
Towards Creating Specialised Integrity Checks
Through Partial Evaluation of Meta-Interpreters

Michael Leuschel∗ and Danny De Schreye†

Department of Computer Science, K.U. Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{michael,dannyd}@cs.kuleuven.ac.be

Abstract

In [23] we presented a partial evaluation scheme for a “real
life” subset of Prolog, containing first-order built-in’s, sim-
ple side-effects and the operational predicate if-then-else.
In this paper we apply this scheme to specialise integrity
checking in deductive databases. We present an interpreter
which can be used to check the integrity constraints in hier-
archical deductive databases. This interpreter incorporates
the knowledge that the integrity constraints were not vio-
lated prior to a given update and uses a technique to lift
the ground representation to the non-ground one for res-
olution. By partially evaluating this meta-interpreter for
certain transaction patterns we are able to obtain very effi-
cient specialised update procedures, executing substantially
faster than the original meta-interpreter. The partial eval-
uation scheme presented in [23] seems to be capable of au-
tomatically generating highly specialised update procedures
for deductive databases.

1 Introduction

Partial evaluation has received considerable attention both
in functional programming (see the book by Jones et al
[20] and the references therein) and logic programming (e.g.
[14, 15, 21, 37]). However, the concerns in these two ap-
proaches have strongly differed. In functional programming,
self-application and the realisation of the different Futamura
projections, has been the focus of a lot of contributions.
In logic programming, self-application has received very lit-
tle attention.1 Here, the majority of the work has been
concerned with direct optimisation of run-time execution,
often targeted at removing the overhead caused by meta-
interpreters.

In the context of pure logic programs, partial evalu-
ation is often referred to as partial deduction, the term
partial evaluation being reserved for the treatment of non-
declarative programs. Firm theoretical foundations for par-

∗Supported by Esprit BR-project Compulog II
†Senior research associate of the Belgian National Fund for Scien-

tific Research
1Some notable exceptions are [16,31].

Published in PEPM’95, the ACM Sigplan Sympo-
sium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, pages 253–263, June 21–23, 1995,
La Jolla, California. ACM Press.
c©1995 ACM 0-89791-720-0/95/0006...$3.50

tial deduction have been established by Lloyd and Shepherd-
son in [25].

However pure logic programming is rarely considered to
be viable for practical “real-life” programming and for in-
stance Prolog incorporates non-declarative extensions. In
[23] we presented a partial evaluation scheme for a practi-
cally usable subset of Prolog encompassing first-order2 built-
in’s, like var/1, nonvar/1 and =../2, simple side-effects, like
print/1, and the operational if-then-else construct.

An important aspect is the inclusion of the if-then-else,
which proved to be much better suited for partial evalua-
tion than the “full blown” cut. For instance it was pos-
sible to obtain a Knuth-Morris-Pratt like search algorithm
by specialising a “dumb” search algorithm for a given pat-
tern. The if-then-else contains a local cut and is usually
written as (If -> Then ; Else). The following informal
Prolog clauses can be used to define the if-then-else:

(If->Then;Else) :- If,!,Then.
(If->Then;Else) :- Else.

In other words if the test-part succeeds then a local cut is
executed and the then-part is entered (this means that the
test-part will yield at most one solution). If the test-part
fails finitely then the else-part is executed and if the test-
part “loops” (i.e. fails infinitely) then the whole construct
loops. Note that most uses of the cut can be mapped to
if-then-else constructs and the if-then-else can also be used
to implement the not/1.3

In [23] we also showed that freeness and sharing infor-
mation, which so far have been of no interest in (pure) par-
tial deduction, can be important to produce efficient spe-
cialised programs. In this paper we apply the partial evalu-
ation technique of [23] to a non-trivial and practically useful
meta-interpreter for specialised integrity checking in deduc-
tive databases.

From a theoretical viewpoint, integrity constraints are
very useful for the specification of deductive databases. They
ensure that no contradictory data can be introduced and
monitor the coherence of a database. From a practical view-
point however it can be quite expensive to check the integrity
of a deductive database after each update. An extensive
amount of research effort has been put into improving in-
tegrity checking such that it takes advantage of the fact
that a database was consistent before any particular update

2As opposed to “second order” built-in’s which are predicates ma-
nipulating clauses and goals, like call/1 or assert/1.

3Both the unsound and the sound version (using a groundness
check for soundness).

and only verifies the relevant parts of a database. Some
references to this line of research are [4, 6, 8, 10,26,27,36].

Some techniques also address pre-compilation aspects
and some even explicitly generate specialised update proce-
dures for certain update patterns and partial descriptions
of the database (see for instance the approach by Wallace
in [38]). The techniques are however restricted to very spe-
cific kinds of updates and specific kinds of partial knowledge.
Usually the intensional database (i.e. the rules) and the in-
tegrity constraints are supposed to be fixed and known, the
extensional database (i.e. the facts) is considered to be to-
tally unknown and only updates to the extensional database
are considered. This is for instance the case for the approach
by Wallace in [38].

A meta-program is a program which takes another pro-
gram, the object-program, as input and manipulates it in
some way. Some of the applications of meta-programming
are (a much more detailed account can be found in [18]):
extending the programming language, debugging, program
analysis, program transformation and of course specialised
integrity checking. In the latter case the object program is
the (relevant) part of a deductive database and the meta
program performs specialised integrity checking.

In the late 80’s it was proposed that partial evaluation
could be used to derive specialised integrity checks for de-
ductive databases by partially evaluating meta-interpreters.
This would allow for a very flexible way of generating spe-
cialised update procedures. Any kind of update pattern and
any kind of partial knowledge can be considered — it is not
fixed beforehand which part of the database is static and
which part is subject to change. This can be very useful in
practice. For instance in [5], Bry and Manthey argue that
it is not always the case that facts change more often than
rules and that rules are updated more often than integrity
constraints. Furthermore, by implementing the specialised
integrity checking as a meta-interpreter, we are not stuck
with one particular method. For example, by adapting the
meta-interpreter, we can implement different strategies wrt
testing phantomness and idleness.4

However, to the best of our knowledge, the idea based on
partially evaluating a meta-interpreter, was never actually
implemented and in the second part of this paper we pro-
vide the first practical realisation. We will apply the partial
evaluation scheme developed in [23] to a particular meta-
program performing integrity checking in (hierarchical) de-
ductive databases. Our results show that partial evaluation
has the potential to create highly specialised update proce-
dures for deductive databases.

The paper is structured as follows. In section 2 we intro-
duce some basic definitions relative to deductive databases
and we present a method which performs specialised in-
tegrity checking. In section 3 we present a meta-interpreter
which implements this method and in section 4 we discuss
how this meta-interpreter can be unfolded by a partial evalu-
ator. Section 5 discusses some implementation details of the
meta-interpreter and in section 6 we generate specialised up-
date procedures through partial evaluation and present ex-
perimental results. Some concluding remarks can be found
in section 7.

4See for instance the survey by Bry, Manthey and Martens in [6].
A brief description is also given in this paper after definition 2.3.

2 Basic Definitions

We assume the reader to be familiar with the standard no-
tions of logic programming, like term, atom or literal. Intro-
ductions to logic programming can be found in [1] and [24].
We use the convention to represent logical variables by (spe-
cially typeset) uppercase letters like X, Y. Predicates and
functors will be represented by lowercase letters like p, q, f, g.

