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Abstract

We clarify the relationship between abstract interpretation and program
specialisation in the context of logic programming. We present a generic
top-down abstract specialisation framework, along with a generic correctness
result, into which a lot of the existing specialisation techniques can be cast.
The framework also shows how these techniques can be further improved
by moving to more refined abstract domains. It, however, also highlights
inherent limitations shared by all these approaches. In order to overcome
them, and to fully unify program specialisation with abstract interpretation,
we also develop a generic combined bottom-up/top-down framework, which
allows specialisation and analysis outside the reach of existing techniques.

1 Introduction

At first sight abstract interpretation (see, e.g., [5, 3]) and program special-
isation (see, e.g., [7]) might appear to be completely unrelated techniques:
abstract interpretation focusses on correct and precise analysis, while the
main goal of program specialisation is to produce more efficient residual
code (for a given task at hand). Nonetheless, it is often felt that there is
a close relationship between abstract interpretation and program specialisa-
tion and, recently, there has been a lot of interest in the integration of these
two techniques (see, e.g., [16, 11, 22].

Indeed, for good specialisation to take place, program specialisers have
to perform some form of analysis. For instance, the incomplete SLD-trees
produced by partial deduction [20, 7] can be seen as complete (given the
closedness condition of [20]) description of the top-down computation-flow.

In this paper we want to substantiate this intuition and make the link to
abstract interpretation fully explicit. We therefore present a generic (aug-
mented) top-down abstract interpretation framework in which most of the
specialisation techniques (such as partial deduction [20, 7], ecological partial
deduction [18, 13|, constrained partial deduction [15], conjunctive partial
deduction [17, 10]) can be cast. It also paves the way for more refined and
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powerful specialisation, by allowing more refined abstract domains and more
refined “abstract unfolding” rules.

However, we will not stop there. The above formalisation will actually
make two (additional) shortcomings of most earlier specialisation techniques
apparent (already identified in, e.g., [16, 13]): the lack of side-ways infor-
mation passing and of inference of global success information. Recent tech-
niques [16, 23, 22] (as well as some earlier attempts such as [21] and [9, 6])
have tried to overcome these limitations by incorporating bottom-up abstract
interpretation techniques. However, we feel that a fully satisfactory inte-
gration of program specialisation with abstract interpretation has not been
achieved yet, and we strive to do so in this paper.

This integration is not solely beneficial for specialisation purposes. In-
deed, as shown in [16, 13] (for one particular abstract domain), a full integra-
tion of abstract interpretation with program specialisation can yield analysis
outside the reach of either method alone (and can even be used to perform
inductive theorem proving or infinite model checking).

We thus present an augmented, combined top-down/bottom-up abstract
specialisation framework in which all these earlier techniques (and more) can
be cast, and provide the first “full-blown” integration of abstract interpreta-
tion and program specialisation, leading towards powerful specialisation and
analysis beyond the reach of existing techniques.

2 Top-Down Abstract Partial Deduction

In this paper, we restrict ourselves to definite programs and goals (but pos-
sibly with declarative built-in’s such as is, call, functor, arg, \==; this
allows to express a very large number of interesting, practical programs; one
can even implement and use certain higher-order features such as map/3).
An expression is either a term, an atom or a conjunction. We use 1 < Fs
to denote that the expression F;p is an instance of the expression Es. By
mgu(E1, Ey) we denote a most general unifier and by msg(E7, E2) a most
specific generalisation of F1 and Fs. Also, as common in partial deduction,
the notion of SLD-trees is extended to allow incomplete SLD-trees which
may contain leaves where no literal has been selected for further derivation.

2.1 The Abstract Domain

We denote by Q the set of all conjunctions. Our abstract domain AQ is
then a set of abstract conjunctions equipped with a concretisation function
v+ AQ — 22, providing the link between the abstract and the concrete
domain. We suppose that y(A) is always downwards closed (Q € v(A) =
Q8 € v(A)), i.e. we restrict ourselves to “declarative” properties. Also, for
reasons that will become clear below, we suppose that all conjunctions in
~v(A) have the same number of conjuncts and with the same predicates at



the same position. Observe that this still admits the possibility of a bottom
element | whose concretisation is empty.

