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Abstract. Standard partial deduction suffers from several drawbacks
when compared to top-down abstract interpretation schemes. Conjunc-
tive partial deduction, an extension of standard partial deduction, reme-
dies one of those, namely the lack of side-ways information passing. But
two other problems remain: the lack of success-propagation as well as
the lack of inference of global success-information. We illustrate these
drawbacks and show how they can be remedied by combining conjunc-
tive partial deduction with an abstract interpretation technique known
as more specific program construction. We present a simple, as well as a
more refined integration of these methods. Finally we illustrate the prac-
tical relevance of this approach for some advanced applications, where it
surpasses the precision of current abstract interpretation techniques.

1 Introduction

The heart of any technique for partial deduction, or more generally logic program
specialisation, is a program analysis phase. Given a program P and an (atomic)
goal « A, one aims to analyse the computation-flow of P for all instances
«— Af of — A. Based on the results of this analysis, new program clauses are
synthesised.

In partial deduction, such an analysis is based on the construction of finite
and usually incomplete!, SLD(NF)-trees. More specifically, following the foun-
dations for partial deduction developed in [14], one constructs

e a finite set of atoms S = {4;,...,A,}, and
e a finite (possibly incomplete) SLD(NF)-tree 7; for each (P U {«— A4;}),
such that:
1) the atom A in the initial goal « A is an instance of some A; in S, and
2) for each goal « By,..., By labelling a leaf of some SLD(NF)-tree 7;, each
B, is an instance of some A; in S.

* Supported by the Belgian GOA “Non-Standard Applications of Abstract
Interpretation”
** Senior Research Associate of the Belgian Fund for Scientific Research
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[14] to allow it to be incomplete: at any point we may decide not to select any atom
and terminate a derivation.



The conditions 1) and 2) ensure that together the SLD(NF)-trees 11, ..., 7, form
a complete description of all possible computations that can occur for all concrete
instances < A# of the goal of interest. At the same time, the point is to propagate
the available input data in « A as much as possible through these trees, in order
to obtain sufficient accuracy. The outcome of the analysis is precisely the set of
SLD(NF)-trees {71,...,7,}: a complete, and as precise as possible, description
of the computation-flow.

Finally, a code generation phase produces a resultant clause for each non-
failing branch of each tree, which synthesises the computation in that branch.

In the remainder of this paper we will restrict our attention to definite logic
programs (possibly with declarative built-ins like \=, is, ...). In that context, the
following generic scheme (based on similar ones in e.g. [4, 12]) describes the basic
layout of practically all algorithms for computing the sets S and {r,...,7,}.

Algorithm 1 (Standard Partial Deduction)

Initialise i =0 , S; = {A}

repeat
for each Ay € S;, compute a finite SLD-tree 1y, for Ay ;
let S} := S, U{B|B, is an atom in a leaf of some tree Ty,

which is not an instance of any A, € S;} ;
let S;;1 := abstract(S])
until Si+1 = Sl

In this algorithm, abstract is a widening operator: abstract(S}) is a set of
atoms such that each atom of S! is an instance of atom in abstract(S!). The
purpose of the operator is to ensure termination of the analysis.

An analysis following this scheme focusses exclusively on a top-down propa-
gation of call-information. In the separate SLD-trees 7;, this propagation is per-
formed through repeated unfolding steps. The propagation over different trees
is achieved by the fact that for each atom in a leaf of a tree there exists another
tree with (a generalisation of) this atom as its root. The decision to create a set
of different SLD-trees — instead of just creating one single tree, which would
include both unfolding steps and generalisation steps — is motivated by the fact
that these individual trees determine how to generate the new clauses.

The starting point for this paper is that the described analysis scheme suffers
from some clear imprecision problems. It has some obvious drawbacks compared
to top-down abstract interpretation schemes, such as for instance the one in [1].
These drawbacks are related to two issues: the lack of success-propagation, both
upwards and side-ways, and the lack of inferring global success-information. We
discuss these issues in more detail.

1.1 Lack of success-propagation
Consider the following tiny program:

Evample 1. p(X) —q(X),r(X)  qla)—  rla)— ()<



For a given query « p(X), one possible (although very unoptimal) outcome
of the Algorithm 1 is the set S = {p(X), ¢(X),r(X)} and the SLD-trees 71, 7o
and 73 presented in Fig. 1.