Definition 2.1 (Deductive Database)
A clause is a first-order formula of the form Head← Body
where Head is an atom and Body is a conjunction of literals.
A deductive database is a set of clauses.

Note that we do not require a deductive database to be
range-restricted. Range-restriction is not necessary for the
approach in this paper5 and would only burden the presen-
tation. Also we do not make any distinction between facts,
rules and integrity constraints. A fact is just a clause with
an empty body. An integrity constraint is a clause of the
form false ← Body. A database is said to be inconsistent,
or violating the integrity constraints, iff false is derivable
in the database via SLDNF (which is a proof procedure for
normal logic programs which handles “negation by failure”,
for further details see [1] or [24]).

For the simplicity of the presentation we also suppose
that all clauses occuring in deductive databases are in some
normal form, meaning that if two clauses are variants of
each other then they are syntactically identical.6 We also
take the liberty to not always explicitly cite the goal for
which a SLDNF derivation is made. Finally we will suppose
that any SLDNF-derivation may be incomplete, i.e. neither
leading to success nor failure, but to a goal where no literal
has been selected for a further derivation step.

Definition 2.2 (Database Update)
A database update is a triple 〈Db+, Db=, Db−〉 such that
Db+, Db=, Db− are deductive databases and Db+ ∩Db= =
Db+ ∩Db− = Db= ∩Db− = ∅.
We say that δ is a SLDNF derivation after U iff δ is an
SLDNF derivation for Db+ ∪Db=.
Similarly δ is a SLDNF derivation before U if δ is an SLDNF
derivation for Db− ∪Db=.

Intuitively Db− ∪Db= represents the database state before
the update and Db+∪Db= represents the database state af-
ter the update. In other words Db− are the clauses removed
by the update and Db+ are the clauses which are added by
the update.

In the following definition we present a method to char-
acterise the (potential) effect a database update has on the
set of deducible atoms. It is loosely based on the calculation
of the sets of atoms posD,D′ , negD,D′ by Lloyd, Sonenberg
and Topor in [26] (which in turn is an extension of the cal-
culation of atomD,D′ by Lloyd and Topor in [27]). The
main difference being that we calculate pos(U) and neg(U)
in one step instead of in two, which should be more efficient
(however the result is the same as in each iteration step the

5This is because our notion of integrity is based on the SLDNF
procedure, which always gives the same answer irrespective of the
underlying language. However range-restriction is still useful as it
ensures that no SLDNF refutation will flounder.

6This guarantees that a database does not contain rules which are
variants of each other and it also guarantees that no composition of
databases will contain rules which are variants of each other.

2

influence of an atom C is independent of the other atoms
currently in posi and negi).

Also from now on mgu∗(A, B) represents an idempotent,
most general unifier of the set {A, B′} where B′ is obtained
from B by standardising apart (this small technical point
was overlooked in [26,27]).

Definition 2.3 (Potential Updates)
Given a database update U = 〈Db+, Db=, Db−〉 we define

the set of positive potential updates pos(U) and the set of
negative potential updates neg(U) inductively as follows:

pos0(U) = {A | A← Body ∈ Db+}
neg0(U) = {A | A← Body ∈ Db−}

posi+1(U) = {Aθ | A← . . . , B, . . . ∈ Db=,

C ∈ posi(U) and mgu∗(B, C) = θ}
∪ {Aθ | A← . . . ,¬B, . . . ∈ Db=,

C ∈ negi(U) and mgu∗(B, C) = θ}
negi+1(U) = {Aθ | A← . . . , B, . . . ∈ Db=,

C ∈ negi(U) and mgu∗(B, C) = θ}
∪ {Aθ | A← . . . ,¬B, . . . ∈ Db=,

C ∈ posi(U) and mgu∗(B, C) = θ}

pos(U) =
⋃

i≥0
posi(U)

neg(U) =
⋃

i≥0
negi(U)

Note that the above definition does not test whether an
atom A ∈ pos(U) is a “real” update, i.e. whether A is ac-
tually derivable after the update (this is what is called the
phantomness test) and whether A was indeed not derivable
before the update (this is called the idleness test). A similar
remark can be made about the atoms in neg(U). As such
the definition does not need to access the entire database,
and in fact the above definition does not reference the set
of facts in Db= (only clauses with at least one literal in the
body are used). This somewhat restricts the usefulness of
this method (and the one in [26,27]) when rules and integrity
constraints change more often than facts.7

Example 2.4
Let Db+ = {man(a) ←}, Db− = ∅ and let the following
clauses represent the rules of Db=:

mother(X, Y)← parent(X, Y), woman(X)
father(X, Y)← parent(X, Y), man(X)
false← man(X), woman(X)
false← parent(X, Y), parent(Y, X)

With U = 〈Db+, Db=, Db−〉 we then obtain that pos(U) =
{man(a), father(a,), false} and neg(U)=∅.

The following definition uses the sets pos(U) and neg(U)
to obtain more specific instances of goals and detect whether
the proof tree of a goal is potentially affected by an update.

Definition 2.5 (Θ+
U , Θ−

U)
Given a database update U and a goal G =← L1, . . . , Ln

we define:

7Addressing this limitation in the context of this paper is subject
of ongoing research.

Θ+
U (G) = {θ | C ∈ pos(U), mgu∗(Li, C) = θ

Li is a positive literal and 1 ≤ i ≤ n }
∪ {θ | C ∈ neg(U), mgu∗(Ai, C) = θ,

Li = ¬Ai and 1 ≤ i ≤ n}
Θ−

U (G) = {θ | C ∈ neg(U), mgu∗(Li, C) = θ

Li is a positive literal and 1 ≤ i ≤ n }
∪ {θ | C ∈ pos(U), mgu∗(Ai, C) = θ,

Li = ¬Ai and 1 ≤ i ≤ n}

We say that G is potentially added by U iff Θ+
U (G) 6= ∅. Also

G is potentially deleted by U iff Θ−
U (G) 6= ∅.

Note that trivially Θ+
U (G) 6= ∅ iff Θ+

U (← Li) 6= ∅ for
some literal Li of G. The method by Lloyd, Sonenberg and
Topor in [26] simplifies the integrity constraints by calcu-
lating Θ+

U (← Bodyi) for each body Bodyi of an integrity
constraint and instantiating the integrity constraints using
the so obtained set of substitutions.8 For the example 2.4
above we obtain:

Θ+
U (← man(X), woman(X)) = {{X/a}} and

Θ+
U (← parent(X, Y), parent(Y, X)) = ∅

and thus obtain the following set of specialised integrity con-
straints:

{false← man(a), woman(a)}

In our method we will use the substitutions Θ+
U slightly

differently. First though we characterise the derivations in
a database after some update which were not present before
the update.

Definition 2.6 (incremental SLDNF derivation)
Let U = 〈Db+, Db=, Db−〉 be a database update and let δ

be an SLDNF derivation after U . A derivation step of δ will
be called incremental iff it resolves a positive literal with a
clause from Db+ or if it selects a ground negative literal ¬A
such that ← A is potentially deleted by U .
We say that δ is incremental iff it contains at least one
incremental derivation step.

Note that the treatment of negative literals in the above
definition is not optimal. In fact “← A is potentially deleted
by U” does not guarantee that the same derivation does not
exist in the database state prior to an update. However
an optimal criterion, due to its complexity, has not been
implemented in the current approach.

