
Supervising Offline Partial Evaluation of Logic
Programs using Online Techniques?

Michael Leuschel, Stephen-John Craig and Dan Elphick

Institut für Informatik, Universität Düsseldorf
D-40225, Düsseldorf, Germany

leuschel@cs.uni-duesseldorf.de

Abstract. A major impediment for more widespread use of offline par-
tial evaluation is the difficulty of obtaining and maintaining annotations
for larger, realistic programs. Existing automatic binding-time analyses
still only have limited applicability and annotations often have to be cre-
ated or improved and maintained by hand, leading to errors. We present
a technique to help overcome this problem by using online control tech-
niques which supervise the specialisation process in order to detect such
errors. We discuss an implementation in the logen system and show on
a series of examples that this approach is effective: very few false alarms
were raised while infinite loops were detected quickly. We also present
the integration of this technique into a web interface, which highlights
problematic annotations directly in the source code. A method to auto-
matically fix incorrect annotations is presented, allowing the approach to
be also used as a pragmatic binding time analysis. Finally we show how
our method can be used for efficiently locating built-in errors in Prolog
source code.

1 Introduction

Partial evaluation [11] is a source-to-source program transformation technique
which specialises programs by fixing part of the input of some source program
P and then pre-computing those parts of P that only depend on the fixed part
of the input. The so-obtained transformed programs are less general than the
original but often more efficient. The part of the input that is fixed is referred
to as the static input, while the remainder of the input is called the dynamic
input. The research into controlling partial evaluation can be broadly partitioned
into two schools of thought: the offline and the online approach. In the online
approach all control decisions (i.e., deciding which parts of the input are static
and which parts of the program should be pre-computed) are made online, during
the specialisation process. The idea of the offline approach is to separate the
specialisation process into two phases (cf. upper half of Fig. 1):

– First a binding-time analysis (BTA for short) is performed which, given
a program and an approximation of the input available for specialisation,
approximates all values within the program and generates annotations that
steer (or control) the specialisation process.

? This research is being carried out as part of the EU funded project IST-2001-38059
ASAP (Advanced Specialization and Analysis for Pervasive Systems).

– A (simplified) specialisation phase, which is guided by the result of the BTA.

Specialised
ProgramSource

Program BTA
Annotated

Source
Program

Offline Partial
Evaluator

Specialised
Program

Static
Input

Approximation of
Static Input

Online
Watchdog

Alarm

observeraise

Fig. 1. Offline Partial Evaluation and the new watchdog mode

A short summary of the advantages and disadvantages of offline specialisation
wrt to online specialisation is as follows:

– The offline approach is in principle less precise (see, however, [6]) as it has
to make decisions before the actual static values are known.

– The offline approach leads to simpler specialisers, thus making self-application
easier and leading to more efficient specialisation. Especially the specialisa-
tion phase proper (i.e., after the BTA has been performed) is usually consid-
erably faster than specialisation using an online specialiser. This is relevant
in situations where the same source program is re-specialised multiple times
w.r.t. the same approximation of the static data.

– The offline approach is more predictable, as it is relatively clear from the
annotation which parts of the code will be pre-computed. This also means
that it is easier to tune the offline approach by editing the annotations.

An offline system for logic programming is the logen system [19]. logen has
successfully been applied to non-trivial interpreters, and can be used to achieve
Jones-optimality [23]. for a variety of interpreters [17], i.e., completely removing
the interpretation overhead.1 As such, logen is of potential interest for many
logic programming areas and applications; for example, logen has been applied
to optimise access control checks in deductive databases [2], to compile denota-
tional semantics language specifications into abstract machine code [31], or to
pre-compile Object Petri nets for later model checking. However, the learning
curve for logen is still considerable and the logen system has up until now
still proven to be too difficult to be used by non-experts in partial evaluation.
The main difficulty lies in coming up with the correct annotations (and then
maintaining them as the source program evolves). Indeed, while some errors

1 Achieving this predictably for a variety of interpreters using online approaches is not
yet fully understood; see, however, [30].

2

(i.e., annotating an argument as static even though it is dynamic) can be easily
identified by various abstract interpretation schemes (see, e.g., [5, 8]), ensuring
termination of the specialisation process is a major obstacle. Recent work has
led to a fully automatic BTA [8], but unfortunately the BTA still only provides
partial termination guarantees2; is sometimes overly conservative, especially for
the more involved (and more interesting) applications; and can be too costly to
apply for larger, real-life Prolog programs. Finally, the BTA of [8] does not yet
deal with many of Prolog’s built-ins and non-logical control constructs.

In this paper we present a way to tackle and solve this problem from a new
angle. The main idea is to use online techniques to supervise an offline specialiser.
The central idea is that the user can turn on a watchdog mode which activates
powerful online control methods to supervise the offline specialiser (see Fig. 1).
If the online control detects a potential infinite loop (or some other problem
such as incorrectly calling a built-in) an alarm is raised, helping the user to
identify and fix errors in the annotation. This watchdog mode will obviously slow
down the specialisation process, invalidating one of the advantages of the offline
approach. However, it is the intention that this watchdog would only be activated
in the initial development or maintenance phase of the annotation or when an
error (e.g., apparent non-termination) arises: it is not our intention to have the
watchdog mode permanently enabled (in that case an online partial evaluator
would be more appropriate). In this paper we formally develop this idea, present
an implementation inside the logen system [19] and evaluate its performance on
a series of examples. We show that on most correct annotations no false alarms
are raised, while on incorrect annotations the problems are spotted quickly and
useful feedback is given. We also present a web interface that can further help
the user to quickly spot and automatically fix the problems identified by the
watchdog. We thus hope that this new technique will make it possible for users
to quickly find errors in their annotations. This hope is underpinned by several
initial case studies within the ASAP project.

