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Abstract. ProB is an animation and model checking tool for the B
Method, which can deal with many interesting specifications. Some spec-
ifications, however, contain complicated functions which cannot be repre-
sented explicitly by a tool. We present a scheme with which higher-order
recursive functions can be encoded in B, and establish soundness of this
scheme. We then describe a symbolic representation for such functions.
This representation enables ProB to successfully animate and model
check a new class of relevant specifications, where animation is espe-
cially important due to the involved nature of the specification.
Keywords: B-Method, Tool Support, Model Checking, Animation, Logic
Programming, Constraints. 4

1 Introduction

The B-method, originally devised by J.-R. Abrial [1], is a theory and method-
ology for formal development of computer systems. It is used by industries in a
range of critical domains. B specifications are structured into abstract machines.
The state of an abstract machines is represented by variables and correctness
conditions can be expressed in the invariant, which is specified in predicate logic
augmented with set theory and arithmetic. In addition to variables, B machines
may also contain constants, which must satisfy conditions expressed in the “prop-
erties” clause. Operations of a machine are specified as generalised substitutions,
which allow deterministic and non-deterministic state transitions to be specified.

There are two main proof activities in B: consistency checking, which is used
to show that the operations of a machine preserve the invariant, and refinement
checking, which is used to show that one machine is a valid refinement of another.
These activities are supported by tools, such as Atelier-B, B4Free, and the B-
toolkit.

In addition to the proof activities it is increasingly being realised that val-
idation of the initial specification is important to avoid deriving a “correct”
implementation of an incorrect specification. This validation can come in the

4 This research is being carried out as part of the EU funded research project IST
511599 RODIN (Rigourous Open Development Environment for Complex Systems).



form of animation, e.g., to check that certain functionality is present in the
specification. Another useful tool is model checking [6], whereby the specifica-
tion can be systematically checked for certain temporal properties. In previous
work [9], we have presented the ProB animator and model checker to support
those activities. The tool can also be used to complement proof activities, as it
supports automated consistency checking of B machines and has been recently
extended for automated refinement checking [10].

Motivation The ProB tool has been successfully applied to various academic
and industrial examples (e.g., a Volvo vehicle function [9]). ProB can deal with
B’s data structures, such as relations, functions and sequences as well as set
comprehensions and lambda abstractions. ProB can also handle constants and
the first step of animating or model checking a B model then consists of finding
values for the constants which satisfy the PROPERTIES clause. To avoid näıve
enumeration of possible values for the constants, ProB uses various mechanisms
to propagate (partial) information about the possible values of the constants.
Still, in the end, the constants will be represented explicitly inside ProB. This
is not a problem for some models: for example, the railway model in [4] based on a
requirements document from Siemens Transportation Systems, can be animated
and model checked: the constants represent, amongst others, the underlying rail
network topology. Some specifications, however, contain complicated functions or
sets which cannot be represented explicitly. Take the following recursive function
over sequences of sequences, coming from an industrial case study [12]:

removeDuplicates = {ss,rs | ss: seq(seq(PLACE)) & rs:seq(seq(PLACE))

& (ss=<> => rs=<>) &

(card(ss)=1 => rs=ss) &

(card(ss)>1 => ( #(s1,s2).(s1:seq(PLACE) & s1=first(ss)

& s2:seq(PLACE) & s2=ss(2) &

(last(s1)= first(s2) =>

rs = front(s1) -> removeDuplicates(tail(ss)) )

& (last(s1)/=first(s2) =>

rs = s1 -> removeDuplicates(tail(ss)))

)))}

& removeDuplicates: seq(seq(PLACE)) --> seq(seq(PLACE))

Intuitively, the above function takes a sequence of sequences and removes
duplicates (i.e., the last element of a sequence is identical to the first element of
the next sequence). This is represented as a recursive function, and is part of a
larger algorithm.