11— p(X) T2 — q(X) 31— r(X) T3 — q(X)
| } o X//\X/b X//\
—q(X),r(X) O m O O — q(X)

Fig. 1. A possible outcome of Algorithm 1 for Ex. 1 and Ex. 1’

With this result of the analysis, the transformed program would be identical
to the original one. Note that in 75 we have derived that the only answer for
— ¢(X) is X/a. An abstract interpretation algorithm such as the one in [1]
would propagate this success- information to the leaf of 71, thereby making the
call « r(X) more specific, namely < r(a). This information would then be used
in the analysis of r/1, allowing to remove the redundant branch. Finally, the
success-information, X/a, would be propagated up to the « p(X) call, yielding
a specialised program:

pla)—  qla)—  r(a) <
which is correct for all instances of the considered query «— p(X).

Note that this particular example could be solved by the techniques in [4].
There, a limited success-propagation, restricted to only one resolution step, is
introduced and referred to as a more specific resolution step.

1.2 Lack of inference of global success-information

Assume that we add the clause ¢(X) <« ¢(X) to the program in Ex. 1, yielding
Ex. 1. A possible outcome of Algorithm 1 for the query « p(z) now is S =
{p(X),q(X),r(X)} and 1, 74, T3, where 74 is also depicted in Fig. 1.

Again, the resulting program is identical to the input program. In this case,
simple bottom-up propagation of successes is insufficient to produce a better
result. An additional fix-point computation is needed to detect that X/a is the
only answer substitution. Methods as the one in [1] integrate such fix-point
computations in the top-down analysis. As a result, the same more specialised
program as for Ex. 1 can be obtained.

In addition to pointing out further imprecision problems of the usual analysis
scheme, the main contributions of the current paper are to propose a more refined
analysis scheme that solves these problems and to illustrate the applicability of
the new scheme to a class of applications in which they are wital for successful
specialisation. The remainder of the paper is organised as follows. In Sect. 2 we
present the intuitions behind the proposed solution and illustrate the extensions
on a few simple examples. In Sect. 3 we present more realistic, practical examples



and we justify the need for a more refined algorithm. This more refined Algorithm
is then presented in Sect. 4 and used to specialise the ground representation in
Sect. 5. We conclude with some discussions in Sect. 6.

2 Introducing More Specific Program Specialisation

There are different ways in which one could enhance the analysis to cope with
the problems mentioned in the introduction. A solution that seems most promis-
ing is to just apply the abstract interpretation scheme of [1] to replace Algo-
rithm 1. Unfortunately, this analysis is based on an AND-OR-tree representation
of the computation, instead of an SLD-tree representation. As a result, applying
the analysis for partial deduction causes considerable problems for the code-
generation phase. It becomes very complicated to extract the specialised clauses
from the tree. The alternative of adapting the analysis of [1] in the context of an
SLD-tree representation causes considerable complications as well. The analysis
very heavily exploits the AND-OR-tree representation to enforce termination.

The solution we propose here is based on the combination of two existing
analysis schemes, each underlying a specific specialisation technique: the one of
conjunctive partial deduction [10, 6] and the one of more specific programs [15].2

Let us first present an abstract interpretation method based on [15] which
calculates more specific versions of programs.

We first introduce the following notations. Given a set of logic formulas P,
Pred(P) denotes the set of predicates occuring in P. By mgu*(A, B) we denote
the most general unifier of A and B’, where B’ is obtained from B by renaming
apart wrt A. Next msg(S) denotes the most specific generalisation of the atoms
in S. We also define the predicate-wise application msg* of the msg: msg*(S) =
{msg(SP) | p € Pred(P)}, where S? are all the atoms of S having p as predicate.

In the following we define the well-known non-ground T’p operator along with
an abstraction Up of it.

Definition 1. For a definite logic program P and a set of atoms A we define:
TP(A) = {H01 .0, | H~—By,....B,e P\NO; = mgu*(Bl,AZ) with A; € .A}
We also define Up(A) = msg*(Tp(A)).

One of the abstract interpretation methods of [15] can be seen (see also
Sect. 6) as calculating {fp(Up) = Up 1°° (0). In [15] more specific versions of
clauses and programs are obtained in the following way:

Definition 2. Let C = H «— By,...,B, be a definite clause and A a set of
atoms. We define msva(C) = {Cb;...60, | 0; = mgu*(B;, A;) with A; € A}.
The more specific version msv(P) of P is then obtained by replacing every clause
C € P by msvspw,)(C) (note that msvigpw,y(C) contains at most 1 clause).