2 Offline Partial Evaluation

We now describe the process of offline partial evaluation of logic programs.
Throughout this paper we suppose familiarity with basic notions in logic pro-
gramming. We follow the notational conventions of [22]. Formally, evaluating a
logic program P for an atom A consists in building a so-called SLD-tree and then
extracting the computed answer substitutions from every non-failing branch of
that tree. Take for example the following program to match a regular expression
against a (difference) list of characters:

re(empty,T,T). re(ch(X),[X|T],T).

re(or(X,Y),H,T) :- re(X,H,T). re(or(X,Y),H,T) :- re(Y,H,T).

re(star(X),T,T).

2 [9] does provide full termination guarantees for functional programs but is not avail-
able in a running system and does seem not cope very well with interpreters.

3

re(star(X),H,T) :- re(X,H,T1),re(star(X),T1,T).

re(cat(X,Y),H,T) :- re(X,H,T1),re(Y,T1,T).

As an example, the SLD-tree for re(star(ch(a)),[C],[]) is presented on
the left in Fig. 2. The underlined atoms are called selected atoms. Here there is
only one branch, and its computed answer is C = a.

re(star(ch(a)),[C],[])

re(ch(a),[C],T1),re(star(ch(a)),T1,[])

re(star(ch(a)),[],[])

☐

C=a

re(star(ch(a)),X,[])

re(ch(a),X,T1),re(star(ch(a)),T1,[])

re(star(ch(a)),T1,[])

☐

X=[a|T1]

X=[]

Fig. 2. Complete and Incomplete SLD-trees for the regular expression program

Partial evaluation (also sometimes called partial deduction) for logic pro-
grams proceeds by building possibly incomplete SLD-trees, i.e., trees in which
it is possible not to select certain atoms. The right side of Fig. 2 contains such
an incomplete SLD-tree, where the call re(star(ch(a)),T1,[]) is not selected.
Formally, partial evaluation builds a series of incomplete SLD-trees for a set of
atoms A that is chosen in such a way that all unselected leaf atoms (such as
re(star(ch(a)),T1,[])in Fig. 2) as well as all user queries of interest are an
instance of some atom in A. The specialised program is then extracted from
those trees by producing one new specialised predicate for every atom in A,
with one clause constructed per non-failing branch. The arguments of the spe-
cialised predicate are the variables of the corresponding atom in A. E.g., for A
= { re(star(ch(a)),X,[])} and for the SLD-tree in Fig. 2, we would get:

re__0([]). re__0([a|A]) :- re__0(A).

Partial evaluation techniques for logic programs often start off with an initial
atom A0 of interest: A = {A0}. For every atom in A an SLD-tree is built, and
then all unselected leaf atoms which are not an instance of an atom in A are
added to A. This is repeated until all unselected leaf atoms are an instance
of some atom in A. To ensure termination, generalisation techniques have to
be applied; i.e., atoms in A may be replaced by a more general atom. The
control of partial evaluation for logic programs is thus naturally separated into
two components [24] (see also [16]): The local control controls the construction
of the SLD-trees for the atoms in A and thus determines what the residual
clauses for the atoms in A are. The process of constructing these trees is also
called unfolding. The global control controls the content of A, it decides which
specialised predicates are present in the residual program and ensures that all
unselected leaf atoms are an instance of some atom in A.

4

In offline partial deduction the local and global control are guided by annotations.
The logen system [19] uses two kinds of annotations for this:

– Filter declarations, which declare which arguments (or subarguments) to
which predicates are static and which ones dynamic. This influences the
global control only. More precisely, for unselected leaf atoms the dynamic
(sub-)arguments are replaced by fresh variables; it is then checked whether
a variant of this generalised atom already exists in A; if not the generalised
atom is added to A.

– Clause annotations, which indicate for every call in the body how that call
should be treated during unfolding; i.e., it influences the local control only.
For now, we assume that a call is either annotated by memo — indicating
that it should not be selected – or by unfold — indicating that it should
be selected. For built-ins (or predicates whose source is not available) can
be annotated as either call — indicating that the call should be executed at
specialization time — or as rescall — indicating that the call should not be
executed at specialization time.

First, let us consider, e.g., an annotated version of the regular expression program
above in which the filter declarations annotate the first and third arguments as
static while the second one is dynamic: :- filter re(static,dynamic,static).

Then let the clause annotations annotate the call re(star(X),T1,T) in the last
clause as memo and all the other calls as unfold. Given a specialisation query
re(star(ch(a)),X,[]), offline partial deduction would proceed as follows:

1. The atom re(star(ch(a)),X,[]) is generalised by replacing the dynamic ar-
guments by variables. In this case, the second argument is already a variable.

2. The generalised atom is added to A and then unfolded. This generates ex-
actly the right SLD-tree depicted in Fig. 2.

3. The leaf atoms of the tree are again generalised and are added to A if no
variant is already in A. In this case there is only one leaf atom—namely
re(star(ch(a)),T1,[])—whose second argument is again already a variable
and a variant of which is already in A. Thus no further unfolding is required.

4. The specialised code is produced by mapping each atom in A to a fresh
predicate whose arguments are the variables of the atoms. In this case
re(star(ch(a)),X,[]) would be mapped to, e.g., re 0(X) resulting in the
same specialised code as above:

re__0([]). re__0([a|A]) :- re__0(A).