Validating such specifications is especially important, since they are partic-
ularly error prone and may contain crucial computational aspects of a software
system. Such specifications also pose a major challenge to animation and model
checking. Indeed, completely expanding these functions or sets is prohibitively
expensive or even impossible. Supposing that card(PLACE) = p and supposing
that we set a maximum length m for sequences, the above function contains
qm+1−1

q−1 maplets, where q = pm+1−1
p−1 . With p = 3 and m = 4 this gives rise to



216, 145, 205 pairs which need to be pre-computed. Assuming that every maplet
requires 25 bytes of storage on average, we obtain a memory requirement of over
one Gigabyte; and with p = 4, m = 4 we exceed 315 Gigabytes.

In this paper we try to overcome this problem, and enable ProB to animate
and model check such specifications by using a symbolic representation. The
main contributions of the paper are as follows:

– A method and implementation to symbolically store set comprehensions and
lambda abstractions within an animator and model checker, without having
to expand them into an explicit form.

– A sound scheme whereby recursive higher-order functions can be encoded in
B, along with proof obligations to ensure well-definedness.

– A method and implementation to animate and model check specifications
containing such functions. The central idea is to extend the above symbolic
form with a way to encode the recursion. Only when a recursive function is
actually applied to some arguments, is the symbolic form evaluated (for that
particular argument).
We also provide some empirical results as well as some possible applications
of our technique.

2 Symbolic Representation of Sets of Values

We will first study how to represent non-recursive functions (and more generally
set comprehensions) symbolically.

ProB and Explicit Value Representation ProB uses an explicit represen-
tation for the values of machine variables, constants, etc. The following table
shows how the basic B’s data structures are encoded by the ProB Kernel:

B Type B value Prolog encoding
INTEGER 5 int(5)

BOOL TRUE term(bool(1))
element of a SET S C fd(3,’S’)

pair (*) 2 7→ 5 (int(2),int(5))
set (POW) {2, 5} [int(2), int(5)]

For example, the set comprehension {x | x ∈ 1..3} gets expanded into {1, 2, 3}
(or in the Prolog representation: [int(1),int(2),int(3)]). The lambda ab-
straction λx.(x ∈ 1..3 | x ∗ x) gets expanded into the set of pairs {1 7→ 2, 2 7→
4, 3 7→ 9}. Note that internally, a lambda abstraction is simply translated into a
set comprehension and then expanded. E.g., λx.(x ∈ 1..3 | x ∗ x) gets translated
into {x, res | x ∈ 1..3 ∧ res = x ∗ x}.

Symbolic Values In this paper we introduce an additional symbolic represen-
tation for set comprehensions (and thus also lambda abstractions). The idea is
that under certain circumstances a set comprehension is not expanded out but
kept symbolically. Some of the B operators inside the ProB kernel are then



extended to deal with those symbolic representations. Suppose for example that
the properties of a B machine contains the predicate s = {x | x ∗ x ∈ 1..99} and
that at some point we wish to evaluate the predicate 9 ∈ s. This can simply be
done by replacing x inside the set comprehension by the value 9 and then check-
ing the predicate inside the set comprehension, i.e., in this case 9 ∗ 9 ∈ 1..99.
Similarly, if the properties (or an initialisation or an operation body) contain
the predicate sqr = λx.(x : INTEGER | x ∗ x) and if at some point we need to
evaluate sqr(8), we need to replace the parameter x with the actual value 8 and
compute the body 8 ∗ 8 of the lambda abstraction. Other operators, however,
may require the complete set of values and hence require the expansion of the
set comprehension, e.g., if we encounter s ∩ 8..10 6= ∅ we need to expand s to
check if it has a value in common with 8..10.

Closures Which form should the symbolic representation take? Naively, one
may think that to represent a set like {y | P} with y being of type INTEGER, we
could just store the arguments, the types of the arguments, and a representation
’P’ of P inside a Prolog term such as: symbolic_set([y],[INTEGER],’P’). A
similar scheme could be used for lambda expressions, by translating them into
a set comprehension first.

