
A Conceptual Embedding of
Folding into Partial Deduction:
Towards a Maximal Integration

Michael Leuschel, Danny De Schreye and André de Waal
Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
{michael,dannyd,andred}@cs.kuleuven.ac.be

Abstract

The relation between partial deduction and the unfold/fold approach has
been a matter of intense discussion. In this paper we consolidate the ad-
vantages of the two approaches and provide an extended partial deduction
framework in which most of the tupling and deforestation transformations
of the fold/unfold approach, as well the current partial deduction transfor-
mations, can be achieved. Moreover, most of the advantages of partial de-
duction, e.g. lower complexity and a more detailed understanding of control
issues, are preserved. We build on well-defined concepts in partial deduction
and present a conceptual embedding of folding into partial deduction, called
conjunctive partial deduction. Two minimal extensions to partial deduction
are proposed: using conjunctions of atoms instead of atoms as the princi-
ple specialisation entity and also renaming conjunctions of atoms instead of
individual atoms. Correctness results for the extended framework (with re-
spect to computed answer semantics and finite failure semantics) are given.
Experiments with a prototype implementation are presented, showing that,
somewhat to our surprise, conjunctive partial deduction not only handles the
removal of unnecessary variables, but also leads to substantial improvements
in specialisation for standard partial deduction examples.

1 Introduction

Two approaches to program transformation have received considerable at-
tention over the last few decades: the unfold/fold approach (see e.g. [27],
[25, 26], [21, 24, 23] and partial deduction, also referred to — in slightly
different contexts — as partial evaluation or program specialisation (see e.g.
[8], [5, 4], [18]). The relation between these two streams of work has been
a matter of research, discussion and controversy over the years. Some illu-
minating discussions, in the context of logic programming, can be found in
[20], [24, 21], [26] and [1].

From a technical perspective and in the context of definite logic pro-
grams, their relation is clear: partial deduction is a strict subset of the



unfold/fold transformation. In essence, partial deduction refers to the class
of unfold/fold transformations in which “unfolding” is the only basic trans-
formation rule. Other basic unfold/fold rules, such as “folding”, “defini-
tion”, “lemma application” or “goal replacement”, or — in more general
unfold/fold contexts — “clause replacement” and others, are not supported.

This is only a rough representation of the relationship between the two
approaches. To refine it, first, it should be noted that any partial deduc-
tion algorithm imposing the Lloyd-Shepherdson closedness condition ([18])
involves a (weak) implicit folding step. Intuitively, this closedness condition
requires that partial deduction should not be performed on the basis of a
single (atomic) goal, but on a set of atoms, say S, and that each atom which
occurs in a body of a clause in the transformed program, and which has a
predicate occurring in S, should be an instance of one of the atoms in S. If
the condition holds, each such atom in a body of a transformed clause refers
back to one of the heads of the transformed clauses, and (a limited form of)
implicit folding is obtained.

Moreover, most partial deduction methods make use of renaming trans-
formations. Again this relates to the Lloyd-Shepherdson framework: in this
case to the independence condition. Atoms in the set S, together with their
corresponding occurrences in the transformed clauses, are renamed apart to
avoid duplication of code for those pairs of atoms which share instances.
This avoids the generation of redundant solutions — and, in the presence
of negation, of incorrect solutions — while preserving polyvariance. Again,
renaming is closely related to unfold/fold. Roughly stated, it can be for-
malised as a two-step basic transformation involving a “definition” step (the
new predicate is defined to have the truth-value of the old one), immedi-
ately followed by a number of folding steps (appropriate occurrences of the
old predicate are replaced by the corresponding new one).

In spite of these additional connections, there are still important differ-
ences between the unfold/fold and partial deduction methods. One is that
there is a large class of transformations which are achievable through un-
fold/fold, but not through partial deduction. Typical instances of this class
are transformations that eliminate “redundant variables” (see [21, 23]). Two
types of redundant variables are often distinguished in the literature. The
first refer to those cases in which the same input datastructure is consumed
twice. As an example, consider the predicate

max length(x, m, l)← max(x,m), length(x, l)
which is true if m is the maximum of the list of numbers x, and if l is the
length of the list. By unfold/fold, the definitions for max/2 and length/2 can
be merged, producing a definition for max length/3, which only traverses x
once. In the functional community, such a transformation is referred to as
tupling.

A second type of redundant variables turns up in cases where a datas-
tructure is first constructed by some procedure, and, in a next part of the
computation, decomposed again. As an example, consider the predicate



double app(x, y, z, r)← app(x, y, i), app(i, z, r)
which holds if the list r can be obtained by concatenating the lists x, y and z.
Again, unfold/fold allows to merge the two calls to app/3 and to eliminate
the construction of the intermediate datastructure i. In this case, in the
functional community, the transformation is referred to as deforestation.
Neither of these transformations are achievable through partial deduction
alone.