3 Watchdog Mode

Below we show how offline partial evaluation can be supervised by online tech-
niques, in order to identify non-terminating annotations. We first need the con-
cept of a well-quasi order, which is used for many online techniques:

Definition 1. A quasi order ≤S on a set S is a reflexive and transitive binary
relation on S × S. A sequence of elements s1, s2, . . . in S is called admissible

5

with respect to ≤S iff there are no i < j such that si ≤S sj. The relation ≤S

is a well-quasi order (wqo) on S iff there are no infinite admissible sequences
with respect to ≤S.

A widely used wqo is the homeomorphic embedding relation �. The following
is an adaptation of the definition from [28] (see, e.g., [14, 15] for a summary of
its use in online control). In what follows, we define an expression to be either a
term, an atom, a conjunction, or a goal.

Definition 2. The (pure) homeomorphic embedding relation � on expressions
is inductively defined as follows (i.e. � is the least relation satisfying the rules):

1. X � Y for all variables X, Y
2. s � f(t1, . . . , tn) if s � ti for some i
3. f(s1, . . . , sn) � f(t1, . . . , tn) if n ≥ 0 and ∀i ∈ {1, . . . , n} : si � ti.

Notice that n is allowed to be 0 and we thus have c � c for all constant and
proposition symbols. When s � t we also say that s is embedded in t or t is
embedding s. By s � t we denote that s � t and t 6� s. The intuition behind the
above definition is that A � B iff A can be obtained from B by “striking out”
certain parts. E.g., we have p(0) � p(s(0)) and f(a, b) � h(f(g(a)), b).

For a finite set of function symbols, � is a well-quasi order, i.e., for every
infinite sequence of expressions s1, s2, . . . there exists i < j such that si � sj .
This property has been used in various online control algorithms (first in [28] for
supercompilation and then in [20] for partial evaluation of logic programs and
then in various other techniques, e.g., [1]). Its main use is to ensure termina-
tion by stopping unfolding/specialisation when a new expression to specialise sj

embeds some earlier expression si of the specialisation history.
In the case of specialisation we know that the function symbols occurring

within a given program (text) are finite. Thus for pure logic programs with-
out built-ins, � is a well-quasi order for calls that can occur at runtime or at
specialisation time. However, certain built-ins (such as is/2 or functor/3) per-
mit a program to generate an unbounded number of new function symbols. For
this we employ the solution from [15, 20]: all function symbols not occurring
within the original program text are classified as dynamic and we add the rule:
f(s1, . . . , sn) � g(t1, . . . , tm) if f/n and g/m are dynamic function symbols.3

We now show how we have used � to act as a “watchdog” in offline specialisa-
tion which is used to supervise both the unfolding process and the memoisation.
Let us first discuss the supervision of the local control. Suppose that we are con-
structing the SLD-tree for a given atom A. A simple solution would be, whenever
an atom is unfolded, to check whether the sequence of selected literals starting
from A up to (and including) the currently selected atom is admissible wrt �.

However, it is well known ([4], see also [16]) in online partial evaluation of
logic programs that examining the sequence of selected atoms does give rise to
suboptimal techniques. Indeed, this sequence does not contain the information
3 It would be possible to refine this slightly by adding the requirement that there exists

a subsequence of t1, . . . , tm which embeds the arguments to s1, . . . , sn.

6

which selected atom actually descends from which other selected atom. This
shortcoming can be remedied by working on the sequence of covering ancestors of
the selected atom, i.e., only those atoms from which the selected atom descends
(via resolution). More formally, covering ancestors [4] can be captured in the
following definitions.

Definition 3. If a program clause H ← B1, . . . , Bn is used in a derivation step
with selected atom A then, for each i, A is the parent of the instance of Bi

in the resolvent and in each subsequent goal where an instance originating from
Bi appears (up to and including the goal where Bi is selected). The ancestor
relation is the transitive closure of the parent relation. Let G0, G1, . . . , Gn be
an SLD-derivation with selected atoms A1,A2, . . . , An. The covering ances-
tor sequence of Ai, a selected atom, is the maximal subsequence Aj1 , Aj2 ,
. . .Ajm

= Ai of A1, A2, . . . , Ai such that all atoms in the sequence have the
same predicate symbol and,∀1 ≤ k < m it holds that Ajk

is an ancestor of Ajk+1 .

For every atom that is unfolded the supervisor will check whether the cov-
ering ancestor sequence of the selected atom is admissible wrt �. If it is then
specialization would proceed normally. Otherwise, an alarm would be raised:
e.g., a warning message would be printed and the specialization process would
be suspend allowing the user to choose between aborting or continuing the
specialisation process. E.g., in the SLD-tree on the left in Fig. 2, when select-
ing re(star(ch(a)),[],[])) the watchdog would check whether the sequence
〈re(star(ch(a)),[C],[]) re(star(ch(a)),[],[])〉 is admissible wrt �. As
it is admissible, no alarm would be raised.

Let us now examine the global control, which builds up the set A of atoms
to be specialised. To achieve more refined control, the set A is often structured
as a tree [20, 24], called a specialisation tree. Basically, if after unfolding some
atom Aj we have to add one of the unselected leaf atoms Ak in the SLD-tree to
the set A, then we register Ak as a child of Aj in the specialisation tree. We can
thus do the following for atoms annotated as memo: we first build up the global
specialisation tree, i.e., when a call Ak gets memoed during unfolding of Ai, and
Ak is not an instance of another atom that has already been specialised, then we
add Ak as a child of Ai in the specialisation tree. Furthermore, we check whether
the sequence of ancestors of Ak in the tree is admissible wrt �. If it is not, we
raise an alarm and allow the user to choose between aborting or continuing the
specialisation process.

