
Combining CSP and B for Specification and

Property Verification⋆

Michael Butler1 and Michael Leuschel1,2

1 Department of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
{mjb,mal}@ecs.soton.ac.uk

2 Institut für Informatik, Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf
leuschel@cs.uni-duesseldorf.de

Abstract. ProB is a model checking tool for the B Method. In this
paper we present an extension of ProB that supports checking of spec-
ifications written in a combination of CSP and B. We explain how the
notations are combined semantically and give an overview of the imple-
mentation of the combination. We illustrate the benefit that appropriate
use of CSP, in conjunction with our tool, gives to B developments both
for specification and for verification purposes.
Keywords: B-Method, Tool Support, Model Checking, Animation, Logic
Programming, Constraints.

1 Introduction

The B-method, originally devised by J.-R. Abrial [1], is a theory and method-
ology for formal development of computer systems. It is used by industries in
a range of critical domains, most notably railway control. B is based on the
notion of abstract machine and the notion of refinement. The variables of an
abstract machine are typed using set theoretic constructs such as sets, relations
and functions. Typically these are constructed from basic types such as inte-
gers and given types from the problem domain (e.g., Name, User, Session, etc).
The invariant of a machine is specified using predicate logic. Operations of a
machine are specified as generalised substitutions, which allow deterministic and
nondeterministic state transitions to be specified. There are two main proof ac-
tivities in B: consistency checking, which is used to show that the operations of a
machine preserve the invariant, and refinement checking, which is used to show
that one machine is a valid refinement of another. These activities are supported
by industrial strength tools, such as Atelier-B [18] and the B-toolkit [3]. In this
paper, we focus on consistency checking.

In previous work [11], we have presented the ProB animator and model
checker. Based on Prolog, the ProB tool supports automated consistency check-
ing of B machines via model checking [5]. For exhaustive model checking, the

⋆ This research is being carried out as part of the EU funded research project: IST
511599 RODIN (Rigorous Open Development Environment for Complex Systems).

given sets must be restricted to small finite sets, and integer variables must be
restricted to small numeric ranges. This allows the checking to traverse all the
reachable states of the machine. ProB can also be used to explore the state
space non-exhaustively and find potential problems. The user can set an upper
bound on the number of states to be traversed or can interrupt the checking at
any stage. ProB will generate and graphically display counter-examples when
it discovers a violation of the invariant. ProB can also be used as an animator
of a B specification. So, the model checking facilities are still useful for infinite
state machines, not as a verification tool, but as a sophisticated debugging and
testing tool.

In the Event B approach [2], a B machine is viewed as a reactive system that
continually executes enabled operations in an interleaved fashion. This allows
parallel activity to be easily modelled as an interleaving of operation executions.
However, while B machines are good at modelling parallel activity, they can be
less convenient at modelling sequential activity. Typically one has to introduce
an abstract ‘program counter’ to order the execution of actions. This can be
a lot less transparent than the way in which one orders action execution in
process algebras such as CSP [9]. CSP provides operators such as sequential
composition, choice and parallel composition of processes, as well as synchronous
communication between parallel processes.

Our motivation is to use CSP and B together in a complementary way. B can
be used to specify abstract state and can be used to specify operations of a system
in terms of their enabling conditions and effect on the abstract state. CSP can
be used to give an overall specification of the coordination of operations. To
marry the two approaches, we take the view that the execution of an operation
in a B machine corresponds to an event in CSP terms. Semantically we view
a B machine as a process that can engage in events in the same way that a
CSP process can. The meaning of a combined CSP and B specification is the
parallel composition of both specifications. The B machine and the CSP process
must synchronise on common events, that is, an operation can only happen in
the combined system when it is allowed both by the B and the CSP. There is
much existing work on combining state based approaches such as B with process
algebras such as CSP and we review some of that in a later section.