On the other hand, partial deduction has some advantages over un-
fold/fold as well. Due to its more limited applicability, and its resulting
lower complexity, the transformation can be more effectively and easily con-
trolled. These control issues have obtained considerable attention in partial
deduction research, and, in the current state-of-the-art, have obtained a level
of refinement which goes beyond mere heuristic strategies, as we find in un-
fold/fold. Formal frameworks have been developed, analysing issues of ter-
mination, code- and search-explosion and obtained efficiency gains ([2, 19],
[5, 4], [11, 14]). Several fully automated systems have been developed (sp,
sage, paddy, mixtus, chtree/ecce) and have been successfully applied
to at least medium-size applications ([12], [15], [3], [9]). As a result, partial
deduction has reached a degree of maturity that brings it to the edge of wide-
scale industrial applicability, which is beyond what any other transformation
technology for logic programs has achieved today.

The aim of this paper is to provide a basic starting point to bring the
advantages of these two transformation methods together. In order to do
so, we only rely and build on concepts which are already well understood in
partial deduction: the Lloyd-Shepherdson framework and renaming trans-
formations. No explicit new basic transformation rules, such as folding or
definition, are introduced. Nevertheless, we provide a framework in which
most tupling and deforestation transformations, in addition to the current
partial deduction transformations, can be achieved.

More precisely, we propose two minimal extensions to partial deduction
methods, prove their correctness and illustrate how they achieve removal of
unnecessary variables within a framework of conjunctive partial deduction.

One of these minimal extensions is on the level of the Lloyd-Shepherdson
framework itself: we will consider sets S of conjunctions of atoms instead of
the usual sets of atoms. A second extension is on the level of the renaming
transformations, where we will use renamings of conjunctions of atoms, in-
stead of renamings of single atoms. Together, they provide for a setting of
conjunctive partial deduction that — based on our current empirical eval-
uation — seems powerful enough to achieve the results of most unfold/fold
transformations involving unfolding, folding and definition only.

We already pointed out that, at least on the technical level, most of these
ideas have already been raised in the context of unfold/fold (e.g. [24, 21],
[26]). In these papers too, the step from partial deduction to (certain strate-
gies in) unfold/fold has been characterised as essentially moving from sets
of atoms to sets of conjunctions. Therefore, technically, the current paper is



strongly related to these works, and for a number of our proofs we actually
apply the results of [21]. The objectives, however, differ. Where [24, 21] aim
to clarify the relation between the two approaches, by characterising par-
tial deduction within the unfold/fold framework, we will provide minimal
extensions to partial deduction with the aim of including a large part of the
unfold/fold power. We show how correctness results for partial deduction
can be reformulated in the extended context. The ultimate goal being to
provide a generalised framework that allows to easily extend current results
on control of partial deduction and current partial deduction systems. Par-
ticular instances of this framework, along with control issues, are dealt with
in [6].

2 Conjunctive partial deduction

In this section we provide extensions of the basic definitions in the Lloyd-
Shepherdson framework and of renaming transformations. We also illustrate
how these extensions are sufficient to support the transformations referred
to in the introduction. Throughout the paper, we restrict the attention to
definite programs and goals. In section 4 we discuss a further extension to
the normal case.

We suppose familiarity with basic notions in logic programming ([17]).
As usual in partial deduction, we assume that the standard notion of an
SLD-tree is generalised ([18]) to allow it to be incomplete: at any point we
may decide not to select any atom and terminate a derivation. Leaves of this
kind will be called dangling ([19]). Also, we will call an SLD-tree trivial iff
its root is a dangling leaf. The following basic notion is adapted from [18].

Definition 2.1 (resultant) Let P be a program, G =← Q a goal, where Q
is a conjunction of atoms, G0 = G, G1, ..., Gn a finite derivation for P ∪{G},
with substitutions θ1, ..., θn, and let Gn have the form ← Qn. We say that
Qθ1...θn ← Qn is the resultant of the derivation G0, G1, ..., Gn.

Note that, in general, resultants are not clauses: their left-hand sides
may contain a conjunction of atoms. The notion can be generalised to SLD-
trees. Given a finite SLD-tree τ for P ∪ {G}, there is a corresponding set of
resultants Rτ , including one resultant for each non-failed derivation of τ .

In the partial deduction notion introduced in [18] (there referred to as
partial evaluation), the SLD-trees and resultants are restricted to atomic
top-level goals. We omit this restriction here. In order to formulate this
generalisation, we need the following concept.

Definition 2.2 (generalised program) A generalised program is any set
of Horn clauses and resultants.

Definition 2.3 (pre-conjunctive partial deduction)
Let S = {Q1, ..., Qs} be a set of conjunctions of atoms, and T = {τ1, ..., τs}



a set of finite, non-trivial SLD-trees for P ∪ {← Q1}, ..., P ∪ {← Qs}, with
associated sets of resultants R1, ..., Rs, respectively. Let PS be the generalised
program obtained by removing all clauses from P which define predicates
occurring in atomic elements of S, and by adding the resultants in R1, ..., Rs.
PS is called a pre-conjunctive partial deduction of P wrt S (and T ).1

Let us immediately illustrate this notion with a very simple example
we already referred to in the introduction. The example, as well as the
double app Example 2.9, is fairly trivial. This does not relate to any limita-
tions of the proposed framework, but to a deliberate choice of selecting min-
imally complex examples for illustrating the proposed concepts and method.
Also, in the following, we introduce the connective ∧ to avoid confusion
between conjunction and the set punctuation symbol “,”.