Lemma 2.7
Let G be a goal and U a database update. If there exists an
incremental derivation for G after U , then G is potentially
added by U .
The proof can be found in appendix A.

Definition 2.8 (relevant SLDNF derivation)
Let δ be a (possibly incomplete) SLDNF derivation after

U = 〈Db+, Db=, Db−〉 and let G0, G1, . . . be the sequence
of goals of δ. We say that δ is a relevant derivation after U
iff for each Gi we either have that Gi is potentially added
by U or δi is incremental after U , where δi is the SLDNF
sub-derivation leading from G0 to Gi.

8Note however that in [26] integrity constraints are closed typed
first order formulas and that a database is inconsistent if the integrity
constraints are not a logical consequence (of the completion of the
database).

3

A refutation being a particular derivation we can specialise
the concept and define relevant refutations. The following
theorem will form the basis of our method for performing
specialised integrity checking.

Theorem 2.9 (Incremental Integrity Checking)
Let U = 〈Db+, Db=, Db−〉 be a database update such that

there is no SLDNF refutation before U for the goal← false.
Then ← false has a SLDNF refutation after U iff ← false
has a relevant refutation after U .
Proof:

⇐: If ← false has a relevant refutation then it trivially has a refu-

tation (namely the relevant one).

⇒: The refutation must be incremental, because otherwise the deriva-

tion is also valid for Db= ∪ Db− and we have a contradiction. Let

G0 =← false, G1, . . . , Gk = 2 be the incremental refutation. For

each Gi we either have that Gi occurs after the first incremental

derivation step and hence δi is incremental (where δi is defined as in

definition 2.8). If on the other hand Gi is situated before the first

incremental derivation step we can use lemma 2.7 to infer that Gi is

potentially added. Thus the derivation conforms to definition 2.8 and

is relevant. 2

In other words if we know that the integrity constraints of a
deductive database were not violated before an update then
we only have to search for a relevant refutation of ← false
in order to check the integrity constraints after the update.

The method can best be illustrated by re-examining ex-
ample 2.4. The goals in the SLD-tree in figure 1 are an-
notated with their corresponding set of substitutions Θ+

U .
The SLD-derivation leading to← parent(X, Y), parent(Y, X)
is not relevant and can therefore be pruned. Similarly all
derivations descending from the goal← man(X), woman(X)
which do not use Db+ = {man(a) ←} are not relevant ei-
ther and can also be pruned. However the derivation leading
to ← woman(a) is incremental and is relevant even though
← woman(a) is not potentially added.

�
�

�
�	

@
@

@
@R

?

@
@

@
@R

�
�

�
�	

← parent(X, Y), parent(Y, X) ∅← man(X), woman(X){X/a}

← false {∅}

← woman(a) ∅

normal solve

Figure 1: SLDNF tree for example 2.4

Note that the above method can be seen as an exten-
sion of the method in [26] because Θ+

U is not only used to
simplify the integrity constraints at the topmost level (i.e.
affecting the bodies of integrity constraints) but can be used
throughout the testing of the integrity constraints to prune
non-relevant branches. An example where this aspect is im-
portant will be presented in section 6.

Note however that the method in [26] not only removes
integrity constraints but also instantiates them (possibly
generating several specialised integrity constraints for a sin-
gle unspecialised one). This is often vital for improving the
efficiency of the integrity checks. The definition 2.8 of rele-
vant derivations does not use Θ+

U to instantiate intermediate
goals. The reasons for this are purely practical and defini-
tion 2.8 could actually be easily adapted to use Θ+

U for in-
stantiating goals and theorem 2.9 would still be valid. Also,
surprisingly, the instantiations will often be performed by
the partial evaluation method itself and the results in sec-
tion 6 illustrate this. We will elaborate on these aspects in
section 5.

3 The Meta-interpreter

In this section we will present a meta-interpreter for spe-
cialised integrity checking which is based on theorem 2.9.
This meta-interpreter will act on object level expressions
(terms, atoms, goals, clauses, ...) which represent the de-
ductive database under consideration. So before presenting
the meta-interpreter in more detail we will discuss the issue
of how these object level expressions will be represented at
the meta-level (in other words inside the meta-interpreter).

In logic programming there are basically two opposing
schools of thought on how an object level expression, say
the atom p(X, a), should be represented at the meta-level.
The first school would use the term p(X, a) as the repre-
sentation, while the second one would use something like
the term struct(p, [var(1), struct(a, [])]). The first term is a
non-ground representation which represents an object-level
variable as a meta-level variable. The second one is a ground
representation which represents an object-level variable as
a ground term. Some examples of the ground representa-
tion that will be used throughout this paper are presented
in figure 2.

The ground representation has the advantage that it can
be treated purely declaratively while for many applications
the non-ground representation requires the use of extra-
logical built-in’s. The non-ground representation also has
semantical problems (although they were solved to some ex-
tent in [9,29,30] by De Schreye and Martens). The main ad-
vantage of the non-ground representation is that the meta-
interpreter can use the underlying unification mechanism
while for the ground representation the meta-interpreter has
to make use of an explicit unification algorithm. This (cur-
rently) induces a difference in speed reaching several orders
of magnitude. The current consensus in the logic program-
ming community is that both representations have their
merits and the actual choice depends on the particular ap-
plication. For a more detailed discussion we refer the reader
to [18] or to the conclusion of [29]. Also the programming
language Gödel provides extensive support for the ground
representation and further details and discussions can be
found in the book on Gödel [19].

Sometimes however it is possible to combine both ap-
proaches into one. This was first exemplified by Gallagher
in [13, 14] where an interpreter for the ground representa-
tion is presented which lifts the ground representation to the
non-ground one for resolution. A similar technique was put
to good use in the self-applicable partial evaluator Logimix
by Mogensen and Bondorf [20, 31]. Hill and Gallagher [18]
also provide a recent account of this style of writing meta-

4

Object level Ground representation
X var(1)
c struct(c, [])

f(X, a) struct(f, [var(1), struct(a, [])])
p← q struct(clause, [struct(p, []), struct(q, [])])

Figure 2: A ground representation

interpreters with its uses and limitations. With that tech-
nique we can use the versatility of the ground representation
for representing object level expressions while not suffering
an enormous speed decrease. Furthermore, as demonstrated
by Gallagher in [13] and in the results of our experiments,
partial evaluation can in this way sometimes completely re-
move the overhead of the ground representation. Performing
a similar feat on a meta-interpreter using the ground rep-
resentation and explicit unification is much harder and has,
to the best of our knowledge, not been accomplished yet (a
promising attempt is the partial evaluator Sage for Gödel,
see [3, 16,17]).