In [10] we presented the CIA (CSP Interpreter and Animator) tool, a Prolog
implementation of CSP. As both ProB and CIA are implemented in Prolog,
we were provided with a unique opportunity to combine these two to form a
tool that supports animation and model checking of specifications written in a
combination of CSP and B. This paper reports on the combined tool. In Section 2
we provide an overview of the ProB and CIA tools. In Section 3 we describe
how the tools are combined and what the effect of the combination is.

We envisage two main uses of the combined tool. Firstly it can be used
to animate and model check specifications which are a combination of B and
CSP. We illustrate this in Section 4. The second use of the tool, described in
Section 5, is to analyse trace properties of a B machine. In this case the behaviour
is fully specified in B, but we use CSP to specify some desirable or undesirable

2

behaviours and use ProB to find traces of the B machine that exhibit those
behaviours.

2 Background

ProB ProB [11] is an animation and model checking tool for the B method.
ProB ’s animation facilities allow users to gain confidence in their specifications,
and unlike the animator provided by the B-Toolkit, the user does not have
to guess the right values for the operation arguments or choice variables. The
undecidability of animating B is overcome by restricting animation to finite sets
and integer ranges, while efficiency is achieved by delaying the enumeration of
variables as long as possible. ProB also contains a model checker [5] and a
constraint-based checker, both of which can be used to detect various errors in
B specifications.

The ProB system has been developed mainly in SICStus Prolog, with graph-
ical user interfaces implemented in Tcl/Tk and also Java. ProB uses the JBTools
package to translate abstract machine notation (AMN) [1] specifications into
XML, while the Pillow package allows the conversion of XML files into a Pro-
log term representation. The ProB front end then postprocesses the general
Prolog term tree representation of the Pillow library output into a more struc-
tured representation that serves as the input to the ProB interpreter. The
ProB interpreter recurses through this structured representation of B machines
and makes calls to the ProB kernel, which implements support for the basic
datatypes and operations of the B-language. The ProB kernel itself is written
in SICStus Prolog with co-routining (i.e., when declarations) and constraints (fi-
nite domain constraints using CLP(FD)). The ProB animator, and the various
checking tools described below all make use of the ProB interpreter in various
ways.

ProB provides two ways of systematically checking a B machine: 1. a tempo-

ral model checking [5] which tries to find a sequence of operations that, starting
from an initial state, leads to a state which violates the invariant (or exhibits
some other error, such as deadlocking, assertion violations, or abort conditions);
and 2. a constraint-based checking, which finds a state of the machine that sat-
isfies the invariant, but where we can apply a single operation to reach a state
that violates the invariant (or again exhibits some other error). More details can
be found in [11]. Recently refinement checking has also been added, which can
be used to check refinement between two B specifications. In case refinement is
violated, ProB displays a sequence of operations that can be performed by the
“refinement” machine but not by the specification machine.

The CSP Interpreter and Animator CSP is a process algebra defined by
Hoare [9]. The first semantics associated with CSP was a denotational seman-
tics in terms of traces, failures and (failure and) divergences. An operational
semantics has later been developed [14], which forms the basis of the interpreter
and animator presented in [10]. This interpreter was also developed in SICStus

3

Prolog. No CLP (Constraint Logic Programming) primitives were used but co-
routining (i.e., when declarations) were used to ensure that channel constraints
are delayed until they are sufficiently instantiated to evaluate them. The imple-
mentation presented in [10] covers a large part of CSP, see Figure 1. In the light
of integration with ProB we have improved the parser (which uses Prolog’s Def-
inite Clause Grammars) and we have moved much closer to the CSP-M syntax
as employed by FDR [15, 7].3

As the CSP interpreter is also written also in SICStus Prolog, at least from
a technical point of view, it is now feasible to integrate CSP and B. In the
following section we describe how this was done, starting out from the theoretical
underpinnings and then leading on to the practical aspects.

