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Abstract. We present the latest version of the logen partial evaluation
system for logic programs. In particular we present new binding-types,
and show how they can be used to effectively specialise a wide variety of
interpreters. We show how to achieve Jones-optimality in a systematic
way for several interpreters. Finally, we present and specialise a non-
trivial interpreter for a small functional programming language. Exper-
imental results are also presented, highlighting that the logen system
can be a good basis for generating compilers for high-level languages.

1 Introduction

Partial evaluation [21] is a source-to-source program transformation technique
which specialises programs by fixing part of the input of some source program
P and then pre-computing those parts of P that only depend on the known part
of the input. The so-obtained transformed programs are less general than the
original but can be much more efficient. The part of the input that is fixed is
referred to as the static input, while the remainder of the input is called the
dynamic input.

Partial evaluation has been especially useful when applied to interpreters. In
that setting the static input is typically the object program being interpreted,
while the actual call to the object program is dynamic. Partial evaluation can
then produce a more efficient, specialised version of the interpreter, which is
sometimes akin to a compiled version of the object program.

The ultimate goal in that setting is to achieve so-called Jones optimality [19,
21, 36], i.e., fully getting rid of a layer of interpretation (called the “optimality
criterion” in [21]). More precisely, if we have a self-interpreter I for a language L,
i.e., an interpreter for L written in that same language L, and then specialise I for
a particular object program O we would like to obtain a specialised interpreter
which is equivalent to O (or better of course). This is illustrated in Figure 1.
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Fig. 1. Jones Optimality

In this paper we study systematically how to specialise a wide variety of
interpreters written in Prolog using so-called offline partial evaluation. We will
illustrate this using the partial evaluation system logen starting from very sim-
ple interpreters progressing towards more complicated interpreters. We will also
show how we can actually achieve the goal of Jones optimality for a logic pro-
gramming self-interpreter, as well as for a debugger derived from it; i.e., when
specialising the debugger for an object program O with none of its predicates
being spyed on we will always get a specialised debugger equivalent to O. We
believe this to be the first result of its kind in a logic programming setting. In
fact, how to effectively specialise interpreters has been a matter of ongoing re-
search for many years, and has been of big interest in the logic programming
community, see e.g., [41, 46, 43, 5, 6, 26, 49, 28] to mention just a few. However,
despite these efforts, achieving Jones optimality in a systematic way has re-
mained mainly a dream. To our knowledge, Jones optimiality has been achieved
only for a simple Vanilla self-interpreter in [49], but the technique does not scale
up to more involved interpreters. All of these works have mainly tried to tackle
the problem using fully automatic online partial evaluation techniques, while
in this paper we are using the offline approach. Basically, an online specialiser
takes all of its control decisions during the specialisation process itself, while an
offline specialiser is guided by a preliminary binding-time analysis, which in our
case will be (partially) done by hand. The basic reason we opt for the off-line
approach is that it allows to steer the specialisation process far better than on-
line techniques. This steering is of particular importance in the current setting,
since all of the previous research using automatic on-line techniques has shown
that specialising interpreters (in general and especially Jones optimality) is hard
to achieve.

The paper is structured as follows. In Section 2 we present the basics of offline
partial evaluation and of the so-called cogen approach to specialisation employed
by logen. The logen system itself is described in Section 2.3. We then show
how a simple, non-recursive interpreter can be specialised in Section 4 before
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moving to a self-interpreter in Section 5, for which we achieve Jones-optimality.
In Section 6 this self-interpreter is extended into a debugger, for which Jones-
optimality is also achieved. Section 7 then presents more sophisticated features
of logen, required to tackle interpreters for other programming paradigms in
Section 8. Finally, we conclude in Section 9.

2 Offline Partial Evaluation and the Cogen Approach
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Fig. 2. Illustrating the three Futamura projections

2.1 The Futamura projections

A partial evaluation or deduction system is called self-applicable if it is able
to effectively1 specialise itself. The practical interests of such a capability are
1 This implies some efficiency considerations, e.g. the system has to terminate within

reasonable time constrains, using an appropriate amount of memory.
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manifold. The most well-known lie with the so called second and third Futamura
projections [9]. The general mechanism of the Futamura projections is depicted
in Figure 2. The first Futamura projection consists of specialising an interpreter
for a particular object program, thereby producing a specialised version of the
interpreter which can be seen as a compiled version of the object program. If the
partial evaluator is self-applicable then one can specialise the partial evaluator
for performing the first Futamura projection, thereby obtaining a compiler for
the interpreter under consideration. This process is called the second Futamura
projection. The third Futamura projection now consists of specialising the partial
evaluator to perform the second Futamura projection. By this process we obtain
a compiler generator (cogen for short).

2.2 Offline Specialisation and the Cogen Approach

Guided by these Futamura projections a lot of effort, especially in the functional
partial evaluation community, has been put into making systems self-applicable.
First successful self-application was reported in [22], and later refined in [23]
(see also [21]). The main idea which made this self-application possible was to
separate the specialisation process into two phases, as depicted in Figure 3:

– first a binding-time analysis (BTA for short) is performed which, given a
program and an approximation of the input available for specialisation, ap-
proximates all values within the program and generates annotations that
steer (or control) the specialisation process.

– a (simplified) specialisation phase, which is guided by the result of the BTA.
Such an approach is off-line because most, control decisions are taken be-

forehand. The interest for self-application lies with the fact that only the sec-
ond, simplified phase has to be self-applied. On a more technical level, such an
approach also avoids the generation of overly general compilers and compiler
generators. We refer to [22, 23, 21] for further details. In the context of logic pro-
gramming languages the off-line approach was used in [39] and to some extent
also in [14].

However, the actual creation of the cogen according to the third Futamura
projection is not of much interest to users since cogen can be generated once and
for all when a specialiser is given. Therefore, from a user’s point of view, whether
a cogen is produced by self-application or not is of little importance; what is im-
portant is that it exists and that it is efficient and produces efficient, non-trivial
specialised specialisers. This is the background behind the approach to program
specialisation called the cogen approach [16, 18, 4, 1, 12, 47] (as opposed to the
more traditional mix approach): instead of trying to write a partial evaluation
system mix which is neither too inefficient nor too difficult to self-apply one
simply writes a compiler generator directly.

2.3 Overview of logen

The application of the cogen approach in a logic programming setting was leading
to the logen system [24, 31], which we describe in more detail in the next section.
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Figure 4 highlights the way the logen system works. Typically, a user would
proceed as follows:

– First the source program is annotated using the BTA, which produces an
annotated source program. This annotated source program can be further
edited, by using the logen Emacs mode. This also allows an expert to
inspect and manually refine the annotations to get better specialisation.
The picture does not show that logen now also contains a term expansion
package (for SICStus and Ciao Prolog) that strips the annotations when load-
ing the annotated source program, allowing the annotated source program to
be run directly. Together with the Emacs mode, one can thus continue to de-
velop, maintain and debug the source program together with its annotation
(and one can forget the original un-annotated source program).

– Second, logen is run on the annotated source program and produces a
specialised specialiser, called a generating extension.

– This generating extension can now be used to specialise the source program
for some static input. Note that the same generating extension can be run
many times for different static inputs (i.e., there is no need to re-run logen
on the annotated source program unless the annotated source program itself
changes).

– When the remainder of the input is known, the specialised program can now
be run and will produce the same output as the original source program. Note
again, that the same specialised program can be run for different dynamic
inputs; one only has to re-generate the specialised program if the static input
changes (or the original program itself changes).
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Fig. 4. Illustrating the logen system and the cogen approach

3 Offline Partial Deduction of Logic Programs

We now try to formalise the process of offline partial evaluation of logic programs
and give a better understanding on how logen specialises its source programs.

Throughout this paper, we suppose familiarity with basic notions in logic
programming. We follow the notational conventions of [34]. In particular, in
programs, we denote variables through strings starting with an upper-case sym-
bol, while the notations of constants, functions and predicates begin with a
lower-case character.