We could try to obtain a similar result by partially evalu-
ating a meta-interpreter for the non-ground representation.
There is however one caveat: the object-program has to be
stored explicitly using meta-program clauses instead of using
a term-representation in the meta-program (unless we use
non-logical built-in’s like copy/2 to perform the standardis-
ing apart). This has two major disadvantages. Firstly rep-
resenting updates to a database becomes much more cum-
bersome. Basically we also have to encode the updates ex-
plicitly as meta-program clauses thereby making dynamic
meta-programming9 impossible. Secondly it is more difficult
to specify partial knowledge for partial evaluation. Suppose
for instance that we know that a given atom (for instance the
head of a fact that will be added to a deductive database)
will be of the form man(T) where T is a constant but we
don’t know yet at partial evaluation time which constant. In
the ground representation the user can express this by writ-
ing the atom as struct(man, [struct(C, [])]). However in the
non-ground representation we have to write this as man(X)
which is unfortunately less precise as the variable X now no
longer represents only constants but stands for any term.10

So our meta-interpreter is an adapted version of the in-
terpreter presented by Gallagher in [13] and includes a pred-
icate make non ground/2 which lifts a ground term to a
non-ground one. For instance the query

← make non ground(struct(f, [var(1), var(2), var(1)]), X)

succeeds with a computed answer similar11 to

{X/struct(f, [49, 57, 49])}.
The code for this predicate is presented in figure 3 and a
simple meta-interpreter based on it can be found in figure 4.
Note that the first argument to make non ground will al-
ways be ground. This means that the if-then-else construct
in the second clause for mng/1 behaves like a completely
declarative if-then-else (like the one in Gödel [19]).

9See for instance [18].
10A possible way out is to use the = ../2 built-in and represent the

atom by man(X), X = ..[C]. This requires that the partial evaluator
provides non-trivial support for the built-in = ../2 (to ensure for
instance that the information about X, provided by X = ..[C], is
properly used and propagated).

11The variables 49 and 57 are fresh variables. Their actual names
may vary and are not important.

make non ground(GrTerm, NgTerm)←
mng(GrTerm, NgTerm, [], Sub)

mng(var(N), X, [], [sub(N, X)])←
mng(var(N), X, [sub(M, Y)|T], [sub(M, Y)|T1])←

(N = M→ (T1 = T, X = Y) ; mng(var(N), X, T, T1))
mng(struct(F, GrArgs), struct(F, NgArgs), InSub, OutSub)←

l mng(GrArgs, NgArgs, InSub, OutSub)

l mng([], [], Sub, Sub)←
l mng([GrH|GrT], [NgH|NgT], InSub, OutSub)←

mng(GrH, NgH, InSub, InSub1),
l mng(GrT, NgT, InSub1, OutSub)

Figure 3: Lifting the ground representation

solve(Prog, [])←
solve(Prog, [H|T]) ←

non ground member(struct(clause, [H|Body]), Prog),
solve(Prog, Body),

solve(Prog, T)

non ground member(NonGrTerm, [GrH|GrT])←
make non ground(GrH, NonGrTerm)

non ground member(NonGrTerm, [GrH|GrT])←
non ground member(NonGrTerm, GrT)

Figure 4: An interpreter for the ground representation

We can now use theorem 2.9 to extend the interpreter
in figure 4 for specialised integrity checking. Based on theo-
rem 2.9, we know that we can stop resolving a goal G when
it is not potentially added unless we have performed an in-
cremental resolution step earlier in the derivation.

The skeleton of our meta-interpreter in figure 5 imple-
ments this idea. Note that the argument Updt stands for
the ground representation of the update 〈Db+, Db=, Db−〉.
Also note that from now on “T ” denotes the ground repre-
sentation of the term T .

The predicate resolve incrementally/3 performs incre-
mental resolution steps (according to definition 2.6) and
resolve unincrementally/3 performs non-incremental ones.
The predicate potentially added/3 tests whether a goal is
potentially added by an update according to definition 2.5.

incremental solve(Updt, Goal) ←
potentially added(Updt, Goal),
resolve(Updt, Goal)

resolve(Updt, Goal) ←
resolve unincrementally(Updt, Goal, NewGoal),
incremental solve(Updt, NewGoal)

resolve(Updt, Goal) ←
resolve incrementally(Updt, Goal, NewGoal),
Updt =“〈Db+, Db=, Db−〉”,
solve(“Db= ∪Db+”, NewGoal)

Figure 5: Skeleton of the integrity checker

5

Specialised integrity checking now consists in calling

← incremental solve (“〈Db+, Db=, Db−〉”,← false)

The query will succeed if the integrity of the database has
been violated by the update. In the next section we will ex-
amine how this meta-interpreter can be unfolded by a partial
evaluator and in section 5 we will study the implementation
of the predicate potentially added/2.

4 Unfolding the Meta-interpreter

In this section we will examine how the meta-interpreter
of figure 5 can be unfolded by a partial evaluator. The
discussions are also valid for the simpler meta-interpreter
of figure 4. Some of the problems discussed in this section
are of less relevance for hierarchical object programs but we
should not forget that our final goal is to move to recursive
databases.

Unfolding a meta-interpreter in a satisfactory way is a
non-trivial issue and in general has not been solved yet.
However using a non-ground representation for goals in the
meta-interpreter greatly simplifies the control of unfolding.
In fact a simple variant test12 inside the partial evaluator
can quite often be sufficient to guarantee termination when
unfolding such a meta-interpreter. This is illustrated in fig-
ure 6, where Prog represents an object program inside of
which the predicate p/1 is recursive via q/1. Note that in-
termediate goals have been removed for clarity. The meta-
interpreter unfolded in the left column uses a ground rep-
resentation for resolution and a variant test of the partial
evaluator will not detect a loop. The partial evaluator will
have to abstract away the constants 1 and 3 in order to
generate good specialised code.13 However if we unfold the
meta-interpreter of figure 4 the variant test is sufficient to
detect the loop and no abstraction is needed to generate ef-
ficient specialised code. Note that this point is completely
independent of the internal representation the partial evalu-
ator uses, i.e. of the fact whether the partial evaluator itself
uses a ground or a non-ground representation (or whether
it is written in another language).

A ground solve Non-ground solve of figure 4
solve(Prog, [struct(p, [var(1)])]) solve(Prog, [p(1)])

↓ ↓
solve(Prog, [struct(q, [var(3)])]) solve(Prog, [q(3)])

↓ ↓
solve(Prog, [struct(p, [var(3)])]) solve(Prog, [p(3)])

Figure 6: Unfolding meta-interpreters

The partial evaluator which was used in the experiments
of this paper actually uses the variant test combined with
annotations of the program to be specialised. We will now

12Meaning that the partial evaluator stops unfolding when it comes
upon a variant of a selected atom which it has already encountered
higher up in the proof tree.

13Note that reformulating the variant test so that it takes
the ground representation of the meta-interpreter into account
solves the problem only partially because residual clauses gen-
erated for solve(Prog, struct(p, [var(1)])) cannot be used for
solve(Prog, struct(p, [var(3)])), i.e. abstraction is mandatory. How-
ever for more involved object programs, like the reverse with accu-
mulating parameter, the variant test is not sufficient anyway and ab-
straction is mandatory for both approaches anyhow.

give some details of this implementation (which is based on
the first author’s Master’s thesis [22], further refined in [23]).
The partial evaluation process has been decomposed into
three phases:

1. the annotation phase which annotates the program to
be specialised by giving indications of how the predi-
cate calls should be unfolded

2. the specialisation phase which performs the unfolding
guided by the annotation of the first phase

3. the post-processing phase which performs optimisation
on the generated partial deductions (i.e. removes use-
less bindings, see [23]) and generates the residual pro-
gram.

Such a decomposition has already proven to be useful for
self-application in the world of functional programming (see
for instance the book by Jones et al [20]). Also the partial
evaluator Logimix by Mogensen and Bondorf [31] (also in
[20]) uses such an approach.