The Implementation We have integrated the above idea and technique into
the logen system. The logen system uses the so-called “cogen” approach to
specialisation, i.e., given an annotated source program it directly generates a
specialised specialiser for this source program and the annotation (called a gen-
erating extension). In particular, for every clause of the source program logen
derives an “unfolder” clause in the generating extension, having an extra ar-
gument to compute the residual code. Similarly, memoisation predicates are
constructed for the memoised predicates. To implement our watchdog mode

7

the unfolder predicates do not carry enough information to determine whether
unfolding the body literals is actually safe or not: we need access to the covering
ancestor sequence. For memoised calls, we additionally need the global special-
isation tree. We have adapted the compilation strategy of logen so that in
watchdog mode an extra argument is maintained by the unfolder and memoisa-
tion predicates, where both the covering ancestor sequence and the specialisation
tree are built up. In Section 4, we examine empirically whether our approach is
efficient enough to be practical and precise enough to be useful.

Let us now use the watchdog on our regular expression example. First, we
annotate all calls as unfold and run logen from the command line with the
watchdog mode enabled:

% logen re.pl "re(star(ch(a)),X,[])" -w

<| HOMEOMORPHIC WARNING |> : UNFOLDING re(star(ch(a)),A,[]),

History: [re(star(ch(a)),B,[])]

A predicate is possibly being unfolded infinitely often.

You may want to annotate the call as memo.

Type ’c’ to continue unfold, ’F’ to fail branch,

’C’ to continue without further intervention, anything else to abort:

As can be seen, the watchdog has correctly spotted (after a few ms) that
we were about to infinitely unfold the atom re(star(ch(a)),X,[]). If we now
correct our annotation, as suggested, by memoing the last call to re/2 in the
last clause we get the following:

% logen re.pl "re(star(ch(a)),X,[])" -w

/* re(star(ch(a)),A,[]) :-re__0(A). */

re__0([]).

re__0([a|A]) :- re__0(A).

I.e., this time the watchdog has not raised an alarm, and indeed our special-
isation now terminates.

4 Experiments

In the first series of experiments we ran our watchdog technique on a series
of correctly annotated, terminating examples. We have gathered some simple
programs as well as a variety of successful applications of the logen system
documented in the literature. The purpose was twofold: first, test whether, de-
spite the overhead, the approach is practical, and second, whether the number
of false alarms is low enough for the approach to be useful.

The results of the experiments are summarised in Table 1. All experiments
were run using Ciao Prolog 1.13 on a Macintosh PowerPC Dual G5, 2.7 GHz with
4.5 GB of RAM running Mac OS X 10.4. The cogen time in the second column is
the time needed to run the cogen of the logen system to generate the generating
extension. Column three contains the same figure for the watchdog mode. The
fourth column then contains the time needed to run the generating extension on a

8

Benchmark Cogen Cogen Spec. Spec. False Overhead Overhead
watch watch Alarms One Shot Just Spec.

match 43 ms 65 ms 1.4 ms 1.7 ms 0 1.50 1.21
transpose 44 ms 66 ms 0.5 ms 0.8 ms 0 1.50 1.60
ex depth 45 ms 68 ms 1.7 ms 2.3 ms 0 1.51 1.35
inter medium 48 ms 71 ms 0.4 ms 12.5 ms 0 1.73 31.25
vanilla list 44 ms 67 ms 1.0 ms 1.3 ms 0 1.52 1.30
liftsolve 49 ms 74 ms 1.7 ms 72.3 ms 0 2.89 42.53
lambdaint 60 ms 92 ms 1.6 ms 11.7 ms 0 1.68 7.31
db access 115 ms 145 ms 1.2 ms 10.8 ms 1 1.34 9.00
matlab 94 ms 146 ms 3.4 ms 40.0 ms 0 1.91 11.76
pascal 70 ms 107 ms 3.0 ms 27.3 ms 0 1.84 9.10
picsim 258 ms 390 ms 145.8 ms 1999.4 ms 0 5.92 13.71

Average 0.09 2.12 11.83
Table 1. The watchdog approach for correct annotations

single specialisation query. Column five contains the same figure for the watchdog
mode. The sixth column contains the number of alarms, and thus the number
of false alarms (as all annotations ensure termination). The overhead of the
watchdog mode in “one-shot” situations (i.e., a single specialisation) is presented
in column seven, while the overhead of the specialisation process without the
cogen time is presented in the last column. The benchmark programs are as
follows. First, match is the semi-naive pattern matcher from [13], specialised
for the pattern [a,a,b]. transpose and ex depth are also taken from [13],
while inter medium is taken from [8]. vanilla list is a variation of the vanilla
interpreter (see [17]) specialised for an object program which is in turn the same
interpreter but with the append as object program. liftsolve is the interpreter
for the ground representation from [13] specialised for the append program.
lambdaint is the interpreter for a small functional language presented in [17],
specialised for the Fibonacci function. db access is the interpreter for access
control from [2] specialised for a particular policy and query pattern (query Q4
in [2]). matlab is the interpreter for a subset of the Matlab language also used in
[21], specialised for the factorial function. pascal is the denotational semantics
interpreter for a small Pascal like language used in [31], specialised for a small
Pascal program so as to obtain assembly like code. picsim is an emulator for
the machine language of PIC processors written by Kim Henriksen and John
Gallagher [10], specialised for a particular machine program (so as to extract
analysis information by further abstract interpretation).