There is, however, one problem with this approach, which the following ex-
ample illustrates:

MACHINE FunPlus

VARIABLES x, fun

INVARIANT x:INTEGER & fun: INTEGER --> INTEGER

INITIALISATION x:=0 || fun:= %y.(y:INTEGER|0)

OPERATIONS

Inc = x := x+1;

Set_fun_plus_x = fun := %y.(y:INTEGER| x+y);

cc <-- ApplyFun(y) = PRE y:INTEGER THEN cc := fun(y) END

END

Assume that we start out by executing the operation Set fun plus x. Here the
variable fun would be given the value symbolic set([y,res],[INTEGER,INTEGER],

’res=x+y’). After applying the Inc operation, the variable x is updated, which
would implicitly change the function fun represented by our symbolic set! This is
of course incorrect, as in the above B machine Inc does not change the function
fun.

The solution lies with the closure concept, familiar from programming lan-
guage implementation (see, e.g., [15]) in general and functional programming
in particular. It is used when procedures or functions can be used as values. A
closure of a function combines the source code of the function together with the
current values of the global variables it refers to. This is also called environment
capture, as the environment is packaged up together with the function.

In prob this is achieved by compiling a set comprehension or lambda ab-
straction into a closure; where all references to machine variables are compiled



into the code. This is achieved by replacing a reference to a variable x by a
special construct value(V) where V is the value of x at the point of construction
of the lambda abstraction or set comprehension. Thus, the symbolic represen-
tation of %y.(y:INTEGER|x+y), supposing that x has the value 2, would be:
closure([y,res], [INTEGER,INTEGER], ’res=value(int(2))+y’). The value indi-
cates to the ProB kernel that this is not an expression that needs to be inter-
preted (it is already in the internal representation).5

Implementation We have implemented the symbolic representation inside
ProB’s kernel. Several operators were extended to directly work on this sym-
bolic representation: equality (=), set membership (∈), and function application
(f(.)). If a symbolic representation is used with any other B operator the sym-
bolic closure is expanded into an explicit form (where the expansion is delayed
until all the free variables of the set comprehension have been given a value). We
plan to extend the kernel for further operators; but for the case studies so far, ex-
tending the above operators was sufficient. The user can set a boolean preference
value to indicate whether set comprehensions and lambda abstractions should
be stored symbolically if possible. In future we plan to add a more fine-grained
control, whereby each individual set comprehension can be treated differently
(indeed, in some cases it is more efficient to expand a symbolic representation
once and for all).

We have also applied the same scheme for certain other expressions which
are likely to yield big sets: Cartesian products (A× B), powerset constructions
(P(A)), sets of relations (A↔ B) and sets of functions (A 7→ B,A→ B, . . .).
Those expressions are usually used for typing and rarely need to be expanded
out. For example, given a predicate r ∈ P(NAT ↔ NAT ) and a value of 3
for MAXINT 6 the set P(NAT ↔ NAT ) has a cardinality of 224∗4

= 265536,
and even with MAXINT of just 2 we have a cardinality of 2512 ≈ 1.34 ∗ 10154.
Thus, P(NAT↔NAT ) cannot possibly be stored explicitly, while it is relatively
straightforward to check if a given relation r is a member of the set. A separate
user preference indicates whether the symbolic representation should be applied
for those type expressions (but there should be little need to switch off the
symbolic representation for those expressions).

Correctness By storing a set comprehension {x1, . . . xn | P} symbolically in-
side an animator or model checker for B, we implicitly assume two things:

1. that the set comprehension exists,
2. that only a single value for the set comprehension exists

In this section we do not yet study recursion, i.e., we assume that the predicate
P makes no reference to the set itself (i.e., we do not yet consider definitions
5 Also, if the value of x is not yet known by the kernel then the value constructor will

contain a Prolog variable, which will be instantiated as soon as x becomes known
(e.g., through enumeration or through evaluation of some other predicate).

6 NAT represents the implementable natural numbers from 0 to MAXINT .



of the form s = {x | x ∈ s} or s = {x | x 6∈ s}). Without recursion, the
set comprehension must exist, but it could of course be empty. For example,
{x | x ∈ INT ∧ 1 = 2} is equal to the empty set. Also, there can only be a
single solution, otherwise we would have found values for the comprehension
parameters for which P is both true and false; this cannot be.

Hence, in the non-recursive case, the correctness of our approach is unprob-
lematic. However, some interesting real-life specifications require recursive defi-
nitions, and we tackle those in the following sections.