Unfortunately the annotation phase is not yet automatic
and must usually be performed by hand. This gives the
knowledgeable user very precise control over the unfolding,
especially since some quite sophisticated annotations can be
provided. The annotations allow the user to give conditions
on

1. when a literal should be evaluated (E) without further
testing

2. when it should be unfolded once (U)
(unless a loop is detected at partial evaluation time)

3. when it should be residualised (R)
(i.e. the literal should be left untouched).

For instance the user can specify that the literal var(X)
should be fully evaluated only if its argument is ground
or if its argument is guaranteed to be free (at evaluation
time) and that it should be residualised otherwise. Our
partial evaluation method can thus be seen as being “semi
on-line” in the sense that some unfolding decisions are made
off-line while others are still made on-line. Note that the fil-
ters in the partial evaluator Schism for applicative languages
(see [7]) also allow for conditions on when to unfold (U) and
when to residualise (R). They are however used in an off-line
fashion and also control the binding-time analysis.

The annotations, if designed properly, are independent
of the query for which the program is to be specialised. In
our case this means that the annotations have to be cre-
ated only once for the incremental integrity checker. After
that the second and third phases will be able to derive fully
automatically specialised update procedures.

Since the annotation only needs to be done once (for each
meta-interpreter), there is no objection against producing it
by hand. So the hand made annotations, in conjunction
with the fact that the variant test can be used for the non-
ground representation, are the crucial aspects to be able to
perfectly unfold our meta-interpreter. We have not yet ad-
dressed the problem of performing fully automatic unfolding
of meta-interpreters in general. This problem is non-trivial
and a promising approach is presented by Martens in [28].
In future, we hope to combine both lines of work into a run-
ning system which is able to fully automatically partially
evaluate meta-interpreters in a satisfactory way.

6

The issue of adequately unfolding our meta-interpreter
for integrity checking being solved, there remains only one
problem: namely how to implement potentially added such
that it can effectively be partially evaluated. This turns out
to be non-trivial as well and in the next section we propose
a solution for hierarchical databases.

5 Implementing potentially added

The rules of definition 2.3, which are at the basis of the pred-
icate potentially added, can be directly transformed into a
simple logic program which detects in a naive top-down
way whether a goal is potentially added or not. Such an
approach terminates for hierarchical databases and is very
easy to partially evaluate. It will however lead to a pred-
icate which has multiple (and maybe identical and/or cov-
ered) solutions and which might instantiate the goal under
consideration (because the goal is in the non-ground repre-
sentation). This means that ideally we would either have
to perform an expensive subsumption test (which is very
hard to partially evaluate satisfactorily) to retain only the
most general solutions or backtrack and try out a lot of use-
less instantiations.14 Also in the case of recursive databases
this approach will unavoidably lead to problems due to non-
termination. We will however not tackle recursive databases
in this paper and only discuss some issues in section 7. Let
us illustrate the problem through an example.

Example 5.1
Let the following clauses be the rules of Db=:

mother(X, Y)← parent(X, Y), woman(X)
father(X, Y)← parent(X, Y), man(X)

false← mother(X, Y), father(X, Z)

Let Db− = ∅ and Db+ = {parent(a, b) ←, man(a) ←} and
as usual U = 〈Db+, Db=, Db−〉. A naive top-down imple-
mentation will succeed 3 times for the query

← potentially added(← false,“U”)

and twice for the query

← potentially added(← father(X, Y),“U”)

with computed answers {X/a} and {X/a, Y/b}. Note that
the solution {X/a, Y/b} is “covered” by {X/a} (which means
that, if floundering is not possible, it is useless to instantiate
the query by applying {X/a, Y/b}).

The above example shows that a naive top-down implemen-
tation is highly inefficient because a lot of redundant check-
ing will occur. The solution to this problem is to wrap calls
to the predicate potentially added/1 into a verify(.) primi-
tive which succeeds once with the empty computed answer
if its argument succeeds (in any way) and fails otherwise.
This solves the problem of duplicate and covered solutions.
For instance for example 5.1 above, both

← verify(potentially added(← false,“U”))

← verify(potentially added(← father(X, Y),“U”))

14It would also mean that we would have to extend theorem 2.9 to
allow for instantiation, but this is not a major problem.

will succeed just once with the empty computed answer and
no backtracking is required. The verify(.) primitive can be
implemented with the if-then-else construct in the following
way: ((Goal->fail;true)->fail;true). Thus we can use the
partial evaluation method of [23] which incorporates exten-
sive support for the if-then-else.

The disadvantage of using verify is of course that no
instantiations are performed (which in general cut down the
search space dramatically). However these instantiations
can often be performed by the partial deduction method
through pruning and safe left- and right-propagation of bind-
ings. Take for instance a look at the specialised update
procedure presented in figure 9 of section 6 and generated
for the update Db+ = {man(a) ←}, Db− = ∅. This up-
date procedure tests directly whether woman(A) is a fact
whereas the original meta-interpreter of figure 5 would test
whether there are facts matching woman(X) and only after-
wards prune all irrelevant branches. This instantiation per-
formed by the partial evaluator is in fact the reason for the
extremely high speedup figures presented in the following
section. In a sense, part of the specialised integrity checking
is performed by the meta-interpreter and part is performed
by the partial evaluator. Also note that the analysis per-
formed by the partial evaluator used in the experiments is
not yet optimal. By implementing a more precise analysis
of the if-then-else structure the speedup figures could still
be improved. Also a more aggressive propagation of bind-
ings could be envisaged. Currently only “determinate” parts
of the bindings are propagated meaning that no additional
choice-points are generated. This can only be beneficial but
is not always optimal.

6 Results

Throughout the remainder of this section the rules in figure 7
form the intensional part of Db= (the facts are unknown at
partial evaluation time).

mother(X, Y)←
parent(X, Y), woman(X)

father(X, Y)←
parent(X, Y), man(X)

grandparent(X, Z)←
parent(X, Y), parent(Y, Z),

married to(X, Y)←
parent(X, Z), parent(Y, Z),
man(X), woman(Y)

married man(X)←
married to(X, Y)

married woman(X)←
married to(Y, X)

unmarried(X)←
man(X),¬married man(X)

unmarried(X)←
woman(X),¬married woman(X)

false←
man(X), woman(X)

false←
parent(X, Y), parent(Y, X)

false←
parent(X, Y), unmarried(X)

Figure 7: Intensional part of Db=

7

Example 6.1
Before showing the results of our method, let us first illus-
trate in what sense it improves upon the method of Lloyd et
al in [26]. Given Db+ = {man(a) ←}, Db− = ∅ , we have
that (independent of the facts in Db=):

pos(U) ={man(a), father(a,), married to(a,),

married man(a), unmarried(a), false}
neg(U) ={unmarried(a), false}

The method of [26] would thus generate the following spe-
cialised integrity constraints:

false← man(a), woman(a)
false← parent(a, Y), unmarried(a)

This is clearly not optimal (given the available informa-
tion), as is illustrated in figure 8 by the incomplete SLDNF
tree for the second specialised integrity constraint. Suppose
that some fact matching parent(a, Y) exists in the database.
Evaluating the specialised integrity constraints obtained by
[26] will then yield the goal:

← woman(a),¬married woman(a)

This goal is not potentially added and the derivation leading
to the goal is not incremental. Hence by theorem 2.9 this
derivation can be pruned and will never lead to a successful
refutation (unless the database was already inconsistent be-
fore the update). Our meta-interpreter improves upon this
and will never evaluate the goal:

← woman(a),¬married woman(a)

In fact our method will prune this useless branch al-
ready at partial evaluation time, for instance when gener-
ating a specialised update procedure for the update pattern
Db+ = {man(A)←}, Db− = ∅, where A is unknown at par-
tial evaluation time. This is one of the experiments shown
below. A slightly sugared and simplified version of the re-
sulting update procedure is presented in figure 9. This up-
date procedure is very satisfactory and is in a certain sense
optimal. The only way to improve it would be to add the
information that the predicates in the intensional and the
extensional database are disjoint (this is usually the case but
it is not required by the current method, which explains the
test in figure 9 whether there is a fact married to). Note
that the benchmarks were executed on the un-sugared and
un-simplified version but that there is no problem what-
soever, apart from finding the time for coding, to directly
produce the sugared and simplified version.

