
Logic Program Specialisation

Michael Leuschel

Department of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
mal@ecs.soton.ac.uk

www: http://www.ecs.soton.ac.uk/~mal

1 Introduction

Declarative programming languages, are high-level programming languages in which
one only has to state what is to be computed and not necessarily how it is to
be computed. Logic programming and functional programming are two prominent
members of this class of programming languages. While functional programming
is based on the λ-calculus, logic programming has its roots in first-order logic and
automated theorem proving. Both approaches share the view that a program is a
theory and execution consists in performing deduction from that theory.

Program specialisation, also called partial evaluation or partial deduction, is an
automatic technique for program optimisation. The central idea is to specialise a
given source program for a particular application domain. Program specialisation
can be used to speed up existing programs for certain application domains, some-
times achieving speedups of several orders of magnitude. It, however, also allows the
user to conceive more generally applicable programs using a more secure, readable
and maintainable style. The program specialiser then takes care of transforming
this general purpose, readable, but inefficient program into an efficient one.

Because of their clear (and often simple) semantical foundations, declarative
languages offer significant advantages for the design of semantics based program
analysers, transformers and optimisers. First, because there exists a clear and simple
semantical foundation, techniques for program specialisation can be proven correct
in a formal way. Furthermore, program specialisation does not have to preserve
every execution aspect of the source program, as long as the declarative semantics
is respected. This permits much more powerful optimisations, impossible to obtain
when the specialiser has to preserve every operational aspect of the source program.

This course is situated within that context and is structured as follows. Sec-
tion 2 starts out from the roots of logic programming in first-order logic and au-
tomated theorem proving and presents the syntax, semantics and proof theory of
logic programs. In Section 3 the general idea of program specialisation, based on
Kleene’s S-M-N theorem, is introduced. A particular technique for specialising logic
programs, called partial deduction, is then developed and illustrated. The theoret-
ical underpinnings of this approach, based on the correctness results by Lloyd and
Shepherdson [69], are exhibited. We also elaborate on the control issues of partial
deduction and define the control of polyvariance problem.

The advanced part of this course [60] (in this volume), builds upon these foun-
dations and presents more refined techniques for controlling partial deduction, as
well as several ways of extending its power, all situated within the larger objective
of turning declarative languages and program specialisation into valuable tools for
constructing reliable, maintainable and efficient programs.

2 Logic and Logic Programming

In this section we summarise some essential background in first-order logic and
logic programming. Not every detail is required for the proper comprehension of
this course and this section is mainly meant to be a kind of “reference manual” of
logic programming.

The exposition is mainly inspired by [5] and [68] and in general adheres to the
same terminology. The reader is referred to these works for a more detailed presenta-
tion, comprising motivations, examples and proofs. Some other good introductions
to logic programming can also be found in [78] and [33, 6], while a good introduction
to first-order logic and automated theorem proving can be found in [36].

2.1 First-order logic and syntax of logic programs

We start with a brief presentation of first-order logic.

Definition 1. (alphabet) An alphabet consists of the following classes of sym-
bols: variables; function symbols; predicate symbols; connectives, which are ¬ nega-
tion, ∧ conjunction, ∨ disjunction, ← implication, and ↔ equivalence; quantifiers,
which are the existential quantifier ∃ and the universal quantifier ∀; punctuation
symbols, which are “(”, “)” and “,”. Function and predicate symbols have an as-
sociated arity, a natural number indicating how many arguments they take in the
definitions following below.
Constants are function symbols of arity 0, while propositions are predicate symbols
of arity 0.

In the remainder of this course we suppose the set of variables is countably
infinite. In addition, alphabets with a finite set of function and predicate symbols
will simply be called finite. An infinite alphabet is one in which the number of
function and/or predicate symbols is not finite but countably infinite.

We will try to adhere as much as possible to the following syntactical conventions
throughout the course:

– Variables will be denoted by upper-case letters like X, Y, Z, usually taken from
the later part of the (Latin) alphabet.

– Constants will be denoted by lower-case letters like a, b, c, usually taken from
the beginning of the (Latin) alphabet.

– The other function symbols will be denoted by lower-case letters like f, g, h.
– Predicate symbols will be denoted by lower-case letters like p, q, r.

Definition 2. (terms, atoms) The set of terms (over some given alphabet) is
inductively defined as follows:

– a variable is a term
– a constant is a term and
– a function symbol f of arity n > 0 applied to a sequence t1, . . . , tn of n terms,

denoted by f(t1, . . . , tn), is also a term.

The set of atoms (over some given alphabet) is defined in the following way:

– a proposition is an atom and
– a predicate symbol p of arity n > 0 applied to a sequence t1, . . . , tn of n terms,

denoted by p(t1, . . . , tn), is an atom.

We will also allow the notations f(t1, . . . , tn) and p(t1, . . . , tn) in case n = 0.
f(t1, . . . , tn) then simply represents the term f and p(t1, . . . , tn) represents the atom
p. For terms representing lists we will use the usual Prolog [28, 95, 23] notation: e.g.,
[] denotes the empty list, [H|T] denotes a non-empty list with first element H and
tail T and [a, b] denotes a two-element list made up using a and b.

Definition 3. (formula) A (well-formed) formula (over some given alphabet) is
inductively defined as follows:

– An atom is a formula.
– If F and G are formulas then so are (¬F), (F∨G), (F∧G), (F ← G), (F ↔ G).
– If X is a variable and F is a formula then (∀XF) and (∃XF) are also formulas.

To avoid formulas cluttered with the punctuation symbols we give the connectives
and quantifiers the following precedence, from highest to lowest:

1. ¬,∀,∃, 2. ∨, 3. ∧, 4. ←,↔.

For instance, we will write ∀X(p(X)← ¬q(X) ∧ r(X)) instead of the less readable
(∀X(p(X)← ((¬q(X)) ∧ r(X)))).

The set of all formulas constructed using a given alphabet A is called the first-
order language given by A.

First-order logic assigns meanings to formulas in the form of interpretations over
some domain D:

– Each function symbol of arity n is assigned an n-ary function Dn 7→ D. This
part, along with the choice of the domain D, is referred to as a pre-interpretation.

– Each predicate symbol of arity n is assigned an n-ary relation, i.e., a subset of
Dn (or equivalently an n-ary function Dn 7→ {true, false}).

– Each formula is given a truth value, true or false, depending on the truth
values of the sub-formulas. (For more details see e.g., [36] or [68]).

A model of a formula is simply an interpretation in which the formula has the
value true assigned to it. Similarly, a model of a set S of formulas is an interpretation
which is a model for all F ∈ S.

For example, let I be an interpretation whose domain D is the set of natural
numbers IN and which maps the constant a to 1, the constant b to 2 and the unary
predicate p to the unary relation {(1)}. Then the truth value of p(a) under I is true
and the truth value of p(b) under I is false. So I is a model of p(a) but not of p(b).
I is also a model of ∃Xp(X) but not of ∀Xp(X).

We say that two formulas are logically equivalent iff they have the same models.
A formula F is said to be a logical consequence of a set of formulas S, denoted by
S |= F , iff F is assigned the truth value true in all models of S. A set of formulas
S is said to be inconsistent iff it has no model. It can be easily shown that S |= F
holds iff S∪{¬F} is inconsistent. This observation lies at the basis of what is called
a proof by refutation: to show that F is a logical consequence of S we show that
S ∪ {¬F} leads to inconsistency.

From now on we will also use true (resp. false) to denote some arbitrary formula
which is assigned the truth value true (resp. false) in every interpretation. If there
exists a proposition p in the underlying alphabet then true could, e.g., stand for
p∨¬p and false could stand for p∧¬p.1 We also introduce the following shorthands
for formulas:

– if F is a formula, then (F ←) denotes the formula (F ← true) and (← F)
denotes the formula (false← F).

– (←) denotes the formula (false← true).

In the following we define some other frequently occurring kinds of formulas.

Definition 4. (literal) If A is an atom then the formulas A and ¬A are called
literals. Furthermore, A is called a positive literal and ¬A a negative literal.
1 In some texts on logic (e.g., [36]) true and false are simply added to the alphabet and

treated in a special manner by interpretations.

Definition 5. (conjunction, disjunction) Let A1, . . . , An be literals, where n >
0. Then A1 ∧ . . . ∧An is a conjunction and A1 ∨ . . . ∨An is a disjunction.

Usually we will assume ∧ (respectively ∨) to be associative, in the sense that
we do not distinguish between the logically equivalent, but syntactically different,
formulas p ∧ (q ∧ r) and (p ∧ q) ∧ r.

Definition 6. (scope) Given a formula (∀XF) (resp. (∃XF)) the scope of ∀X
(resp. ∃X) is F . A bound occurrence of a variable X inside a formula F is any
occurrence immediately following a quantifier or an occurrence within the scope of
a quantifier ∀X or ∃X. Any other occurrence of X inside F is said to be free.

Definition 7. (closure) Given a formula F , the universal closure of F , denoted
by ∀(F), is a formula of the form (∀X1 . . . (∀XmF) . . .) where X1, . . . , Xm are all
the variables having a free occurrence inside F (in some arbitrary order). Similarly
the existential closure of F , denoted by ∃(F), is the formula (∃X1 . . . (∃XmF) . . .).

The following class of formulas plays a central role in logic programming.

Definition 8. (clause) A clause is a formula of the form ∀(H1 ∨ . . . ∨ Hm ←
B1 ∧ . . . ∧ Bn), where m ≥ 0, n ≥ 0 and H1, . . . ,Hm, B1, . . . , Bn are all literals.
H1 ∨ . . .∨Hm is called the head of the clause and B1 ∧ . . .∧Bn is called the body.
A (normal) program clause is a clause where m = 1 and H1 is an atom. A definite
program clause is a normal program clause in which B1, . . . , Bn are atoms. A fact
is a program clause with n = 0. A query or goal is a clause with m = 0 and n > 0.
A definite goal is a goal in which B1, . . . , Bn are atoms. The empty clause is a
clause with n = m = 0. As we have seen earlier, this corresponds to the formula
false← true, i.e., a contradiction. We also use 2 to denote the empty clause.