2 These techniques are rather straightforward to integrate because they use the same
abstract domain: a set of concrete atoms (or goals) is represented by the instances
of an abstract atom (or goal).



In the light of the stated problems, an integration of partial deduction with
the more specific program transformation seems a quite natural solution. In [15]
such an integration was already suggested as a promising future direction. The
following example however reveals that, in general, this combination is still too
weak to deal with side-ways information propagation.

Ezample 2. (append-last)

app_last(L,X) :- append(L,[a],R), last(R,X).
append([],L,L).

append([H|X],Y,[H|Z]) :- append(X,Y,Z).
last ([X]1,X).

last([HIT],X) :- last(T,X).

The hope is that the specialisation techniques are sufficiently strong to infer
that a query app-last(L,X) produces the answer X=a. Partial deduction on its own
is incapable of producing this result. An SLD-tree for the query app-last(L,X)
takes the form of 7 in Fig. 2. Although the success-branch of the tree produces
X=a, there are infinitely many possibilities for L and, without a bottom-up fixed-
point computation, X=a cannot be derived for the entire computation. At some
point the unfolding needs to terminate, and additional trees for append and last,
for instance 7o and 73 in Fig. 2, need to be constructed.

T1: app-last(L, X) To: append(L,|a], R
| ot / ¢ ’;'g;,R
append(L, [a], R), last(R, X) append(L’, [a], R')
L/“’:/[“/ NZW],R/[HR’]
last([a], X) append(L’, [a], R"), last([H|R'], X) last(R, X)
l X/a l R/[X'/ \R/[H|T]
O append(L’, [a], R'), last(R’, X) last(T, X)

Fig. 2. SLD-trees for Ex. 2

Unfortunately, in this case, even the combination with the more specific pro-
gram transformation is insufficient to obtain the desired result. We get:

Tp(Up 11)=Tp 1 2= { app-last(a), append([], [a],[a]),

append ([H], [al,[H,a]), last([X],X), last([H,X],X) }

after which most specific generalisation yields

Up 12 = { app-last(a), append (X, [al,[Y|Z]), last ([X|Y], Z) }
At this stage, all information concerning the last elements of the lists is lost and
we reach the fix-point in the next iteration:



Up 1 3 = { app-last(Z), append (X, [al, [Y|Z]), last ([X|Y],Z) }

One could argue that the failure is not due to the more specific programs
transformation itself, but to a weakness of the msg operator: it’s inability to
retain information at the end of a data-structure. Note however that, even if
we use other abstractions and their corresponding abstract operation proposed
in the literature, such as type-graphs [8], regular types [5] or refined types for
compile-time garbage collection of [16], the information still gets lost.

The heart of the problem is that in all these methods the abstract operator
is applied to atoms of each predicate symbol separately. In this program (and
many, much more relevant others, as we will discuss later), we are interested in
analysing the conjunction append(L, [a],R),last(R,X) with a linking intermedi-
ate variable (whose structure is too complex for the particular abstract domain).
If we could consider this conjunction as a basic unit, and therefore not perform
abstraction on the separate atoms, but only on conjunctions of the involved
atoms, we would retain a precise side-ways information passing analysis.

In [10] we have developed a minimal extension to partial deduction, called
conjunctive partial deduction. This technique extends the standard partial de-
duction approach by:

e considering a set S = {Cy,...,Cy,} of conjunctions of atoms instead of indi-
vidual atoms, and
e building an SLD-tree 7; for each P U {«— C;},
such that the query < C of interest (which may now be a non-atomic goal) as
well as each leaf goal « By, ..., By of some SLD-tree 7;, can be partitioned into
conjunctions C1,...,C}, such that each C/ is an instance of some C; € S.
The following basic notion is adapted from [14].

Definition 3. (resultant) Let P be a program, G =— Q a goal, where Q is a
conjunction of atoms, Gy = G,G1,...,Gy a finite derivation for P U {G}, with
substitutions 01, ..., 0, and let G,, have the form «— Q.,. We say that Q0,...0,, —
@y, is the resultant of the derivation Gg, Gy, ...,G,.