3.1 Partial Deduction

The term “partial deduction” has been introduced in [25] to replace the term
partial evaluation in the context of pure logic programs (no side effects, no cuts).
Though in some parts of the paper we briefly touch upon the consequences of
impure language constructs, we adhere to this terminology because the word
“deduction” places emphasis on the purely logical nature of most of the source
programs. Before presenting partial deduction, we first present some aspects of
the logic programming execution model.
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Formally, executing a logic program P for an atom A consists of building
a so-called SLD-tree for P ∪ {← A} and then extracting the computed answer
substitutions from every non-failing branch of that tree. Take for example the
well-known append program:

append([],L,L).
append([H|X],Y,[H|Z]) :- append(X,Y,Z).

For example, the SLD-tree for append([a,b],[c],R) is presented on the left
in Figure 5. The underlined atoms are called selected atoms. Here there is only
one branch, and its computed answer is R = [a,b,c].

append([a,b],[c],R)

append([b],[c],R2)

append([],[c],R3)

R=[a|R2]

R2=[a|R3]

R3=[c]

append(X,[c],R)

append(X2,[c],R2)

X=[H|X2],
R=[H|R2]

X=[]
R=[c]

Fig. 5. Complete and Incomplete SLD-trees for the append program

Partial evaluation builds upon this approach with two major differences:

– it is possible to not select a given atom, leading to so-called incomplete SLD-
trees where the leaves are different from the empty goal. This is because the
lack of the full input may cause the SLD-tree to have extra branches, in
particular infinite ones. For example, in Figure 5 the rightmost tree is an
incomplete SLD-tree for append(X,[c],R), whose full SLD-tree would be
infinite.
The partial evaluator should not only avoid constructing infinite branches,
but also other branches causing inefficiencies in the specialised program.
Building such a tree is called unfolding. An unfolding rule tells us which atom
to select at which point. Every branch of an incomplete tree now does not
produce a computed answer, it rather produces a conditional answer which
can be expressed as a program clause by taking the resultant of that branch
defined below.

– because of the point above, we may have to build a series of SLD-trees, to
ensure that every non-selected atom is covered by some root of some tree.
The fact that every leaf is an instance of a root is called closedness (or
sometimes also coveredness).
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In Figure 5 the leaf atom append(X2,[c],R2) is already an instance of its
root atom, and so closedness is already ensured and there is for this example
no need to build more trees.

Definition 1. Let P be a program, G =← Q a goal, D a finite SLDNF-derivation
of P ∪{G} ending in ← B, and θ the composition of the mgus in the derivation
steps. Then the formula Qθ ← B is called the resultant of D.

E.g., the resultants of the derivations in the right tree of Figure 5 are:

append([],[c],[c]).
append([H|X2],[c],[H|R2]) :- append(X2,[c],R2).

Partial deduction starts from an initial set of atoms A provided by the user
that is chosen in such a way that all runtime queries of interest are closed,
i.e., an instance of some atom in A. As we have seen, constructing a specialised
program requires to construct an SLDNF-tree for each atom in A. Moreover, one
can easily imagine that ensuring closedness may require revision of the set A.
Hence, when controlling partial deduction, it is natural to separate the control
into two components (as already pointed out in [10, 38]):

– The local control controls the construction of the finite SLD-tree for each
atom in A and thus determines what the residual clauses for the atoms in A
are.

– The global control controls the content of A, it decides which atoms are
ultimately partially deduced (taking care that A remains closed for the initial
atoms provided by the user).

More details on exactly how to control partial deduction in general can be
found, e.g., in [29]. In offline partial evaluation the local control is hardwired,
in the form of annotations added to the source program. The global control is
also partially hard-wired, by specifying which arguments to which predicate are
dynamic and which ones are static.

3.2 An Offline Partial Deduction Algorithm

As already outlined earlier, an offline partial evaluator works on an annotated
version of the source program. For offline partial deduction of logic programs
there are usually two kinds of annotations:

– filter declarations, which indicate which arguments to which predicates are
static and which ones dynamic. This influences the global control only.

– clause annotations, which mark every call in the body indicating how that
call should be treated during unfolding. This thus influences the local control
only. There is of course an interplay between these two annotations, and we
return to this below.
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For example, one could annotate the append example above by saying that
the second argument of append is static, while the others are dynamic and we
could mark the recursive call append(X,Y,Z) as not unfoldable. Given such an-
notations and a specialisation query append(X,[c],Z), offline partial deduction
would unfold exactly as depicted in the right tree of Figure 5 and produce the
resultants above.

Based on such annotations, offline partial evaluation proceeds as follows:

Algorithm 3.1 (offline partial deduction)
Input: A program P and an atom A

M = {A}
repeat

select an unmarked atom A in M and mark it
unfold A by following the annotations in the annotated source program
if a selected atom S is marked as memo then
generalise S into S′ by replacing all arguments marked as dynamic (in

the filter declarations) with a fresh variable
if no variant of S′ is in M then add it to M

pretty print the specialised clauses of A
until all atoms in M are marked

In practice, renaming transformations are also involved: Every atom in M is
assigned a new predicate name, whose arity is the number of arguments marked
as dynamic (static arguments do not need to be passed around; they have al-
ready been built into the specialised code). For example, the resultants of the
derivations in the right tree of Figure 5 would get transformed into the following,
where the second static argument has been removed:

append__0([],[c]).
append__0([H|X2],[H|R2]) :- append__0(X2,R2).

To give a better picture, we present a Prolog version of the above algorithm.
The code is runnable (using an implementation of gensym, see [44], to generate
new predicate names). The full treatment in logen is of course much more
complicated, but this should give a good idea of how logen specialises programs.

An atom A is specialised by calling memo(A,Res) in the code below. The
memo/2 and memo table/2 predicates return in their second argument the call
to the new specialised predicate where the static arguments are removed and
the dynamic ones generalised. This generalisation and filtering is performed by
the generalise and filter/3 predicate that returns in its second argument
the generalised original call (to be unfolded) with fresh variables and in its
third argument the corresponding call to the specialised predicate. It uses the
annotations as defined by the filter/2 predicate to perform its task. The call
memo table(X,ResX) within the definition of memo/2 simply binds ResX to the
residual version of the call X. Note that ResX is different from FX, which is
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the residual version of the generalised call GenX which has fresh variables. For
example, given the filter declaration for app below and for X = app(X,[],X)
we would get GenX = app(Y,[],Z), and something like FX = app 0(Y,Z) and
ResX = app 0(X,X).

The predicate unfold/2 computes the bodies of the specialised predicates.
A call annotated as memo is replaced by a call to the specialised version. It is
created, if it does not exist, by the call to memo/2. A call annotated as unfolded is
further unfolded. To be able to deal with built-ins, we also add two more annota-
tions: a call annotated as call is completely evaluated; finally, a call annotated as
rescall is added to the residual code without modification (for built-ins that can-
not be evaluated). These two annotations can also be useful for user-predicates
(a user predicate marked as call is completely unfolded without further examina-
tion of the annotations, while the rescall annotation can be useful for predicates
defined elsewhere or whose code is not annotated). All clauses defining the new
predicate are collected using findall/3 and pretty printed.

:- dynamic memo_table/2.

memo(X,ResX) :- (memo_table(X,ResX)

-> true /* nothing to be done: already specialised */

; (generalise_and_filter(X,GenX,FX),

assert(memo_table(GenX,FX)),

findall((FX:-B),unfold(GenX,B),XClauses),

pretty_print_clauses(XClauses),nl,

memo_table(X,ResX) ) ).

unfold(X,Code) :- rule(X,B), body(B,Code).

body((A,B),(CA,CB)) :- body(A,CA), body(B,CB).

body(memo(X),ResX) :- memo(X,ResX).

body(unfold(X),ResCode) :- unfold(X,ResCode).

body(call(C),true) :- call(C).

body(rescall(C),C).

generalise_and_filter(Call,GCall,FCall) :- filter(Call,ArgTypes),

Call =.. [P|Args],

gen_filter(ArgTypes,Args,GenArgs,FiltArgs),

GCall =.. [P|GenArgs],

gensym(P,NewP), FCall =.. [NewP|FiltArgs].

gen_filter([],[],[],[]).

gen_filter([static|AT],[Arg|ArgT],[Arg|GT],FT) :-

gen_filter(AT,ArgT,GT,FT).

gen_filter([dynamic|AT],[_|ArgT],[GenArg|GT],[GenArg|FT]) :-

gen_filter(AT,ArgT,GT,FT).