Example 2.4 (max length) Let P be the following program.

(C1) max length(x,m, l)← max(x,m) ∧ length(x, l)
(C2) max(x,m)← max 1(x, 0,m)
(C3) max 1(nil,m, m)←
(C4) max 1(h.t, n,m)← h ≤ n ∧max 1(t, n,m)
(C5) max 1(h.t, n,m)← h > n ∧max 1(t, h,m)
(C6) length(nil, 0)←
(C7) length(h.t, l)← length(t, k) ∧ l is k + 1

Let S = {max length(x,m, l),max 1(x, n, m) ∧ length(x, l)}. Assume
that we construct the finite SLD-trees T1, T2 depicted in Figure 1. The
associated resultant sets R1 = {R1,1} and R2 = {R2,1, R2,2, R2,3} are:

(R1,1) max length(x,m, l)← max 1(x, 0,m) ∧ length(x, l)
(R2,1) max 1(nil, n, n) ∧ length(nil, 0)←
(R2,2) max 1(h.t, n,m) ∧ length(h.t, l)←

h ≤ n ∧max 1(t, n,m) ∧ length(t, k) ∧ l is k + 1
(R2,3) max 1(h.t, n,m) ∧ length(h.t, l)←

h > n ∧max 1(t, h,m) ∧ length(t, k) ∧ l is k + 1

PS then consists of the resultants from R1 and R2, in addition to the
clauses for max, max 1 and length from P . Clearly PS is a generalised (non-
standard) program. Apart from that, with the exception that the redundant
variable still has multiple occurrences, PS has the desired tupling structure.
The two functionalities (max/3 and length/2) in the original program have
been merged into single traversals.

In order to convert the generalised program into a standard one, we will
rename conjunctions of atoms by new atoms, using fresh predicate symbols.
Such renamings require some care. For one thing, given a generalised pro-
gram PS , obtained as a pre-conjunctive partial deduction of P wrt a set

1In the remainder of this paper we will often talk about a pre-conjunctive partial
deduction wrt S without explicitly mentioning T .



?

?

?

HHH
HHj

���
���

?

? ?

← max(x, m) ∧ length(x, l)

C2

← max 1(x, 0, m) ∧ length(x, l)

← max length(x, m, l)

C4C1
C3 C5

2

← length(nil)

C6

← h > n∧← h ≤ n∧

← h ≤ n∧ ← h > n∧

← max 1(x, n, m) ∧ length(x, l)

C7 C7

length(h.t, l)
max 1(t, n, m)∧

length(h.t, l)
max 1(t, h, m)∧

l is k + 1
length(t, k)∧

max 1(t, n, m)∧

l is k + 1
length(t, k)∧

max 1(t, h, m)∧

Figure 1: SLD-trees for Example 2.4

S, there may be ambiguity concerning which conjunctions in the bodies to
rename. For instance, if PS contains the clause p(x, y)← r(x) ∧ q(y) ∧ r(z)
and S contains r(u) ∧ q(v), then either the first two, or the last two atoms
in the body of this clause are candidates for renaming. To formally fix such
choices, we introduce the notion of a partitioning function.

Below, we use 2A as a notation for the powerset of a set A. =r denotes
syntactic identity, up to reordering.

Definition 2.5 (partitioning function) Let C denote the set of all con-
junctions of atoms over the given alphabet. A partitioning function is a
mapping p : C → 2C , such that for any Q ∈ C: Q =r ∧Qi∈p(Q)Qi.

For the max length example, let p be the partitioning function which,
maps any conjunction Q =r max 1(x, n, m) ∧ length(x, l) ∧B1 ∧ ... ∧Bn to
{max 1(x, n, m)∧length(x, l), B1, ..., Bn}, where B1, ..., Bn, n ≥ 0, are atoms
with predicates different from max 1 and length. We leave p undefined on
other conjunctions.

Even with a fixed partitioning function, a range of different renaming
functions could be introduced, all fulfilling the purpose of converting con-
junctions into atoms (and therefore, generalised programs into standard
ones). The differences are related to potentially added functionalities of
these renamings, such as:
• elimination of multiply occurring variables (e.g. p(x, x) 7→ p′(x)),
• elimination of redundant data structures (e.g. q(a, f(y)) 7→ q′(y)),
• elimination of existential variables.
Below we introduce a class of generalised renaming functions, making

abstraction of the actual functionalities supported by its members. This will
allow us to state our results in full generality, not restricted to any particular
selected renaming scheme.



Definition 2.6 (atomic renaming) An atomic renaming α for a given
pre-conjunctive partial deduction PS (of P wrt S) is a mapping from S to
atoms such that for each s ∈ S:

• vars(α(s)) ⊆ vars(s),
• α(s) has a predicate symbol which does not occur in P , and is distinct
from the predicate symbols of any α(s′) with s′ ∈ S ∧ s′ 6= s.