Operator Syntax Ascii Syntax

stop STOP STOP

skip SKIP SKIP

prefix a → Q a->P

conditional prefix a?x : C → P a?x:C->P

external choice P 2 Q P [] Q

internal choice P ⊓ Q P |~| Q

interleaving P |||Q P ||| Q

parallel composition P [|A]| Q P [| A |] Q

sequential composition P ; Q P ; Q

hiding P\A P \ A

renaming P [R] P [[R]]

timeout P ⊲ Q P [> Q

interrupt P △i Q P /\ Q

if then else if C then P else Q if C then P else Q

let expressions let v = e in P let V=E in P

agent definition A = P A = P;

Fig. 1. Summary of syntax of CSP

3 Combining B and CSP

In our work we have adopted and developed the approach of integration depicted
in Figure 2. (How this compares to earlier work is discussed later in the paper.) In
essence, the B and CSP specifications are composed in parallel. The B operations
must synchronize with channel events of the CSP specification having the same

3 But there are still a few differences and extra features. For example, multiple process
definitions are allowed and treated like an external choice and process definitions can
be terminated by a double semicolon to ease error recovery during parsing. However,
variable names still have to start with an uppercase letter or an underscore and
channel declarations are ignored.

4

name as the B operation. Channel events of the CSP which have no counterpart
in the B (such as channel D in Figure 2) can occur independently, while B
operations that have no CSP counterpart are prevented from being executed.
Below we present more formally how this synchronization is achieved, starting
out from the state information of a combined B/CSP specification and then
progressing on to how to formally perform the synchronization.O p e r a t i o nAO p e r a t i o nBO p e r a t i o nC

B M a c h i n e C h a n n e lAC h a n n e lBC h a n n e lCC h a n n e lD
C S PS p e c i f i c a t i o nP r o c e s s1P r o c e s s2

Fig. 2. Illustrating the synchronisation of B and CSP specifications

Combining State Information The state of a B machine is a mapping from
variables to values, while the state of a CSP process is a syntactic process expres-
sion. So, for example, the state of the simple B machine in Figure 3 immediately
after executing Set(cc) would be represented as {xx 7→ cc}4, while the state of
the simple CSP specification in Figure 4 would be Get .cc → MAIN . A state of
a combined B/CSP specification is thus simply a pair, whose first component
is a B state and second component a CSP process expression. For example, the
state of the combination of Figures 3 and 4 immediately after executing Set(cc)
would be ({xx 7→ cc},Get .cc → MAIN).

Mapping Operations to Channels The approach we have chosen is to trans-
late every argument and return value of a B operation into a separate data value

4 The actual Prolog representation is [bind(xx,fd(3,’AA’)].

5

MACHINE Simple

SETS
AA = {aa, bb, cc}

VARIABLES
xx

INVARIANT
xx ∈ AA

INITIALISATION
xx := aa

OPERATIONS

Set(newval)=̂
PRE newval ∈ AA

THEN xx := newval

END;
res ←− Get =

BEGIN res := xx

END

Fig. 3. Simple B machine

Set?V al → Get !V al → MAIN

Fig. 4. Simple CSP Specification

of a CSP channel. To ease the writing of succinct CSP specifications, we do not
require the CSP to provide all channel values. If channel values are missing any
B value is allowed for synchronization on that argument.

For a B operation of the form X ←−op(Y)=̂S, we refer to a←−op(b) as an
operation call. We first define a function channel which maps B operation calls
to possible CSP channel events. Let op be an operation of a B machine taking
n ≥ 0 arguments and returning m ≥ 0 values, and let a1, . . . , an be arguments
to that operation and let r1, . . . , rm be return values. We then define

channel(r1, . . . , rm ← op(a1, . . . , an)) = { op.a1.ak | 0 ≤ k ≤ n} ∪

{ op.a1.an.r1.rk | 1 ≤ k ≤ m}

(If m is 0 we take the liberty of not writing the result arrow “←”.)
For example for the B machine in Figure 3, we have

channel(Set(aa)) = {Set, Set.aa}

channel(aa←Get) = {Get,Get.aa}

Intuitively, this means that a channel event Set will synchronise with all possible
executions of the B operation Set, whereas Set.aa will only synchronise with the
execution of Set for the particular argument aa.