The notion can be generalised to SLD-trees. Given a finite SLD-tree 7 for
P U {G}, there is a corresponding set of resultants R, including one resultant
for each non-failed derivation of 7.

In the partial deduction notion introduced in [14], the SLD-trees are re-
stricted to atomic top-level goals. This restriction has been omitted in [10] and
therefore resultants of the SLD-trees are not necessarily clauses: their left-hand
side may contain a conjunction of atoms. To transform such resultants back
into standard clauses, conjunctive partial deduction involves a renaming trans-
formation, from conjunctions to atoms with new predicate symbols, in a post-
processing step. For further details we refer to [10].

Although this extension of standard partial deduction was motivated by to-
tally different concerns than the ones in the current paper (the aim was to achieve
a large class of unfold/fold transformations [17] within a simple extension of the
partial deduction framework), experiments with conjunctive partial deduction
on standard partial deduction examples also showed significant improvements.



Only in retrospect we realised that these optimisations were due to considerably
improved side-ways information-propagation.

Let us illustrate how conjunctive partial deduction combined with the msv(.)
transformation does solve Ex. 2. Starting from the goal app_last(X) and using
an analysis scheme similar to Algorithm 1, but with the role of atoms replaced
by conjunctions of atoms, we can obtain S = { app_last(X), append(L, [a],R) A
last (R,X) } and the corresponding SLD-trees, which are sub-trees of 71 of Fig. 2.
Here, ”\” is used to denote conjunction in those cases where ”,” is ambiguous.

The main difference with the (standard) partial deduction analysis is that
the goal append(L’,[a]l,R’),last(R’,X) in the leaf of 7; is now considered as
an undecomposed conjunction. This conjunction is already an instance of an
element in S, so that no separate analysis for append(L’, [a],R’) or last(R’,X)
is required. Using a renaming transformation rename(append(x,y,z) Alast(z,u))
= al(x,y,z,u) the resulting transformed program is:

app_last(L,X) :- al(L,[a],R,X)
al([],[al,[al,a).
al([H|L’],[a],[H | R’], X) :- al(L’,[a]l,R’,X).

Applying the Up-operator now produces the sets:

Up11={al(ll,[al,[al,a)}, Up12={al(x,[al,¥,a), app-last(a)},
the latter being a fix-point. Unifying the success-information with the body-
atoms in the above program and performing argument filtering produces the
desired more specific program:

app_last(L,a) :- al(L).
al([D).
al([HIL’]) :- al(L’).

3 Some Motivating Examples

In this section we illustrate the relevance of the introduced techniques by more
realistic, practical examples.

3.1 Storing values in an environment

The following piece of code P stores values of variables in an association list and
is taken from a meta-interpreter for imperative languages ([9]).

store([],Key,Value, [Key/Valuel).
store([Key/Value2|T] ,Key,Value, [Key/Value|T]).

store([K2/V2|T] ,Key,Value, [K2/V2|BT]) :- Key \= K2,store(T,Key,Value,BT).
lookup(Key, [Key/Value|T],Value).

lookup (Key, [K2/V2|T] ,Value) :- Key \= K2,lookup(Key,T,Value).



During specialisation it may happen that a known (static) value is stored in
an unknown environment. When we later retrieve this value from the environ-
ment it is often vital to be able to recover this static value. This is very similar
to the append-last problem of Ex. 2. So again, calculating msv(P), even if we
perform a magic-set transformation, does not give us any new information for a
query like store(E,k,2,E1),lookup(El,k,Val). To solve this problem, one needs
again to combine abstract interpretation with conjunctive partial deduction (to
“deforest” [21] the intermediate environment E;). The specialised program P’
for the query store(E,k,2,E1),lookup(El,k,Val) using e.g. the ECCE ([9]) con-
junctive partial deduction system is the following:

store_lookup__1([], [k/2],2).

store_lookup__1([k/X1|X2], [key/21X2],2).

store_lookup__1([X1/X2|X3], [X1/X2]|X4],X5) :-
k \= X1,store_lookup__1(X3,X4,X5).

If we now calculate msv(P’), we are able to derive that Val must be 2:

store_lookup__1([1, [k/2],2).

store_lookup__1([k/X1|X2], [k/21X2],2).

store_lookup__1([X1/X21X3], [X1/X2,X4/X51X6],2) :-
k \= X1,store_lookup__1(X3, [X4/X5|X6],2).