We will denote the fact that v(A1) € v(Az2) by A1 T Aa. We
also sometimes use v on sets of abstract conjunctions: v(S) = {Q | Q €
v(A) A A € S}. One particular abstract domain, which will often serve for
illustration purposes, is the PD-domain where AQ = Q (i.e. the abstract
conjunctions are the concrete ones) and v(Q) = {Q' | @' =< Q} (i.e. an
abstract conjunction denotes all its instances).

2.2 Abstract Unfolding

Program specialisation can achieve more efficient residual code — amongst
others — by pre-computing certain operations at compile time (which then
no longer have to be performed at run-time). In other words, one computa-
tion step in the residual program may actually represent an entire sequence
of computation steps within the original program.

In the context of logic programming, this can be seen as producing a
residual clause which, when resolved against, has the same effect as a se-
quence of resolution steps in the original program. Partial deduction, for
example, produces these clauses by unfolding an atom A, thereby producing
an SLD-tree 7 for PU{« A}. Every non-failing branch of 7 is translated into
a residual clause by taking the resultant of the derivation.? These resultants
can then be used in a sound manner for any concretisation of A (i.e., any
instance of A) in the sense that resolution will lead to computed answers and
resolvents which can also be obtained in the original program. But actually
the use by partial deduction algorithms of these resultants is not limited
to code generation. Take, e.g., the resultant p(f(X)) «— ¢(f(X)). When
resolving a particular runtime call p(¢) with that resultant we will obtain
resolvents which are instances of < ¢(f(X)). Partial deduction therefore
also analyses (and specialises) the atom ¢(f(X)). In other words, the body
of the residual clause is used for the flow analysis as a representative of all
possible resolvents. This multiple use of the residual clauses relies on using
an abstract domain identical to the concrete domain.

In the more general setting we endeavour to develop, these two roles of
unfolding will have to be separated out (as the residual program has to be
expressed in the concrete domain). In other words, to specialise an abstract
conjunction A we generate:

— resultants H; < B, totally correct for the calls in y(A) and

— for each resultant H; <« B; an abstract conjunction A; approximat-

ing all the possible resolvent goals which can occur after resolving an
element of y(A) with H; «— B;.
This leads to Definition 2.1 of abstract unfolding and resolution below. (Ob-
serve that the resultants H; «— B; below are not necessarily Horn clauses.
We will discuss the generation of Horn clause programs later in Section 2.4.)

2A resultant is a formula H < B where H and B are conjunctions of literals.



First, we introduce the following notations. Given an SLD-tree 7 for PU{«
@} we denote by @ «»2 L the fact that a leaf goal L of 7 can be reached via
c.a.s. 0. Given a resultant C; = H; «— B; and a conjunction ) we denote by
Q v%i L the fact that mgu(Q, H;) = ¢’ with 0’ [,4,4)= 0 and L = B3

Definition 2.1 An abstract unfolding operation aunf(.) maps abstract con-
junctions to finite sets of resultants and has the property that for all A € AQ
and @ € y(A) there exists an SLD-tree 7 for P U {« @} such that:

Q~YL < 30 € aunf(A) s.t. Qv%i L (1)

An abstract resolution operation ares(.) maps an abstract conjunction A
and a concrete resultant C; to another abstract conjunction such that for all
QevA): @ M%z L = L € y(ares(A,C})).

The = part of point 1 requests that the code generated by aunf(.) is
complete while the < part additionally requests soundness (as we want to
have residual code which is totally correct and not just a safe approximation).
We call an abstract unfolding rule conservative if the <= part of point 1 holds
for all @ (and not just for @ € y(A)).

Example 2.2 Let P be the following program:

eq([l; [1) <

eq([H[X], [H]Y]) — eq(X,Y)
Let A = eq([a|T],Z) in the PD-domain. aunf(A) = {H <« B} and
ares(A,H «— B) = eq(T,Y) where H = eq(X,[al]Y]) and B = eq(X,Y)
are correct. Also, both remain correct with H = eq(H, [H|Y]) but not with
H =eq(X,[bY]). H=eq([H],[H|Y]) and B = eq([],Y) is also incorrect.

Observe, that in Definition 2.1 above, nothing forces one to use the same
structure (i.e. same selected literal positions, same clauses) for all the con-
cretisations of A. Indeed, this enables some very powerful optimisations
not achievable within existing “classical” specialisation frameworks. For in-
stance, in the example below we are able to completely eliminate a type-like
check from the residual program.