Deriving an Operational Semantics We suppose that the B operational
semantics is given by a ternary relation → (in practice computed by ProB),
where σ →o σ′ with o = r1, . . . , rm ← op(a1, . . . , an) means that in the state
σ of a B machine we can execute the operation op with arguments a1, . . . , ak

giving the return values r1, . . . , rm and producing the new state σ′.
The CSP operational semantics is given by a similar relation →, where

P →ch.a1.....an
P ′ denotes the fact that the process expression P can produce

the channel event ch.a1.an and evolve into the new process expression P ′.

6

We can now define our new operational semantics of a combined B and
CSP specification by (σ, P) →A (σ′, P ′) iff σ →O σ′ and P →A P ′ and A ∈
channel(O).

Computing the Operational Semantics The question now is: how can we
compute (σ, P) →A (σ′, P ′) in practice? The first part, σ →O σ′, is computed
by ProB, while P →A P ′ is computed by the CSP interpreter. The remaining
final part, checking A ∈ channel(O) has been implemented by unifying the B
operation arguments with the CSP channel values (those provided). So, synchro-
nisation is achieved by Prolog unification. This means we have a very flexible
way of combining CSP and B as information can flow in both directions. In
other words, the CSP can drive the B or vice-versa or a combination thereof.
The use of co-routining in both ProB and the CSP interpreter not only makes
this kind of synchronization possible but also efficient. Indeed, both the B and
CSP parts can provide concrete date values, and as soon as those are available
the co-routining mechanism will trigger the relevant tests in either the B or the
CSP part (or both). If any of those tests fail the search space is immediately
pruned, resulting in a (possibly considerable) efficiency gain, when compared to
computing the B and CSP operational semantics in isolation.5

Observe that in this translation, no distinction is made between arguments
and return values. Indeed, ProB itself makes little distinction between argu-
ments and return values (the only difference is that it is easier to extract typing
for arguments). This allows for a very flexible way of synchronising, e.g., giving
the CSP the option of imposing return values or just retrieving them.

The Implementation The above described combination of B and CSP has
been integrated into the latest release of ProB. Many of ProB’s features spe-
cific to B continue to work for combined B/CSP specifications: backtrackable
automatic animation, graphical visualization possibly with optional state space
reduction [12], temporal model checking with detection of invariant, assertion
violations or deadlocks, refinement checking, and many more.

Figure 5 shows the state space, as visualized by the new version of ProB,
for the combination of the B machine from Figure 3 and the CSP specification
from Figure 4. The figure clearly shows how the CSP has imposed that every
Set operation is followed by a Get operation. The CSP also imposes that the
Get operation must return the same value as was given to the Set operation.
Hence, the absence of deadlocks in Figure 5 (formally verified by ProB) can be
viewed as proving a temporal property of the B machine: whenever one does a
Set operation with argument x one can perform a Get operation and the result
is equal to x.6 We will return to this usage of combining CSP and B in Section 5.

5 In the worst case if both B and CSP wait for each other to provide concrete data
values the ProB enumeration of the B datatypes will be triggered and drive the
interpreter.

6 In CTL one could write ∀x.(AG Set(x) ⇒ X(x ← Get)).

7

Fig. 5. The state space of combination of the two simple B and CSP specifications

To conclude this section, let us use the same B machine from Figure 3 but
use the following CSP specification:

MAIN = Set → Cst Cst = Get → Cst

Here, we have used the CSP to ensure that the B machine variable can only be
assigned once, and that its value can only be read after it has been assigned.
This is a simple illustration of how one can use the combination of B and CSP
for specification purposes, and the state space computed by ProB can be found
in Figure 6. In the next section we will illustrate this usage on a more interesting
example.

4 Specifying using B and CSP

In this section we illustrate the use of a combination of B and CSP to specify a
system. The example we use to illustrate this concerns a service for distributing
tokens to customers via offices and is based on [8]. The B part of our specification

8

Fig. 6. The state space of Simple when using another CSP specification

models a database mapping customers to the number of available tokens (Fig-
ure 7). It provides operations for creating and deleting customers which add or
remove mappings for a customer to or from the database. There are operations
for allocating a token to a customer as well as operations for requesting tokens
and collecting tokens. Requesting tokens has no effect on the database. If there
is more than one token available for a customer, the number of tokens returned
is nondeterministically chosen to be less than or equal to the number of tokens
available for that customer.