Being able to derive this kind of information is of course even more relevant
when one can continue specialisation with it. For instance in an interpreter for
an imperative language there might be multiple static values which are stored
and later on control tests or loops.

3.2 Proving Functionality

The following is a generalisation of the standard definition of functionality (see
e.g. [18] or [3]).

Definition 4. We say that a predicate p defined by a program P is functional
wrt the terms t1,...,t, iff for every pair of atoms A = p(t1,...,th,a1,...,ax)
and B =p(t1,...,th,b1,...,b;) we have that:

e — A, B has a correct answer 0 iff — A, A= B has

o — A B finitely fails iff — A, A = B finitely fails

In the above definition we allow A, B to be used as atoms as well as terms (as
arguments to = /2). Also, for simplicity of the presentation we restrict ourselves
to correct answers. Therefore it can be easily seen that,? if the goal « A’, A’
is a more specific version of <+ A, B then p is functional wrt ¢1,...,t, (because
msv(.) preserves computed answers and removing syntactically identical calls
preserves the correct answers for definite logic programs).

3 The reasoning for computed answers is not so obvious.



Functionality is useful for many transformations, and is often vital to get
super-linear speedups. For instance it is needed to transform the naive (ex-
ponential) Fibonacci program into a linear one (see e.g. [18]). It can also be
used to produce more efficient code (see e.g. [3]). Another example arises nat-
urally from the store-lookup code of the previous section. In a lot of cases,
specialisation can be greatly improved if functionality of lookup(Key,Env,Val)
wrt a given key Key and a given environment Env can be proven (in other
words if we lookup the same variable in the same environment we get the
same value). For instance this would allow to replace, during specialisation,
lookup (Key,Env,V1) ,lookup (Key,Env,V2) ,p(V2) by lookup(Key,Env,V1),p(V1).

To prove functionality of lookup(Key,Env,Val) we simply add the following
definition:* 11(X,E,V1,V2) :- lookup(X,E,V1),lookup(X,E,V2). By specialising
the query 11 (Key,Env,V1,V2) using the ECCE system and then calculating msv(.)
for the resulting program, we are able to derive that V1 must be equal to v2:

11(X,E,V,V) :- lookup_lookup__1(K,E,V,V).
lookup_lookup__1(X1,[X1/X2]X3],X2,X2).
lookup_lookup__1(X1, [X2/X3,X4/X5|X6],X7,X7) :-

X1 \= X2, lookup_lookup__1(X1,[X4/X5|X6],X7,X7).

In addition to obtaining a more efficient program the above implies (because
conjunctive partial deduction preserves computed answers) that lookup(K,E,V),
lookup(X,E,V) is a more specific version of lookup(K,E,V1),lookup(K,E,V2), and
we have proven functionality of lookup(Key,Env,Val) wrt Key and Env.

3.3 The Need for a More Refined Integration

So far we have always completely separated the conjunctive partial deduction
phase and the bottom-up abstract interpretation phase. The next example, which
arose from a practical application described in Sect. 5, shows that this is not al-
ways sufficient. Take a look at the following excerpt from a unification algorithm
for the ground representation (the full code can be found in [13]), which takes
care of extracting variable bindings out of (uncomposed) substitutions.

get_binding(V,empty,var(V)).

get_binding(V,sub(V,S),S).

get_binding(V,sub(W,S) ,var(V)) :- V \= W.
get_binding(V,comp(L,R),S) :- get_binding(V,L,VL), apply(VL,R,S).
apply(var(V),Sub,VS) :- get_binding(V,Sub,VS).
apply(struct(F,A),Sub,struct(F,AA)) :- 1_apply(A,Sub,AA).
1_apply([],Sub,[]1).

1_apply([H|T],Sub, [AH|AT]) :- apply(H,Sub,AH),1_apply(T,Sub,AT).

At first sight this looks very similar to the example of the previous section and
one would think that we could easily prove functionality of get_binding(V,S,Bind)

4 This is not strictly necessary but it simplifies spotting functionality.



wrt a particular variable index V and a particular substitution S. Exactly this
kind of information is required for the practical applications in Sect. 5.