/* the annotated source program: */

/* filter indicates how to generalise and filter */

filter(app(_,_,_),[dynamic,static,dynamic]).

/* rule annotates the source and indicates how to unfold */

rule(app([],L,L),call(true)).
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rule(app([H|X],Y,[H|Z]),memo(app(X,Y,Z))).

Call: memo(app(X,[b],Y)) gives:

app__1([],[b]):-true

app__1([_12855|_12856],[_12855|_12854]) :- app__1(_12856,_12854).

3.3 Local and global termination

Without proper annotations of the source program, the above partial evaluator
may fail to terminate. There are essentially two reasons for nontermination.

– local termination The unfolding predicate unfold/2 may fail to terminate
or provide infinitely many answers.

– global termination Even if all calls to unfold/2 terminate, we may still run
into problems because the partial evaluator may try to build infinitely many
specialised versions of some predicate for infinitely many different static val-
ues.2

To overcome the first problem, we may have to mark certain calls as memo
rather than unfold. In the worst case, every call is marked as memo, which
always ensures local termination (but means that little or no specialisation is
performed).

To overcome global termination problems, we have to play with the filter
declarations and mark more arguments as dynamic rather than static.

Another possible problem appears when built-ins lack enough input to behave
as they do at run-time (either by triggering an error or by giving a different
result). When this appears, we have to mark the offending call as rescall rather
than call.

4 Non-recursive Propositional Logic Interpreter

We first introduce a simple propositional logic interpreter to demonstrate the
basic annotations. The interpreter will accept and , or , not , implies and basic
variables. The int(Prog ,Env ,Result) predicate takes two input arguments, the
propositional formula and the environment containing the variable mappings
and produces the result. The environment is a list of values, var(i) indexes the
ith element in the environment.

not(true,false).
not(false,true).
and(true,true ,true). or(true ,_ ,true).
and(false,_ ,false). or(false,true,true).

2 One often tries to ensure that a static argument is of so-called bounded static variation
[21], so that global termination is guaranteed.
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and(true,false,false). or(false,false,false).

int(true,_,true). int(false,_,false).
int(implies(X,Y),Env, Z) :- int(or(not(X),Y),Env,Z).
int(and(X,Y),Env, Z) :- int(X,Env,R1),int(Y,Env,R2),and(R1,R2,Z).
int(or(X,Y),Env, Z) :- int(X,Env,R1),int(Y,Env,R2),or(R1,R2,Z).
int(not(X),Env, Z) :- int(X,Env,R1),not(R1,Z).
int(var(X),Env, Z) :- lookup(X,Env,Z).
lookup(0,[X|_],X).
lookup(N,[X|T],Y) :- N>0, N1 is N-1, lookup(N1,T,Y).

To be able to use logen, one must first define the entry points and annotate
the variables for the specialiser.

– filter annotates the arguments for residual predicates, using the following
annotations
• static the value of the argument is known at specialisation time.
• dynamic the value of the argument is not necessarily known at special-

isation time.
Top level predicates that one intends to specialise must be declared in this
way, as well as any subsidiary predicate which cannot be fully unfolded.

The syntax for logen’s filter declarations is more user-friendly than in the
previous section. For example, for the above program we could declare:

:- filter int(static, dynamic, dynamic).
:- filter lookup(dynamic, dynamic, dynamic).

In other words, we assume that the propositional formula (the first argument
of int/3) is known at specialisation time (static) but the environment will only
be known at runtime (dynamic).

Next we must annotate the clauses in the original program to control the
specialisation. The following constructs can be used to annotate clauses in a
program:

– unfold for reducible predicates, they will be unravelled during specialisation,
– memo for non-reducible predicates, they will be added to the memoisation

table and replaced with a generalised residual predicate,
– call the call will be made during specialisation. This is useful for built-

in’s or for user predicates which should be fully evaluated (without further
intervention of the specialiser).

– rescall the call will be kept and will appear in the final specialised code.
In contrast to the memo annotation, no specialised predicate definition is
produced for the call. This annotation is especially useful for built-ins, but
can also be useful for user predicates (e.g., because the code is not available
at specialisation time). The example below will show the difference with the
memo annotation.
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As the propositional formula is known at specialisation time (static) all
calls to int/3 can be unfolded. As concerns the variable lookups, let us first be
cautious and mark the call to lookup as a rescall:

int(var(X),Env, Z) :- lookup(X, Env, Z)︸ ︷︷ ︸
rescall

.

Let us specialise the interpreter for the logical formula:
((var(0)∨ (var(1)∧¬var(2)))∨ false)∧ true. The output from specialisation is a
new version of the program representing the truth table for the formula; as the
call to lookup was marked as rescall it appears in the specialised program:

int(and(or(or(var(0),and(not(var(1)),var(2))),false),true),Env,R) :-
int__0(Env,R).

int__0(A,true) :-
lookup(0,A,true),lookup(1,A,true),lookup(2,A,C).

int__0(A,false) :-
lookup(0,A,false),lookup(1,A,true),lookup(2,A,C).

int__0(A,true) :-
lookup(0,A,true),lookup(1,A,false),lookup(2,A,true).

int__0(A,true) :-
lookup(0,A,false),lookup(1,A,false),lookup(2,A,true).

int__0(A,true) :-
lookup(0,A,true),lookup(1,A,false),lookup(2,A,false).

int__0(A,false) :-
lookup(0,A,false),lookup(1,A,false),lookup(2,A,false).

Observe that no specialised predicate has been produced for lookup/3, as
we have used the rescall annotation. If we mark the call in int/3 to lookup/3
as memo rather than rescall and within the clauses of lookup/3 we mark the
built-in’s as rescall and the recursive call as memo, we obtain the following
very similar result:

int__0(A,true) :-
lookup__1(0,A,true),lookup__1(1,A,true),lookup__1(2,A,B).

...
lookup__1(0,[B|C],B).
lookup__1(B,[C|D],E) :- B > 0, F is (B - 1), lookup__1(F,D,E).

The main difference is that the specialised program no-longer requires the
original code of lookup to run, but apart from that it is almost identical to the
previous result. One may notice that in all calls to lookup/3 the first argument
is actually static. One may thus think of changing the filter declaration for
lookup/3 into:

:- filter lookup(static, dynamic, dynamic).

Unfortunately, if we now run logen we get a specialisation time error. In-
deed, in the recursive call lookup(N1,T,Y) in second clause of lookup/3 the
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variable N1 will be unbound at specialisation time, and hence logen will com-
plain. The problem is that we have not evaluated the call N1 is N-1 which binds
N1. Indeed, what we need to do is to annotate the clause as follows:

lookup(N,[X|T],Y) :- N > 0︸ ︷︷ ︸
call

, N1 is N− 1︸ ︷︷ ︸
call

, lookup(N1, T, Y)︸ ︷︷ ︸
memo

.

There is actually no need to memo the calls to lookup: given that we know
the first argument we can annotate all calls to lookup/3 as unfold and logen
will produce the following program:

int__0([true,true,B|C],true).
int__0([false,true,B|C],false).
int__0([true,false,true|B],true).
int__0([false,false,true|B],true).
int__0([true,false,false|B],true).
int__0([false,false,false|B],false).

It is actually possible to obtain an even better specialisation than this, by
providing more information about the structure of the environment. For that we
need more sophisticated filter annotations, which we introduce later in Section 7.
As an indication and teaser, if we declare :- filter int(static,list(dynamic),

dynamic). then logen can now produce the following specialised program for the
call int(and(or(or(var(0),and(not(var(1)),var(2))),false),true), [A,B,C],D),
which is more efficient as the environment list has vanished and no longer needs
to be inspected:

int__0(true,true,B,true).
int__0(false,true,B,false).
int__0(true,false,true,true).
int__0(false,false,true,true).
int__0(true,false,false,true).
int__0(false,false,false,false).