The finiteness of the sets OFFICE and CUST in Figure 7 is required for
exhaustive model checking. Finiteness is also impose by restricting the maxi-
mum number of tokens allocated to a customer using the constant mx. The
AllocToken operation is guarded to ensure that this allocation is never exceeded.

We wish to impose a certain coordination protocol on the operations of the
system in Figure 7. Operations such as CollectToken and AllocToken should
only be available after a customer has been added to the system. Furthermore,
before a customer can collect tokens, they must first request those tokens at an of-
fice. This coordination is described by the CSP process MAIN of Figure 7. This
process consists of three parallel instances of the Cust process, one for each cus-

9

MACHINE Tokens

SETS
OFFICE = {o1, o2};
CUST = {c1, c2, c3}

CONSTANTS mx

PROPERTIES mx ∈ N ∧ mx = 3
VARIABLES tokens

INVARIANT tokens ∈ CUST 7→ (0..mx)

INITIALISATION tokens := {}

OPERATIONS

AddCust(cc)=̂
PRE cc ∈ CUST ∧ cc 6∈ dom(tokens)
THEN tokens := tokens ∪ {cc 7→ 0}
END;

RemCust(cc) =
PRE cc ∈ CUST

THEN tokens := {cc} ¢− tokens

END;

AllocToken(cc) =
PRE cc ∈ CUST ∧ cc ∈ dom(tokens)
SELECT tokens(cc) < mx THEN

tokens(cc) := tokens(cc) + 1 END
END;

ReqToken(cc, pp) =
PRE cc ∈ CUST ∧ pp ∈ OFFICE

THEN skip

END;

toks ←− CollectToken(cc, pp) =
PRE cc ∈ CUST ∧ pp ∈ OFFICE ∧

cc ∈ dom(tokens)
THEN

IF tokens(cc) = 0
THEN toks := 0
ELSE

ANY nn WHERE nn : N∧
1 ≤ nn ∧ nn ≤ tokens(cc)

THEN toks := nn ||
tokens(cc) := tokens(cc) − nn

END END END

Fig. 7. Tokens B machine

tomer. In a Cust process, AddCust is the only operation available initially. Once
AddCust has been performed, allocation and collection of tokens can proceed
in parallel, modelled by the process (Collection(C)[|RemCust|]Allocation(C)).
Collection and allocation synchronise on the RemCust event because both are
terminated by this event. Collection of tokens by a customer is intended to take
place at offices to which customers have access. Before customers can collect to-
kens from an office, they must first request tokens at that office via a ReqToken

operation. Only then can they collect some (or all) of the tokens available for
them. The definition of Collection also ensures that a customer cannot be re-
moved in between requesting some tokens and collecting those tokens.

The overall behaviour of the service is determined by the parallel composi-
tion of the B and CSP parts. In this case, the CSP specification ensures that
the AddCust operation must be invoked before any of the other operations are
allowed, and that tokens must be requested before they can be collected. The
ProB tool allows the combined specification to be animated so that the overall
behaviour can be explored interactively.

Now consider the preconditions of the operations of Figure 7. The AddCust

operation has cc 6∈ dom(tokens) as a precondition, while the AllocToken and
CollectToken operations have cc ∈ dom(tokens) as a precondition. The precon-
ditions represent assumptions about the conditions under which these operations
will be invoked but are not enforced by the B machine on its own. Normally,

10

MAIN = Cust(c1) ||| Cust(c2) ||| Cust(c3)

Cust(C) = AddCust.C → (Collection(C)[|RemCust|]Allocation(C)) ; Cust(C)

Collection(C) = (ReqToken.C?O → CollectToken.C.O → Collection(C)

2 RemCust.C → SKIP)

Allocation(C) = (AllocToken.C → Allocation(C)