3 Defining Recursive Functions in B

3.1 The problems with recursive set comprehensions

In the previous section we have assumed that set comprehensions are not re-
cursive, i.e., that the truth value of the predicate P inside {x1, . . . , xk | P}
does not depend on the set itself. Let us examine what happens if we drop this
restriction. Take for example the two cases: st = {x | x ∈ N ∧ x ∈ st} and
sf = {x | x ∈ N∧x 6∈ sf }. The predicates x ∈ N∧x ∈ st and x ∈ N∧x ∈ sf both
depend on the values represented by the set comprehensions themselves. In the
first case this means that there are multiple solutions for the equation (st can
be any set of natural numbers) while in the second case there is no solution for
sf . Assigning a single symbolic representation to st would hide non-determinism
in the animator and model checker. More seriously, however, assigning a sym-
bolic representation to sf , even though there is no solution for it, would lead to
unsoundness of the animator and model checker.

Note that the set comprehensions {x | x ∈ N∧x ∈ st} and {x | x ∈ N∧x 6∈ sf }
on their own are not a problem: these expressions have a single value (for any
given value of the free variables st and sf ). The problem only arises when treating
the equations st = {x | x ∈ N∧x ∈ st} and sf = {x | x ∈ N∧x 6∈ sf }: we can no
longer simply assign the symbolic closure computed for the set comprehension
to st and sf respectively. Our solution to this problem is as follows:

– identify cases where we can guarantee that a recursive set comprehension
has a single solution,

– in those cases, provide a special treatment for recursive set comprehensions
and unroll them on demand.

3.2 How to define recursive functions in B

The most common use of recursive definitions is to define constant functions
(i.e., the function is a B constant defined in the PROPERTIES clause) which
perform computations required by the specification. We will restrict ourselves
to such cases in this paper. We will present a way to formally write down such
recursive functions in B such that they are well defined in B and can be animated
and validated by ProB. We will illustrate this using the well-known Factorial



function (see, e.g., [5]), trying to define a constant factorial which can be used
to compute the factorial of a natural number.

Let us first attempt to use lambda abstractions. Unfortunately, in B, these
are not well suited to define recursive functions. Indeed—unlike Z—B has no if-
then-else expression7 and hence no way to provide a base case for the recursion.
Hence, one can use a lambda abstraction only as a part of the function definition:

PROPERTIES

factorial: NATURAL --> NATURAL1 &

factorial = {0|->1} \/ %x.(NATURAL1 | x* factorial(x-1))

While this is a possible way to define the factorial function, it is not partic-
ularly elegant and well suited for proof. Furthermore, from an implementation
point of view, this style would require us to extend set union to be able to com-
bine (recursive) symbolic closures. We have chosen not to pursue this approach.
An alternative specification style is to use universal quantification to express the
various cases of the function:

PROPERTIES

factorial: NATURAL --> NATURAL1 & factorial(0) = 1 &

!x.(NATURAL1 => factorial(x) = x* factorial(x-1))

This is already more elegant, and better suited for proof using the B prover
tools. However, the definition of the factorial function is “scattered” among
different conjuncts of the PROPERTIES clause. It is not obvious how one could
translate that into a symbolic closure representation.

Fortunately, it turns out that a set comprehension allows for an elegant spec-
ification of the function:

PROPERTIES

factorial: NATURAL --> NATURAL1 &

factorial = {x,y| x:NATURAL & y:NATURAL &

(x=0 => y=1) &

(x>0 => (y=x* factorial(x-1))) }

The advantage over the previous scheme is that the definition of the factorial
function now resides within a single set comprehension.8 This will enable us to
provide techniques to detect such recursive function definitions and then provide
a special symbolic representation for them.

We will of course need to make sure that the recursion is well-founded and
progresses towards the base case. Otherwise, we can get a specification like f ∈
N→N ∧ f = {x, y | x ∈ N ∧ y ∈ N ∧ y = f(x+ 1)} which has multiple solutions
(something which we do not want; see the end of Sect. 2). In the above definition
7 It only has an if-then-else generalised substitution which cannot be used inside a

lambda expressions.
8 The form is less convenient for proof; we return to this issue later.



of factorial we can find a variant (x) which ensures that the recursion must
terminate.