We stress that this notion is to some extent overly general. It allows to
remove any subset of the variables from the given conjunction. This may lead
to incorrect transformations. A simple safe subclass of atomic renamings is
obtained by imposing that vars(α(s)) = vars(s). More concretely, we could
map any conjunction s ∈ S to an atom ps(x1, ..., xn), where x1, ..., xn is the
list of all distinct variables occuring in s, and ps the fresh predicate symbol.
Such instances of the definition would support the first two functionalities
stated above. More refined correct instances of the definition, supporting
also the third functionality, will be presented later on. Also, note that with
this definition, we are actually also renaming the atomic elements of S.
This is not really essential for converting generalised programs into standard
ones, but it will prove useful for various other aspects (e.g. dealing with
“independence” and facilitating correctness proofs).

Definition 2.7 (renaming function) Let α be an atomic renaming for a
pre-conjunctive partial deduction PS and p a partitioning function. A renam-
ing function ρα,p (based on α and p)2 for PS is a mapping from conjunctions
to atoms such that: ρα,p(B) =

∧
Q∈p(B) Q′ where

• if Q is an instance of an element in S, then Q′ = α(s)θ, for some
s ∈ S with Q = sθ,
• if Q is not an instance of an element in S, then Q′ = Q.

Observe that there is a degree of non-determinism here. If S contains
elements s and s′ which share common instances, then there are several
renaming functions ρα,p associated with the same atomic renaming α and
partitioning p. Also, in that case, we do not necessarily have α(s) = ρα,p(s).

Definition 2.8 (conjunctive partial deduction) Let ρα,p be a renaming
function for a pre-conjunctive partial deduction PS, with associated set S
and resultant sets Rs, s ∈ S. The conjunctive partial deduction of PS (under
ρα,p) is the program Pρα,p containing:
• for each resultant sθ ← B in any set Rs, s ∈ S, the clause:

α(s)θ ← ρα,p(B)
• for each other clause H ← B of PS, the clause:

H ← ρα,p(B)

2When writing ρα,p we will implicitly assume that the renaming ρα,p is based on an
atomic renaming α and a partitioning function p.



Returning to our example, we introduce a fresh predicate for each of
the two elements in S via the atomic renaming α: α(max length(x, m, l)) =
p1(x,m, l) and α(max 1(x, n, m) ∧ length(x, l)) = p2(x, n, m, l). As S does not
contain elements with common instances, there exists only one renaming
function ρα,p based on α and p. The conjunctive partial deduction is now ob-
tained as follows. The head max length(x, m, l) in the single clause of R1 is re-
placed by p1(x, m, l). The head-occurrences, max 1(nil, n, n)∧length(nil, 0) and
max 1(h.t, n,m)∧ length(h.t, l) are replaced by p2(nil, n, n, 0) and p2(h.t, n,m, l).
The body occurrences max 1(x, 0,m) ∧ length(x, l), max 1(t, n,m) ∧ length(t, k)
and max 1(t, h,m) ∧ length(t, k) are replaced by p2(x, 0,m, l), p2(t, n,m, k) and
p2(t, h,m, k) respectively. The resulting program is (in addition to the clauses
for max/2, max 1/3 and length/2):

p1(x,m, l)← p2(x, 0,m, l).
p2(nil, n, n, 0)←
p2(h.t, n,m, l)← h ≤ n ∧ p2(t, n,m, k) ∧ l is k + 1.
p2(h.t, n,m, l)← h > n ∧ p2(t, h,m, k) ∧ l is k + 1.

�
�����

H
HHHHj

?

C1 C2

← app(y, z, r) ← app(x′, y, i′) ∧ app(h.i′, z, r)

← app(x′, y, i′) ∧ app(i′, z, r′)

C2

← app(x, y, i) ∧ app(i, z, r)

Figure 2: SLD-tree for Example 2.9

Example 2.9 (double append)

(C1) app(nil, l, l)←
(C2) app(h.x, y, h.z)← app(x, y, z)

Let P = {C1, C2} be the (all too) well known append program. Let
S = {app(x, y, i)∧app(i, z, r)} and assume that we construct the finite SLD-
tree T1 depicted in Figure 2. The pre-conjunctive partial deduction PS of P
wrt S then contains the clauses of P as well as the following resultants:

(R1) app(nil, y, y) ∧ app(y, z, r)← app(y, z, r)
(R2) app(h.x′, y, h.i′)∧app(h.i′, z, h.r′)← app(x′, y, i′)∧app(i′, z, r′)

Suppose that we use a partitioning function p such that p(B) = {B} for all
conjunctions B. If we now take an atomic renaming α′ for PS such that
α′(app(x, y, i)∧ app(i, z, r)) = da(x, y, i, z, r) (i.e. the distinct variables have
been collected and have been ordered according to their first appearance),
the conjunctive partial deduction of PS under ρα′,p will contain the clauses
C1, C2 of P as well as:



(C ′
3) da(nil, y, y, z, r)← app(y, z, r)

(C ′
4) da(h.x′, y, h.i′, z, h.r′)← da(x′, y, i′, z, r′)