In logic programming notation one usually omits the universal quantifiers encap-
sulating the clause and one also often uses the comma (‘,’) instead of the conjunc-
tion in the body, e.g., one writes p(s(X))← q(X), p(X) instead of ∀X(p(f(X))←
(q(X) ∧ p(X))). We will adhere to this convention.

Definition 9. (program) A (normal) program is a set of program clauses. A
definite program is a set of definite program clauses.

In order to express a given program P in a first-order language L given by some
alphabet A, the alphabet A must of course contain the function and predicate sym-
bols occurring within P . The alphabet might however contain additional function
and predicate symbols which do not occur inside the program. We therefore denote
the underlying first-order language of a given program P by LP and the underlying
alphabet by AP . For technical reasons related to definitions below, we suppose that
there is at least one constant symbol in AP .

2.2 Semantics of logic programs

Given that a program P is just a set of formulas, which happen to be clauses, the
logical meaning of P might simply be seen as all the formulas F for which P |= F .
For normal programs this approach will turn out to be insufficient, but for definite
programs it provides a good starting point.

Definite programs To determine whether a formula F is a logical consequence
of another formula G, we have to examine whether F is true in all models of G.
One big advantage of clauses is that it is sufficient to look just at certain canonical
models, called the Herbrand models.

In the following we will define these canonical models. Any term, atom, literal,
clause will be called ground iff it contains no variables.

Definition 10. Let P be a program written in the underlying first-order language
LP given by the alphabet AP . Then the Herbrand universe UP is the set of all ground
terms over AP .2 The Herbrand base BP is the set of all ground atoms in LP .

A Herbrand interpretation is simply an interpretation whose domain is the Her-
brand universe UP and which maps every term to itself. A Herbrand model of a set
of formulas S is an Herbrand interpretation which is a model of S.

The interest of Herbrand models for logic programs derives from the following
proposition (the proposition does not hold for arbitrary formulas).

Proposition 1. A set of clauses has a model iff it has a Herbrand model.

This means that a formula F which is true in all Herbrand models of a set of
clauses C is a logical consequence of C. Indeed if F is true in all Herbrand models
then ¬F is false in all Herbrand models and therefore, by Proposition 1, C ∪ {¬F}
is inconsistent and C |= F .

Note that a Herbrand interpretation or model can be identified with a subset
H of the Herbrand base BP (i.e., H ∈ 2BP): the interpretation of p(d1, . . . , dn)
is true iff p(d1, . . . , dn) ∈ H and the interpretation of p(d1, . . . , dn) is false iff
p(d1, . . . , dn) 6∈ H. This means that we can use the standard set order on Herbrand
models and define minimal Herbrand models as follows.

Definition 11. A Herbrand model H ⊆ BP for a given program P is a minimal
Herbrand model iff there exists no H ′ ⊂ H which is also a Herbrand model of P .

For definite programs there exists a unique minimal Herbrand model, called
the least Herbrand model , denoted by HP . Indeed it can be easily shown that the
intersection of two Herbrand models for a definite program P is still a Herbrand
model of P . Furthermore, the entire Herbrand base BP is always a model for a
definite program and one can thus obtain the least Herbrand model by taking the
intersection of all Herbrand models.

The least Herbrand model HP can be seen as capturing the intended meaning
of a given definite program P as it is sufficient to infer all the logical consequences
of P . Indeed, a formula which is true in the least Herbrand model HP is true in all
Herbrand models and is therefore a logical consequence of the program.

Example 1. Take for instance the following program P :
int(0)←
int(s(X))← int(X)

Then the least Herbrand model of P is HP = {int(0), int(s(0)), . . .} and indeed
P |= int(0), P |= int(s(0)), But also note that for definite programs the entire
Herbrand base BP is also a model. Given a suitable alphabet AP , we might have
BP = {int(a), int(0), int(s(a)), int(s(0)), . . .}. This means that the atom int(a) is
consistent with the program P (i.e., P 6|= ¬int(a)), but is not implied either (i.e.,
P 6|= int(a)).

2 It is here that the requirement that AP contains at least one constant symbol comes
into play. It ensures that the Herbrand universe is never empty.

It is here that logic programming goes beyond “classical” first-order logic. In
logic programming one (usually) assumes that the program gives a complete de-
scription of the intended interpretation, i.e., anything which cannot be inferred
from the program is assumed to be false. For example, one would say that ¬int(a)
is a consequence of the above program P because int(a) 6∈ HP . This means that,
from a logic programming perspective, the above program captures exactly the nat-
ural numbers, something which is impossible to accomplish within first-order logic
(see e.g., Corollary 4.10.1 in [27] for a formal proof).

A possible inference scheme, capturing this aspect of logic programming, was
introduced in [86] and is referred to as the closed world assumption (CWA). The
CWA cannot be expressed in first-order logic (a second-order logic axiom has to be
used to that effect). Note that using the CWA leads to non-monotonic inferences,
because the addition of new information can remove certain, previously valid, con-
sequences. For instance, by adding the clause int(a) ← to the above program the
literal ¬int(a) is no longer a consequence of the logic program.

Normal programs We have already touched upon the CWA. Given a formula F ,
this rule amounts to inferring that ¬F is a logical consequence of a program P if F
is not a logical consequence of P . In the context of normal programs the situation
is complicated by the fact that negations can occur in the bodies of clauses and
therefore the truth of ¬F can propagate further and may be used to infer positive
formulas as well. This entails that a normal logic program does not necessarily have
a unique minimal Herbrand model. To give a meaning to normal logic programs a
multitude of semantics have been developed. We cannot delve into the details of
these semantics and have to refer the interested reader to, e.g., [7].

2.3 Proof theory of logic programs

We first need the following definitions:

Definition 12. (substitution) A substitution θ is a finite set of the form θ =
{X1/t1, . . . , Xn/tn} where X1, . . . , Xn are distinct variables and t1, . . . , tn are terms
such that ti 6= Xi. Each element Xi/ti of θ is called a binding.

Alternate definitions of substitutions exist in the literature, but the above is the
most common one in the logic programming context.

We also define an expression to be either a term, an atom, a literal, a conjunction,
a disjunction or a program clause.

Definition 13. (instance) Let θ = {X1/t1, . . . , Xn/tn} be a substitution and
E an expression. Then the instance of E by θ, denoted by Eθ, is the expression
obtained by simultaneously replacing each occurrence of a variable Xi in E by the
term t.

We present some additional useful terminology related to substitutions. If Eθ =
F then E is said to be more general than F . If E is more general than F and F is
more general than E then E and F are called variants (of each other). If Eθ is a
variant of E then θ is called a renaming substitution for E. Because a substitution
is a set of bindings we will denote, in contrast to, e.g., [68], the empty or identity
substitution by ∅ and not by the empty sequence ε. Substitutions can also be applied
to sets of expressions by defining {E1, . . . , En}θ = {E1θ, . . . , Enθ}.

Substitutions can also be composed in the following way:

Definition 14. (substitution composition) Let θ = {X1/s1, . . . , Xn/sn} and
σ = {Y1/t1, . . . , Yk/tk} be substitutions. Then the composition of θ and σ, denoted
by θσ, is defined to be the substitution {Xi/siσ | 1 ≤ i ≤ n ∧ siσ 6= Xi} ∪ {Yi/ti |
1 ≤ i ≤ k ∧ Yi 6∈ {X1, . . . , Xn}}.

When viewing substitutions as functions from expressions to expressions, then the
above definition behaves just like ordinary function composition, i.e., E(θσ) =
(Eθ)σ. We also have that (for proofs see [68]) the identity substitution acts as
a left and right identity for composition, i.e., θ∅ = ∅θ = θ, and that composition is
associative, i.e., (θσ)γ = θ(σγ).

We call a substitution θ idempotent iff θθ = θ. We also define the following no-
tations: the set of variables occurring inside an expression E is denoted by vars(E),
the domain of a substitution θ is defined as dom(θ) = {X | X/t ∈ θ} and the range
of θ is defined as ran(θ) = {Y | X/t ∈ θ ∧ Y ∈ vars(t)}. Finally, we also define
vars(θ) = dom(θ)∪ ran(θ) as well as the restriction θ|V of a substitution θ to a set
of variables V by θ|V = {X/t | X/t ∈ θ ∧X ∈ V}.

The following concept will form the link between the model-theoretic semantics
and the procedural semantics of logic programs.

Definition 15. (answer) Let P be a program and G =← L1, . . . , Ln a goal. An
answer for P ∪ {G} is a substitution θ such that dom(θ) ⊆ vars(G).

Definite programs We first define correct answers in the context of definite pro-
grams and goals.

Definition 16. (correct answer) Let P be a definite program and G =← A1, . . . , An

a definite goal. An answer θ for P ∪ {G} is called a correct answer for P ∪ {G} iff
P |= ∀((A1 ∧ . . . ∧An)θ).

Take for instance the program P = {p(a) ←} and the goal G =← p(X). Then
{X/a} is a correct answer for P ∪ {G} while {X/c} and ∅ are not.

We now present a way to calculate correct answers based on the concepts of
resolution and unification.

Definition 17. (mgu) Let S be a finite set of expressions. A substitution θ is
called a unifier of S iff the set Sθ is a singleton. θ is called relevant iff its variables
vars(θ) all occur in S. θ is called a most general unifier or mgu iff for each unifier
σ of S there exists a substitution γ such that σ = θγ.

The concept of unification dates back to [45] and has been rediscovered in [87].
If a unifier for a finite set S of expressions exists then there exists an idempotent and
relevant most general unifier which is unique modulo variable renaming (see [5, 68]).
Unifiability of a set of expressions is decidable and there are efficient algorithms
for calculating an idempotent and relevant mgu. See for instance the unification
algorithms in [5, 68] or the more complicated but linear ones in [70, 80]. From now
on we denote, for a unifiable set S of expressions, by mgu(S) an idempotent and
relevant unifier of S. If we just want to unify two terms t1, t2 then we will also
sometimes write mgu(t1, t2) instead of mgu({t1, t2}).