There is, however, still one problematic issue with the above solution: the
soundness of the recursive definition of the function relies on the preceding dec-
laration fact ∈ N→N1. Without it, we have in principle no guarantee that, for
the recursive call fact(x− 1), the function is actually defined for x− 1 and that
it actually is a function (and not just a relation; see also [3]).

Thus, a more rigourous definition of the function is as follows:

MODEL Factorial

CONSTANTS factorial

PROPERTIES

factorial : NATURAL <-> NATURAL &

factorial =

{ x,y | x: NATURAL & y: NATURAL &

(x=0 => y=1) &

(x>0 & x-1:dom(factorial) => #z.(x-1|->z:factorial& y=x*z))}

END

It turns out that from this model, we can completely prove within B4Free,
the following theorems:

THEOREMS

!P.(P <: NATURAL & 0 : P & succ[P] <: P => NATURAL <: P);

dom(factorial)=NATURAL;

factorial : NATURAL --> NATURAL1;

factorial(0)=1 & !x.(x: NATURAL1 => factorial(x)=x*factorial(x-1));

factorial = { x,y | x: NATURAL & y: NATURAL &

(x=0 => y=1) &

(x>0 => y=x*factorial(x-1))}

The first theorem establishes the induction principle over natural numbers; it
can be proven by contradiction. We then proceed to prove that the domain of the
factorial is the set of natural numbers and that we have defined a total function.
(There is thus no need to declare factorial to be a total function; this follows
mathematically from the way the function is defined.) From that we can further
deduce two alternate formalisations of the factorial function: one well suited for
proof with the B prover tools and one close to a functional programming style
and well suited for animation. We have thus established full correctness of our
initial description as a set comprehension.

The crucial proof is for the theorem factorial: NATURAL --> NATURAL1
(i.e., factorial is a total function). B4free splits this into two subsidiary predi-
cates dom(factorial) = NATURAL (factorial is total) and factorial:NATURAL
+-> NATURAL1 (factorial is a partial function). Both predicates are proved by
induction as in [5]. To prove the totality of factorial we have instantiated the
inductive theorem with dom(factorial) and to prove the partial functionality
of factorial we have instantiated the inductive theorem with the set

{n | n : NATURAL & 0..n <| factorial : 0..n --> NATURAL1}.



Remark that we prove also the totality between 0..n for convenience reasons,
otherwise we need to consider (for the inductive step) two cases: n:dom(factorial)
and n/:dom(factorial).

3.3 A General Scheme

Inspired by the factorial example, we now proceed to present a general scheme
for defining recursive functions in B. To ensure well-foundedness, we will require
a variant which for simplicity we will assume to be of type natural. In our general
scheme, a recursive function with n arguments and N cases is defined as follows:

f = {x1, . . . , xn, out | x1 ∈ T1 ∧ . . . ∧ xn ∈ Tn ∧ P (x1, . . . , xn) ∧ out ∈ Tn+1∧

(Cond1 ⇒ out = Exp1) ∧
. . . ∧

(CondN ⇒ out = ExpN )}
In this scheme each Cond i has free variables included in {x1, . . . , xn} and

where Expi can also make reference to f . The scheme must include a variant
function V ∈ T1 × . . . Tn→ N.

We introduce the following abbreviation:

ArgType ≡ x1 ∈ T1 ∧ . . . xn ∈ Tn ∧ P (x1, . . . , xn)

Below we will formalise the conditions under which this scheme ensures that
f defines a total function over T1 × . . . Tn.

We first ensure that for any input value in T1×. . . Tn we have one and exactly
one condition Cond i that is true:

1. ∀(x1, . . . , xn).(ArgType⇒ (Cond1 ∨ . . .CondN ))
2. for any i 6= j: ∀(x1, . . . , xn).(ArgType⇒ ¬(Cond i ∧ Cond j))

The variant must always be a natural number and must always be decreased
by each recursive reference:

3. ∀(x1, . . . , xn).(ArgType⇒ V (x1, . . . , xn) ≥ 0)
4. for any i ∈ 1..N and for any recursive call f(e1, . . . , en) inside Expi:
∀(x1, . . . , xn).(ArgType ∧ Cond i ⇒ 0 ≤ V (e1, . . . , en) < V (x1, . . . , xn)).