The following are some of the experiments that have
been conducted. Times are in seconds and were obtained
by calling the time/2 predicate of Prolog by BIM (which in-
corporates the time needed for garbage collection, see [35])
using sets of 400 updates and a fact database consisting of
108 facts and 216 facts respectively. The rule part of the
database is presented in figure 7. Also note that, in trying
to be as realistic as possible, the fact part of the database
has been simulated by Prolog facts. The tests were executed
on a Sun Sparc Classic running under Solaris 2.3.

We have also included two well known and publicly avail-
able partial evaluators. The players in the benchmark game
are:

1. solve: This is the naive meta-interpreter of figure 4. It
does not use the fact that the database was consistent
before the update and simply tries to find a refutation
for ← false.

�
�

�
�	

@
@

@
@R

← man(a),¬married man(a) ← woman(a),¬married woman(a)

?

{Y/?}

← unmarried(a)

← parent(a, Y), unmarried(a)

Figure 8: SLDNF tree for example 6.1

incremental solve 1(X1) :-
fact(woman,.(struct(X1,[]),[])).

incremental solve 1(X1) :-
fact(parent,.(struct(X1,[]),.(X2,[]))),
(fact(married to,.(struct(X1,[]),.(X3,[])))
-> fail
;
((fact(parent,.(struct(X1,[]),.(X4,[]))),

fact(parent,.(X3,.(X4,[]))),
fact(woman,.(X3,[])))
-> fail
; true

)

).

Figure 9: Specialised update procedure for adding man(A)

2. ic-solve: This is the meta-interpreter performing spe-
cialised integrity checking described in section 3. The
skeleton of the meta-interpreter can be found in fig-
ure 5.

3. leupel: This is the partial evaluation system based on
work reported in [22,23].

4. leupel−: This is the above system where the safe left-
propagation of bindings has been disabled. It is in-
cluded to show the positive effect of left-propagating
bindings.

5. Mixtus: This is the automatic partial evaluation sys-
tem for full Prolog presented in [37].

6. Paddy: This is the automatic partial evaluation sys-
tem for full Sepia (a variant of Prolog) presented in
[32]. Some aspects of the system are also described
in [33, 34]. The resulting specialised programs had to
be converted for Prolog by BIM (get cut/1 to mark/1
and cut to/1 to cut/1).

The first experiment we present consists in generating
an update procedure for the update pattern (where A is
unknown at partial evaluation time):

Db+ = {man(A)←}, Db− = ∅.

The result of the partial evaluation obained by leupel can
be seen in figure 9 and the timings are summarised in the
following table 1. The first row of figures contains the abso-
lute and relative time for a database with 108 facts and the
second row contains the corresponding figures for 216 facts.

8

solve ic-solve leupel leupel− Mixtus Paddy
42.93 s 6.81 s 0.075 s 0.18 s 0.34 s 0.27 s
572.4 90.8 1 2.40 4.53 3.60

267.9 s 18.5 s 0.155 s 0.425 s 0.77 s 0.62 s
1728.3 119.3 1 2.74 4.96 4.00

Table 1: Results for Db+ = {man(A)←}, Db− = ∅

Here are some small additional remarks. For Paddy we
had to increase the “term depth” parameter from its default
value. With the default value the integrity checking took
9.51 s (126.8 relative) for 108 facts (i.e. a slow down of 1.27
over ic-solve). Mixtus needed no adjustments.

The time needed to obtain the leupel specialisation was
78.19 s, meaning that the time invested into partial evalu-
ation will pay off rather quickly for larger databases (given
that the meta-interpreter was specialised for a full specifi-
cation of the rules and integrity constraints in Db=, the up-
date procedures only have to be re-generated when the rules
change15). Note that the current implementation of leupel
has a very slow post-processor, displays tracing information
and uses the ground representation. It should be possible
to dramatically cut down the time needed for partial evalu-
ation. Leupel seemed however still to be faster than Mixtus
and almost half as fast as Paddy.16

To give an idea about the performance of the Lloyd et al
method of [26] relative to our specialised update procedures
we have done a quick and dirty non-ground implementation
of the method without handling negation (i.e. the implemen-
tation will in some cases not test negative literals although
it should; for this experiment it is not relevant but for the
next one it would). The time needed to perform the in-
tegrity checking for 108 facts was 1.35 s (18.0 times slower
than the specialised update procedure generated by leupel).
After specialising this program for the update pattern using
Mixtus we obtained a small speedup and an execution time
of still 1.28 s for 108 facts.

Another experiment consisted in generating a specialised
update procedure for the following update pattern (where A
and B are unknown at partial evaluation time):

Db+ = {parent(A,B)←}, Db− = ∅.

This update offers less opportunities for specialisation than
the previous update and the speedup figures are still satis-
factory but less spectacular. The results are summarised in
the following table 2.

solve ic-solve leupel leupel− Mixtus Paddy
43.95 s 7.75 s 0.24 s 0.355 s 0.53 s 0.45 s
183.1 32.3 1 1.48 2.21 1.88

273.1 s 21.9 s 0.915 s 1.16 s 1.67 s 1.435 s
298 23.9 1 1.26 1.82 1.57

Table 2: Results for Db+ = {parent(A,B)←}, Db− = ∅

15As pointed out by Bern Martens, a technique based on work by
Benkerimi and Shepherdson [2] could be used to incrementally adapt
the specialised update procedure whenever the rules or integrity con-
straints in Db= change.

16Exact comparisons where not made because Mixtus runs under
Sicstus Prolog, Paddy under Eclipse and leupel under Prolog by BIM.

To conclude this section we can say that the speedup
figures obtained with leupel are very encouraging. The spe-
cialised update procedures execute up to 2 orders of magni-
tude faster than the intelligent incremental integrity checker
ic-solve and up to 3 orders of magnitude faster than the non-
incremental solve (even for only 216 facts, this speedup can
of course be made to grow to almost any figure by using
larger databases). Note that, according to our experience,
specialising the solve meta-interpreter of figure 4 usually
yields speedups reaching at most 1 order of magnitude.