5 Specialising the Vanilla Self-Interpreter

5.1 Background

A classical benchmark for partial evaluation has been the so-called (plain) vanilla
meta-interpreter (see, e.g., [15, 3]), described by the following piece of Prolog
code:

solve(empty).
solve(and(A,B)) :- solve(A), solve(B).
solve(X) :- clause(X,Y), solve(Y).
clause(dapp(X,Y,Z,R),and(app(Y,Z,YZ),app(X,YZ,R))).
clause(app([],L,L),empty).
clause(app([H|X],Y,[H|Z]),app(X,Y,Z)).
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The clause/2 facts describe the object program to be interpreted, while
solve/1 is the meta-interpreter executing the object program. In practice, solve
will often be instrumented so as to provide extra functionality for, e.g., debug-
ging, analysis (e.g., using abstract unifications instead of concrete unification)
or transformation. We will actually do so later in this section. However, even
without these extensions the vanilla interpreter provides enough challenges for
partial evaluation. Indeed, we would like to specialise the interpreter so as to
obtain a residual program equivalent to the object program being interpreted.
For example, one would like to specialise our vanilla interpreter for the query
solve(dapp(X,Y,Z,R)) and obtain a specialised interpreter equivalent to:

dapp(X,Y,Z,R) :- app(Y,Z,YZ),app(X,YZ,R).
app([],L,L).
app([H|X],Y,[H|Z]) :- app(X,Y,Z).

As we have seen in the introduction (cf. Figure 1), achieving such a feat for
every object program and query is called “Jones-optimality” [19, 36].

Online partial evaluators such as ecce [32] or mixtus [42] come close to
achieving Jones-optimality for many object programs. However, they will not
do so for all object programs and we refer the reader to [37] (discussing the
parsing problem) and the more recent [49] and [28] for more details. [49] presents
a particular specialisation technique that can achieve Jones-optimality for the
vanilla interpreter, but the technique is very specific to that interpreter and as
far as we understand does not scale to extensions of it.

In the rest of this section we show how logen can achieve Jones-optimality
for the vanilla interpreter, and we show how we can then handle extensions of
the basic interpreter.

5.2 The nonvar binding time annotation

First, we have to present a new feature of logen which is useful when special-
ising interpreters. In addition to marking arguments to predicates as static or
dynamic, logen also supports the binding-type nonvar. This means that this
argument is not a free variable and will have at least a top-level function sym-
bol, but it is not necessarily ground. For generalisation, logen will then keep
the top-level function symbol but replace all its sub-arguments by fresh vari-
ables. For filtering, every sub-argument becomes a new argument of the residual
predicate.

A small example will help to illustrate this annotation:

:- filter p(nonvar).
p(f(X)) :- p(g(a)).
p(g(X)) :- p(h(X)).
p(h(a)).
p(h(X)) :- p(f(X)).
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If we mark no call as unfoldable (i.e., every call is marked memo), we get
the following specialised program for the call p(f(Z)):

%%% p(f(A)) :- p__0(A). p(g(A)) :- p__1(A). p(h(A)) :- p__2(A).
p__0(B) :- p__1(a).
p__1(B) :- p__2(B).
p__2(a).
p__2(B) :- p__0(B).

If we mark everything as unfold, except the last call we obtain

%%% p(f(A)) :- p__0(A).
p__0(B).
p__0(B) :- p__0(a).

5.3 Jones-Optimality for Vanilla

The vanilla interpreter as shown above, is actually a badly written program as
it mixes the control structures and and empty with the actual calls to predicates
of the object program. This means that the vanilla interpreter will not behave
correctly if the object program contains predicates and/2 or empty/0. This fact
also poses problems typing the program. Even more importantly for us, it also
prevents one from annotating the program effectively for logen. Indeed, stati-
cally there is no way to know whether any of the three recursive calls to solve/1
has a control structure or a user call as its argument. For logen this means that
we can only mark the call clause(X,Y) as unfold. Indeed, if we mark any of
the solve/1 calls as unfold we may get into trouble, i.e., non-termination of the
specialisation process. This also means that we cannot even mark the argument
to solve/1 as nonvar, as it may actually become a variable. Indeed, take the call
solve(and(p,q)): it will be generalised into solve(and(X,Y)) and after unfold-
ing with the second clause we get the calls solve(X) and solve(Y). We thus
only obtain very little specialisation and we will not achieve Jones-optimality.

Two ways to solve this problem are as follows:
– assume that the control structures are used in a principled, predictable way

that will allow us to produce a better annotation.
– rewrite the interpreter so that it is clearly typed, allowing us to produce an

effective annotation as well as solving the problem with the name clashes
between object program and control structures.
We will pursue these solutions in the remainder of this section. A third pos-

sible solution is to use more precise binding types which we introduce in later in
Section 7. This will give some improvements, but not full Jones optimality, due
to the bad way in whiich solve is written.

Structuring conjunctions The first solution is to enforce a standard way
of writing down conjunctions within clause/2 facts by requesting that every
conjuctions is either empty or is an and whose left part is an atom and the right
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hand a conjunction. For the example above, this means that we have to rewrite
the clause/2 facts as follows:

clause(dapp(X,Y,Z,R),and(app(Y,Z,YZ),and(app(X,YZ,R),empty))).
clause(app([],L,L),empty).
clause(app([H|X],Y,[H|Z]),and(app(X,Y,Z),empty)).

This allows us to predict what to find within the arguments of a conjunction
and thus we can now annotate the interpreter more effectively, without risking
non-termination:
:- filter solve(nonvar).
solve(empty).
solve(and(A,B)) :- solve(A)︸ ︷︷ ︸

memo

, solve(B)︸ ︷︷ ︸
unfold

.

solve(X) :- clause(X,Y)︸ ︷︷ ︸
unfold

, solve(Y)︸ ︷︷ ︸
unfold

.

Given our assumption about the structure of conjunctions, the above anno-
tation will still ensure termination of the generating extension:

– local termination:
– the call to clause(X,Y) can be unfolded as before as clause/2 is definied

by facts
– the calls solve(B) and solve(Y) can be unfolded as we know that B and
Y are conjunctions and we will only deconstruct the and/2 and empty/0
function symbols but stop unfolding (possibly recursive) predicate calls.

– global termination: at the point when we memo solve(A) the variable
A will be bound to a predicate call. As we have marked the argument to
solve/1 as nonvar generalization will just keep the top-level predicate sym-
bol. As there are only finitely many predicate symbols, global termination
is ensured.
Specialising for solve(dapp(X,Y,Z,R)) now gives a Jones-optimal output.

%%% solve(dapp(A,B,C,D)) :- solve__0(A,B,C,D).
%%% solve(app(A,B,C)) :- solve__1(A,B,C).
solve__0(B,C,D,E) :- solve__1(C,D,F), solve__1(B,F,E).
solve__1([],B,B).
solve__1([B|C],D,[B|E]) :- solve__1(C,D,E).

logen will in general produce a specialised program which is slightly better
than the original program in the sense that it will generate code only for those
predicates that are reachable in the predicate dependency graph from the initial
call. E.g., for solve(app(X,Y,R)) only two clauses for app/3 will be produced,
not a clause for dapp/4.

It is relatively easy to see that Jones optimality will be achieved for any prop-
erly encoded object program and any call to the object program. Indeed, any
call of the form solve(p(t1, . . . , tn) will be generalised into solve(p( ,. . ., )
keeping information about the predicate being called; unfolding this will only
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match the clauses of p as the call clause(X,Y) is marked unfold and all of the
parsing structure (and/2 and empty/0) will then be removed by further unfold-
ing, leaving only predicate calls to be memoised. These are then generalised and
specialised in the same manner.

Rewriting Vanilla The more principled solution is to rewrite the vanilla inter-
preter, so that the conjunction encoding and the object level atoms are clearly
separated. The attentive reader may have noticed that above we have actually
enforced that conjunctions are encoded as lists, with empty/0 playing the role of
nil/0 and and/2 playing the role of ./2. The following vanilla interpreter makes
this explicit and thus properly enforces this encoding. It is also more efficient,
as it no longer attempts to find definitions of empty and and within the clause
facts.

solve([]).
solve([H|T]) :- solve_atom(H), solve(T).
solve_atom(H) :- clause(H,Bdy), solve(Bdy).

clause(dapp(X,Y,Z,R), [app(Y,Z,YZ), app(X,YZ,R)]).
clause(app([],R,R), []).
clause(app([H|X],Y,[H|Z]), [app(X,Y,Z)]).