2 RemCust.C → SKIP)

Fig. 8. Tokens CSP equations

when checking the consistency of a B machine using ProB, operation precon-
ditions are used to restrict the reachable states by treating them in exactly the
same way as operation guards. This form of checking detects no errors in the
machine of Figure 7. An alternative form of checking can be applied in ProB

which treats a violation of a precondition as an error. That is, an error is raised
if a machine can reach a state which violates an operation precondition. With
this second form of model checking, when the machine of Figure 7 is checked, an
error is detected straightaway because the initial state violates the preconditions
of AllocToken and CollectToken. However, when this form of checking is ap-
plied to the combined B and CSP specification, no violation of preconditions is
detected by ProB. This is because the CSP enforces an order on the invocation
of the operations which guarantees that the preconditions are always satisfied.

5 Verifying properties of B machines using CSP

In the previous section, we illustrated how a system could be specified as a
combination of CSP and B. In this section we illustrate how CSP specifications
can be used to analyse trace properties of specifications written purely in B. With
this approach we use CSP to specify some desirable or undesirable behaviours
and use ProB to find traces of the B machine that exhibit those behaviours.
To specify a desirable property, we use a special CSP process called GOAL. A
desirable trace is one that leads to the GOAL process. An undesirable trace is
one that leads to the ERROR process.

To illustrate the use of GOAL and ERROR, we consider a simple mobile
agent system. Once agents have been created they can have a location or be
in transit between locations. When an agent is at some location, it can send
and receive messages to and from other agents. Messages can be sent to agents
even if they are in transit in which case the messages can be received when the
receiving agent reaches a location. The simple agent system is specified by the
B machine of Figure 9. In this specification, agents represents the set of created

11

agents, msgs(a) represents the set of messages waiting to be received by agent
a, and loc(a) represents the location of agent a. If a is in agents but not in the
domain of loc, then a is in transit.

MACHINE MobileAgents

SETS MSG = {m1, m2};
AGENT = {a1, a2};
LOC = {l1, l2}

VARIABLES agents, loc, msgs

INVARIANT
agents ∈ P(AGENT)∧
msgs ∈ agents → P(MSG)∧
loc ∈ agents 7→ LOC

INITIALISATION
agents := {} || msgs := {} || loc := {}

OPERATIONS

Create(aa)=̂
PRE

aa ∈ AGENT \ agents

THEN
agents := agents ∪ {aa} ||
msgs := msgs ∪ {aa 7→ {}}

END;

Arrive(aa, ll)=̂
PRE

aa ∈ agents \ dom(loc)∧
ll ∈ LOC

THEN
loc(aa) := ll

END;

Depart(aa, ll)=̂
PRE

aa : agents ∧ ll : LOC∧
(aa| 7→ ll) ∈ loc

THEN
loc := {aa} ¢− loc

END;

Send(aa, bb, ll, mm)=̂
PRE

aa ∈ agents ∧ bb ∈ agents∧
mm ∈ MSG ∧ ll ∈ LOC∧
aa 6= bb ∧ (aa 7→ ll) ∈ loc

THEN
msgs(bb) := msgs(bb) ∪ {mm}

END;

mm ←− Receive(bb, ll)=̂
PRE

bb ∈ agents ∧ ll ∈ LOC ∧ (bb 7→ ll) ∈ loc

THEN
ANY m1 WHERE

m1 ∈ MSG ∧ m1 ∈ msgs(bb)
THEN

msgs(bb) := msgs(bb) − m1 ||
mm := m1

END
END

Fig. 9. Mobile agents B machine

A desirable property of the agent system is that it is possible for an agent
to receive a message since this is an important service for agents. Clearly some
sequence of operations must happen before an agent can receive a message.
There is a danger that our specification of the operations is too restrictive so
that a trace leading to receipt of a message would not be possible. Figure 10
contains a CSP process which leads to the GOAL process when a Receive event
is executed.