More precisely the conditions will ensure that

A. Each (x1, . . . , xn) is in the domain of f :

∀(x1, . . . , xn).(ArgType⇒ (x1, . . . , xn) ∈ dom(f))

B. Each (x1, . . . , xn) is mapped to at most one range value:

∀(x1, . . . , xn, y1, y2).(ArgType ∧ (x1, . . . , xn) 7→ y1 ∈ f ∧ (x1, . . . , xn) 7→
y2 ∈ f ⇒ y1 = y2)

The proof of A and B is by general induction over the range of variant
function V , that is, assuming that the property holds for all (x′1, . . . , x

′
n) where

V (x′1, . . . , x
′
n) < V (x1, . . . , xn) show that it holds for (x1, . . . , xn).



4 Implementation: Recursive Closures

We now show how the implementation scheme of Sect. 2 can be adapted to
deal with recursive set comprehensions. For this we introduce a second symbolic
representation, namely for recursive closures.

The first part of our implementation is the extension in the ProB kernel
of the equality Prolog predicate. This Prolog predicate gets called whenever an
equality between two B objects needs to be checked. If none of the objects is a
symbolic closure then the check proceeds as usual [9]. If both objects are closures,
then they are both expanded and checked for equality. Let us now assume that
one of the objects is a closure C, as explained in Sect. 2, while the other (say f)
is not. (This situation would arise for the predicate f = {x1, . . . , xn | P}, unless
f was already given a symbolic closure by some preceding predicate.) There are
now three cases for f :

– f has some value associated with it (or is partially instantiated); in this
case the closure for the set comprehension gets expanded and the equality
is checked as usual.

– f is unconstrained (i.e., apart from the type, nothing is known about f) but
does not appear in P : in this case f is now set to be equal to the symbolic
closure C.

– f is unconstrained and does appear in P : in this case we have a recursive
set comprehension. There two sub-cases:
• The equality f = {x1, . . . , xn | P} does not conform to the scheme

outlined in Sect. 3.3. In this case the Prolog predicate needs to delay
until f is completely known, at which point the set comprehension can
be expanded and the equality checked.

• Otherwise we generate a new identifier ID to identify the recursive func-
tion and replace all occurences of f inside the C with rec(ID), yielding
C ′. The variable or constant f now gets as value the symbolic represen-
tation recursive closure(ID,C ′).

The equality predicate is also the only place which can lead to the generation of
a new recursive closure. For our factorial constant above we would thus get
as symbolic representation:

recursive_closure(1, closure([x,y],[INTEGER,INTEGER],

’x:NATURAL & y:NATURAL & (x=0 => y=1) &

(x>0 => y=x*value(rec(1))(x-1))’ ))

These recursive closures are then unrolled on demand. More precisely, when
a recursive closure τ = recursive closure(i,C) is examined (e.g., by the
function application Prolog predicate) it is converted into the closure C ′ =
C[τ/rec(i)], i.e. C where all rec(i) have been replaced by τ .

For example, unrolling the above recursive closure yields:



closure([x,y],[INTEGER,INTEGER],

’x:NATURAL & y:NATURAL & (x=0 => y=1) &

(x>0 => y=x*value(recursive_closure(1,...))(x-1))’ ))

If the first argument is 0 then no further unrolling is required, but if x > 0
the inner recursive closure will be unrolled, etc., until we reach the base case of
the recursion.

Note that this way to handle recursion is related to the fix operator some-
times used in process algebras (see, e.g., [11]).

New Syntax

The introduction of a new syntax for recursive functions can provide both an
effective way to animate recursive functions as well as a convenient way to prove
properties with and about them. This would require extending the ProB parser
and then either convert the syntax into a form suitable for proving or suitable
for ProB for animating and model checking. A possible syntax for the factorial
function could be:

FUNCTIONS

y <-- factorial(x) = WHERE x:NAT & y:NAT THEN

CASE x=0 THEN y=1

CASE x>0 THEN y=fact(x-1)

VARIANT x

END

We have not yet finalised the new syntax, and in the remainder of the paper
we carry out our experimentation with the set comprehension style suitable for
animation.