Executing Q = app(x, y, i) ∧ app(i, z, r) in the original program leads to the
construction of an intermediate list i by app(x, y, i), which is then traversed
again (consumed) by app(i, z, r). In the conjunctive partial deduction the
inefficiency caused by this unnecessary traversal of i has been completely
removed. However the intermediate list i is still constructed, and if we
are not interested in its value, then this is an unnecessary overhead. We
can remedy this by using an atomic renaming α such that α(app(x, y, i) ∧
app(i, z, r)) = da(x, y, z, r). We refer the reader to the next sections on why
α is correct. For this more sophisticated renaming, the conjunctive partial
deduction of PS under ρα,p contains the clauses C1, C2 as well as:

(C3) da(nil, y, z, r)← app(y, z, r)
(C4) da(h.x′, y, z, h.r′)← da(x′, y, z, r′)

The unnecessary variable i, as well as the inefficiencies caused by it, have
now been removed.

3 Correctness

In this section we will state correctness results of conjunctive partial deduc-
tion. All proofs and lemmas have been omitted and can be found in the
extended version of this paper [13].

As already mentioned in the introduction, partial deduction is a strict
subset of the (full) unfold/fold transformation technique as defined for in-
stance in [21]. It is therefore not surprising that correctness can be es-
tablished by showing that a conjunctive partial deduction can (almost) be
obtained by a corresponding unfold/fold transformation sequence and then
re-using correctness results from [21].

Basically a conjunctive partial deduction Pρα,p of PS under ρα,p can be
obtained from P using 4 transformation phases. In the first phase one intro-
duces definitions for every conjunction in S, using the same predicate symbol
as in α. In the second phase these new definitions get unfolded according
to the SLD-trees for the elements in S: exactly one unfolding for each cor-
responding unfolding in the trees. In the third phase conjunctions in the
body of clauses are folded using the definitions introduced in phase 1. Fi-
nally, in the fourth phase, the definitions which define predicates occuring in
atomic elements of S are removed. The first three phases can be mapped to
the unfold/fold transformation framework of [21] in a straightforward man-
ner. Phase 4 will have to be treated separately (because the clause removals
do not meet the requirements of definition elimination transformations as
defined in [21]).

In [13] it is shown that the definition steps are T&S-Definition steps ([27,
21]). Furthermore, given the following correctness criterion for renaming



functions, the folding steps are T&S-Folding steps [27, 21]. Basically the
criterion states that variables removed by the renaming should be existential
variables.

Definition 3.1 (correct renaming) Let ρα,p be a renaming function for
PS. We say that ρα,p is correct (for PS) iff for every clause H ′ ←

∧
Q∈p(B) Q′

in Pρα,p derived from H ← B ∈ PS, and every Q ∈ p(B) with Q′ = α(s)θ,
s ∈ S, Q = sθ, vars(s) \ vars(α(s)) = {x1, . . . , xn}, V = 〈x1, . . . , xn〉 we
have that V θ is a (possibly empty) sequence of distinct variables which occur
neither in H ′, Q′, nor in p(B) \ {Q}.

Example 3.2 Take PS = {C1, C2, C3, C4}, ρα,p and ρα′,p of Example 2.9.
ρα′,p does not remove any variables and the above requirements are thus
trivially met (V θ = 〈〉). ρα,p however removes variables and we have to
examine each clause of PS . For C1, C2, C3 no conjunction in a body gets
renamed and V θ = 〈〉. For C4 we have that Q = app(x′, y, i′) ∧ app(i′, z, r′)
gets renamed into Q′ = da(x′, y, z, r′) and we have V = 〈i〉, V θ = 〈i′〉. V θ is a
sequence of distinct variables which occur neither in H ′ = da(h.x′, y, z, h.r′),
Q′ nor in the (empty) remainder p(B) \ {Q}. Hence ρα,p is correct.

In Definition 2.3 (as well as in the standard definition of partial deduc-
tion in [18]) we imposed that the SLD-trees are non-trivial. In the context
of standard partial deduction of atoms, this condition avoids problematic
resultants of the form A ← A and is fully sufficient for total correctness
(given independence and closedness). In the context of conjunctive partial
deductions of conjunctions we need (for some results) an extension of this
condition:

Definition 3.3 (non-trivial SLD-tree wrt p) Let the goal G′ =← (A1 ∧
. . . Ai−1 ∧ B1 ∧ . . . Bk ∧ Ai+1 ∧ . . . An)θ be derived from the goal G =←
A1 ∧ . . . Ai ∧ . . . An, and the clause H ← B1 ∧ . . . Bk, with selected atom Ai.
We say that the atoms A1θ, . . . , Ai−1θ, Ai+1θ, . . . , Anθ are inherited from
G in G′. We extend this notion to derivations by taking the transitive and
reflexive closure.

Let τ be an SLD-tree for P ∪{G} and let the goals in the dangling leaves
of τ be {← L1, . . . ,← Ln}. Also, let p be a partitioning function and S a
set of conjunctions. τ is said to be non-trivial wrt p and S iff for every
conjunction Q′ in p(Li), 1 ≤ i ≤ n, which is an instance of a conjunction
in S, none of its atoms are inherited from G in ← Li. A pre-conjunctive
partial deduction PS is non-trivial wrt p iff the SLD-trees for the elements
s ∈ S are non-trivial wrt p and S.