Unfortunately this kind of information cannot be obtained by fully sepa-
rated out phases. For simplicity we assume that the variable index V is known
to be 1. Taking the approach of the previous section we would add the defini-
tion gg(Sub,B1,B2) :- get_binding(1l,Sub,B1),get binding(1,Sub,B2) and apply
conjunctive partial deduction and msv(.) to obtain:

gg(Sub,B1,B2) :- get_binding_get_binding__1(Sub,B1,B2).
get_binding_get_binding__1(empty,var(1),var(1)).
get_binding_get_binding__1(sub(1,X1),X1,X1).
get_binding_get_binding__1(sub(X1,X2),var(1l),var(1)) :- 1 \= X1.
get_binding_get_binding__1(comp(X1,X2),X3,X4) :-
get_binding_get_binding__1(1,X1,X5,X6),apply(X5,X2,X3) ,apply(X6,X2,X4) .

By analysing apply(X5,X2,X3) ,apply(X6,X2,X4) of clause 5 we cannot derive
that X3 must be equal to X4 because the variables indexes X5 and X6 are different
(applying the same substitution on different terms can of course lead to differing
results). However, if we re-apply conjunctive partial deduction before reaching
the fixpoint of Up, we can solve the above problem. Indeed after one application
of Up we obtain A = Up(f)) = {get_binding get binding 1(S,B,B)} and at that
point we have that msv.4(.) of clause 5 looks like:

get_binding_get_binding__1(comp(X1,X2),X3,X4) :-
get_binding_get_binding__1(1,X1,V,V),apply(V,X2,X3),apply(V,X2,X4).

If we now recursively apply conjunctive partial deduction and msv(.) to
apply(V,X2,X3) ,apply(V,X2,X4) and then, again before reaching the fixpoint, to
1_apply(V,X2,X3),1_apply(V,X2,X4) we can derive functionality of get_binding.
The details of this more refined integration are elaborated in the next section.

4 A More Refined Algorithm

We now present an algorithm which interleaves the least fixpoint construction of
msv(.) with conjunctive partial deduction unfolding steps. For that we have to
adapt the more specific program transformation to work on incomplete SLDNF-
trees obtained by conjunctive partial deduction instead of for completely con-
structed programs.®

We first introduce a special conjunction 1 which is an instance of every
conjunction, as well as the only instance of itself, and extend the msg such that
msg(SU{L}) = msg(S) and msg({L}) = L. We also use the convention that
if unification fails it returns a special substitution fail. Applying fail to any
conjunction @ in turn yields L. Finally by & we denote the concatenation of
tuples (e.g. (a) W (b,c) = (a,b,c)).

In the following definition we associate conjunctions with resultants:

5 This has the advantage that we do not actually have to apply a renaming transfor-
mation (and we might get more precision because several conjunctions might match).



Definition 5. (resultant tuple) Let S = {Q1,...,Qs} be a set of conjunctions
of atoms, and T = {11,...,75} a set of finite, non-trivial SLD-trees for P U {«
Q1}, ..., PU{— Qs}, with associated sets of resultants Ry, ..., Rs, respectively.
Then the tuple of pairs RS = ((Q1, R1),...,(Qs, Rs)) is called a resultant tuple
for P. An interpretation of RS is a tuple (@Y, ..., Q%) of conjunctions such that
each QY is an instance of Q;.

The following defines how interpretations of resultant tuples can be used to
create more specific resultants:

Definition 6. (refinement) Let I = (Q},..., Q%) be an interpretation of a
resultant tuple RS = ((Q1, R1), ..., (Qs, Rs)) and R = H — Body be a resultant.
Let Q be a sub-goal of Body such that @ is an instance of Q; and such that
mgu*(Q, Q;) = 0. Then RO is called a refinement of R under RS and I. R itself
and all refinements of RO are also called refinements of R under RS and I.

Note that a least refinement does not always exist. Take for instance R =
q — p(X, f(T) Ap(T, X), RS = ((p(X,Y),R1)) and I = (p(X, X)). We can
construct an infinite sequence of successive refinements of R under RS and I:
g — p(f(X"), FT)A (T, (X)), g — p(F(X"), FFTNIA pUFT), (X)), ...
Hence we denote by refrs (R), a particular refinement of R under RS and I.
A pragmatic approach might be to allow any particular sub-goal to be unified
only once with any particular element of I.

Note that in [15], it is not allowed to further refine refinements and therefore
only finitely many refinements exist and a least refinement can be obtained
by taking the mgu* of all of them. As we found out through several examples
however, (notably the ones of Sect. 3.3 and Sect. 5) this approach turns out to
be too restrictive in general. In a lot of cases, applying a first refinement might
instantiate R in such a way that a previously inapplicable element of RS can
now be used for further instantiation.