7 Conclusion

The integrity checking experiments have been carried out
on an interpreter for the ground representation based on the
one by Gallagher in [13]. This interpreter lifts the ground
representation to the non-ground one for resolution yielding
good speeds and simplifies the control of unfolding. The in-
terpreter has been extended to incorporate the knowledge
that prior to the update the integrity constraints were not
violated. This is accomplished by using a verify primitive
implemented via the if-then-else construct. Thus the partial
evaluation scheme described in [23], which is able to spe-
cialise the if-then-else, turned out to be practically useful.
This verify construct is now used to test whether a given
goal, encountered while checking the integrity of a database
after an update, might be influenced by that update. If this
is not the case the integrity checker will stop the derivation
of the goal.

For simplicity we have restricted ourselves to normal,
hierarchical databases in our experiments. Perfect unfolding
of the meta-interpreter for integrity checking is obtained by
a combination of the variant test and by, once only, hand-
made annotations of the meta-interpreter.

The results of the initial experiments were very encourag-
ing, with speedups reaching 2 orders of magnitude when spe-
cialising the integrity checker for a given set of integrity con-
straints and a given set of rules (the speedups are of course
much higher when compared with a non-incremental solve
which re-checks the entire database). These high speedups
are also due to the fact that the partial evaluator performs
part of the integrity checking.

To summarise, it seems that partial evaluation is capable
of automatically generating highly specialised update proce-
dures. Based on these encouraging result we conjecture that
self-applicable partial evaluation can be extremely useful for
optimising integrity checks in deductive databases and for
generating update procedure compilers.

Work in this direction is ongoing and we will examine
other meta-interpreters, which have a more flexible way of
specifying static and dynamic parts of the database and are
less entrenched in the concept that facts change more often
than rules and integrity constraints. Ongoing research is also
concerned with extending the results of this paper to recur-
sive, stratified databases. The added complications are that
in a top-down method a loop check has to be incorporated
into potentially added. This loop check is non-declarative
for the non-ground representation and is difficult to partially
evaluate satisfactorily. Similarly a bottom-up method also
needs a loop check and also seems to be difficult to partially
evaluate effectively.

Finally it is also investigated whether partial evaluation
alone is able to derive specialised integrity checks. In other
words is it possible to obtain specialised integrity checks by

9

partially evaluating a simple solve meta-interpreter, like the
one of figure 4. In that case self-applicable partial evaluation
could be used to obtain specialised update procedures (by
performing the second Futamura projection, [11, 12]) and
update procedure compilers (by performing the third Futa-
mura projection).

Acknowledgements

We would like to thank Bern Martens for proof-reading sev-
eral versions of this paper and for his helpful insights and
comments on the topic of this paper. We would also like to
thank him for his huge pile of references on integrity check-
ing and for introducing the first author to the subject. Our
thanks also go to John Gallagher for pointing out several
errors and for the fruitful discussions. Finally we would like
to thank anonymous referees for their useful remarks.

References

[1] K. R. Apt. Introduction to logic programming. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, chapter 10, pages 495–574. North-Holland Am-
sterdam, 1990.

[2] K. Benkerimi and J. C. Shepherdson. Partial deduction
of updateable definite logic programs. The Journal of
Logic Programming, 18(1):1–27, January 1994.

[3] A. F. Bowers and C. A. Gurr. Towards fast and declara-
tive meta-programming. In K. R. Apt and F. Turini, ed-
itors, Meta-logics and Logic Programming, pages 137–
166. MIT Press, 1995. To Appear.

[4] F. Bry, , H. Decker, and R. Manthey. A uniform ap-
proach to constraint satisfaction and constraint satisfi-
ability in deductive databases. In J. Schmidt, S. Ceri,
and M. Missikoff, editors, Proceedings of the Interna-
tional Conference on Extending Database Technology,
Lecture Notes in Computer Science, pages 488–505,
Venice, Italy, 1988. Springer-Verlag.

[5] F. Bry and R. Manthey. Tutorial on deductive
databases. In Logic Programming Summer School,
1990.

[6] F. Bry, R. Manthey, and B. Martens. Integrity veri-
fication in knowledge bases. In A. Voronkov, editor,
Logic Programming. Proceedings of the First and Sec-
ond Russian Conference on Logic Programming, Lec-
ture Notes in Computer Science 592, pages 114–139.
Springer-Verlag, 1991.

[7] C. Consel. A tour of Schism: A partial evaluation
system for higher-order applicative languages. In Pro-
ceedings of PEPM’93, the ACM Sigplan Symposium on
Partial Evaluation and Semantics-Based Program Ma-
nipulation, pages 145–154. ACM Press, 1993.

[8] S. Das and M. Williams. A path finding method for
constraint checking in deductive databases. Data &
Knowledge Engineering, 4:223–244, 1989.

[9] D. De Schreye and B. Martens. A sensible
least Herbrand semantics for untyped vanilla meta-
programming. In A. Pettorossi, editor, Proceedings

Meta’92, Lecture Notes in Computer Science 649, pages
192–204. Springer Verlag, 1992.

[10] H. Decker. Integrity enforcement on deductive
databases. In L. Kerschberg, editor, Proceedings of the
1st International Conference on Expert Database Sys-
tems, pages 381–395, Charleston, South Carolina, 1986.
The Benjamin/Cummings Publishing Company, Inc.

[11] A. P. Ershov. On Futamura projections. BIT (Japan),
12(14):4–5, 1982. In Japanese.

[12] Y. Futamura. Partial evaluation of a computation pro-
cess — an approach to a compiler-compiler. Systems,
Computers, Controls, 2(5):45–50, 1971.

[13] J. Gallagher. A system for specialising logic pro-
grams. Technical Report TR-91-32, University of Bris-
tol, November 1991.

[14] J. Gallagher. Tutorial on specialisation of logic pro-
grams. In Proceedings of PEPM’93, the ACM Sigplan
Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 88–98. ACM Press, 1993.

[15] J. Gallagher and M. Bruynooghe. The derivation of an
algorithm for program specialisation. New Generation
Computing, 9(3 & 4):305–333, 1991.

[16] C. A. Gurr. A Self-Applicable Partial Evaluator for
the Logic Programming Language Gödel. PhD thesis,
Department of Computer Science, University of Bristol,
January 1994.

[17] C. A. Gurr. Specialising the ground representation in
the logic programming language Gödel. In Y. Deville,
editor, Logic Program Synthesis and Transformation.
Proceedings of LOPSTR’93, Workshops in Computing,
pages 124–140. Springer-Verlag, 1994.

[18] P. Hill and J. Gallagher. Meta-programming in logic
programming. Technical Report 94.22, School of Com-
puter Studies, University of Leeds, 1994. To be pub-
lished in Handbook of Logic in Artificial Intelligence
and Logic Programming, Vol. 5. Oxford Science Pub-
lications, Oxford University Press.

[19] P. Hill and J. Lloyd. The Gödel Programming Language.
MIT Press, 1994.

[20] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation. Pren-
tice Hall, 1993.

[21] J. Komorowksi. A Specification of an Abstract Prolog
Machine and its Application to Partial Evaluation. PhD
thesis, Linköping University, Sweden, 1981. Linköping
Studies in Science and Technology Dissertations 69.

[22] M. Leuschel. Self-applicable partial evaluation in Pro-
log. Master’s thesis, K.U. Leuven, 1993.

[23] M. Leuschel. Partial evaluation of the “real thing”.
In L. Fribourg and F. Turini, editors, Proceedings of
LOPSTR’94 and META’94, LNCS 883, pages 122–137.
Springer-Verlag, 1994.