5 Higher-Order Functional Programming Examples in B

So far we have shown that first-order recursive functions can be encoded within
B, and animated and validated by ProB. As it turns out, our scheme is actually
powerful enough to animate higher-order recursive functions. In other words,
we have actually developed a scheme to enable higher-order functional “pro-
gramming” inside B specifications. In this section we provide a few examples to
illustrate this point.

Mutual Recursion Before examining higher-order functions, let us first
discuss the issue of mutual recursion. The examples so far contained a single
recursive function. Does our scheme also work for several mutually recursive
functions? The answer to this question is affirmative: the proof obligations need
to be adapted to handle multiple functions (in a straightforward fashion), but
the implementation scheme is already suited to handle such functions.

Take the following artificial example, splitting the factorial function into two
mutually recursive functions:



CONSTANTS fact1,fact2

PROPERTIES

fact1: INT --> INT &

fact1 = {x,y | x:NAT & y:NAT &

(x=0 => y=1) & (x>0 => (y=x*fact2(x-1))) } &

fact2: INT --> INT &

fact2 = {x,y | x:NAT & y:NAT &

(x=0 => y=1) & (x>0 => (y=x*fact1(x-1))) }

In this case, fact1 will be stored as a standard closure (calling fact2) and
fact2 will be a recursive closure with no reference to fact1. Note that we can
also deal with the problematic example discussed in [8].

Higher-Order Functional Programming Some higher-order programming
is actually already built into B: to map a function f over a sequence s we simply
need to use the relational composition (s; f), as s is a function from 1..size(s)
to ran(s). In general, however, this is not so easy. Below we show how we can
specify the well-known “foldr” higher-order function, which takes a base value
and a function f and maps it over a sequence to compute a single value. In the
FoldMul operation we use this higher-order function to compute the product of
the elements of a sequence.

MACHINE SeqFoldr

CONSTANTS mul, foldr

PROPERTIES

mul: (NATURAL*NATURAL)<->NATURAL &

mul = {i,j,res | i:NATURAL & j:NATURAL & res:NATURAL & res=i*j} &

foldr:(((NATURAL*NATURAL)<->NATURAL)*NATURAL*seq(NATURAL))<->NATURAL &

foldr =

{ f,base,i,res | i:seq(NATURAL) & base:NATURAL &

res: NATURAL & f:(NATURAL*NATURAL)-->NATURAL &

(i=<> => res=base) &

(size(i)>0 => res = f(first(i),foldr(f,base,tail(i))) )

}

VARIABLES ss

INVARIANT ss: seq(NATURAL)

INITIALISATION ss := <>

OPERATIONS

Add(nn) = PRE nn:NATURAL THEN ss := ss <- nn END;

FoldMul = BEGIN ss := foldr(mul,1,ss) -> ss END

END

We can easily show that foldr satisfies our proof obligations, if we choose
size(i) as the variant:

1. ∀(f, i).(i ∈ seq(N) ∧ f ∈ N× N→ N⇒ (i = 〈〉 ∨ size(i) > 0))
2. ∀(f, i).(i ∈ seq(N) ∧ f ∈ N× N→ N⇒ ¬(i = 〈〉 ∧ size(i) > 0))
3. ∀(f, i).(i ∈ seq(N) ∧ f ∈ N× N→ N⇒ size(i) ≥ 0)
4. ∀(f, i).(i ∈ seq(N) ∧ f ∈ N× N→ N ∧ size(i) > 0⇒ size(tail(i)) < size(i))



One difference with functional programming still persists though: foldr is
usually defined to be a polymorphic function, i.e., the type of the elements of the
list is not hardcoded like in our B machine. To overcome this, one has to define
foldr within a separate machine, whose argument is the type of the elements
of the list. Unfortunately, the machine parameters are not visible inside the
PROPERTIES clause; hence we actually need to make foldr a variable (which
is not very convenient):

MODEL Foldr(TYP)