We can now annotate all calls to solve as unfold, knowing that this will
only deconstruct the conjunction represented as a list. However, the call to
solve atom cannot be unfolded, as with recursive object programs we may per-
form infinite unfolding. logen now produces the following specialised program
for the query solve atom(dapp(X,Y,Z,R)), having marked the argument to
solve atom calls as nonvar.3

solve_atom__0(B,C,D,E) :- solve_atom__1(C,D,F), solve_atom__1(B,F,E).
solve_atom__1([],B,B).
solve_atom__1([B|C],D,[B|E]) :- solve_atom__1(C,D,E).

We have again achieved Jones-Optimality, which holds for any object pro-
gram and any object-level query.

An almost equivalent solution would be to improve the original vanilla inter-
preter so that atoms are tagged by a special function symbol, e.g., as follows:

solve(empty).
solve(and(A,B)) :- solve(A), solve(B).
solve(atom(X)) :- solve_atom(X).
solve_atom(H) :- clause(H,Bdy), solve(Bdy).
clause(dapp(X,Y,Z,R),and(atom(app(Y,Z,YZ)),atom(app(X,YZ,R)))).
clause(app([],L,L),empty).
clause(app([H|X],Y,[H|Z]),atom(app(X,Y,Z))).

3 The predicate solve does not have to be given a filter declaration as it is only
unfolded and never residualised.

18



We have again clearly separated the control structures from the predicate
calls and we can basically get the same result as above (by marking all calls to
solve as unfold and the call to solve atom as memo).

Reflections So, what are the essential ingredients that allowed us to achieve
Jones optimality where others have failed?

– First, the offline approach allows us to precisely steer the specialisation pro-
cess in a predictable manner: we know exactly how the interpreter will be spe-
cialised independently of the complexity of the object program. A problem
with online techniques is that they may work well for some object programs,
but then be “fooled” by other (more or less contrived) object programs; see
[49, 28]. (On the other hand, online techniques can be capabable for removing
several layers of self-interpretation in one go. An offline approach in general
and our approach in particular will typically only be able to remove one layer
at a time.)

– Second, it was also important to have refined enough annotations at our
disposal. Without the nonvar annotation we would not have been able to
specialise the original vanilla self-interpreter: we cannot mark the argument
to solve as static and marking it as dynamic means that no specialisation
will occur. Hence, considerable rewriting of the interpreter would have been
required if we just had static and dynamic at our disposal.4

6 Jones-Optimality for a Debugger

Let us now try to extend the above interpreter, to do something more useful.
The code below implements a tracing version of solve which takes two extra
arguments: a counter for the current indentation level and a list of predicates to
trace.

dsolve([],_,_).
dsolve([H|T],Level,ToTrace) :-

(debug(H,ToTrace)
-> (indent(Level),print(’Call: ’),print(H),nl,

dsolve_atom(H,s(Level),ToTrace),
indent(Level),print(’Exit: ’),print(H),nl)

; dsolve_atom(H,Level,ToTrace)
),
dsolve(T,Level,ToTrace).

debug(Call,ToTrace) :- Call=..[P|Args],
length(Args,Arity), member(P/Arity,ToTrace).

4 We leave this as an exercise for the interested reader. See also Section 7.1 later in
the paper.
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:- filter indent(dynamic).
indent(0).
indent(s(X)) :- print(’>’),indent(X).

:- filter dsolve_atom(nonvar,dynamic,static).
dsolve_atom(H,Level,TT) :-

clause(H,Bdy), dsolve(Bdy,Level,TT).

Basically, the annotation of dsolve and dsolve atom calls are exactly as before:
calls to dsolve are unfolded, calls to dsolve atom are not. As the new predicates
are concerned, all calls to indent are marked memo, and all calls to print and
nl are marked rescall. Everything else is marked unfold or call.

For dsolve atom(dapp([a,a,a],[b],[c],R),0,[]) we get the following al-
most optimal code:

dsolve_atom__0(B,C,D,E,F) :-
dsolve_atom__1(C,D,G,F), dsolve_atom__1(B,G,E,F).

dsolve_atom__1([],B,B,C).
dsolve_atom__1([B|C],D,[B|E],F) :- dsolve_atom__1(C,D,E,F).

In fact, the extra last argument of both predicates can be easily removed by
the FAR redundant argument filtering post-processing of [33] which produces a
Jones-optimal result:

dsolve_atom__0(A,B,C,D) :-
dsolve_atom__1(B,C,E),dsolve_atom__1(A,E,D).

dsolve_atom__1([],A,A).
dsolve_atom__1([A|B],C,[A|D]) :- dsolve_atom__1(B,C,D).

Again, is is not too difficult to see that logen together with the FAR post-
processor [33] produces a Jones-optimal result for every object program P and
call C, provided that none of the predicates reachable from C are traced.

For dsolve atom(dapp([a,a,a],[b],[c],R),0,[app/3]) we get the fol-
lowing very efficient tracing version of our object program, where the debugging
statements have been weaved into the code. This specialised code now runs with
minimal overhead, and there is no more runtime checking whether a call should
be traced or not:

dsolve_atom__0(B,C,D,E,F) :-
indent__1(F),print(’Call: ’),print(app(C,D,G)),nl,
dsolve_atom__2(C,D,G,s(F)),
indent__1(F),print(’Exit: ’),print(app(C,D,G)),nl,
indent__1(F),print(’Call: ’),print(app(B,G,E)),nl,
dsolve_atom__2(B,G,E,s(F)),
indent__1(F),print(’Exit: ’),print(app(B,G,E)),nl.

indent__1(0).
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indent__1(s(B)) :- print(’>’),indent__1(B).
dsolve_atom__2([],B,B,C).
dsolve_atom__2([B|C],D,[B|E],F) :-
indent__1(F),print(’Call: ’),print(app(C,D,E)),nl,
dsolve_atom__2(C,D,E,s(F)),
indent__1(F),print(’Exit: ’),print(app(C,D,E)),nl.

Running the specialised program for dsolve atom 0([a,b,c],[],[d],R,0),
corresponding to the call dsolve atom(dapp([a,b,c],[],[d],R),0,[app/3])
to the original program, prints the following trace:

| ?- dsolve_atom__0([a,b,c],[],[d],R,0).
Call: app([],[d],_837)
Exit: app([],[d],[d])
Call: app([a,b,c],[d],_525)
>Call: app([b,c],[d],_1341)
>>Call: app([c],[d],_1601)
>>>Call: app([],[d],_1891)
>>>Exit: app([],[d],[d])
>>Exit: app([c],[d],[c,d])
>Exit: app([b,c],[d],[b,c,d])
Exit: app([a,b,c],[d],[a,b,c,d])
R = [a,b,c,d] ?
yes

Some experimental results We now present some experimental results for
specialising the solve and dsolve interpeters. The results are summarised in
Table 1. The results were obtained on a Powerbook G4 running at 1 Ghz with
1Gb RAM and using SICStus Prolog 3.10.1.

The partition4 object program calls append to partition a list into 4 iden-
tical sublists, and has been run for a list of 1552 elements. The fibonacci
object program computes the Fibonacci numbers in the naive way using peano
arithmetic. This program was benchmarked for computing the 24th Fibonacci
numbers. Exact queries can be found in the DPPD library [27]. The FAR fil-
tering [33] has not been applied to the specialised programs. The time needed
to generate and run the generating extensions was negligible (more results, with
full times can be found later in the paper for more involved interpreters where
this time is more significant).