We can now extend the Up operator of Def. 1 to work on interpretations of
resultant tuples:

Definition 7. (Upgrs) Let I = (Q},..., Q%) be an interpretation of a resul-
tant tuple RS = ((Q1,R1),...,(Qs, Rs)). Then Up gs is defined by Up rs(I) =
(M, ..., M), where M; = msg({H | C € R; Arefrs,i1(C) = H «— B}).

We can now present a generic algorithm which fully integrates the abstract
interpretation msv(.) with conjunctive partial deduction. Below, =, denotes
syntactic identity, up to reordering.

We first define an abstraction operation, which is used to ensure termination
of the conjunctive partial deduction process (see [6] for some such operations).

Definition 8. (abstraction) A multi-set of conjunctions {Q1,...,Qr} is an
abstraction of a conjunction Q iff for some substitutions 01, ...,0; we have that
Q =, Q101 N ... N Qrbi. An abstraction operation is an operation which maps
every conjunction to an abstraction of it.

S Tt is probably correct to use L if the least refinement does not exist but we have not
investigated this.



We need the following definition, before presenting the promised algorithm:

Definition 9. (covered) Let RS = ((Q1, R1),...,(Qs, Rs)) be a resultant tu-
ple. We say that a conjunction Q is covered by RS iff there exists an abstraction
{Q1,...,QL} of Q such that each Q} is an instance of some Q;.

Algorithm 2 (Conjunctive Msv)
Input: a program P, an initial query @, an unfolding rule unfold for P mapping
conjunctions to resultants.
Output: A specialised and more specific program P’ for Q.
Initialisation: i:=0; Ip = (1), RSo = ((Q, unfold(Q)))
repeat
for every resultant R in RS; such that the body B of refrs,. 1, (R) is not covered:
/* perform conjunctive partial deduction: */
calculate abstract(B) = B1 A ... A By
let {C1,...,Ck} be the B;’s which are not instances” of conjunctions in RS;
RS;+1 = RS;W ((C1,unfold(Ch)),...(Ck,unfold(Ck)));
Iiv1 =LY <L.I;.L>, =1+ 1.
/* perform one bottom-up propagation step: */

Iiy1 =Uprs, (Ii); RSi+1 = RSi; i =1+ 1.
until [7, = 11‘71
return a renaming of {refrs, 1,(C) | (Q,R) € RS; ANC € R}

Note that the above algorithm ensures coveredness and performs abstraction
only when adding new conjunctions, the existing ones are not abstracted (it is
trivial to adapt this). This is like in [12] but unlike Algorithm 1.

Algorithm 2 is powerful enough to prove e.g. functionality of get_binding
of Sect. 3.3 and use it for further specialisation. A detailed execution of the
algorithm, proving functionality of multiplication, can be found in [13].

Correctness of Algorithm 2 for preserving Least Herbrand Model as well as
computed answers, follows from correctness of conjunctive partial deduction (see
[10]) and of the more specific program versions for suitably chosen conjunctions
(because [15] only allows one unfolding step, a lot of intermediate conjunctions
have to be introduced) and extended for the more powerful refinements of Def 6.
Termination, for a suitable abstraction operation (see [6]), follows from termi-
nation of conjunctive partial deduction (for the for loop) and termination of
msv(.) (for the repeat loop).

Note that in contrast to conjunctive partial deduction, msv(.) can replace
infinite failure by finite failure, and hence Algorithm 2 does not preserve finite
failure. However, if the specialised program fails infinitely, then so does the origi-
nal one (see [15]). The above algorithm can be extended to work for normal logic
programs. But, because finite failure is not preserved, neither are the SLDNF
computed answers. One may have to look at SLS [19] for a suitable procedural
semantics which is preserved.

" Or wariants to make the algorithm more precise.



5 Specialising the Ground Representation

A meta-program is a program which takes another program, the object program,
as one of its inputs. An important issue in meta-programming is the represen-
tation of the object program. One approach is the ground representation, which
encodes variables at the object level as ground terms. A lot of meta-programming
tasks can only be written declaratively using the ground representation. This
was e.g. the case for the application in [11], where a simplification procedure
for integrity constraints in recursive deductive databases was written as a meta-
program. The goal was to obtain a pre-compilation of the integrity checking via
partial deduction of the meta-interpreter. However, contrary to what one might
expect, partial deduction was then unable to perform interesting specialisation
and no pre-compilation could be obtained. This problem was solved in [11] via
a new implementation of the ground representation combined with a custom
specialisation technique.