We define the most general instance, of a finite set S to be the only element
of Sθ where θ = mgu(S). The opposite of the most general instance is the most
specific generalisation of a finite set of expressions S, also denoted by msg(S), which
is the most specific expression M such that all expressions in S are instances of M .
Algorithms for calculating the msg exist [59], and this process is also referred to as
anti-unification or least general generalisation.

We can now define SLD-resolution, which is based on the resolution principle
[87]. Its use for a programming language was first described in [56] and the name
SLD (which stands for Selection rule-driven Linear resolution for Definite clauses),
was coined in [9]. See e.g., [5, 68] for more details about the history.

Definition 18. (SLD-derivation step) Let G =← L1, . . . , Lm, . . . , Lk be a goal
and C = A← B1, . . . , Bn a program clause such that k ≥ 1 and n ≥ 0. Then G′ is
derived from G and C using θ (and Lm) iff the following conditions hold:

1. Lm is an atom, called the selected atom (at position m), in G.
2. θ is a relevant and idempotent mgu of Lm and A.
3. G′ is the goal ← (L1, . . . , Lm−1, B1, . . . , Bn, Lm+1, . . . , Lk)θ.

G′ is also called a resolvent of G and C.

In the following we define the concept of a complete SLD-derivation (we will
define incomplete ones later on).

Definition 19. (complete SLD-derivation) Let P be a definite program and
G a definite goal. A complete SLD-derivation of P ∪ {G} is a tuple (G,L, C,S)
consisting of a sequence of goals G = 〈G0, G1, . . .〉, a sequence L = 〈L0, L1 . . .〉 of
selected literals,3 a sequence C = 〈C1, C2, . . .〉 of variants of program clauses of P
and a sequence S = 〈θ1, θ2, . . .〉 of mgu’s such that:

– for i > 0, vars(Ci) ∩ vars(G0) = ∅;
– for i > j, vars(Ci) ∩ vars(Cj) = ∅;
– for i ≥ 0, Li is a positive literal in Gi and Gi+1 is derived from Gi and Ci+1

using θi+1 and Li;
– the sequences G, C,S are maximal given L.

The process of producing variants of program clauses of P which do not share
any variable with the derivation sequence so far is called standardising apart. Some
care has to be taken to avoid variable clashes and the ensuing technical problems;
see the discussions in [53] or [32].

We now come back to the idea of a proof by refutation and its relation to SLD-
resolution. In a proof by refutation one adds the negation of what is to be proven
and then tries to arrive at inconsistency. The former corresponds to adding a goal
G =← A1, . . . , An to a program P and the latter corresponds to searching for an
SLD-derivation of P ∪ {G} which leads to 2. This justifies the following definition.

Definition 20. (SLD-refutation) An SLD-refutation of P ∪{G} is a finite com-
plete SLD-derivation of P ∪ {G} which has the empty clause 2 as the last goal of
the derivation.

In addition to refutations there are (only) two other kinds of complete deriva-
tions:

– Finite derivations which do not have the empty clause as the last goal. These
derivations will be called (finitely) failed.

– Infinite derivations. These will be called infinitely failed.

We can now define computed answers, which correspond to the output calculated
by a logic program.

Definition 21. (computed answer) Let P be a definite program, G a definite
goal and D a SLD-refutation for P ∪ {G} with the sequence 〈θ1, . . . , θn〉 of mgu’s.
The substitution (θ1 . . . θn)|vars(G) is then called a computed answer for P ∪ {G}
(via D).

Theorem 1. (soundness of SLD) Let P be a definite program and G a definite
goal. Every computed answer for P ∪ {G} is a correct answer for P ∪ {G}.

Theorem 2. (completeness of SLD) Let P be a definite program and G a
definite goal. For every correct answer σ for P ∪{G} there exists a computed answer
θ for P ∪ {G} and a substitution γ such that Gσ = Gθγ.
3 Again we slightly deviate from [5, 68]: the inclusion of L avoids some minor technical

problems wrt the maximality condition.

A proof of the previous theorem can be found in [5].
We will now examine systematic ways to search for SLD-refutations.

Definition 22. (complete SLD-tree) A complete SLD-tree for P ∪ {G} is a
labelled tree satisfying the following:

1. Each node of the tree is labelled with a definite goal along with an indication of
the selected atom

2. The root node is labelled with G.
3. Let ← A1, . . . , Am, . . . , Ak be the label of a node in the tree and suppose that

Am is the selected atom. Then for each clause A ← B1, . . . , Bq in P such that
Am and A are unifiable the node has one child labelled with
← (A1, . . . , Am−1, B1, . . . , Bq, Am+1, . . . , Ak)θ,

where θ is an idempotent and relevant mgu of Am and A.
4. Nodes labelled with the empty goal have no children.

To every branch of a complete SLD-tree there corresponds a complete SLD-
derivation. The choice of the selected atom is performed by what is called a selection
rule. Maybe the most well known selection rule is the left-to-right selection rule of
Prolog [28, 95, 23], which always selects the leftmost literal in a goal. The complete
SLD-derivations and SLD-trees constructed via this selection rule are called LD-
derivations and LD-trees.

Usually one confounds goals and nodes (e.g., in [5, 68, 78]) although this is strictly
speaking not correct because the same goal can occur several times inside the same
SLD-tree.

We will often use a graphical representation of SLD-trees in which the selected
atoms are identified by underlining. For instance, Fig. 1 contains a graphical repre-
sentation of a complete SLD-tree for P ∪ {← int(s(0))}, where P is the program of
Ex. 1.

2

← int(0)

?

?

← int(s(0))

Fig. 1. Complete SLD-tree for Example 1

Normal programs Finding an efficient proof procedure for normal programs is
much less obvious than in the definite case. The most commonly used procedure
is the so called SLDNF-procedure. It is an extension of SLD-resolution which also
allows the selection of ground negative literals. Basically a selected ground negative
literal ¬A succeeds (with the empty computed answer ∅) if ← A fails finitely.
Similarly a selected ground negative literal fails if there exists a refutation for← A.
This implements what is called the “negation as failure” (NAF) rule, a less powerful
but more tractable inference mechanism than the CWA.

In this course we will mainly concentrate on definite logic programs. On the
rare occasions we touch upon normal programs we use the definitions of SLDNF-
derivations presented in [68] based on ranks, where the rank indicates the maximal

nesting of sub-derivations and sub-trees created by negative calls. Note that the
definition of [68] exhibits some technical problems, in the sense that some prob-
lematic goals do not have an associated SLDNF-derivation (failed or otherwise, see
[8, 7]). The definition is however sufficient for our purposes, especially since most
correctness results for partial deduction (e.g., [68]), to be introduced in the next
section, use this definition anyway.

Soundness of SLDNF-resolution (wrt the completion semantics) is due to Clark
[22]. Unfortunately SLDNF-resolution is in general not complete, mainly (but not
only) due to floundering, i.e., computation reaches a state in which only non-ground
negative literals exist.

To remedy the incompleteness of SLDNF, several extensions have been proposed.
Let us briefly mention the approach of constructive negation overcomes some of the
incompleteness problems of SLDNF [20, 21, 34, 89, 97, 96] and can be useful inside
partial deduction [44]. The main idea is to allow the selection of non-ground negative
literals, replacing them by disequality constraints. For instance, given P = {p(a)←}
the negative literal ¬p(X) could be replaced by ¬(X = a).

Programs with built-ins Most practical logic programs make (heavy) usage of
built-ins. Although a lot of these built-ins, like e.g., assert/1 and retract/1, are
extra-logical and ruin the declarative nature of the underlying program, a reasonable
number of them can actually be seen as syntactic sugar. Take for example the
following program which uses the Prolog [28, 95, 23] built-ins = ../2 and call/1.

map(P, [], [])←
map(P, [X|T], [PX |PT])← C = ..[P,X, PX], call(C), map(P, T, PT)
inv(0, 1)←
inv(1, 0)←

For this program the query ← map(inv, [0, 1, 0], R) will succeed with the computed
answer {R/[1, 0, 1]}. Given that query, the Prolog program can be seen as a pure
definite logic program by simply adding the following definitions (where we use the
prefix notation for the predicate = ../2):

= ..(inv(X, Y), [inv, X, Y])←
call(inv(X, Y))← inv(X, Y)

The so obtained pure logic program will succeed for ← map(inv, [0, 1, 0], R) with
the same computed answer {R/[1, 0, 1]}.

This means that some predicates like map/3, which are usually taken to be
higher-order, can simply be mapped to pure definite (first-order) logic programs ([99,
77]). Some built-ins, like for instance is/2, have to be defined by infinite relations.
Usually this poses no problems as long as, when selecting such a built-in, only a
finite number of cases apply (Prolog will report a run-time error if more than one
case applies while the programming language Gödel [47] will delay the selection
until only one case applies).

In the remainder of this course we will usually restrict our attention to those
built-ins that can be given a logical meaning by such a mapping.

3 Partial Evaluation and Partial Deduction

3.1 Partial evaluation

In contrast to ordinary (full) evaluation, a partial evaluator is given a program P
along with only part of its input, called the static input. The remaining part of the
input, called the dynamic input , will only be known at some later point in time.
Given the static input S, the partial evaluator then produces a specialised version

PS of P which, when given the dynamic input D, produces the same output as the
original program P . This process is illustrated in Fig. 2. The program PS is also
called the residual program.

The theoretical feasibility of this process, in the context of recursive functions,
has already been established by Kleene [52] and is known as Kleene’s S-M-N theo-
rem. However, while Kleene was concerned with theoretical issues of computability
and his construction yields specialised programs which are slower than the original,
the goal of partial evaluation is to exploit the static input in order to derive more
efficient programs.

= Output

= Input

--

-

66

--

--

?

D

S

PS

�
�

�
�

D

6

'
&

$
%

S -

P

Evaluator

Partial

O
-

-

�
 �	
= Program

= Result

Fig. 2. Partial evaluation of programs with static and dynamic input

To obtain the specialised program PS , a partial evaluator performs a mixture of
evaluation, i.e., it executes those parts of P which only depend on the static input S,
and of code generation for those parts of P which require the dynamic input D. This
process has therefore also been called mixed computation in [35]. Also, it is precisely
this mixture of full evaluation steps and code generation steps (and nothing else)
which distinguishes partial evaluation from other program specialisation approaches.