Example 3.4 Let τ be the SLD-tree for P ∪ {G}, with G = ← app(x, y, i)∧
app(i, z, r), of Figure 2. The conjunctions in the dangling leaves are {←
L1,← L2}, with L1 = app(y, z, r) and L2 = app(x′, y, i′) ∧ app(i′, z, r′). For S
= { app(x, y, i)∧ app(i, z, r) } and p, such that p(B) = {B}, we have that τ is
non-trivial wrt p and S:



• app(x, y, i) and app(x, y, i) are not inherited from G in ← L2.
• app(y, z, r) is inherited from G, but L1 is not an instance of a conjunc-
tion in S.

Note however that, for S′ = S∪ {app(x, y, z)}, τ is not non-trivial wrt p and
S′, because now app(y, z, r) is an instance of a conjunction in S′.

The above means that an atom can only be renamed (on its own or
because it is inside a conjunction which gets renamed) if it is not inherited
from the top-level conjunction. This is a stronger but simpler condition than
the one of fold-allowing in [21] or inherited in [25].3 All these conditions
ensure that we do not encode an unfair selection rule in the transformation
process, which is vital when trying to preserve the finite failure semantics
(for a more detailed discussions see e.g. [25]).

We are now in position to state a correctness result similar to the one in
[18]. In contrast to [18], we do not need an independence condition (because
of the renaming), but we still need an adapted closedness condition:

Definition 3.5 (S-closed wrt p) Let p be a partitioning function and S
a set of conjunctions. We say that a conjunction Q is S-closed wrt p iff
every conjunction Q′ ∈ p(Q) is either an instance of an element in S or it is
an atomic conjunction whose predicate symbol is different from those of all
atomic conjunctions in S. Furthermore a generalised program P is S-closed
wrt p iff every body of every clause or resultant in P is S-closed wrt p.

Example 3.6 Let S = {q(x) ∧ r, q(a)}, Q = q(a) ∧ q(b) ∧ r. Then, for a
partitioning function p such that p(Q) = {q(b) ∧ r, q(a)}, Q is S-closed wrt
p. However, for p′ with p′(Q) = {q(a) ∧ r, q(b)}, Q is not S-closed wrt p′.

Theorem 3.7 Let Pρα,p be a conjunctive partial deduction of PS under ρα,p

and let ρα,p be correct for PS ∪ {G}. If PS ∪ {G} is S-closed wrt p then
• P ∪{Q} has an SLD-refutation with c.a.s. θ, with θ′ = θ |vars(ρα,p(Q)),
iff Pρα,p ∪ {ρα,p(Q)} has an SLD refutation with c.a.s. θ′.

If in addition PS is non-trivial wrt p then
• P ∪ {G} has a finitely failed SLD-tree iff Pρα,p ∪ {ρα,p(G)} has.

Example 3.8 (double-append) Let P and Pρα,p be the programs from
Example 2.9. Let G =← app(1.2.nil, 3.nil, i) ∧ app(i, 4.nil, r). We have
that ρα,p(G) = da(1.2.nil, 3.nil, 4.nil, r). It can be seen that ρα,p is correct
for PS ∪ {G}4 and indeed P ∪ {G} and Pρα,p ∪ {ρα,p(G)} have the same
set of computed answers (restricted to r): {{r/1.2.3.4.nil}}. Note that the
SLD-trees of Example 2.9 are non-trivial wrt p and therefore finite failure
is also preserved. However, for G′ =← app(1.2.nil, 3.nil, i) ∧ app(i, 4.nil, i),
ρα,p is not correct for PS ∪ {G′} and indeed P ∪ {G′} fails infinitely, while

3Theorem 3.7 also holds for these weaker conditions, which might be useful when using
e.g. determinate unfolding rules, which do not always produce non-trivial trees.

4This also ensures that the existential (according to ρα,p) term i in G is a free variable.



Pρα,p ∪ {← da(1.2.nil, 3.nil, 4.nil, i)} succeeds with the computed answer
{i/1.2.3.4.nil}.

4 Discussion, Experiments and Conclusion

Negation and Normal Programs

When extending conjunctive partial deduction for negation two issues come
up: one is correctly handling normal logic programs instead of definite pro-
grams and the second one is to build SLDNF-trees instead of SLD-trees (i.e.
extending unfolding to allow the selection of ground negative literals).

The former is not so difficult, as a lot of results from the literature can
be reused. For instance we get preservation of the perfect model semantics
for stratified programs [25] and preservation of the well-founded semantics
for general programs [26]. If in addition we have non-trivial SLD-trees wrt
p the conditions of modified (T&S) folding of [25] hold and we can reuse its
results for the SLDNF success and finite failure set for stratified programs.

Allowing SLDNF-trees instead of SLD-trees is more difficult. Note that
[25, 26, 21] do not allow the unfolding of negative literals. For further details
we have to refer to [13]. For the moment there seems to be no equivalent to
the correctness theorem of [18] for normal logic programs and further work
will be needed to extend the correctness results of the previous section.