In summary the results are very satisfactory. The overhead on the specialisa-
tion is usually an order of magnitude (this is to be expected, as every unfolding
step and memoisation step is supervised and checked against the history of un-
foldings and earlier memoisations respectively), even though the overhead on
the total time in “one-shot” situations (i.e. time for both the cogen and the spe-
cialisation) is often much less, e.g., 84 % for the pascal experiment or 50 % for
the match benchmark. What is most encouraging, however, is the low number of

9

false alarms: on only one of the experiments false alarms were raised, and even
there only a single alarm was raised.

We now examine how our approach fares when the annotations are erroneous
and do not ensure termination of the specialiser. This is probably a more typical
use case, as the watchdog would usually be turned on in exactly those circum-
stances. It is, however, more difficult to present empirical data in that setting:
the notion of overhead makes no sense as the offline approach does not terminate;
it is also difficult to quantify the earliest possible moment when non-termination
can be “detected.” Still, we will try to show on a series of examples that our
watchdog technique does find the problem and does so quickly.

In Section 3 we have already looked at a simple example. Let us now examine
the behaviour of the watchdog method on some more realistic examples. Take the
ex depth interpreter used in the previous section, counting the depth of SLD-
trees, but marking this time the depth argument as static rather than dynamic.4

Termination is no longer guaranteed, and this is a common annotation mistake
in offline partial evaluation. This is spotted quickly by our technique (after less
than 5 ms):

% logen ex_depth_nonterm.pl "solve([inboth(X,Y,Z)],0,Depth)." -w

<| HOMEOMORPHIC WARNING|> : MEMO Atom solve([member(A,B)],s(s(s(0))),C),

History: [solve([member(D,E)],s(s(0)),F),solve([member(G,H),member(I,J)],

s(0),K), solve([inboth(L,M,N)],0,O)]

Let us now take the same annotation, but this time unfold all calls to solve.
As above, this is correct from the point of view of binding times (i.e., all argu-
ments marked as static are really static). However, termination is not guaranteed,
something which our technique spots quickly (again less than 6 ms):

% logen ex_depth_nonterm_local.pl "solve([inboth(X,Y,Z)],0,Depth)." -w

<| HOMEOMORPHIC WARNING |> : UNFOLDING solve([member(A,B)],s(s(s(C))),D),

History: [solve([member(E,F)],s(s(G)),H),solve([member(I,J),member(I,K)],

s(L),M), solve([inboth(N,O,P)],Q,R)]

The problems above were spotted at a very early stage, where it is easy for the
user to identify the causes. In both cases the specialiser without watchdog mode
will not terminate. Finally, we have tried two bigger examples: the lambdaint
and pascal interpreters from the previous subsection. In the former we anno-
tated the apply construct and in the latter the while construct as unfoldable.
After less than 25 ms and 60 ms and 9 and 11 unfolding steps respectively the
problem was detected by the watchdog.

5 The Web Interface and Semi-Automatic Correction

Further Error Conditions In addition to non-termination there are various
other errors that often arise in hand-crafted annotations. First, a common mis-
take is to annotate built-ins as call even though they are not guaranteed to be
4 This required adapting one clause for the binding times to be correct.

10

sufficiently instantiated at specialisation time. Another common mistake is to
make the filter declarations too narrow, so that not all memoised calls are cov-
ered by the filter declaration. We have extended our watchdog technique so that
these conditions are detected. This means that all calls to built-ins are explicitly
checked by the watchdog, and the filter errors are also caught and presented to
the user.5 Another common mistake relates to backpropagation of bindings [26]
in the context of non-logical built-ins and connectives. Here the watchdog uses
co-routining to detect those backpropagations.

Graphical Web interface In [18] we have presented a graphical web interface
for the logen system, which allows the user to edit annotations for a given
Prolog program in a user friendly way: the Prolog program to be annotated is
presented with comments and formatting intact and colour coding (as well as
“mouse over” information) is used to display the annotation. The annotations
can be edited using an intuitive point and click interface.

In order to make it easier for users to understand and act upon the feedback
provided by the watchdog, it would make sense to provide the watchdog infor-
mation by highlighting the problematic annotations directly in the source code
frame of the web interface. For this we had to extend the scheme presented in
Section 3, in that the generating extensions also need to keep track of program
points (in addition to the covering ancestor sequence and the specialisation tree).
This information (along with a description of the error) is then fed back in XML
format to the web interface to locate the source of the error and highlight it.
Once this framework was in place, it was possible to extend the XML format
to convey further information, such as how to fix an incorrect annotation. Be-
low we show how these suggestions can be computed, again using online control
techniques. To use this information the web interface uses XSLT to translate
logen’s XML suggestions into Javascript statements for fixing the annotations,
which are executed if the user presses the “fix” button.

Correcting Annotations Let us first summarise the four classes of problems
that our watchdog can catch, along with a summary of the fixes that can be
applied. Note that there could be alternate ways to fix the problems below; e.g.,
by unfolding more user predicates to make more things static. Our underlying
assumption here is that the user will progress from more aggressive annotations
to less aggressive ones (with less calls marked as unfold and call).

– Problem 1: dangerous unfolding is detected by �. Fix: mark this call as
memo.

– Problem 2: a built-in is marked as call but is not sufficiently instantiated
(or throws an exception). Fix: mark the built-in as rescall.

– Problem 3: a call marked as memo is not covered by its filter declaration.
Fix: generalise the filter declaration to cover the call. Details are presented
below.

5 The filter errors are now actually also caught in normal mode as this extra checking
does not incur a significant overhead.

11

– Problem 4: � has detected a potential infinite memoisation. Fix: generalise
the filter declaration to throw part of the static information away.
For the first two entries the fix is straightforward; for the latter two the

computation of the updated filter declarations is more subtle. There are various
ways this could be achieved. Below we present solutions inspired by online control
techniques.