Because part of the computation has already been performed beforehand by
the partial evaluator, the hope that we obtain a more efficient program PS seems
justified. The simple example in Fig. 3 illustrates this point: the control of the loop
in P is fully determined by the static input e = 3 and was executed beforehand by
the partial evaluator, resulting in a more efficient specialised program Pe.

Partial evaluation [24, 50] has been applied to a lot of programming languages
and paradigms: functional programming (e.g., [51]), logic programming (e.g., [40,
55, 81]), functional logic programming (e.g., [1, 2, 58]) term rewriting systems (e.g.,
[13, 14], [75]) and imperative programming (e.g., [4, 3]).

In the context of logic programming, full input to a program P consists of a goal
G and evaluation corresponds to constructing a complete SLDNF-tree for P ∪{G}.
For partial evaluation, the static input then takes the form of a partially instantiated
goal G′. In contrast to other programming languages and paradigms, one can still
execute P for G′ and (try to) construct a SLDNF-tree for P ∪ {G′}. So, at first
sight, it seems that partial evaluation for logic programs is almost trivial and just
corresponds to ordinary evaluation.

Pe

P

res

res:=b*b*b

for i = 1 to e do

res:=1

res:=res*b

res

e

b

e

b

3

5

125
5

3 -

-

Partial

Evaluator

-

'
&

$
%

6

�
�

�
�

?

--

--

66

Fig. 3. Partial evaluation of a simple imperative program

However, because G′ is not yet fully instantiated, the SLDNF-tree for P ∪{G′} is
usually infinite and ordinary evaluation will not terminate. A more refined approach
to partial evaluation of logic programs is therefore required. A technique which
solves this problem is known under the name of partial deduction. Its general idea
is to construct a finite number of finite trees which “cover” the possibly infinite
SLDNF-tree for P ∪ {G′}. We will present the essentials of this technique in the
next section.

The term “partial deduction” has been introduced by Komorowski (see [55]) to
replace the term of partial evaluation in the context of pure logic programs. We
will adhere to this terminology because the word “deduction” places emphasis on
the purely logical nature of the source programs. Also, while partial evaluation of
functional and imperative programs evaluates only those expressions which depend
exclusively on the static input, in logic programming one can, as we have seen above,
in principle also evaluate expressions which depend on the unknown dynamic input.
This puts partial deduction much closer to techniques such as supercompilation [98,
43, 93, 90] and unfold/fold program transformations [19, 81], and therefore using
a different denomination seems justified. We will briefly return to the relation of
partial deduction to these and other techniques in the second part of this course
[60] (see also [42, 49, 92]). Finally, note that program specialisation in general is not
limited to just evaluating expressions, whether they depend on the static input or
not. A striking illustration of this statement will be presented later in the course
[60], where abstract interpretation is combined with partial deduction.

3.2 Partial deduction

In this section we present the technique of partial deduction, which originates from
[54]. Other introductions to partial deduction can be found in [55, 40, 26].

In order to avoid constructing infinite SLDNF-trees for partially instantiated
goals, the technique of partial deduction is based on constructing finite, but possibly
incomplete SLDNF-trees. The derivation steps in these SLDNF-trees correspond to
the computation steps which have already been performed by the partial deducer
and the clauses of the specialised program are then extracted from these trees by
constructing one specialised clause per branch.

In this section we will formalise this technique and present conditions which will
ensure correctness of the so obtained specialised programs.

Definition 23. (SLDNF-derivation) A SLDNF-derivation is defined like a com-
plete SLDNF-derivation but may, in addition to leading to success or failure, also
lead to a last goal where no literal has been selected for a further derivation step.
Derivations of the latter kind will be called incomplete.

An SLDNF-derivation can thus be either failed, incomplete, successful or infinite.
Now, an incomplete SLDNF-tree is obtained in much in the same way.

Definition 24. An SLDNF-tree is defined like a complete SLDNF-tree but may, in
addition to success and failure leaves, also contain leaves where no literal has been
selected for a further derivation step. Leaves of the latter kind are called dangling
([72]) and SLDNF-trees containing dangling leaves are called incomplete. Also, an
SLDNF-tree is called trivial iff its root is a dangling leaf, and non-trivial otherwise.

The process of selecting a literal inside a dangling leaf of an incomplete SLDNF-
tree and adding all the resolvents as children is called unfolding . An SLDNF-tree for
P ∪{G} can thus be obtained from a trivial SLDNF-tree for P ∪{G} by performing
a sequence of unfolding steps. We will return to this issue in Sect. 3.3.

Note that every branch of an SLDNF-tree has an associated (possibly incom-
plete) SLDNF-derivation. We also extend the notion of a computed answer substi-
tution (c.a.s.) to finite incomplete SLDNF-derivations (it is just the composition
of the mgu’s restricted to the variables of the top-level goal). Also, a resolvent of a
finite (possibly incomplete) SLDNF-derivation is just the last goal of the derivation.
Finally, if 〈G0, . . . , Gn〉 is the sequence of goals of a finite SLDNF-derivation, we
say D has length n.

We will now examine how specialised clauses can be extracted from SLDNF-
derivations and trees. The following definition associates a first-order formula with
a finite SLDNF-derivation.

Definition 25. Let P be a program, ← Q a goal and D a finite SLDNF-derivation
of P ∪ {← Q} with computed answer θ and resolvent ← B. Then the formula
Qθ ← B is called the resultant of D.

This concept can be extended to SLDNF-trees in the following way:

Definition 26. Let P be a program, G a goal and let τ be a finite SLDNF-tree for
P ∪ {G}. Let D1, . . . , Dn be the non-failing SLDNF-derivations associated with the
branches of τ . Then the set of resultants resultants(τ) is the union of the resultants
of the non-failing SLDNF-derivations D1, . . . , Dn associated with the branches of τ .
We also define the set of leaves, leaves(τ), to be the atoms occurring in the resolvents
of D1, . . . , Dn.

Example 2. Let P be the following program:
member(X, [X|T])←
member(X, [Y |T])← member(X, T)
inboth(X, L1, L2)← member(X, L1),member(X, L2)

Figure 4 represents an incomplete SLD-tree τ for P ∪ {← inboth(X, [a], L)}. This
tree has just one non-failing branch and the set of resultants resultants(τ) contains
the single clause:

inboth(a, [a], L)← member(a, L)

Note that the complete SLD-tree for P ∪ {← inboth(X, [a], L)} is infinite.

fail

PPPPPPPPPq
← member(X, []),member(X, L)← member(a, L)

?

← member(X, [a]),member(X, L)

← inboth(X, [a], L)

?

Fig. 4. Incomplete SLD-tree for Example 2

If the goal in the root of a finite SLDNF-tree is atomic then the resultants
associated with the tree are all clauses. We can thus formalise partial deduction in
the following way.

Definition 27. (partial deduction) Let P be a normal program and A an atom.
Let τ be a finite non-trivial SLDNF-tree for P ∪ {← A}. Then the set of clauses
resultants(τ) is called a partial deduction of A in P .
If A is a finite set of atoms, then a partial deduction of A in P is the union of one
partial deduction for each element of A.
A partial deduction of P wrt A is a normal program obtained from P by replacing
the set of clauses in P , whose head contains one of the predicate symbols appearing
in A (called the partially deduced predicates), with a partial deduction of A in P .

Example 3. Let us return to the program P of Ex. 2. Based on the incomplete
SLDNF-tree in Fig. 4, we can construct the following partial deduction of P wrt A
= {inboth(X, [a], L)}:

member(X, [X|T])←
member(X, [Y |T])← member(X, T)
inboth(a, [a], L)← member(a, L)

Note that if τ is a trivial SLDNF-tree for P ∪{← A} then resultants(τ) consists
of the problematic clause A← A and the specialised program contains a loop. That
is why trivial trees are not allowed in Definition 27. This is however not a sufficient
condition for correctness of the specialised programs. In [69], Lloyd and Shepherdson
presented and proved a fundamental correctness theorem for partial deduction. The
two (additional) basic requirements for correctness of a partial deduction of P wrt
A are the independence and closedness conditions. The independence condition
guarantees that the specialised program does not produce additional answers and
the closedness condition guarantees that all calls, which might occur during the
execution of the specialised program, are covered by some definition. Below we
summarise the correctness result of [69].

Definition 28. (closedness, independence) Let S be a set of first order for-
mulas and A a finite set of atoms. Then S is A-closed iff each atom in S, containing
a predicate symbol occurring in an atom in A, is an instance of an atom in A. Fur-
thermore we say that A is independent iff no pair of atoms in A have a common
instance.

Note that two atoms which cannot be unified may still have a common instance
(i.e., unify after renaming apart). For example, p(X) and p(f(X)) are not unifiable
but have, e.g., the common instance p(f(X)).

Theorem 3. (correctness of partial deduction [69]) Let P be a normal pro-
gram, G a normal goal, A a finite, independent set of atoms, and P ′ a partial
deduction of P wrt A such that P ′ ∪ {G} is A-closed. Then the following hold:

1. P ′ ∪ {G} has an SLDNF-refutation with computed answer θ iff P ∪ {G} does.
2. P ′ ∪ {G} has a finitely failed SLDNF-tree iff P ∪ {G} does.

For instance, the partial deduction of P wrt A = {inboth(X, [a], L)} in Ex. 3
satisfies the conditions of Theorem 3 for the goals ← inboth(X, [a], [b, a]) and ←
inboth(X, [a], L) but not for the goal ← inboth(X, [b], [b, a]).

Note that the original unspecialised program P is also a partial deduction wrt
A = {member(X, L), inboth(X, L1, L2)} which furthermore satisfies the correctness
conditions of Theorem 3 for any goal G. In other words, neither Definition 27 nor the
conditions of Theorem 3 ensure that any specialisation has actually been performed.
Nor do they give any indication on how to construct a suitable set A and a suitable
partial deduction wrt A satisfying the correctness criteria for a given goal G of
interest. These are all considerations generally delegated to the control of partial
deduction, which we discuss in the next section.