VARIABLES foldr

INVARIANT foldr : (((TYP* TYP)--> TYP)*TYP*seq(TYP)) --> TYP

INITIALISATION

foldr : (foldr = { f,b,i,res |

i:seq(TYP) & res:TYP & f:(TYP* TYP)--> TYP & b:TYP &

(i=<> => res=b) &

(size(i)>0 => res = f(first(i), foldr(f,b,tail(i))) ) } )

END

6 Empirical Results

The experiments were all run on a multiprocessor system with 4 AMD Opteron
870 Dual Core 2 GHz processors, running SUSE Linux 10.1, SICStus Prolog
3.12.7 (x86 64-linux-glibc2.3) and ProB version 1.2.4.9

The first experiment consisted in running the previously discussed factorial
function. The results are presented in the upper half of Table 1. Note that ProB
does check the function arguments (to see if they are a natural number) at every
function application. Also, note that without our new symbolic approach, the
present formalisation cannot be animated (even for small values of n). However,
using the axiomatic formalisation from Sect. 3.2 (using universal quantification)
it is possible, provided we limit the domain of the function. It then takes 0.85
sec to compute factorial for 0..100 using classical ProB. (For functions such as
SeqFoldr as seen earlier, it is of course impossible to precompute the function.)

In order to measure a specification requiring a large number of recursive calls
we have used the näıve recursive definition for computing the Fibonacci numbers:
fib = {x,z| x:NATURAL & z:NATURAL & (x=0 => z=1) & (x=1 => z=1) & (x>1 =>

(z=fib(x-1)+fib(x-2))) }. The results are summarised in the same Table 1.
For Fib(20) we have 21891 (2× fib(20)− 1, see, e.g., [13]) calls to the Fibonacci
function. This corresponds to 3357 calls per second. For a programming language
this would of course be very slow (even though ProB works with big integers);
but for animation purposes this is actually quite reasonable (also given the fact
that the typing predicates are repeatedly evaluated). However, there is definitely
scope for improvement. Possibly with the use of partial evaluation [7] and more
sophisticated implementation techniques, a big improvement in speed should
be possible. Still, in its current form the tool can be used to animate a wide

9 Note that neither SICStus Prolog nor ProB take advantage of multiple processors.



n factorial(n) Time Function calls per sec

5 120 0.00 sec -
10 3,628,800 0.00 sec -
20 2,432,902,008,176,640,000 0.02 sec 1000
100 see footnote10 0.06 sec 1667

n fib(n) Time Function calls per sec

5 8 0.01 sec 1500
10 89 0.10 sec 1770
15 987 0.67 sec 1999
20 10946 6.52 sec 3357

Table 1. Empirical Results

range of specifications with recursive functions. In particular, ProB has been
successfully applied to an industrial case study (cf. Section 1) which was hitherto
impossible to animate or model check, and was able to detect an error in the
original specification [12].

7 Related Work and Conclusion

While there are various other animators for B and Z, to our knowledge, none of
them can handle recursive functions.

In [2] authors explain how we can specify higher order expression and the-
orems using B and how we can prove such theorems using B tools. The second
work [5] is more related to our work. The factorial function is also defined
first like the smallest relation which satisfies factorial’s properties and then
the proof of the functionality of factorial is done using B4free as in our work.
This definition is not suited for animation but some algorithms to compute the
factorial function are given. These algorithms are developed using B and the
refinement. These are correct by construction. The first abstract model computes
factorial(n) in one shot. The first refinement computes a finite subset of the
factorial function like in dynamic programming The last refinement computes
factorial(n) using the well known loop from 1 to n. Another related work is
[14], which presents a framework to reconcile axiomatic and model-based speci-
fications. As such it is related to our desire at the end of Sect. 4 to present two
different views of a specification: one suitable for proving and one suitable for
animation. In the context of higher-order logic and Isabelle/HOL, [8] presents a
method to reason about recursive functions.

In summary, we have presented a scheme to define higher-order recursive
functions in B and have shown how we can animate and model check them
10 For factorial(100) the result computed by ProB is:

933262154439441526816992388562667004907159682643816214685929638952175999932299156089

41463976156518286253697920827223758251185210916864000000000000000000000000.



using extensions to the ProB toolset. We have carried out various experiments,
showing the practicality of the approach.
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