We first need to recall some background on logen’s filter declarations: a
filter declaration assigns every argument of every predicate a binding-type. A
binding type is a generalisation of the classical binding-times (static, dynamic;
see, e.g., [11]), making it possible to precisely specify which subarguments are
static or dynamic (rather than having to declare the entire argument as either
static or dynamic). logen’s binding types are expressed using the standard
formalism employed by polymorphically typed languages (e.g. [27]). Formally,
a type is either a type variable or a type constructor of arity n ≥ 0 applied to
n types. We presuppose the existence of three 0-ary type constructors: static,
dynamic, and nonvar. These constructors are given a pre-defined meaning.

Definition 4. A type definition for a type constructor c of arity n is of the form

c(V1, . . . , Vn) −→ f1(T 1
1 , . . . , Tn1

1) ; . . . ; fk(T 1
k , . . . , Tnk

k)

with k ≥ 1, n, n1, . . . , nk ≥ 0 and where f1, . . . , fk are distinct function symbols,
V1, . . . , Vn are distinct type variables, and T j

i are types which only contain type
variables in {V1, . . . , Vn}.
A type system Γ is a set of type definitions, exactly one for every type constructor
c different from static, dynamic, and nonvar.

From now on we will suppose that the underlying type system Γ is fixed.
logen also allows function symbols to be used as type constructors and we thus
also suppose that every function symbol of arity n is also a type constructor
of arity n, defined by f(V1, . . . , Vn) −→ f(V1, . . . , Vn) in Γ . As an example,
the parametric type list(T) can be declared as follows in logen (following the
notations of Mercury): :- type list(T) ---> [] ; [T | list(T)].

We define type substitutions to be finite sets of the form {V1/τ1, . . . , Vk/τk},
where every Vi is a type variable and τi a type. Type substitutions can be applied
to types (and type definitions) to produce instances in exactly the same way
as substitutions can be applied to terms. For example, list(V){V/static} =
list(static). A type or type definition is called ground if it contains no type
variables.

Definition 5. We now define type judgements relating terms to types in Γ .
– t : dynamic holds for any term t
– t : static holds for any ground term t
– t : nonvar holds for any non-variable term t
– f(t1, . . . , tn) : c(τ ′1, . . . , τ

′
k) if there exists a ground instance of a type defini-

tion in Γ which has the form c(τ ′1, . . . , τ
′
k) −→ . . . f(τ1, . . . , τn) . . . and where

ti : τi for 1 ≤ i ≤ n.

12

Here are a few examples, using the type system Γ1 above. First, we have s(0) :
static, s(0) : nonvar, and s(0) : dynamic. Also, s(X) : nonvar, s(X) : dynamic
but not s(X) : static. A few examples with lists are: [s(0)] : list(static),
[X, Y] : list(dynamic).

The following fixes problem 3 identified earlier, i.e., it computes a new binding
type for an argument t which has incorrectly been assigned a binding type τ :

Definition 6. Let t be a term and τ a binding type. tgen(t, τ) =
– τ if t : τ ;
– dynamic if ¬(t : τ) and t is a variable;
– f(tgen(t1, τ1), . . . , tgen(tk, τk)) if t = f(t1, . . . , tn) and τ = f(τ ′1, . . . , τ

′
k)

and ¬(t : τ);
– nonvar otherwise.

E.g., tgen(0, static) = static, tgen(p(X), static) = nonvar, tgen(X, static) =
tgen(X, nonvar) = dynamic, tgen(p(s(X), 0), p(static, static)) = p(nonvar, static),
tgen([a|X], list(nonvar)) = nonvar, and tgen([a,X], list(nonvar)) = nonvar.
The above algorithm does not try to invent new types and the last example
shows that there are ways to make the algorithm more precise (by inferring
list(dynamic) rather than nonvar). However, the algorithm does guarantee ter-
mination and correctness in the following sense:

Proposition 1. For every infinite sequence of terms t1, t2, . . . and for every
binding type τ0 the sequence τ1, τ2, . . . with τi = tgen(ti, τi−1) stabilises and
there exists a k > 0 such that for all j > k we have tj : τj.

The proposition follows from the fact that by construction t : tgen(t, τ) and
for any given type τ only finitely many more general types can be obtained by
applying tgen.
Dangerous Memoisation The watchdog flags a memoisation of a call as

dangerous if it can find an ancestor in the specialization tree which is embedded
in the call. To fix this (potential) problem detected by the watchdog we make
use of the following definition:

Definition 7. Let a = p(a1, . . . , an) and b = p(t1, . . . , tn) be two atoms such
that a� b. Then the growing argument positions of b wrt a are all indices i such
that ti is not a variant of ai.

It can be seen that for every growing argument position i we have ai � bi. A
simple solution is now to compute all growing argument positions and adapt the
filter declaration so that the corresponding arguments are given the binding-type
dynamic (i.e., these arguments will be replaced by fresh variables during memo-
isation). This is the solution that we have currently implemented within logen.
A more subtle solution could be developed by employing most specific generalisa-
tion (msg) [12] a common technique used for controlling generalisation in online
specialisation [16]: the msg of a set of terms S is the most specific term such
that all expressions in S are instances of it. We can now compute the msg on the

13

growing arguments and then only replace the variables by dynamic. For example,
given the memoised call p(b, p(s(s(0)), 1)), [W]) with filter declaration :- filter

p(static,static,list(dynamic)) and with covering ancestor p(a, p(s(0), 1), [V])
we have msg({p(s(s(0)), 1), p(s(0), 1)}) = p(s(Z), 1) and thus obtain the new
declaration: :- filter p(static,p(s(dynamic),static),list(dynamic)).