[11] also proposes an extension of Theorem 3 which uses a notion of coveredness
instead of closedness. The basic idea is to restrict the attention to those parts of
the specialised program P ′ which can be reached from G. The formalisation is as
follows:

Definition 29. Let P be a set of clauses. The predicate dependency graph of P is
a directed graph

– whose nodes are the predicate symbols in the alphabet AP and
– which contains an arc from p to q iff there exists a clause in P in which p occurs

as a predicate symbol in the head and q as a predicate symbol in the body.

Definition 30. Let P be a program and G a goal. We say that G depends upon a
predicate p in AP iff there exists a path from a predicate symbol occurring in G to
p in the predicate dependency graph of P .
We denote by P ↓G the definitions in P of those predicates in AP upon which G
depends.
Let A be a finite set of atoms. We say that P ∪ {G} is A-covered iff P ↓G ∪{G} is
A-closed.

By replacing the condition in Theorem 3 that “P ′ ∪ {G} is A-closed” by the
more general “P ′ ∪ {G} is A-covered”, we still have a valid theorem (see [11]).

Example 4. Let us again return to the program P of Ex. 2. By building a complete
SLD-tree for P ∪ {← member(X, [a])}, we get the following partial deduction P ′ of
P wrt A = {member(X, [a])}:

member(a, [a])←
inboth(X, L1, L2)← member(X, L1),member(X, L2)

Unfortunately, Theorem 3 cannot be applied for G =← member(X, [a]) because
P ′ ∪ {G} is not A-closed (due to the body of the second clause of P ′). However,
P ′∪{G} is A-covered, because P ′ ↓G just consists of the first clause of P ′. Therefore
correctness of P ′ wrt G can be established by the above extension of Theorem 3.

The following example highlights one of the practical benefits of using partial
deduction.

Example 5. Let us take the map program from Sect. 2.3.
map(P, [], [])←

2

← map(inv, T, PT)← map(inv, T, PT)

@
@@R

�
�	

�
�	

← inv(X, PX), map(inv, T, PT)

← call(inv(X, PX)), map(inv, T, PT)

?

?

← C = ..[inv, X, PX], call(C), map(inv, T, PT)

@
@@R

← map(inv, In, Out)

Fig. 5. Unfolding Example 5

map(P, [X|T], [PX |PT])← C = ..[P,X, PX], call(C), map(P, T, PT)
inv(0, 1)←
inv(1, 0)←

If we now want to map the inv predicate on a list, then we can specialise the goal:
← map(inv, In,Out). If we build the incomplete SLD-tree represented in Fig. 5 all
the leaf atoms are covered and we can construct the following residual program:

map(inv, [], [])←
map(inv, [0|T], [1|PT])← map(inv, T, PT)
map(inv, [1|T], [0|PT])← map(inv, T, PT)

All the higher-order overhead (i.e., the use of = .. and call) has been removed and
the function call has even been unfolded. When running the above programs (on
SWI-Prolog) on a set of queries one notices that the specialised program runs about
2 times faster than the original one (and can be made even faster using filtering, as
discussed in the next section).

The question that remains is, how do we come up with such (interesting and
correct) partial deductions in an automatic way ? This is exactly the issue that is
tackled in the next section.

3.3 Control of partial deduction

In partial deduction one usually distinguishes two levels of control [40, 74]:

– the global control , in which one chooses the set A, i.e., one decides which atoms
will be partially deduced, and

– the local control , in which one constructs the finite (possibly incomplete) SLDNF-
trees for each individual atom in A and thus determines what the definitions
for the partially deduced atoms look like.

Below we examine how these two levels of control interact.

Correctness, termination and precision When controlling partial deduction
the three following, often conflicting, aspects have to be reconciled:

1. Correctness, i.e., ensuring that Theorem 3 or its extension can be applied. This
can be divided into a local condition, requiring the construction of non-trivial
trees, and into a global one related to the independence and coveredness (or
closedness) conditions.

← An← A1

?

?

��	 @@R

��	 @@R ?

@@R��	

?

An. . .A1A

local level

global level�
�

�
�

Fig. 6. Global and local level of control

2. Termination. This aspect can also be divided into a local and a global one.
First, the problem of keeping each SLDNF-tree finite is referred to as the local
termination problem. Secondly keeping the set A finite is referred to as the
global termination problem.

3. Precision. For precision of the specialisation we can again discern two aspects.
One which we might call local precision and which is related to the unfolding rule
and to the fact that (potential for) specialisation can be lost if we stop unfolding
an atom inA prematurely. Indeed, when we stop the unfolding process at a given
goal Q, then all the atoms in Q are treated separately (partial deductions are
defined for sets of atoms and not for sets of goals; see however “conjunctive”
partial deduction which we will discuss later in this course). For instance, if we
stop the unfolding process in Ex. 2 for G =← inboth(X, [a, b, c], [c, d, e]) at the
goal G′ =← member(X, [a, b, c]), member(X, [c, d, e]), partial deduction will not
be able to infer that the only possible answer for G′ and G is {X/c}.
The second aspect could be called the global precision and is related to the
structure of A. In general having a more precise and fine grained set A (with
more instantiated atoms) will lead to better specialisation. For instance, given
the set A = {member(a, [a, b]),member(c, [d])}, partial deduction can perform
much more specialisation (i.e., detecting that the goal ← member(a, [a, b]) al-
ways succeeds exactly once and that ← member(c, [d]) fails) than given the less
instantiated set A′ = {member(X, [Y |T])}.

A good partial deduction algorithm will ensure correctness and termination while
minimising the precision loss of point 3. Let us now examine more closely how those
three conflicting aspects can be reconciled.

Independence and renaming On the side of correctness there are two ways to
ensure the independence condition. One is to apply a generalisation operator like the
msg on all the atoms which are not independent (first proposed in [11]). Applying
this, e.g., on the dependent set A = {member(a, L),member(X, [b])} yields the
independent set {member(X, L)}. This approach also alleviates to some extent the
global termination problem. However, it also diminishes the global precision and,
as can be guessed from the above example, can seriously diminish the potential for
specialisation.

This loss of precision can be completely avoided by using a renaming trans-
formation to ensure independence. Renaming will map dependent atoms to new
predicate symbols and thus generate an independent set without precision loss.
For instance, the dependent set A above can be transformed into the indepen-
dent set A′ = {member(a, L),member ′(X, [b])}. The renaming transformation then
has to map the atoms inside the residual program P ′ and the partial deduction

goal G to the correct versions of A′ (e.g., it has to rename the goal G = ←
member(a, [a, c]),member(b, [b]) into ← member(a, [a, c]),member ′(b, [b])). Renam-
ing can often be combined with argument filtering to improve the efficiency of
the specialised program. The basic idea is to filter out constants and functors
and only keep the variables as arguments. For instance, instead of renaming A
into A′, A can be directly renamed into {mema(L),memb(X)} and G into ←
mema([a, c]),memb(b). Further details about filtering can be found in [41], [10]
or [67]. See also [84], where filtering can be obtained automatically when using fold-
ing. Filtering has also been referred to as “pushing down metaarguments” in [94]
or “PDMA” in [79]. In functional programming the term of “arity raising” has also
been used (and it has been studied in an offline setting, where filtering is more
complicated).

Renaming and filtering are used in a lot of practical approaches (e.g., [39–41,
62, 64, 65]) and adapted correctness results can be found in [10].

Local termination and unfolding rules The local control component is usually
encapsulated in what is called an unfolding rule, defined as follows.

Definition 31. An unfolding rule U is a function which, given a program P and a
goal G, returns a finite and possibly incomplete SLDNF-tree for P ∪ {G}.

In addition to local correctness, termination and precision, the requirements
on unfolding rules also include avoiding search space explosion as well as work
duplication. Approaches to the local control have been based on one or more of the
following elements:

– determinacy [41, 40, 39]
Only (except once) select atoms that match a single clause head. The strategy
can be refined with a so-called “look-ahead” to detect failure at a deeper level.
Methods solely based on this heuristic, apart from not guaranteeing termination,
tend not to worsen a program, but are often somewhat too conservative.

– well-founded orders [18, 73, 72, 71]
Imposing some (essentially) well-founded order on selected atoms guarantees
termination, but, on its own, can lead to overly eager unfolding.

– homeomorphic embedding [91, 65]
Instead of well-founded ones, well-quasi orders can be used [12, 88]. Homeomor-
phic embedding on selected atoms has recently gained popularity as the basis
for such an order. As shown in [61] the homeomorphic embedding relation is
strictly more powerful than a large class of well-founded orders.
We will examine the above concepts in somewhat more detail. First the notion

of determinate unfolding can be defined as follows.

Definition 32. (determinate unfolding) A tree is (purely) determinate if each
node of the tree has at most 1 child. An unfolding rule is purely determinate without
lookahead if for every program P and every goal G it returns a determinate SLDNF-
tree. An unfolding rule is purely determinate (with lookahead) if for every program
P and every goal G it returns a SLDNF-tree τ such that the subtree τ− of τ , obtained
by removing the failed branches, is determinate.

Usually the above definitions of determinate unfolding rules are extended to
allow one non-determinate unfolding step, ensuring that non-trivial trees can be
constructed. Depending on the definition, this non-determinate step may either
occur only at the root (e.g., in [39]), anywhere in the tree or only at the bottom
(i.e., its resolvents must be leaves, as in [41, 63]). These three additional forms
of determinate trees, which we will call shower, fork and beam determinate trees
respectively, are illustrated in Fig. 7.

�
��	

@
@@R?

? ??

? ?

?

�
��	 ?

@
@@R

? ?

?

?

?
@

@@R
�

��	

?

?

?

shower fork beam pure

Fig. 7. Four forms of determinate trees

Determinate unfolding has been proposed as a way to ensure that partial deduc-
tion will never duplicate computations in the residual program [41, 39, 40]. Indeed,
in the context of the left-to-right selection rule of Prolog, the following fairly simple
example shows that non-leftmost, non-determinate unfolding may duplicate (large
amounts of) work in the transformation result. The one non-determinate unfolding
step performed by a shower, fork or beam determinate unfolding rule, is therefore
generally supposed to mimic the runtime selection rule.