The crucial problem in [11] boiled down to a lack of information propagation
at the object level. The ground representation entails the use of an explicit unifi-
cation algorithm at the object level. For the application of [11] we were interested
in deriving properties of the result R of calculating unify(A,B,S),apply(H,S,R)
where S is a substitution (the mgu) and A,B,H are (representations of) partially
known atoms. In a concrete example we might have A = status(X,student,Age),
B = status(ID,E,A), H = category(ID,E) and we would like to derive that R must
be an instance of category(ID’,student). However it turns out that, when using
an explicit unification algorithm, the substitutions have a much more complex
structure than e.g. the intermediate list of Ex. 2. Therefore current abstract in-
terpretation methods, as well as current partial deduction methods alone, fail to
derive the desired information.

Fortunately Algorithm 2 provides an elegant and powerful solution to this
problem. Some experiments, conducted with a prototype implementation of Al-
gorithm 2 based on the ECCE system [9], are summarised in Table 1. A unification
algorithm has been used, which encodes variables as var(VarIndex) and pred-
icates/functors as struct(p,Args). The full code can be found in [13]. All the
examples were successfully solved by the prototype and the main ingredient of
the success lay with proving functionality of get_binding.

The information propagations of Table 1 could neither be solved by regular
approximations ([5]), nor by [15] alone, nor by set-based analysis ([7]) nor even
by current implementations of the type graphs of [8]. In summary, Algorithm 2
also provides for a powerful abstract interpretation scheme as well as a full
replacement of the custom specialisation technique in [11].8

8 It is sometimes even able to provide better results because it can handle structures
with unknown functors or unknown arity with no loss of precision.



unify(A,B,S),apply(H,S,Res)
A B H Res
struct (p, [var(1),X]1) struct(p, [struct(a, [1),Y]) |var(1)| struct(a, 1)
struct (p, [X,var(1)]) struct (p, [Y,struct(a, [1)]) [var(1)| struct(a,[])
struct (p, [X,X]) struct(p, [struct(a, [1),Y]) X struct(a, []1)
struct (F, [var(I)]) X X |struct(F,[A])
struct (p, [X1,var(1),X2]) |struct(p, [Y1,struct(a, [1),Y2]) |[var(1)| struct(a, [1)

Table 1. Specialising the Ground Representation

6 Discussion and Conclusion

The approach presented in this paper can be seen as a practical realisation of a
combined backwards and forwards analysis (see [2]), but using the sophisticated
control techniques of (conjunctive) partial deduction to guide the analysis. Of
course, in addition to analysis, our approach also constructs a specialised, more
efficient program.

The method of [15] is not directly based on the Tp operator, but uses an
operator on goal tuples which can handle conjunctions and which is (sometimes)
sufficiently precise if deforestation can be obtained by 1-step unfolding without
abstraction. For a lot of practical examples this will of course not be the case.
Also, apart from a simple pragmatic approach, no way to obtain these conjunc-
tions is provided (this is exactly what conjunctive partial deduction can do).

In Algorithm 2 a conflict between efficiency and precision might arise. But
Algorithm 2 can be easily extended to allow different trees for the same con-
junction (e.g. use determinate unfolding for efficient code and a more liberal
unfolding for a precise analysis).

When using the unification algorithm from [11], instead of the one in [13]
Algorithm 2 cannot yet handle all the examples of Table 1. The reason is that
the substitutions in [11], in contrast to the ones in [13], are actually accumulating
parameters, whose deforestation (see [20]) is still an open problem in general.

In conclusion, we have illustrated limitations of both partial deduction and
abstract interpretation on their own. We have argued for a tighter integration
of these methods and presented a refined algorithm, interleaving a least fixpoint
construction with conjunctive partial deduction. The practical relevance of this
approach has been illustrated by several examples. Finally, a prototype imple-
mentation of the algorithm was able to achieve sophisticated specialisation and
analysis for meta-interpreters written in the ground representation, outside the
reach of current specialisation or abstract interpretation techniques.
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