Pragmatic BTA, Debugging and ASAP Case Studies The above new
methods and the accompanying web interface make it now much easier for users
to fix their incorrect annotations. Furthermore, it also enables a pragmatic BTA
to be performed. Basically, the idea is to start off with an initial annotation where
all user predicates are marked as unfold and all built-ins as call. The specialiser
is then run in watchdog mode on a series of representative specialisation queries.
Every time a problem is detected the fix computed by logen is applied. This
is repeated until all sample queries can be specialised without error. One should
also combine this process with the filter propagation algorithm of [8] to ensure
that the annotations are correct wrt static information. It is easy to see that
this process must terminate. However, the approach does obviously not guarantee
that specialisation will terminate for all queries. Still, this approach has proven
to be successful on some larger case studies within the European project ASAP.
In the first study, logen was used to specialise an interpreter for a process
language with the aim of automatic task scheduling on pervasive devices. In
another case study a complete emulator for PIC assembly [10] was successfully
specialised by logen for arbitrary PIC programs (for further analysis such as
dead code detection). In both cases the automatic BTA was not applicable (due
to the size of the interpreters and due to the various built-ins used), but the
watchdog mode enabled us to annotate the programs with much less effort (e.g.
a few hours for the process language interpreter) than was previously possible.
Note that once the annotation was developed, the watchdog mode was turned off
allowing the offline specialiser to run at full speed for the various applications.

Another application of our method and web interface is debugging. For in-
stance, we had a version of the task scheduling interpreter containing a built-in
error (calling T2 =.. [Op,V0|V1] instead of T2 =.. [Op,V0,V1]). When one
executes the main method of this program one simply gets the following mes-
sage: ERROR: illegal arithmetic expression, without any indication about
the call or the location of the error. Using a debugger to locate such errors is
often not practical: the error was reached after 175 steps (and more tricky prob-
lems will easily require thousands or millions of steps given that current Prolog
systems can exceed 20 Million logical inferences per second) and when using
the debugger’s leap command one gets the same message as above, without any
indication about the problematic built-in nor its location. Our watchdog ap-
proach can be used as an automatic debugger to locate those problems (as well
as locating loops). The idea is to use a simple BTA which annotates all calls to
user predicates as unfold and all calls to built-ins as call (this BTA is available
via the web interface). Specializing then corresponds to supervised execution,
where checks and program point information has been weaved into the source

14

program. We thus get information about the actual call that causes the problem
(as well as precise program point information which is used by the web interface
to highlight the location of the error):

% logen task_csp_scheduler_err.pl "main([2,3,4])" -wb

<| BUILT-IN ERROR |> : CALL Atom _7966=..[+,2|10]

The -wb option tells logen to check only built-ins and not user predicates
for potential loops (in order to reduce the overhead). Some experimental data
for the overhead of this approach can be seen in the table below. As can be seen,
the overhead is very reasonable.

Benchmark original original logen logen -wb
(consulted) (compiled) (normal) (watch)

lambdaint 2.18 ms 1.22 ms 1.29 ms 4.48 ms
task scheduler 1.15 ms 0.61 ms 0.59 ms 2.83 ms

6 Related Work and Conclusion

We believe that our idea to use online techniques to supervise an offline spe-
cialiser to be new. However, in the past several researchers have investigated hy-
brid strategies6 (e.g., [3, 7, 11]) where offline partial evaluators were augmented
with online constructs. The aim there was different (to augment specialisation
power) and only very few actual techniques or implementations exist ([29] is
one). Another related work is [25] where program transformations are used to
construct justifications for computed answers.

We have presented the idea of using online techniques in general and the
homeomorphic embedding relation in particular to supervise an offline spe-
cialiser, in an effort to help the development of correct annotations by identifying
error conditions. We have implemented this technique within the logen system
and have shown that this technique turned out to be very effective: very few
false alarms were raised and the overhead was low enough for the technique to
be practically usable. We have presented an improved web interface that feeds
back this information to the user in an intuitive way, and we have presented
techniques to automatically computed fixes for the spotted problems. We have
applied our ideas to various case studies, and the techniques have enabled us
to annotate and specialise much larger programs than was previously possible.
These new features of logen can also be tried out at using a web interface at
http://stups.cs.uni-duesseldorf.de/~pe/weblogen.

Our technique can also be used as a pragmatic BTA: one simply starts with
a maximally aggressive annotation and then lets the watchdog find and fix the
errors. While this does not produce termination guarantees, it has proven very
effective in practice and can easily deal with larger source programs and with
many built-ins. Another application of our watchdog mode is to locate built-in

6 Sometimes called mixline annotations.

15

errors or non-termination problems in user programs, and highlight those errors
directly within the user’s source program.

The logen system has found many uses; from specialising PIC assembly
code emulators, to point cut languages for aspect orientation over to CTL model
checkers. But so far using logen required considerable expertise in partial eval-
uation, hampering a more widespread usage. With this work we hope to make
logen and the underlying technology accessible to a broader community.

References

1. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic
Programs. ACM Transactions on Programming Languages and Systems, 20(4):768–
844, 1998.

2. S. Barker, M. Leuschel, and M. Varea. Efficient and flexible access control via logic
program specialisation. In Proceedings PEPM’04, pages 190–199. ACM Press, 2004.

3. A. Bondorf. Towards a self-applicable partial evaluator for term rewriting systems.
In D. Bjørner, A. P. Ershov, and N. D. Jones, editors, Partial Evaluation and Mixed
Computation, pages 27–50. North-Holland, 1988.