Example 6. Let us return to the program P of Ex. 2:
member(X, [X|T])←
member(X, [Y |T])← member(X, T)
inboth(X, L1, L2)← member(X, L1),member(X, L2)

Let A = {inboth(a, L1, [X, Y])}. By performing the non-leftmost non-determinate
unfolding in Fig. 8, we obtain the following partial deduction P ′ of P wrt A:

member(X, [X|T])←
member(X, [Y |T])← member(X, T)
inboth(a, L1, [a, Y])← member(a, L1)
inboth(a, L1, [X, a])← member(a, L1)

Let us examine the run-time goal G =← inboth(a, [z, y, . . . , a], [X, Y]), for which
P ′∪{G} is A-covered. Using the Prolog left-to-right computation rule the expensive
sub-goal ← member(a, [z, y, . . . , a]) is only evaluated once in the original program
P , while it is executed twice in the specialised program P ′.

HH
HHj

fail

← member(a, L),member(a, [])← member(a, L)

��
���

← member(a, L),member(a, [Y])

HHHHj
← member(a, L)

�
�	

← member(a, L),member(a, [X, Y])
?

← inboth(a, L, [X, Y])

Fig. 8. Non-leftmost non-determinate unfolding for Example 6

Restricting ourselves to determinate unfolding ensures that such bad cases of
deterioration do not occur. It also ensures that the order of solutions, e.g., under

Prolog execution, is not altered and that termination is preserved (termination
might however be improved, as e.g., ← loop, fail can be transformed into ← fail ;
for further details related to the preservation of termination we refer to [83, 15, 17,
66]). Leftmost, non-determinate unfolding, usually allowed to compensate for the
all too cautious nature of purely determinate unfolding, avoids the more drastic
deterioration pitfalls in the context of, e.g., Prolog, but can still lead to multiplying
unifications.

Example 7. Let us adapt Example 6 by using A = {inboth(X, [Y], [V,W])}. We
can fully unfold ← inboth(X, [Y], [V,W]) and we then obtain the following partial
deduction P ′ of P wrt A:

member(X, [X|T])←
member(X, [Y |T])← member(X, T)
inboth(X, [X], [X, W])←
inboth(X, [X], [V,X])←

No goal has been duplicated by the leftmost non-determinate unfolding, but the
unification X = Y for ← inboth(X, [Y], [V,W]) has potentially been duplicated.
E.g., when executing the runtime goal ← inboth(tx, [ty], [tv, tw]) in P ′ the terms tx
and ty will be unified when resolving with the third clause of P ′ and then unified
again when resolving with the fourth clause of P ′.4 In the original program P
this unification will only be performed once, namely when resolving with the first
clause defining member . For run-time goals where tx and ty are very complicated
structures this might actually result in P ′ being slower than the original P . However,
as unifications are generally much less expensive than executing entire goals, this
problem is (usually) less of an issue.

In practical implementations one has also to take care of such issues as the clause
indexing performed by the compiler as well as how terms are created (i.e., avoid
duplication of term construction operations). Again for these issues, determinate
unfolding has proven to be a generally safe, albeit sometimes too conservative,
approach. Fully adequate solutions to these, more implementation oriented, aspects
are still topics of ongoing research.

Let us return to the aspect of local termination. Restricting oneself to determi-
nate unfolding in itself does not guarantee termination, as there can be infinitely
failing determinate computations. In (strict) functional programs such a condition
is equivalent to an error in the original program. In logic programming the situ-
ation is somewhat different: a goal can infinitely fail (in a deterministic way) at
partial deduction time but still finitely fail at run time. In applications like theorem
proving, even infinite failures at run-time do not necessarily indicate an error: they
might simply be due to unprovable statements. This is why, contrary to maybe func-
tional programming, additional measures on top of determinacy should be adopted
to ensure local termination.

One, albeit ad-hoc, way to solve this local termination problem is to simply
impose an arbitrary depth bound. Such a depth bound is of course not motivated
by any property, structural or otherwise, of the program or goal under consideration.
The depth bound will therefore lead either to too little or too much unfolding in a
lot of interesting cases.

As already mentioned, more refined approaches to ensure termination of unfold-
ing exist. The methods in [18, 73, 72, 71] are based on well-founded orders, inspired
by their usefulness in the context of static termination analysis (see e.g., [31, 25]).
These techniques ensure termination, while at the same time allowing unfolding

4 A very smart compiler might detect this and produce more efficient code which does not
re-execute unifications.

related to the structural aspect of the program and goal to be partially deduced,
e.g., permitting the consumption of static input within the atoms of A. Formally,
well-founded orders are defined as follows:

Definition 33. (wfo) A (strict) partial order >S on a set S is an anti-reflexive,
anti-symmetric and transitive binary relation on S × S. A sequence of elements
s1, s2, . . . in S is called admissible wrt >S iff si > si+1, for all i ≥ 1. We call >S a
well-founded order (wfo) iff there is no infinite admissible sequence wrt >S

To ensure local termination, one has to find a sensible well-founded order on
atoms and then only allow SLDNF-trees in which the sequence of selected atoms
is admissible (i.e., strictly decreasing wrt the well-founded order). If an atom that
we want to select is not strictly smaller than its ancestors, we either have to select
another atom or stop unfolding altogether.

Example 8. Let us return to the member program P of Ex. 2. A simple well-founded
order on atoms of the form member(t1, t2) might be based on comparing the list
length of the second argument.
The list length list length(t) of a term t is defined to be:

– 1 + list length(t′) if t = [h|t′] and
– 0 otherwise.

We then define the wfo on atoms by stating member(t1, t2) > member(s1, s2) iff
list length(t2) > list length(s2).

Based on that wfo, the goal ← member(X, [a, b|T]) can be unfolded into ←
member(X, [b|T]) and further into ← member(X, T) because the list length of the
second argument strictly decreases at each step. However,← member(X, T) cannot
be further unfolded into ← member(X, T ′) because the list length does not strictly
decrease.

Much more elaborate well-founded orders exist, e.g., continuously refining wfo’s
during the unfolding process. We refer the reader to [18, 73, 72, 71] for further details.
These works also present a further refinement which, instead of requiring a decrease
with every ancestor, only requires a decrease wrt the covering ancestors, i.e., one
only compares with the ancestor atoms from which the current atom descends (via
resolution).

Let us now turn our attention to approaches based on well-quasi orders, which
are formally defined as follows.

Definition 34. (quasi order) A quasi order ≥S on a set S is a reflexive and
transitive binary relation on S × S.

Henceforth, we will use symbols like <, > (possibly annotated by some subscript)
to refer to strict partial orders and ≤, ≥ to refer to quasi orders. We will use either
“directionality” as is convenient in the context.

Definition 35. (wbr,wqo) Let ≤S be a binary relation on S × S. A sequence
of elements s1, s2, . . . in S is called admissible wrt ≤S iff there are no i < j such
that si ≤S sj. We say that ≤S is a well-binary relation (wbr) on S iff there are no
infinite admissible sequences wrt ≤S. If ≤S is a quasi order on S then we also say
that ≤S is a well-quasi order (wqo) on S.

Local termination is now ensured in a similar manner as for wfo’s: we only allow
SLDNF-trees in which the sequence of selected atoms is admissible. Observe that,
while an approach based on wfo requires a strict decrease at every unfolding step,
an approach based on wqo can allow incomparable steps as well. This, e.g., allows
a wqo to have no a priori fixed weight or order attached to functors and arguments

and means that well-quasi orders can be much more flexible and much better suited,
e.g., to handle metainterpreters and metalevel encodings. See [61] for formal results
substantiating that claim.

An interesting wqo is the homeomorphic embedding relation �, which derives
from results by Higman [46] and Kruskal [57]. It has been used in the context of
term rewriting systems in [29, 30], and adapted for use in supercompilation [98] in
[91].

The following is the definition from [91], which adapts the pure homeomorphic
embedding from [30] by adding a rudimentary treatment of variables.

Definition 36. (�) The (pure) homeomorphic embedding relation � on expres-
sions is defined inductively as follows (i.e. � is the least relation satisfying the
rules):

1. X � Y for all variables X, Y
2. s � f(t1, . . . , tn) if s � ti for some i
3. f(s1, . . . , sn) � f(t1, . . . , tn) if ∀i ∈ {1, . . . , n} : si � ti.

The second rule is sometimes called the diving rule, and the third rule is some-
times called the coupling rule. When s � t we also say that s is embedded in t or t
is embedding s. By s � t we denote that s � t and t 6�s.

Example 9. The intuition behind the above definition is that A � B iff A can be
obtained from B by “striking out” certain parts, or said another way, the structure
of A reappears within B. For instance we have p(a) � p(f(a)) and indeed p(a)
can be obtained from p(f(a)) by “striking out” the f . Observe that the “striking
out” corresponds to the application of the diving rule 2 and that we even have
p(a) � p(f(a)). We also have, e.g., that:
X � X, p(X) � p(f(Y)), p(X, X) � p(X, Y) and p(X, Y) � p(X, X).

The homeomorphic embedding relation is very generous and will for example
allow to unfold from p([], [a]) to p([a], []) but also the other way around. This illus-
trates the flexibility of using well-quasi orders compared to well-founded ones, as
there exists no wfo which will allow both these unfoldings. It however also illustrates
why, when using a wqo, one has to compare with every predecessor. Otherwise one
will get infinite derivations of the form p([a], [])→ p([], [a])→ p([a], [])→. . . . When
using a wfo one has to compare only to the closest predecessor [72], because of the
transitivity of the order and the strict decrease enforced at each step. However, wfo
are usually extended to incorporate variant checking (see e.g., [71, 72]) and therefore
require inspecting every predecessor anyway (though only when there is no strict
weight decrease).

In order to adequately handle some built-ins, the embedding relation � of Defi-
nition 36 has to be adapted. Indeed, some built-ins (like = ../2 or is/2) can be used
to dynamically construct infinitely many new constants and functors and thus � is
no longer a wqo.

Example 10. Let P be the following Prolog program:

le(X,X).

le(X,Y) :- X1 is X + 1, le(X1,Y).

If we now unfold, e.g., the goal← le(1,0) we get the following sequence of selected
atoms, where no atom is embedding an earlier one (i.e., the sequence is admissible
wrt �): le(1,0) ; le(2,0) ; le(3,0) ; ∞.