Prototype Implementation and Experiments

The system based on characteristic trees and atoms described in [11, 14] has
been augmented to perform conjunctive partial deduction. The adaptation
was pretty straightforward, further underlining our earlier claim that con-
junctive partial deduction is just a simple, but powerful, extension of partial
deduction.

Although in this paper, we have not addressed the control issues involved
in conjunctive partial deduction, for our experimentation certain choices
needed to be fixed. For a thorough discussion of the control (and termi-
nation) issues we refer to [6]. We briefly indicate some of the choices we
made. The generalisation of conjunctions was implemented in a straightfor-
ward, but naive way, meaning that the prototype cannot handle some of the
harder unfold/fold examples. We used a determinate unfolding rule with a
flexible lookahead and for global control we used the techniques of [11, 14].

Table 1 contains absolute timings and speedups for some benchmarks
(which can be found in [13]; more recent and extensive experiments can also
be found in [7]). The timings were obtained under Sicstus Prolog 3 on a Sparc
Classic. The doubleapp benchmark is the Example 2.9 of this paper. The
maxlength is a slightly adapted version of Example 2.4 (not using built-ins).
Both of these examples are standard “unfold/fold” examples illustrating the



benefits of removing unnecessary variables — the speedups are satisfactory,
given the fact that no partial input was provided.

The next three benchmarks are “standard” partial deduction bench-
marks. The depth benchmark is the meta-interpreter also found in [10],
but using a more sophisticated object program. The good results seem to
indicate that folding combined with a rather simple unfolding rule can solve
some of the traditional local control problems for meta-interpreters. Fold-
ing also solves a problem already raised in [20]. Take for example a meta-
interpreter containing the clause solve(X)← exp(X)∧ clause(X, B)∧solve(B),
where exp(X) is an expensive test which for some reason cannot be (fully)
unfolded. Here standard partial deduction faces a dilemma when specialis-
ing solve(d̄). Either it unfolds clause(d̄, B), thereby propagating partial input
d̄ over to solve(B), but at the cost of duplicating exp(d̄) and most probably
leading to inefficient programs. Or standard partial deduction can stop the
unfolding, but then the partial input d̄ can no longer be exploited inside
solve(B). Using conjunctive partial deduction however, we can be efficient
and propagate information at the same time, simply by stopping unfolding
and specialising the conjunction clause(d̄, B)∧ solve(B).5 All this leads us to
believe that conjunctive partial deduction can be highly beneficial for real-
life applications, given that a satisfactory treatment of the control issues
(based on [6]) can be achieved.

The relative and contains benchmarks are the same as in [10]. For the
contains example, conjunctive partial deduction gives a considerable im-
provement. contains has long been a difficult benchmark, especially for
determinate unfolding rules. This might indicate that conjunctive partial
deduction diminishes the need for more sophisticated unfolding rules.

So, to our surprise, conjunctive partial deduction not only handles the
removal of unnecessary variables, but leads to substantial improvements in
specialisation for standard partial deduction examples as well.

Benchmark Original Standard PD Conjunctive PD

doubleapp 0.320 s 1 0.325 s 0.98 0.230 s 1.39
maxlength 1.985 s 1 1.170 s 1.70 1.020 s 1.95

depth 0.980 s 1 0.875 s 1.12 0.340 s 2.88
relative 1.042 s 1 1.039 s 1.00 1.005 s 1.04
contains 0.740 s 1 0.700 s 1.06 0.160 s 4.63

Table 1: Some Experiments — Absolute Timings and Speedups

5The Paddy system [22] uses non-atomic, non-recursive folding to avoid backpropaga-
tion of bindings (to preserve Prolog semantics). In general this is sufficient to solve the
above problem. Apart from that, Paddy only performs folding of atoms, i.e. the same
implicit folding used in standard partial deduction.



General Remarks and Conclusion

In the above implementation we still use a simple, but safe renaming (with
vars(α(s)) = vars(s)). Details about how to obtain an optimal, correct
renaming can be found in [16]. Also note that the framework of conjunctive
partial deduction, is mono-variant wrt existential variables: i.e. if p(x, i) is
used once, with i existential, and somewhere else with i not being existential,
then we cannot remove the existential variable for the first call. This is also
dealt with in [16].

Remark that in Definition 2.5 a partitioning function p is a mapping from
conjunctions to sets of conjunctions. To be fully general we would have to
extend this so that p maps to multisets of conjunctions (making notations
more burdensome, but the same results apply).

In conclusion, we have presented a simple but powerful extension of par-
tial deduction, showed that it can perform tupling and deforestation and
proved a correctness result similar to the one of standard partial deduction.
Experiments conducted with a prototype confirm that techniques developed
for standard partial deduction carry over and that the added power actually
pays off in practice.

