can be annotated
without repeated loading of new pages from the server. Instead
clicking on an annotated predicate brings up a menu of possible
annotations and selecting one changes the HTML code locally on
the server; the changes are only sent to the server when the user has
finished. The annotations are sent to the server as a flat list of the
form:

[unfold, unfold, memo, calll

These annotations are then mapped back onto the source using
a Prolog executable, annotate, resulting in an annotated program.
Since the filters are more free-form, they are edited and sent back
as text from the client (even though a limited form of editing,
such as changing static arguments to dynamic or vice-versa can be
performed directly using the mouse). The server passes this text to

HTML



<?xml version="1.0" encoding="UTF-8"7>
<article>
<source><head>append</head>([],Y,Y).
<head>append</head>([X|Xs],Y, [X|Zs]) :-
<memo>append</memo>(Xs,Y,Zs) .

</source>

<filters>

:— filter

<filter>append</filter>(dynamic,dynamic,dynamic) .

</filters>
</article>

Figure 9. XML produced by the annotation reader. (Some tags
used only for syntax highlighting have been removed to aid clarity)

<pre class="source">
<span class="head">append</span>([],Y,Y).
<span class="head">append</span>([X|Xs],Y, [X|Zs]) :-
<span class="memo" id="annl6"
onclick="return dropdownmenu(this, event)"
onmouseover="mouseoverAnn(’anni6’)"
onmouseout="mouseoutAnn(’anni6’)"
>append</span>(Xs,Y,Zs) .
</pre>
<pre>
:— filter
<span class="filter">append</span>(dynamic,
dynamic, dynamic).
</pre>

Figure 10. HTML produced from append.pl

annotate, which parses and appends the result to the annotation
file.

4. Conclusion

In conclusion, the ECCE system provides advanced specialisation
for pure Prolog programs. Being an online specialiser, its usage
is simple and accessible to non-expert users. The development
of the web interface provides an even simpler way of using the
system, requiring no local installation and providing easy access to
various options of the system. The ECCE system has been applied
to numerous case studies, and has found many applications outside
of its original goal area of specialising programs, in particular for
the analysis and verification of systems expressed as Prolog rules.

Since the appearance of the first version of LOGEN in 1996 in
[19] the system has now achieved a certain maturity and has been
applied to numerous case studies. It is now in a state where it can
be used by programmers who are not researchers in partial eval-
uation. Indeed, the first version of LOGEN was efficient, but only
supported a small subset of Prolog and all annotations had to be
provided by hand. LOGEN now supports almost full Prolog, pro-
vides a command-line interface, has considerable support for anno-
tating source code and especially the web interface has lowered the
entry threshold for using the system. We hope that the LOGEN sys-
tem will thus prove to be valuable to researchers and programmers
alike.

More information about the tools can be found at the main web
sites for our tools:

® http://stups.cs.uni-duesseldorf.de/ pe/ecce

® http://stups.cs.uni-duesseldorf.de/ pe/weblogen

The choice on which tool to use depends on the particular applica-
tion. ECCE is a fully automatic online specialiser. It is hence easier
to use by inexperienced users, but more difficult to tweak in case
specialisation does not proceed as desired. ECCE uses more refined
control techniques and can perform conjunctive partial deduction,
which LOGEN cannot. Because of the additional annotation phase,
LOGEN is more difficult to master by inexperienced users, but the
outcome of the specialisation is easier to tweak and predict. The
specialisation phase of LOGEN is very efficient, with very little
overhead compared to ordinary evaluation. LOGEN can deal with
almost full Prolog, whereas ECCE only deals with declarative Pro-
log programs. The latter restricts the range of programs to which
ECCE can be applied, but it also allows ECCE to perform more pow-
erful optimisations.
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