To remedy this [65], the constants and functors can be partitioned into the static
ones, occurring in the original program and the partial deduction query, and the

dynamic ones. (This approach is also used in [88].) The set of dynamic constants
and functors is possibly infinite, and are therefore treated like the infinite set of
variables in Definition 36 by adding the following rule:

f(s1, . . . , sm) �+ g(t1, . . . , tn) if both f and g are dynamic

Control of polyvariance If we use renaming to ensure independence and (for
the moment) suppose that the local termination and precision problems have been
solved by the approaches presented above, we are still left with the problem of
ensuring closedness and global termination while minimising the global precision
loss. We will call this combination of problems the control of polyvariance problem
as it is very closely related to how many different specialised versions of some given
predicate should be put into A.5 It is this important problem we address later in
this course.

Let us examine how the 3 subproblems of the control of polyvariance problem
interact.

– Coveredness vs. Global Termination
Coveredness (or respectively closedness) can be simply ensured by repeatedly
adding the uncovered (i.e not satisfying Definition 30 or Definition 28 respec-
tively) atoms to A and unfolding them. Unfortunately this process generally
leads to non-termination, even when using the msg to ensure independence. For
instance, the “reverse with accumulating parameter” program (see e.g., [71, 73]
or Ex. 3 in [60]) exposes this non-terminating behaviour.

– Global Termination vs. Global Precision
To ensure finiteness of A we can repeatedly apply an “abstraction” operator
which generates a set of more general atoms. Unfortunately this induces a loss
of global precision.
By using the two ideas above to (try to) ensure coveredness and global termi-

nation, we can formulate a generic partial deduction algorithm. First, the concept
of abstraction has to be formally defined.

Definition 37. (abstraction) Let A and A′ be sets of atoms. Then A′ is an
abstraction of A iff every atom in A is an instance of an atom in A′. An abstraction
operator is an operator which maps every finite set of atoms to a finite abstraction
of it.

The above definition guarantees that any set of clauses covered by A is also
covered by A′. Note that sometimes an abstraction operator is also referred to as a
generalisation operator.

The following generic scheme, based on a similar one in [39, 40], describes the
basic layout of practically all algorithms for controlling partial deduction.

Algorithm 3.1 (standard partial deduction)
Input: A program P and a goal G
Output: A specialised program P ′

Initialise: i = 0, A0 = {A | A is an atom in G }
repeat

for each Ak ∈ Ai do
compute a finite SLDNF-tree τk for P ∪ {← Ak} by

applying an unfolding rule U ;
let A′i := Ai∪ {Bl|Bl ∈ leaves(τk) for some tree τk, such that Bl is

not an instance6 of any Aj ∈ Ai};
5 A method is called monovariant if it allows only one specialised version per predicate.
6 One can also use the variant test to make the algorithm more precise.

let Ai+1 := abstract(A′i); where abstract is an abstraction operator
let i := i + 1;

until Ai+1 = Ai

Apply a renaming transformation to Ai to ensure independence;
Construct P ′ by taking resultants.

In itself the use of an abstraction operator does not yet guarantee global ter-
mination. But, if the above algorithm terminates then coveredness is ensured, i.e.,
P ′ ∪ {G} is Ai-covered (modulo renaming). With this observation we can reformu-
late the control of polyvariance problem as one of finding an abstraction operator
which maximises specialisation while ensuring termination.

A very simple abstraction operator which ensures termination can be obtained
by imposing a finite maximum number of atoms in Ai and using the msg to stick
to that maximum. For example, in [73] one atom per predicate is enforced by using
the msg. However, using the msg in this way can induce an even bigger loss of
precision (compared to using the msg to ensure independence), because it will now
also be applied on independent atoms. For instance, calculating the msg for the set
of atoms {solve(p(a)), solve(q(f(b)))} yields the atom solve(X) and all potential
for specialisation is probably lost.

In [73] this problem has been remedied to some extent by using a static pre-
processing renaming phase (as defined in [11]) which will generate one extra renamed
version for the top-level atom to be specialised. However, this technique only works
well if all relevant input can be consumed in one local unfolding of this top-most
atom. Apart from the fact that this huge local unfolding is not always a good idea
from a point of view of efficiency (e.g., it can slow down the program as illustrated
by the Examples 6 and 7), in a lot of cases this simply cannot be accomplished (for
instance if partial input is not consumed but carried along, like the representation
of an object-program inside a metainterpreter).

One goal pursued in the advanced part of this course [60] is to define a flexible
abstraction operator which does not exhibit this dramatic loss of precision and
provides a fine-grained control of polyvariance, while still guaranteeing termination
of the partial deduction process.

References

1. E. Albert, M. Alpuente, M. Falaschi, P. Julián and G. Vidal. Improving Control in
Functional Logic Program Specialization. In G. Levi, editor, Static Analysis. Proceed-
ings of SAS’98, LNCS 1503, pages 262–277, Pisa, Italy, September 1998. Springer-
Verlag.

2. M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven partial evaluation of func-
tional logic programs. In H. Riis Nielson, editor, Proceedings of the 6th European
Symposium on Programming, ESOP’96, LNCS 1058, pages 45–61. Springer-Verlag,
1996.

3. L. O. Andersen. Partial evaluation of C and automatic compiler generation. In U. Kas-
tens and P. Pfahler, editors, 4th International Conference on Compiler Construction,
LNCS 641, pages 251–257, Paderborn, Germany, 1992. Springer-Verlag.

4. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report 94/19).

5. K. R. Apt. Introduction to logic programming. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, chapter 10, pages 495–574. North-Holland Amsterdam,
1990.

6. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
7. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. The Journal

of Logic Programming, 19 & 20:9–72, May 1994.
8. K. R. Apt and H. Doets. A new definition of SLDNF-resolution. The Journal of Logic

Programming, 8:177–190, 1994.

9. K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming.
Journal of the ACM, 29(3):841–862, 1982.

10. K. Benkerimi and P. M. Hill. Supporting transformations for the partial evaluation of
logic programs. Journal of Logic and Computation, 3(5):469–486, October 1993.

11. K. Benkerimi and J. W. Lloyd. A partial evaluation procedure for logic programs. In
S. Debray and M. Hermenegildo, editors, Proceedings of the North American Confer-
ence on Logic Programming, pages 343–358. MIT Press, 1990.

12. R. Bol. Loop checking in partial deduction. The Journal of Logic Programming,
16(1&2):25–46, 1993.

13. A. Bondorf. Towards a self-applicable partial evaluator for term rewriting systems.
In D. Bjørner, A. P. Ershov, and N. D. Jones, editors, Partial Evaluation and Mixed
Computation, pages 27–50. North-Holland, 1988.

14. A. Bondorf. A self-applicable partial evaluator for term rewriting systems. In J. Diaz
and F. Orejas, editors, TAPSOFT’89, Proceedings of the International Joint Con-
ference on Theory and Practice of Software Development, LNCS 352, pages 81–96,
Barcelona, Spain, March 1989. Springer-Verlag.

15. A. Bossi and N. Cocco. Preserving universal termination through unfold/fold. In
G. Levi and M. Rodriguez-Artalejo, editors, Proceedings of the Fourth International
Conference on Algebraic and Logic Programming, LNCS 850, pages 269–286, Madrid,
Spain, 1994. Springer-Verlag.

16. A. Bossi, N. Cocco, and S. Dulli. A method for specialising logic programs. ACM
Transactions on Programming Languages and Systems, 12(2):253–302, 1990.

17. A. Bossi, N. Cocco, and S. Etalle. Transformation of left terminating programs: The
reordering problem. In M. Proietti, editor, Logic Program Synthesis and Transforma-
tion. Proceedings of LOPSTR’95, LNCS 1048, pages 33–45, Utrecht, The Netherlands,
September 1995. Springer-Verlag.

18. M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding
infinite unfolding during partial deduction. New Generation Computing, 11(1):47–79,
1992.

19. R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, 1977.

20. D. Chan. Constructive negation based on the completed database. In Proceedings
of the Joint International Conference and Symposium on Logic Programming, pages
111–125, Seattle, 1988. IEEE, MIT Press.

21. D. Chan and M. Wallace. A treatment of negation during partial evaluation. In
H. Abramson and M. Rogers, editors, Meta-Programming in Logic Programming, Pro-
ceedings of the Meta88 Workshop, June 1988, pages 299–318. MIT Press, 1989.

22. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 293–322. Plenum Press, 1978.

23. W. Clocksin and C. Mellish. Programming in Prolog (Third Edition). Springer-Verlag,
1987.

24. C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Proceedings of ACM
Symposium on Principles of Programming Languages (POPL’93), Charleston, South
Carolina, January 1993. ACM Press.

25. D. De Schreye and S. Decorte. Termination of logic programs: The never ending story.
The Journal of Logic Programming, 19 & 20:199–260, May 1994.

26. D. De Schreye, M. Leuschel, and B. Martens. Tutorial on program specialisation
(abstract). In J. W. Lloyd, editor, Proceedings of ILPS’95, the International Logic
Programming Symposium, Portland, USA, December 1995. MIT Press.

27. M. Denecker. Knowledge Representation and Reasoning in Incomplete Logic Program-
ming. PhD thesis, Department of Computer Science, K.U.Leuven, 1993.

28. P. Derensart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard, Reference Manual.
Springer-Verlag, 1996.

29. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–116,
1987.

30. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 243–320. Elsevier, MIT
Press, 1990.

31. N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Commu-
nications of the ACM, 22(8):465–476, 1979.

32. K. Doets. Levationis laus. Journal of Logic and Computation, 3(5):487–516, 1993.
33. K. Doets. From Logic to Logic Programming. MIT Press, 1994.
34. W. Drabent. What is failure ? An apporach to constructive negation. Acta Informatica,

32:27–59, 1995.
35. A. Ershov. Mixed computation: Potential applications and problems for study. Theo-

retical Computer Science, 18:41–67, 1982.
36. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, 1990.
37. H. Fujita and K. Furukawa. A self-applicable partial evaluator and its use in incre-

mental compilation. New Generation Computing, 6(2 & 3):91–118, 1988.
38. D. A. Fuller and S. Abramsky. Mixed computation of prolog programs. New Genera-

tion Computing, 6(2 & 3):119–141, June 1988.
39. J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32,

University of Bristol, November 1991.
40. J. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of PEPM’93,

the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pages 88–98. ACM Press, 1993.