4. M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding
infinite unfolding during partial deduction. New Generation Computing, 11(1):47–
79, 1992.

5. M. Bruynooghe, M. Leuschel, and K. Sagonas. A polyvariant binding-time anal-
ysis for off-line partial deduction. In C. Hankin, editor, Proceedings of the Euro-
pean Symposium on Programming (ESOP’98), LNCS 1381, pages 27–41. Springer-
Verlag, April 1998.

6. N. H. Christensen and R. Glück. Offline partial evaluation can be as accurate
as online partial evaluation. ACM Transactions on Programming Languages and
Systems, 26(1):191–220, 2004.

7. C. Consel. Binding time analysis for high order untyped functional languages.
In LFP ’90: Proceedings of the 1990 ACM conference on LISP and functional
programming, pages 264–272, New York, NY, USA, 1990. ACM Press.

8. S.-J. Craig, J. Gallagher, M. Leuschel, and K. S. Henriksen. Fully automatic
binding-time analysis for Prolog. In S. Etalle, editor, Proceedings LOPSTR 2004,
LNCS 3573, pages 53–68. Springer-Verlag, August 2004.

9. A. J. Glenstrup and N. D. Jones. BTA algorithms to ensure termination of off-
line partial evaluation. In Perspectives of System Informatics: Proceedings of the
Andrei Ershov Second International Memorial Conference, LNCS 1181, pages 273–
284. Springer-Verlag, 1996.

10. K. S. Henriksen and J. P. Gallagher. Analysis and specialisation of a PIC pro-
cessor. In Proceedings of the IEEE International Conference on Systems, Man &
Cybernetics (2), pages 1131–1135, The Hague, The Netherlands, 2004.

11. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

12. J.-L. Lassez, M. Maher, and K. Marriott. Unification revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–
625. Morgan-Kaufmann, 1988.

13. M. Leuschel. The ecce partial deduction system and the dppd library of bench-
marks. Obtainable via http://www.ecs.soton.ac.uk/~mal, 1996-2002.

14. M. Leuschel. On the power of homeomorphic embedding for online termination. In
G. Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503, pages 230–245,
Pisa, Italy, September 1998. Springer-Verlag.

16

15. M. Leuschel. Homeomorphic embedding for online termination of symbolic meth-
ods. In T. Æ. Mogensen, D. Schmidt, and I. H. Sudborough, editors, The Essence
of Computation - Essays dedicated to Neil Jones, LNCS 2566, pages 379–403.
Springer-Verlag, 2002.

16. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial de-
duction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–
515, July & September 2002.

17. M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof. Specializing interpreters
using offline partial deduction. In M. Bruynooghe and K.-K. Lau, editors, Program
Development in Computational Logic, LNCS 3049, pages 341–376. Springer-Verlag,
2004.

18. M. Leuschel, D. Elphick, M. Varea, S. Craig, and M. Fontaine. The Ecce and
Logen partial evaluators and their web interfaces. In F. T. John Hatcliff, editor,
Proceedings of PEPM’06, pages 88–94. IBM Press, Januar 2006.

19. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation
in Prolog using a hand-written compiler generator. Theory and Practice of Logic
Programming, 4(1):139–191, 2004.

20. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems, 20(1):208–258, January 1998.

21. M. Leuschel and G. Vidal. Forward slicing by conjunctive partial deduction and
argument filtering. In M. Sagiv, editor, Proceedings ESOP 2005, LNCS 3444, pages
61–76. Springer-Verlag, April 2005.

22. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
23. H. Makholm. On Jones-optimal specialization for strongly typed languages. In

W. Taha, editor, Semantics, Applications, and Implementation of Program Gener-
ation, LNCS 1924, pages 129–148. Springer-Verlag, 2000.

24. B. Martens and J. Gallagher. Ensuring global termination of partial deduction
while allowing flexible polyvariance. In L. Sterling, editor, Proceedings ICLP’95,
pages 597–613, Kanagawa, Japan, June 1995. MIT Press.

25. G. Pemmasani, H.-F. Guo, Y. Dong, C. R. Ramakrishnan, and I. V. Ramakrishnan.
Online justification for tabled logic programs. In Proceedings FLOPS 2004, LNCS
2998, pages 24 – 38. Springer-Verlag, January 2004.

26. D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing, 12(1):7–51, 1993.

27. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
An efficient purely declarative logic programming language. The Journal of Logic
Programming, 29(1–3):17–64, 1996.

28. M. H. Sørensen and R. Glück. An algorithm of generalization in positive supercom-
pilation. In J. W. Lloyd, editor, Proceedings of ILPS’95, the International Logic
Programming Symposium, pages 465–479, Portland, USA, 1995. MIT Press.

29. M. Sperber. Self-applicable online partial evaluation. In O. Danvy, R. Glück,
and P. Thiemann, editors, Partial Evaluation, International Seminar, LNCS 1110,
pages 465–480, Schloß Dagstuhl, 1996. Springer-Verlag.

30. W. Vanhoof and B. Martens. To parse or not to parse. In N. Fuchs, editor, Logic
Program Synthesis and Transformation. Proceedings of LOPSTR’97, LNCS 1463,
pages 322–342, Leuven, Belgium, July 1997.

31. Q. Wang, G. Gupta, and M. Leuschel. Towards provably correct code generation
via Horn logical continuation semantics. In M. V. Hermenegildo and D. Cabeza,
editors, Proceedings PADL’05, of LNCS 3350, pages 98–112. Springer, 2005.

17