We do not want the CSP process to place any constraints on the Create,
Send, Arrive or Depart operations. To achieve this we use the special RUN

process. RUN takes a list of events and continually iterates over the choice of

12

MAIN = Test1 ||| RUN [Create, Send, Arrive, Depart]

Test1 = Receive → GOAL

Fig. 10. Goal test for agents

those events. For example, we have

RUN [A,B] = (A → RUN [A,B] 2 B → RUN [A,B])

We interleave the Test1 process with RUN [Create, Send,Arrive,Depart]. If
RUN was not interleaved with the test process, then the Create, Send, Arrive

and Depart operations could never take place in the combined system.

Figure 12 is generated by ProB and it illustrates a trace of events and
corresponding machine states which lead to a message being received by an
agent. All of the events leading to the receipt are required because both agents
need to exist before one can send a message to the other and an agent needs to be
at a location in order to send or receive. As well as the event trace, the diagram
allows us to see the evolution of the state of the B machine. This is useful for
helping to validate the specification. To find the desirable trace, ProB checks the
parallel composition of the B machine and the CSP process, attempting to find
a trace leading to the GOAL process. In this case it finds the trace illustrated
in Figure 12.

MAIN = TEST2 ||| RUN [Create, Arrive, Depart, Send?A?B?L.m2, Receive]

TEST2 = Receive?A?L.m1 → ERROR

Fig. 11. Error test for agents

An undesirable behaviour of agent system would be that an agent receives a
message without the message having been sent to the agent. This behaviour is
encoded in the CSP process of Figure 11. The main constraint imposed by this
CSP process is that the Send operation is prevented from sending message m1.
An error arises when message m1 is received by an agent. Receipt of message m1
represents an error since it could not have been preceded by a send of m1 because
of the constraint on sending. In this case, ProB performs an exhaustive search
but fails to find a trace leading to the ERROR process. This is as expected
since the Receive operation requires a recipient to have some message in their
message set, and messages only get added to a message set through the Send

operation.

13

There is a very significant difference between a GOAL test and an ERROR

test. Success of a GOAL test gives us a single trace leading to the goal. It tells us
nothing about all possible behaviours of the system. Nonetheless the existence
of the goal trace can increase our confidence in the validity of the B model
and can be used to provide guided automatic animation of a B machine. We
deem an ERROR test to be successful when ProB finds no trace leading to
the error process through exhaustive search. In the case of the error test for the
agent system, the only constraint the CSP process places on the B machine is to
prevent sending of message m1. The absence of any error traces means there is
no trace of the agent system which contains a receipt of m1 but does not contain
a send of m1.

6 Related Work and Conclusion

Our combined CSP and B tool is most strongly related to the csp2B tool [4] and
the CSP‖B approach [16]. The csp2B tool allows specifications to be written in
a combination of CSP and B by compiling the CSP to a pure B representation
which can be analysed by a standard B tool. The CSP support by csp2B is more
restricted that that supported by ProB: csp2B does not support internal choice
and allows parallel composition only at the outermost level unlike the arbitrary
combination of CSP operators supported by ProB. The work of [16] is focused
on a style of combining CSP and B where the B machines are passive and all
the coordination is provided by the CSP. This means the operations of their
B machines cannot be guarded though they can have preconditions. They have
developed compositional rules for proving that CSP controllers do not lead to
violation of operation preconditions.

There has been much work on combining CSP with Z and Object-Z, includ-
ing [6] and [17]. Like our approach, these treat Z specifications as CSP processes
and model the composition of the CSP and Z parts as parallel composition. The
work described in [13] describes an approach to translating Z to CSP so that
CSP-Z specifications can be model checked. This translation is not automated
though. The Circus language is a rich combination of Z and CSP allowing Z
to be easily embedded in CSP specifications and providing refinement rules for
development [19]. We are not aware of any tools that allow for model checking
of Z and CSP specifications directly.

The combined model checker for CSP and B as an enhancement of the exist-
ing ProB checker allowing for automated consistency checking of specifications
written in a combination of CSP and B. We have shown how ProB can now be
used to automatically check consistency between B and CSP specifications (i.e.,
checking that no B preconditions are ever violated). We have also shown how
ProB can be used to check whether a pure B specification satisfies traces prop-
erties expressed in CSP. This form of checking serves to increase our confidence
in the validity of B models.