41. J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program special-
isation. New Generation Computing, 9(3 & 4):305–333, 1991.

42. R. Glück and M. H. Sørensen. Partial deduction and driving are equivalent. In
M. Hermenegildo and J. Penjam, editors, Programming Language Implementation and
Logic Programming. Proceedings, Proceedings of PLILP’94, LNCS 844, pages 165–181,
Madrid, Spain, 1994. Springer-Verlag.

43. R. Glück and M. H. Sørensen. A roadmap to supercompilation. In O. Danvy, R. Glück,
and P. Thiemann, editors, Proceedings of the 1996 Dagstuhl Seminar on Partial Eval-
uation, LNCS 1110, pages 137–160, Schloß Dagstuhl, 1996. Springer-Verlag.

44. C. A. Gurr. A Self-Applicable Partial Evaluator for the Logic Programming Language
Gödel. PhD thesis, Department of Computer Science, University of Bristol, January
1994.

45. J. Herbrand. Investigations in proof theory. In J. van Heijenoort, editor, From Frege
to Gödel: A Source Book in Mathematical Logic, 1879-1931, pages 525–581. Harvard
University Press, 1967.

46. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 2:326–336, 1952.

47. P. Hill and J. W. Lloyd. The Gödel Programming Language. MIT Press, 1994.
48. J.-M. Jacquet. Constructing Logic Programs. Wiley, Chichester, 1993.
49. N. D. Jones. The essence of program transformation by partial evaluation and driving.

In M. S. Neil D. Jones, Masami Hagiya, editor, Logic, Language and Computation,
LNCS 792, pages 206–224. Springer-Verlag, 1994.

50. N. D. Jones. An introduction to partial evaluation. ACM Computing Surveys,
28(3):480–503, September 1996.

51. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, 1993.

52. S. Kleene. Introduction to Metamathematics. van Nostrand, Princeton, New Jersey,
1952.

53. H.-P. Ko and M. E. Nadel. Substitution and refutation revisited. In K. Furukawa,
editor, Logic Programming: Proceedings of the Eighth International Conference, pages
679–692. MIT Press, 1991.

54. J. Komorowski. Partial evaluation as a means for inferencing data structures in an
applicative language: a theory and implementation in the case of Prolog. In Ninth An-
nual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
Albuquerque, New Mexico, pages 255–267, 1982.

55. J. Komorowski. An introduction to partial deduction. In A. Pettorossi, editor, Pro-
ceedings Meta’92, LNCS 649, pages 49–69. Springer-Verlag, 1992.

56. R. Kowalski. Predicate logic as a programming language. In Proceedings IFIP
Congress, pages 569–574. IEEE, 1974.

57. J. B. Kruskal. Well-quasi ordering, the tree theorem, and Vazsonyi’s conjecture. Trans-
actions of the American Mathematical Society, 95:210–225, 1960.

58. L. Lafave and J. Gallagher. Constraint-based partial evaluation of rewriting-based
functional logic programs. In N. Fuchs, editor, Proceedings of the International Work-
shop on Logic Program Synthesis and Transformation (LOPSTR’97), LNCS 1463,
Leuven, Belgium, July 1998.

59. J.-L. Lassez, M. Maher, and K. Marriott. Unification revisited. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, pages 587–625. Morgan-
Kaufmann, 1988.

60. M. Leuschel. Advanced Logic Program Specialisation. In this volume.
61. M. Leuschel. On the power of homeomorphic embedding for online termination. In

G. Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503, pages 230–245,
Pisa, Italy, September 1998. Springer-Verlag.

62. M. Leuschel and D. De Schreye. Towards creating specialised integrity checks through
partial evaluation of meta-interpreters. In Proceedings of PEPM’95, the ACM Sigplan
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pages
253–263, La Jolla, California, June 1995. ACM Press.

63. M. Leuschel and D. De Schreye. Constrained partial deduction and the preservation
of characteristic trees. New Generation Computing, 16(3):283–342, 1998.

64. M. Leuschel and D. De Schreye. Creating specialised integrity checks through partial
evaluation of meta-interpreters. The Journal of Logic Programming, 36:149–193, 1998.

65. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and polyvari-
ance in partial deduction of normal logic programs. ACM Transactions on Program-
ming Languages and Systems, 20(1):208–258, January 1998.

66. M. Leuschel, B. Martens, and K. Sagonas. Preserving termination of tabled logic pro-
grams while unfolding. In N. Fuchs, editor, Proceedings of the International Workshop
on Logic Program Synthesis and Transformation (LOPSTR’97), LNCS 1463, Leuven,
Belgium, July 1998.

67. M. Leuschel and M. H. Sørensen. Redundant argument filtering of logic programs.
In J. Gallagher, editor, Proceedings of the International Workshop on Logic Program
Synthesis and Transformation (LOPSTR’96), LNCS 1207, pages 83–103, Stockholm,
Sweden, August 1996. Springer-Verlag.

68. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
69. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The

Journal of Logic Programming, 11(3& 4):217–242, 1991.
70. A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions

on Programming Languages and Systems, 4(2):258–282, April 1982.
71. B. Martens. On the Semantics of Meta-Programming and the Control of Partial De-

duction in Logic Programming. PhD thesis, K.U. Leuven, February 1994.
72. B. Martens and D. De Schreye. Automatic finite unfolding using well-founded mea-

sures. The Journal of Logic Programming, 28(2):89–146, August 1996.
73. B. Martens, D. De Schreye, and T. Horváth. Sound and complete partial deduction

with unfolding based on well-founded measures. Theoretical Computer Science, 122(1–
2):97–117, 1994.

74. B. Martens and J. Gallagher. Ensuring global termination of partial deduction while
allowing flexible polyvariance. In L. Sterling, editor, Proceedings ICLP’95, pages 597–
613, Kanagawa, Japan, June 1995. MIT Press.

75. A. Miniuissi and D. J. Sherman. Squeezing intermediate construction in equational
programs. In O. Danvy, R. Glück, and P. Thiemann, editors, Proceedings of the 1996
Dagstuhl Seminar on Partial Evaluation, LNCS 1110, pages 284–302, Schloß Dagstuhl,
1996. Springer-Verlag.

76. T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Prolog.
In K.-K. Lau and T. Clement, editors, Logic Program Synthesis and Transformation.
Proceedings of LOPSTR’92, pages 214–227. Springer-Verlag, 1992.

77. L. Naish. Higher-order logic programming in Prolog. Technical Report 96/2, Depart-
ment of Computer Science, University of Melbourne, 1995.

78. U. Nilsson and J. Ma luszyński. Logic, Programming and Prolog. Wiley, Chichester,
1990.

79. S. Owen. Issues in the partial evaluation of meta-interpreters. In H. Abramson
and M. Rogers, editors, Meta-Programming in Logic Programming, Proceedings of the
Meta88 Workshop, June 1988, pages 319–339. MIT Press, 1989.

80. M. Paterson and M. Wegman. Linear unification. Journal of Computer and System
Sciences, 16(2):158–167, 1978.

81. A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and
techniques. The Journal of Logic Programming, 19& 20:261–320, May 1994.

82. S. Prestwich. An unfold rule for full Prolog. In K.-K. Lau and T. Clement, editors,
Logic Program Synthesis and Transformation. Proceedings of LOPSTR’92, Workshops
in Computing, pages 199–213, University of Manchester, 1992. Springer-Verlag.

83. M. Proietti and A. Pettorossi. Semantics preserving transformation rules for Prolog.
In Proceedings of the ACM Symposium on Partial Evaluation and Semantics based
Program Manipulation, PEPM’91, Sigplan Notices, Vol. 26, N. 9, pages 274–284, Yale
University, New Haven, U.S.A., 1991.

84. M. Proietti and A. Pettorossi. The loop absorption and the generalization strategies
for the development of logic programs and partial deduction. The Journal of Logic
Programming, 16(1 & 2):123–162, May 1993.

85. T. C. Przymusinksi. On the declarative and procedural semantics of logic programs.
Journal of Automated Reasoning, 5(2):167–205, 1989.

86. R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 55–76. Plenum Press, 1978.

87. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of
the ACM, 12(1):23–41, 1965.

88. D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing, 12(1):7–51, 1993.

89. J. C. Shepherdson. Language and equality theory in logic programming. Technical
Report PM-91-02, University of Bristol, 1991.

90. M. H. Sørensen. Introduction to Supercompilation. In this volume.
91. M. H. Sørensen and R. Glück. An algorithm of generalization in positive super-

compilation. In J. W. Lloyd, editor, Proceedings of ILPS’95, the International Logic
Programming Symposium, pages 465–479, Portland, USA, December 1995. MIT Press.

92. M. H. Sørensen, R. Glück, and N. D. Jones. Towards unifying partial evaluation,
deforestation, supercompilation, and GPC. In D. Sannella, editor, Programming Lan-
guages and Systems — ESOP ’94. Proceedings, LNCS 788, pages 485–500, Edinburgh,
Scotland, 1994. Springer-Verlag.

93. M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

94. L. Sterling and R. D. Beer. Metainterpreters for expert system construction. The
Journal of Logic Programming, 6(1 & 2):163–178, 1989.

95. L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.
96. P. J. Stuckey. Constructive negation for constraint logic programming. In Proceed-

ings, Sixth Annual IEEE Symposium on Logic in Computer Science, pages 328–339,
Amsterdam, The Netherlands, July 1991. IEEE Computer Society Press.

97. P. J. Stuckey. Negation and constraint logic programming. Information and Compu-
tation, 118(1):12–33, April 1995.

98. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, 8(3):292–325, 1986.

99. D. H. D. Warren. Higher-order extensions to Prolog: Are they needed? In J. E.
Hayes, D. Michie, and Y.-H. Pao, editors, Machine Intelligence 10, pages 441–454.
Ellis Horwood Ltd., Chicester, England, 1982.