Adding more functionality It should be clear how one can extend the above
logic program interpreters. A good exercise is to add more logical connectives,
such as disjunction and implication, to the debugging interpreter dsolve and
then see whether one can obtain something similar to the Lloyd-Topor trans-
formations [35] automatically by specialisation (with the added benefit that de-
bugging can still be performed at the source level).
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Table 1. Specialising solve and dsolve using logen

object program solve specialised speedup dsolve specialised speedup

partition4 350 ms 200 ms 1.75 1590 ms 220 ms 7.23
fibonacci 890 ms 170 ms 5.24 4670 ms 180 ms 25.94

We will now show how one can handle interpreters for other programming
paradigms. In such a setting variables and their values may have to be stored in
some environment structure rather than relying on the Prolog variable model.
This will raise a new challenge, which we tackle next.

7 More Sophisticated Binding-Types

So far we have come by with just three binding types for arguments: static,
dynamic, and nonvar. The latter denotes a simple kind of so-called partially static
data [21]. For more realistic programs, however, it is often essential to be able
to deal with more sophisticated partially static data. For example, interpreters
often have an environment, and at specialisation time we may know the actual
variables store in the environment but not their value. Take the following simple
interpreter for arithmetic expressions using addition, constants and variables
whose value is stored in an environment:

int(cst(C),_E,C).
int(var(V),E,R) :- lookup(V,E,R).
int(+(A,B),E,R) :- int(A,E,Ra), int(B,E,Rb), R is Ra+Rb.

lookup(V,[(V,Val)|_T],Val).
lookup(V,[(_Var,_)|T],Res) :- lookup(V,T,Res).

A typical query to the above program would be

| ?- int(+(var(a),var(b)),[(a,1),(b,3),(c,5)],Res).
Res = 4 ?
yes

Now, if at specialisation time we know the variables of the environment
list but not their value, this would be represented by an atom to specialise
int(+(var(a),var(b)),[(a, ),(b, ),(c, )],R) . We cannot declare the en-
vironment as static and the best we can do, given the binding types we have
seen so far, is to declare the environment as nonvar:

:- filter int(static,nonvar,dynamic).

Unfortunately, this means that logen will replace [(a, ),(b, ),(c, )] by
[ | ], hence leading to suboptimal specialisation. For example, we cannot unfold
lookup because we now no longer know the length of the environment.
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7.1 Binding-Time improvements and bifurcation

One way to overcome such limitations is often to rewrite the program to be
specialised into a semantically equivalent program which specialises better, i.e.,
in which more arguments can be classified as static and/or more calls can be
unfolded. This process is called binding-time improvement , see, e.g., Chapter 12
of [21].

One simple binding-time improvement for this particular problem is to define
an auxilary predicate as follows:

aux(Expr,A,B,C,Res) :- int(Expr,[(a,A),(b,B),(c,C)],Res).

We can now fully unfold all calls to int and lookup and declare the argu-
ments of aux as follows:

:- filter aux(static,dynamic,dynamic,dynamic,dynamic).

However, this solution is rather ad-hoc and only works because the above
interpreter is non-recursive and hence no calls to int have to be memoised.
Hence, this solution can only work in special circumstances.

A more principled solution, is to apply a binding-time improvement some-
times called bifurcation [8, 40]. This consists of splitting the environment into
two parts (the static and the dynamic part) and then rewriting the interpreter
accordingly. Here, a solution is to split the environment into two lists: a static one
containing the variable names and a dynamic list containing the actual values.
We would then rewrite our interpreter as follows:

:- filter int(static,static,dynamic,dynamic).
int(cst(C),_E,_E2,C).
int(var(V),E,E2,R) :- lookup(V,E,E2,R).
int(+(A,B),E,E2,R) :- int(A,E,E2,Ra), int(B,E,E2,Rb), R is Ra+Rb.

:- filter lookup(static,static,dynamic,dynamic).
lookup(V,[V|_],[Val|_],Val).
lookup(V,[_|T],[_|ValT],Res) :- lookup(V,T,ValT,Res).

We can now fully unfold all calls to int and lookup. One could also decide
not to unfold the calls to int or to lookup(V,E,E2,R) without much loss of
specialisation, and the technique would also work for a recursive interpreter.

There are however several problems with this approach:
– it can be very cumbersome and errorprone to rewrite the program
– for every different annotation we may have to rewrite the program in a

different way
– if the dynamic and static data are not as neatly separated as above, it can

be non-trivial to find a proper separation
– the final result is not always “optimal”. E.g., in the example above the

information that the variable list and the value list must be of the same
length is no longer explicit, resulting in a suboptimal residual program. For
example, specialising for lookup(b,[a,b,c],[1,X,Y],Res) gives
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%%% lookup(b,[a,b,c],[1,X,Y],Res) :- lookup__0([1,X,Y],Res).
%%% lookup(b,[a,b,c],A,B) :- lookup__0(A,B).
lookup__0([B,C|D],C).
This is less efficient than the result we will obtain later below, mainly because
the value list has still to be deconstructed and examined at runtime (via the
unification with [B,C|D]).
Luckily, logen provides a better way of solving this problem by allowing the

user to define their own binding-types. For the interpreter above we would like
to be able to define a custom binding-type describing a list of pairs whose first
element is static and the second dynamic. In the rest of this section we formalise
and describe how this can be achieved.

7.2 Formal Definition of Binding-Types

In what follows, we introduce the notion of a binding-type to characterise par-
tially instantiated specialisation-time values in a more precise way. Like a tradi-
tional type in logic programming [2], a binding-type is conceptually defined as
a set of terms closed under substitution and represented by a term constructed
from type variables and type constructors in the same way that a data term is
constructed from ordinary variables and function symbols. However, to charac-
terise specialisation-time values rather than run-time values, we assume three
predefined, atomic types, i.e. static, dynamic and nonvar (∈ C).

Formally, a type is thus
– either a type variable,
– a term of the form static, dynamic, or nonvar,
– a term of the form term(σ) where σ = f(τ1, . . . , τn) and f is a function

symbol of arity n ≥ 0 and τi are types,
– or a term of the form type(τ) where τ consists of a type constructor of arity

n ≥ 0 applied to n types.
The use of the term and type tags allows the set of function symbols and type

constructors to overlap and avoids cumbersome renamings. We will introduce
some shorthand notations below. Formally, new types can now be defined as
follows:

Definition 2. A type definition for a type constructor c of arity n is of the
form:

:- type c(V1, . . . , Vn) ---> (τ1 ; . . . ; τk).

with k ≥ 1, n and where V1, . . . , Vn are distinct type variables, and τi are types
which only contain type variables in {V1, . . . , Vn}.
A type system Γ is a set of type definitions, exactly one for every type constructor
c different from static, dynamic, and nonvar. We will refer to the type definition
for c in Γ by Def Γ (c).

For convenience, logen also accepts the following shorthand notations as
types:
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– a function symbol f of arity n ≥ 0 applied to n types, provided that n =
0 ⇒ f 6∈ {static, dynamic, nonvar} and n = 1 ⇒ f 6∈ {type, list, term}.
This is then equivalent to the type term(f(τ1, . . . , τn)).

– or a term of the form list(τ) where τ is a type. This is equivalent to
type(list(τ)), where the type constructor list is pre-defined as follows:
:- type list(T) ---> [ ] ; [T | list(T)].

We will refer to the type definition for c in Γ by Def Γ (c).
We define type substitutions to be finite sets of the form {V1/τ1, . . . , Vk/τk},

where every Vi is a type variable and τi a type. Type substitutions can be
applied to types (and type definitions) to produce instances in exactly the same
way as substitutions can be applied to terms. For example, list(V ){V/static} =
list(static). A type or type definition is called ground if it contains no type
variables.

In general, a specialisation-time value (or data term) can be characterised by
a number of binding-types. This relation is made explicit by a type judgment.

Definition 3. We now define type judgements relating terms to types in the
type system Γ .

– t : dynamic holds for any term t
– t : static holds for any ground term t
– t : nonvar holds for any non-variable term t
– t : type(c(τ ′

1, . . . , τ
′
k)) if there exists a ground instance of the type defi-

nition Def Γ (c) which has the form :- type c(τ ′
1, . . . , τ

′
k)--> ( . . . ;τ; . . . )

and where t : τ
– f(t1, . . . , tn) : term(f(τ1, . . . , τn)) if ti : τi for 1 ≤ i ≤ n.

Note that our definitions guarantee that types are downwards-closed (i.e.,
t : τ ⇒ tθ : τ).