ProB also supports refinement checking between B models and between com-
binations of CSP and B. Further work is required to enhance the scalability of

14

the model checking approach, especially for refinement checking (although some
quite large, realistic specifications have already been successfully verified). Our
view is that ProB is a valuable complement to the usual theorem prover based
development in B. Wherever possible there is value in applying model check-
ing to a size-restricted version of a B model before attempting semi-automatic
deductive proof.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert,

editor, Second International B Conference, April 1998.
3. B-Core (UK) Limited, Oxon, UK. B-Toolkit., 1999. Available at www.b-core.com
4. M. J. Butler. csp2B: A Practical Approach to Combining CSP and B. Formal

Asp. Comput., 12(3):182–198, 2000.
5. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
6. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. Formal Methods for

Open Object-Based Distributed Systems (FMOODS’97), pages 423–438. Chapman
& Hall, 1997.

7. Formal Systems (Europe) Ltd. FDR2 User Manual.
8. P. Hartel, M. Butler, A. Currie, P. Henderson, M. Leuschel, A. Martin, A. Smith,

U. Ultes-Nitsche, and B. Walters. Questions and answers about ten formal meth-
ods. In Proc. 4th Int. Workshop on Formal Methods for Industrial Critical Systems,
Trento, Italy, Jul 1999.

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice–Hall, 1985.
10. M. Leuschel. Design and implementation of the high-level specification language

CSP(LP) in Prolog. Proceedings of PADL’01, LNCS 1990, pages 14–28. Springer-
Verlag, March 2001.

11. M. Leuschel and M. Butler. ProB: A Model Checker for B. Proceedings FME 2003,
Pisa, Italy, LNCS 2805, pages 855–874. Springer, 2003.

12. M. Leuschel and E. Turner. Visualizing larger states spaces in ProB. In Proceedings
ZB’2005, LNCS. Springer-Verlag, April 2005. To appear.

13. A. Mota and A. Sampaio. Model-checking CSP-Z: strategy, tool support and
industrial application. Sci. Comput. Program., 40(1):59–96, 2001.

14. A. Roscoe. The Theory and Practice of Concurrency. Prentice–Hall, 1998.
15. J. B. Scattergood. Tools for CSP and Timed-CSP. PhD thesis, Oxford University,

1997.
16. S. Schneider and H. Treharne. Verifying controlled components. Proceedings In-

tegrated Formal Methods, IFM 2004, Canterbury, UK, LNCS 2999, pages 87–107.
Springer, 2004.

17. G. Smith. A semantic integration of Object-Z and CSP for the specification of
concurrent systems. Proceedings FME ’97, LNCS 1313, pages 62–81. Springer,
1997.

18. Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 1996.
Available at http://www.atelierb.societe.com/index uk.html.

19. J. Woodcock and A. Cavalcanti. The semantics of Circus. Proceedings ZB 2002,
Grenoble, France, LNCS 2272, pages 184–203. Springer, 2002.

15

agents={},msgs={},loc={}

initialise_machine({},{},{})

agents={a1},loc={},msgs(a1,{})

Create(a1)

agents={a1,a2},loc={},msgs(a1,{}),
msgs(a2,{})

Create(a2)

agents={a1,a2},msgs(a1,{}),msgs(a2,{}),
loc(a1,l2)

Arrive(a1,l2)

agents={a1,a2},msgs(a1,{}),msgs(a2,{}),
loc(a1,l2),loc(a2,l1)

Arrive(a2,l1)

agents={a1,a2},msgs(a1,{}),msgs(a2,{m1}),
loc(a1,l2),loc(a2,l1)

Send(a1,a2,l2,m1)

agents={a1,a2},msgs(a1,{}),msgs(a2,{}),
loc(a1,l2),loc(a2,l1)

Receive(a2,l1)-->(m1)

Fig. 12. Trace leading to GOAL process as displayed by ProB

16