[24] J. Lloyd. Foundations of Logic Programming. Springer
Verlag, 1987.

10

[25] J. W. Lloyd and J. C. Shepherdson. Partial evaluation
in logic programming. The Journal of Logic Program-
ming, 11:217–242, 1991.

[26] J. W. Lloyd, E. A. Sonenberg, and R. W. Topor. In-
tegrity checking in stratified databases. Journal of Logic
Programming, 4(4):331–343, 1987.

[27] J. W. Lloyd and R. W. Topor. A basis for deductive
database systems. The Journal of Logic Programming,
2:93–109, 1985.

[28] B. Martens. Finite unfolding revisited (part II): Fo-
cusing on subterms. Technical Report Compulog II,
D 8.2.2.b, Departement Computerwetenschappen, K.U.
Leuven, Belgium, 1994.

[29] B. Martens and D. De Schreye. Two semantics for def-
inite meta-programs, using the non-ground representa-
tion. In K. R. Apt and F. Turini, editors, Meta-logics
and Logic Programming, pages 57–82. MIT Press, 1995.
To Appear.

[30] B. Martens and D. De Schreye. Why untyped non-
ground meta-programming is not (much of) a problem.
Journal of Logic Programming, 22(1):47–99, 1995.

[31] T. Mogensen and A. Bondorf. Logimix: A self-
applicable partial evaluator for Prolog. In K.-K. Lau
and T. Clement, editors, Logic Program Synthesis
and Transformation. Proceedings of LOPSTR’92, pages
214–227. Springer-Verlag, 1992.

[32] S. Prestwich. The PADDY partial deduction system.
Technical Report ECRC-92-6, ECRC, Munich, Ger-
many, 1992.

[33] S. Prestwich. An unfold rule for full Prolog. In K.-
K. Lau and T. Clement, editors, Logic Program Syn-
thesis and Transformation. Proceedings of LOPSTR’92,
Workshops in Computing, University of Manchester,
1992. Springer-Verlag.

[34] S. Prestwich. Online partial deduction of large pro-
grams. In Proceedings of PEPM’93, the ACM Sigplan
Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 111–118. ACM Press,
1993.

[35] Prolog by BIM 4.0, October 1993.

[36] F. Sadri and R. Kowalski. A theorem-proving approach
to database integrity. In J. Minker, editor, Foundations
of Deductive Databases and Logic Programming, chap-
ter 9, pages 313–362. Morgan Kaufmann Publishers,
Inc., Los Altos, California, 1988.

[37] D. Sahlin. Mixtus: An automatic partial evaluator for
full Prolog. New Generation Computing, 12(1):7–51,
1993.

[38] M. Wallace. Compiling integrity checking into update
procedures. In J. Mylopoulos and R. Reiter, editors,
Proceedings of IJCAI, Sydney, Australia, 1991.

A Proof for Lemma 2.7

Let U = 〈Db+, Db=, Db−〉 and let δ be the incremental
derivation for G after U . We define δ′ to be the incremental
derivation G0 = G, G1, . . . , Gk for G after U obtained by
stopping at the first incremental derivation step of δ.

Base Case: There are two possibilities: either a positive
literal Li = Ai or a negative literal Li = ¬Ai has been se-
lected inside Gk−1 at the last (incremental) step. In the first
case the goal Gk−1 has been resolved with a standardised
apart17 clause A← Body∈ Db+ with mgu(Ai, A)=θ. Thus
by definition 2.3 we have A ∈ pos(U) and by definition 2.5
we obtain θ ∈ Θ+

U (← L).

In the second case Θ−
U (← Ai) 6= ∅ and by definition 2.5

∃C ∈ neg(U) such that mgu∗(Ai, C) = θ. Hence we know
that θ ∈ Θ+

U (← L). In both cases Θ+
U (← L) 6= ∅ and it

follows that the goal Gk−1 is potentially added by U .
Induction Step: We can now prove by induction that

the set of goals {Gk−2, . . . , G0} are also potentially added.
Let us suppose that Gm =← L1, . . . , Ln, with 1 ≤ m ≤ k−1,
is potentially added. We know that for at least one literal
Li we have that Θ+

U (← Li) 6= ∅.
If a negative literal has been selected in the derivation

step from Gm−1 to Gm then Gm−1 is also potentially added
because all the literals Li also occur unchanged in Gm−1.

If a positive literal L′
j has been selected in the derivation

step from Gm−1 to Gm and resolved with the (standardised
apart) clause A ← B1, . . . , Bq ∈ Db= with mgu(L′

j , A) =
θ we have: Gm−1 = ← L′

1, . . . , L
′
j , . . . , L

′
r and Gm = ←

(L′
1, . . . , L

′
j−1, B1, . . . , Bq, L

′
j+1, . . . , L

′
r)θ.

There are again two cases. Either there exists a L′
p, with

1 ≤ p ≤ r ∧ p 6= j, such that Θ+
U (← L′

pθ) 6= ∅. In that
case we have (because mgu∗is used inside definition 2.5)
that Θ+

U (← L′
p) 6= ∅ and Gm−1 is potentially added. Note

that this is not the case if we use just the mgu without
standardising apart.18

In the other case there only exists a Bp, with 1 ≤ p ≤ q,
such that Θ+

U (← Bpθ) 6= ∅. If Bp is a positive literal we know
by definition 2.5 that ∃C ∈ pos(U) with mgu∗(Bpθ, C) = σ.
From the fact that C is standardised apart before unify-
ing with Bpθ we know that for some θ′: mgu∗(Bp, C) = θ′

(again this is not the case if we use the mgu). Hence by defi-
nition 2.3 we can conclude that a variant of Aθ′ is an element
of pos(U). It only remains to be proven that mgu∗(L′

j , Aθ′)
exists. We know that θ′ is the most general unifier of Bp

and a standardised apart version C∗ of C and we also know
that θσ is a unifier of Bp and C∗ (because the variables of
θ and C∗ are disjoint). Hence θ′ is more general than θσ,
i.e. for some γ we have θ′γ = θσ. From this we can de-
duce that Aθ′γ = Aθσ. Let us now take the standardised
apart version A∗ of Aθ′ that will be used in the calcuala-
tion of mgu∗(L′

j , Aθ′). We know that for some γ′ we have
that A∗γ′ = Aθσ. We also know (by standardising apart)
that the domain of γ′ has no variables in common with the
domain of θσ and hence γ ∪ θσ is a well defined substitu-
tion. And indeed γ∪θσ is a unifier for {L′

j , A
∗} and hence a

17So far we have not provided a formal definition of the notion of
“standardising apart” (several ones, correct and incorrect, exist in the
literature). Just suppose for the remainder of this proof that fresh
variables, not occurring “anywhere else”, are used.

18As already pointed out this has been overlooked in [26,27]. Take
for instance L′p = p(a, Y, b, X) and θ = {X/Y, Y/X}. Then L′pθ

unifies with p(X, a, Y, b) ∈ pos(U) and the more general L′p does not!

11

most general unifier must exist. We can thus conclude that
Θ+

U (← L′
j) 6= ∅ and that Gm−1 is potentially added.

The proof is almost identical for the case that Bp is a
negative literal. In summary all the goals {Gk−1, . . . , G0}
are potentially added and thus also G = G0. 2

12