A few examples are as follows: [ ] : static, [ ] : struct([ ]), [ ] : list(static),
[ ] : list(dynamic), s(0) : static hence [s(0)] : list(static), X : dynamic and
Y : dynamic hence [X, Y ] : list(dynamic).

7.3 Using binding-types

Basically, the three basic binding types are now used to control generalisation
and filtering within the offline partial deduction algorithm of Section 3.2 as
follows:

– an argument marked as dynamic is replaced by a fresh variable and there
will be an argument for it in the residual predicate;

– an argument marked as static is not generalised, and there will be no argu-
ment for it in the residual predicate;

– an argument marked as nonvar the top-level function symbol willl be kept,
but all of its arguments replaced by fresh variables. There will be one argu-
ment in the residual predicate per argument of the top-level function symbol.

– an argument marked as term(f(τ1, . . . , τn)) will basically be dealt with like
the nonvar case, except that the top-level function symbol has to be f and
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every sub-argument of f will be recursively generalised and filtered according
to the binding-types τi.

– for an argument marked as type(t(τ1, . . . , τn)) the type definition of t will
be looked at and the argument will be treated according to the body of the
definition. For disjunctions like τ1 ; τ2 the algorithm will first attempt to
apply τ1, and if that is not successful it will apply τ2.
For example, given the declaration :- filter p(static,dynamic,nonvar).

the call p(a,[b],f(c,d)) will be generalised into p(a, ,f( , )) and the resid-
ual version of the call will be something like p 1([b],c,d). Given the declara-
tion :- filter p(static,dynamic,term(f(static,dynamic))). the call will
be generalised into p(a, ,f(c, )) and the residual version will be something like
p 2([b],d). Finally, using :- filter p(static,list(dynamic), static).
as filter declaration, this call will be generalised into p(a,[ ],f(c,d)) with the
residual version being p 3(b).

Let us now try to tackle the original arithmetic int/3 interpreter using the
more refined binding-types. First, we define a new type, describing a list of pairs
whose first element is static and whose second element is given by a parameter
of the type constructor (so as to show how parameters can be used):

:- type bind_list(X) ---> list((static,X)).

For the interpreter we can now simply provide the following filter declara-
tions:

:- filter int(static,type(bind_list(dynamic)),dynamic).
:- filter lookup(static,type(bind_list(dynamic)),dynamic).

While these annotations and types were derived by hand, we believe that it
is possible to derive them by adapting the polymorphic binding-time analysis
for Mercury presented in a companion paper [48]. For more details see [48].

Let us now use logen to specialise the original int/3 interpreter for the
query lookup(b,[(a,1),(b,X),(c,Y)],Res). This gives the following specialised
code:

%%% lookup(b,[(a,A),(b,B),(c,C)],D) :- lookup__0(A,B,C,D).
lookup__0(B,C,D,C).

This code is much more efficient, as linear time lookup of variable bindings
has been replaced by basically constant time lookup in the argument list.

Let us now specialise the interpreter for a full-fledged query:
int(+(cst(3),+(+(cst(2),cst(5)),+(var(y),+(var(x),var(y))))),
[(a,1),(b,2),(x,3),(y,4)],X). This produces the following satisfactory re-
sult, where the arithmetic expression has been fully compiled into Prolog code.

int__0(B,C,D,E,F) :- G is (2 + 5), H is (D + E),
I is (E + H), J is (G + I), F is (3 + J).
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One can see that the reduction G is (2+5) has not been performed by the
specialiser. This shows an aspect where an online specialiser could have fared
better, as it could have realised that, for this particular instruction, the right
hand side of the is/2 was actually known (even though it is in general dynamic).
Still, it is possible to instruct logen to try to perform calls using the so-called
semicall annotation [31]. Another alternative is to binding-time improve the
program by inserting an explicit if-statement, changing the 3rd clause of the
interpreter as follows:

int(+(A,B),E,E2,R) :- int(A, E, E2, Ra)︸ ︷︷ ︸
unfold

, int(B, E, E2, Ra)︸ ︷︷ ︸
unfold

,

( ground((Ra, Rb))︸ ︷︷ ︸
call

-> R is Ra + Rb︸ ︷︷ ︸
call

; R is Ra + Rb︸ ︷︷ ︸
rescall

).

where the if-statement itself is marked static and performed at specialisation
time. The resulting specialised interpreter is then:

int__0(B,C,D,E,F) :- G is (D + E), H is (E + G),
I is (7 + H), F is (3 + I).

7.4 Revisiting Vanilla again

Finally, let us present a third solution for specialisng the Vanilla self-interpreter
from Section 5.3. Indeed, we can now use the following more precise binding
types on the original interpreter, thus ensuring that relevant information will be
kept by the generalisation:

:- type vexp ---> (empty ; and(type(vexp),type(vexp))
; type(predcall)).

:- type predcall ---> (app(dynamic,dynamic,dynamic)
; dapp(dynamic,dynamic,dynamic,dynamic)).

:- filter solve(type(vexp)).

This will not give full Jones optimality, due to the bad way in which the
original solve is written, but it will at least give much better specialisation
than was possible using just static, dynamic, and nonvar.

8 Lambda Interpreter

Based on the insights of the previous section, we now tackle a more substantial
example. We will present an interpreter for a small functional language. The in-
terpreter still leaves much to be desired from a functional programming language
perspective, but the main purpose is to show how to specialise a non-trivial inter-
preter for another programming paradigm. The interpreter will use an environ-
ment, very much like the one in the previous section, to store values for variables
and function arguments. The full annotated source code is available with the lo-
gen distribution at http://www.ecs.soton.ac.uk/~mal/systems/logen.html.
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To keep things simple, we will not use a parser but simply use Prolog’s
operator declarations to encode the functional programs. The following shows
how to encode the fibonacci function for our interpreter:

:- op(150,fx,$). /* to indicate variables */

:- op(150,fx,&). /* to indicate constants */

:- op(150,yfx,’===’). /* to define functions */

:- op(150,yfx,@). /* to do calls to defined functions */

:- op(250,yfx,’->’). /* for sequential composition */

fib === lambda(x,if($x = &0, &1,

if($x = &1, &1,

(fib @ ($x - &1) + fib @ ($x - &2))))).

The source code of the interpreter is as follows. As usual in functional pro-
gramming, one distinguishes between constructors (encoded using constr/2)
and functions (encoded using lambda/2). Functions can be defined statically us-
ing the === declarations which can then be extracted using the fun/1 expression.
One can use @ as a shorthand to call such defined functions. One can introduce
local variables using the let/3 expression. The predicate eval/3 computes the
normal form of an expression. The rest of the code should be pretty much self-
explanatory. To keep the code simpler, we have not handled renaming of the
arguments of lambda expressions (it is not required for the examples we will
deal with).

eval(’&’(C),_Env,constr(C,[])). /* 0-ary constructor */

eval(constr(C,Args),Env,constr(C,EArgs)) :- l_eval(Args,Env,EArgs).

eval(’$’(VKey),Env,Val) :- /* variable */ lookup(VKey,Env,Val).

eval(’+’(X,Y),Env,constr(XY,[])) :- eval(X,Env,constr(VX,[])),

eval(Y,Env,constr(VY,[])), XY is VX+VY.

eval(’-’(X,Y),Env,constr(XY,[])) :- eval(X,Env,constr(VX,[])),

eval(Y,Env,constr(VY,[])), XY is VX-VY.

eval(’*’(X,Y),Env,constr(XY,[])) :- eval(X,Env,constr(VX,[])),

eval(Y,Env,constr(VY,[])), XY is VX*VY.

eval(let(VKey,VExpr,InExpr),Env,Result) :- eval(VExpr,Env,VVal),

store(Env,VKey,VVal,InEnv), eval(InExpr,InEnv,Result).

eval(if(Test,Then,Else),Env,Res) :- eval_if(Test,Then,Else,Env,Res).

eval(lambda(X,Expr),_Env,lambda(X,Expr)).

eval(apply(Arg,F),Env,Res) :- eval(F,Env,FVal),

eval(Arg,Env,ArgVal), eval_apply(ArgVal,FVal,Env,Res).