Acknowledgements

Michael Leuschel is supported by the Belgian GOA “Non-Standard Applications of
Abstract Interpretation”. Danny De Schreye is senior research associate of the Bel-
gian National Fund for Scientific Research. André de Waal is supported by HCM
Project Compulog Group—Cooperation Group in Computational Logic. We thank
Robert Glück, Jesper Jørgensen, Bern Martens, Alberto Pettorossi, Maurizio Proi-
etti and Morten Heine Sørensen for interesting discussions and comments. Jesper
Jørgensen and Bern Martens also provided valuable feedback on several drafts of
this paper.

References
[1] A. Bossi, N. Cocco, and S. Dulli. A method for specialising logic programs.

ACM Transactions on Programming Languages and Systems, 12(2):253–302,
1990.

[2] M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoid-
ing infinite unfolding during partial deduction. New Generation Computing,
11(1):47–79, 1992.

[3] D. de Waal and J. Gallagher. The applicability of logic program analysis
and transformation to theorem proving. In A. Bundy, editor, Automated
Deduction—CADE-12, pages 207–221. Springer-Verlag, 1994.

[4] J. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88–98. ACM Press, 1993.

[5] J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program
specialisation. New Generation Computing, 9(3 & 4):305–333, 1991.



[6] R. Glück, J. Jørgensen, B. Martens, and M. H. Sørensen. Controlling conjunc-
tive partial deduction of definite logic programs. Technical Report CW 226,
Departement Computerwetenschappen, K.U. Leuven, Belgium, February 1996.

[7] J. Jørgensen, M. Leuschel and B. Martens. Conjunctive Partial Deduction in
Practice. Submitted.

[8] J. Komorowksi. A Specification of an Abstract Prolog Machine and its Appli-
cation to Partial Evaluation. PhD thesis, Linköping University, Sweden, 1981.
Linköping Studies in Science and Technology Dissertations 69.

[9] A. Lakhotia and L. Sterling. How to control unfolding when specializing inter-
preters. New Generation Computing, 8:61–70, 1990.

[10] J. Lam and A. Kusalik. A comparative analysis of partial deductors for pure
Prolog. Technical report, Department of Computational Science, University of
Saskatchewan, Canada, May 1990. Revised April 1991.

[11] M. Leuschel. Ecological partial deduction: Preserving characteristic trees with-
out constraints. In M. Proietti, editor, Proceedings of LOPSTR’95, LNCS 1048,
pages 1–16, 1996. Springer-Verlag.

[12] M. Leuschel and D. De Schreye. Towards creating specialised integrity checks
through partial evaluation of meta-interpreters. In Proceedings of PEPM’95,
the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, pages 253–263, June 1995. ACM Press.

[13] M. Leuschel, D. De Schreye, and A. de Waal. A conceptual embedding of
folding into partial deduction: Towards a maximal integration. Technical Re-
port CW 225, Departement Computerwetenschappen, K.U. Leuven, Belgium,
February 1996. Accessible via http://www.cs.kuleuven.ac.be/~lpai.

[14] M. Leuschel and B. Martens. Global control for partial deduction through char-
acteristic atoms and global trees. In O. Danvy, R. Glück, P. Thiemann, editors,
Proceedings 1996 Dagstuhl Seminar on Partial Evaluation, LNCS, Springer
Verlag. To Appear.

[15] M. Leuschel and B. Martens. Partial deduction of the ground representa-
tion and its application to integrity checking. In J. Lloyd, editor, Proceedings
of ILPS’95, the International Logic Programming Symposium, pages 495–509,
Portland, USA, December 1995. MIT Press.

[16] M. Leuschel and M. H. Sørensen. Redundant Argument Filtering of Logic
Programs. May 1996. Submitted for Publication.

[17] J. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.
[18] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming.

Journal of Logic Programming, 11:217–242, 1991.
[19] B. Martens and D. De Schreye. Automatic finite unfolding using well-founded

measures. Journal of Logic Programming, 1996. To Appear.
[20] S. Owen. Issues in the partial evaluation of meta-interpreters. In H. Abramson

and M. Rogers, editors, Meta-Programming in Logic Programming, Proceedings
of the Meta88 Workshop, June 1988, pages 319–339. MIT Press, 1989.

[21] A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations
and techniques. Journal of Logic Programming, 19&20:261–320, May 1994.

[22] S. Prestwich. The PADDY partial deduction system. Technical Report ECRC-
92-6, ECRC, Munich, Germany, 1992.

[23] M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order,
for avoiding unnecessary variables in logic programs. In J. Ma luszyński and
M. Wirsing, editors, Proceedings of PLILP’91, LNCS 528, Springer Verlag,
pages 347–358, 1991.



[24] M. Proietti and A. Pettorossi. The loop absorption and the generalization
strategies for the development of logic programs and partial deduction. The
Journal of Logic Programming, 16(1&2):123–162, May 1993.

[25] H. Seki. Unfold/fold transformation of stratified programs. Theoretical Com-
puter Science, 86:107–139, 1991.

[26] H. Seki. Unfold/fold transformation of general programs for the well-founded
semantics. Journal of Logic Programming, 16:5–23, 1993.

[27] H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In
S.-Å. Tärnlund, editor, Proceedings of the Second International Conference on
Logic Programming, pages 127–138, Uppsala, Sweden, 1984.