eval(fun(F),_,FunDef) :- ’===’(F,FunDef).

eval(’@’(F,Args),E,R) :- eval(apply(Args,fun(F)),E,R).

eval(print(X),Env,FVal) :- eval(X,Env,FVal),print(FVal),nl.

eval(’->’(X,Y),Env,Res) :- /* seq. composition */

eval(X,Env,_), eval(Y,Env,Res).

eval_apply(ArgVal,FVal,Env,Res) :- rename(FVal,Env,lambda(X,Expr)),

store(Env,X,ArgVal,NewEnv), eval(Expr,NewEnv,Res).
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rename(Expr,_Env,RenExpr) :- RenExpr=Expr. /* sufficient for now */

l_eval([],_E,[]).

l_eval([H|T],E,[EH|ET]) :- eval(H,E,EH), l_eval(T,E,ET).

eval_if(Test,Then,_Else,Env,Res) :- test(Test,Env), !, eval(Then,Env,Res).

eval_if(_Test,_Then,Else,Env,Res)) :- eval(Else,Env,Res).

test(’=’(X,Y),Env) :- eval(X,Env,VX),eval(Y,Env,VX).

store([],Key,Value,[Key/Value]).

store([Key/_Value2|T],Key,Value,[Key/Value|T]).

store([Key2/Value2|T],Key,Value,[Key2/Value2|BT]) :-

Key\==Key2,store(T,Key,Value,BT).

lookup(Key,[Key/Value|_T],Value).

lookup(Key,[Key2/_Value2|T],Value) :-

Key\==Key2,lookup(Key,T,Value).

Handling the cut One may notice that the above program does use a cut
in the code for eval if. Previous version of logen did not support the cut,
but it turns out that specialising the cut is actually very easy to do: basically
all one has to do is to simply mark the cuts using either the call or rescall
annotations we have already encountered. It is of course up to the annotator to
ensure that this is sound, i.e., one has to ensure that:

– if a cut is marked call, then whenever it is reached and executed at spe-
cialisation time the calls to the left of the cut will never fail at runtime.

– if a cut is marked as rescall within a predicate p, then no calls to p are
unfolded. One can relax this condition somewhat, e.g., one may to be able
to unfold such a predicate p if all computations are deterministic (like in our
functional interpreter) but one has to be very careful when doing that.

These conditions are sufficient to handle the cut in a sound, but still useful
manner.

Annotations To be able to specialise this interpreter we need the power of
logen’s binding types. The structure of the environment is much like in the
previous section, but here we have more information about the structure of values
that the interpreter manipulates and stores. Basically, values are encoded using
constr/2, whose first argument is the symbol of the constructor being encoded
and the second argument is a list containing the encoding of the arguments. A
lambda expression is also a valid value.

:- type value_expression =
(constr(dynamic,list(type(value_expression))) ;
lambda(static,static)).

:- type env = list( static / type(value_expression)).
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We can now annotate the calls of our program. Basically, all built-ins have
to be marked rescall but all user calls can be marked as unfold except for the
call eval apply(ArgVal,FVal,Env,Res). We thus supply the following filter
declaration:

:- type result = ( type(value_expression) ; dynamic).
:- filter eval_apply(type(result),type(result),type(env),dynamic).

Note that we use a union type for result, because often (but not always)
we will have partial information about the result types. Union types are thus
a way to allow logen to make some online decisions: during specialisation it
will check whether the first and second argument of eval apply match the
value expression type and only if they do not will it treat the arguments
as dynamic.

Experiments When specialising this program for, e.g., calling the fib function
we get something very similar to the (naive) fibonacci program one would have
written in Prolog in the first place:

%% eval_apply(constr(A,[]),lambda(x,if($x= &0,&1,if($x= &1,&1,
%% fib@($x- &1)+fib@($x- &2)))),[x/constr(B,[])],C) :-
%% eval_apply__2(A,B,C).
eval_apply__2(0,B,constr(1,[])) :- !.
eval_apply__2(1,B,constr(1,[])) :- !.
eval_apply__2(B,C,constr(D,[])) :-
E is (B - 1), eval_apply__2(E,B,constr(F,[])),
G is (B - 2), eval_apply__2(G,B,constr(H,[])), D is (F + H).

This specialised code runs about 14 times faster than the original, and even
running all of logen, the generating extension and then the specialised program
is still 7 times faster than running the original program. Full details of this
experiment can be found in Table 2.

Furthermore, speedups are likely to get much bigger for more complicated
programs, with more functions and more arguments and variables. Indeed, in
Table 2 we have also specialised the interpreter for the following slightly bigger
functional program loop fib which has extra loop variables, already resulting
in a bigger speedup:

loop_fib === lambda(cur,let(cur1,$cur + &1, let(cur2, $cur1 + &1,
let(cur3, $cur2 + &1, if(($cur = &22),

(fib @ ($cur)),
(print(constr(fibonacci,[$cur,fib @ ($cur)]))
-> (loop_fib @ ($cur1)))))))).

Note that logen has only to be run once for the eval interpreter; the same
generating extension can then be used for any functional programs. Similarly,
the specialised code can then be used for any call to the functional program and
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the generating extension only has to be run once per functional program that is
compiled.5

Table 2. Specialising eval using logen

function eval cogen genex specialised speedup speedup speedup
call runtime time time runtime (incl. gx) (incl. gx,cogen)

fib(24) 1050 ms 60 ms 15ms 75 ms 14.0 11.7 7
loop fib(0) 2030 ms 60 ms 20ms 90 ms 22.6 18.5 11.9

9 Discussion and Conclusion

Probably the most closely related work is [20] which treats untype first-order
functional languages, and gives a list of recommendations on how to write in-
terpreters that specialise well. Even though [20] does of course not address the
specific issues that arise when specialising logic programming interpreters, many
points raised in [20] are also valid in the logic programming setting. For exam-
ple, [20] suggests to “Write your interpreter compositionally” which is exactly
what we have done for our lambda interpreter in Section 8 and which makes it
much easier to ensure termination of the specialisation process. [20] also warns
of “data structures that contain static data, but can grow unboundedly under
dynamic control” (such as a stack). The environment in the lambda interpreter
contained static data but its length was fixed and so caused no problem; however
if we were to add an activation stack to our interpreter in Section 8 we would
have to resort to the recipes suggested in [20].

We have already discuss related work in the logic programming community
[41, 46, 43, 5, 6, 26, 49, 28]. In the functional community there has been a lot of
recent interest in Jones optimality; see [19, 36, 45, 13]. For example, [13] shows
theoretically the interest of having a Jones-optimal specialiser and the results
should also be relevant for logic programming.

As far as future work is concerned, the most challenging topic is probably
to provide a fully automatic binding-time analysis. As already mentioned, the
binding-time analysis in [48] may prove to be a good starting point. Still, it is
likely that at least some user intervention will be required in the foreseeable
future to specialise more complicated interpreters.

Another avenue for further investigation is to move from interpreters to pro-
gram transformers and analysers. A particular kind of program transformer is
of course a partial evaluator, and one may wonder whether we can specialise,
e.g., the code from Section 3. Actually, it turns out we can now do this and,
5 In the speedup figures we suppose that the time needed for consulting is the same for

the original and specialised program. In our experiments consulting the specialised
program was actually slightly faster, but this may not always be the case.
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surprisingly or not, the specialised specialisers we obtain in this way are quite
similar to the one generated by logen directly. This issue is investigated in [7],
proving some first encouraging results.

In conclusion, we have shown how to use offline specialisation in general
and logen in particular to specialise logic programming interpreters. We have
shown how to obtain Jones-optimality for simple self-interpreters, as well as for
more involved interpreter such as a debugger. We have also shown how to spe-
cialise interpreters for other programming paradigms, using more sophisticated
binding-types. We have also presented some experimental results, highlighting
the speedups that can be obtained, and showing that the logen system can be
useful basis for generating compilers for high-level languages. Indeed, we soon
hope to be able to apply logen to derive a compiler from the interpreter in
[30], and then compiling high-level B specifications into Prolog code for fast
animation and verification.
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