Example 2.3 Let P be the program from Example 2.2 and A represent
the set of all calls eq(L, L) where L is a bounded (nil-terminated) list (this
can obviously not be represented in the PD-domain). Then aunf(A) = Cy
= {eq(X,Y) <} and ares(A,Cy) = O are correct according to the above
definition ! One can thus generate the residual code:

eq(X,Y) «—
Observe that this abstract unfolding is, in contrast to Example 2.2, not con-

servative. In other words the residual code is only sound for concretisations
of A but not, e.g., for the call eq(a, []).

3If @ and H; are atoms this is equivalent to saying that « Q resolves with the clause
H,; «— B, via c.a.s. 0 yielding < L as resolvent. Also observe that for any @, C; and there
is at most one choice of # and L such that @ f\»‘éi L.



Example 2.4 Let P be the following program:

(C1) p(a) —

(C2) p(f(X)) = p(X)

(C3) p(9(X)) «— p(X)
Let A represent all calls p(X) where X has type 7 ::= a | g(7). Then
aunf(A) = {C1,C3} , ares(A,Cy) = O and ares(A,C3) = A is correct and
by abstract unfolding we are able to safely remove the redundant clause Cs.

~—

To more concisely express the flow analysis, we extend aunf(.) so that
it maps sets of abstract conjunctions to sets of abstract conjunctions in the
following way: aunf*(S) = {ares(A,C) | C € aunf(A)}.

2.3 Widening by Splitting

The computation flow aspect of program specialisation could now be per-
formed by calculating U 1°°, where U(S) = S U aunf*(S). However, it is
obvious that, for but the simplest abstract domains, this construction will
not terminate and that generalisation is required.

As usual in abstract interpretation, one could imagine to represent gen-
eralisation by a widening function w : AQ — AQ such that VA € AQ :
A T w(A). Unfortunately, this is not enough to be able to ensure termina-
tion of abstract interpretation in the present setting, because all concretisa-
tions of an abstract conjunction must have the same number of conjuncts. In
other words, no terminating analysis could be produced for, e.g., a program
containing the clause p < p,p. This is why we need a more refined notion
of widening, which involves splitting conjunctions into subconjunctions:

Definition 2.5 A sequence (Aj,...,Ay) of abstract conjunctions is an ab-
straction of an abstract conjunction A iff v(A) C {Q1 A ...ANQp | Qi €
v(Aq)}

Observe that for ¢ = 1 this condition is equivalent to A T A;. Also
observe that this splitting operation does not allow re-ordering of conjunc-
tions. It is, however, straightforward to do so. One just has to be careful to
use the same reordering for all concretisations (otherwise it will be impos-
sible to synchronise the code generation with the flow analysis, cf. the next
subsection).

We extend the abstraction concept to sets:

Definition 2.6 A set A’ is called an abstraction of another set of abstract
conjunctions A, denoted by A" Jge A, iff for all A € A there exists an
abstraction (Aq,...,Ay) of A such that all A; € A'.

For example, in the PD-domain, (p(X) A ¢(X), p(b)) is an abstraction of
p(b) A q(b) A p(b) and we have thus, for example, {p(X) A ¢(X),p(b)} Dspiit
{p(b) A q(b) Ap(b),p(c) Aglc)}-



We can now define a more refined widening operator to be a function?
w : 242 1 249 satisfying that w(A) Tpiit A for all A.

By using appropriate widening operators it is now possible to ensure
termination for any program (we refer the reader, e.g., to [18, 10, 13] on how
to devise w in the context of partial deduction).

We also say that a set A of abstract conjunctions is covered iff A 2,
aunf*(A). Intuitively, this means that A is a complete description of the
computation flow (induced by aunf(.)) for all concretisations of A.

2.4 Generating Residual Code

Generating residual code from the resultants H; <« B; produced by the
abstract unfolding involves transforming them into Horn clauses. This can
be achieved by mapping the abstract conjunctions produced by the flow
analysis to atoms and then appropriately renaming the heads H; and the
bodies B;.

We first introduce the following concepts. A concrete dominator of an
abstract conjunction A is a concrete conjunction which is more general than
all the concretisations of A. A skeleton for an abstract conjunction A is
a maximally general concrete dominator of A. By our earlier assumption
that all conjunctions in v(A) have the same predicates at the same position
we know that a concrete dominator (and thus skeleton) exists for all abstract
conjunctions. By [A] we denote some skeleton for A.

We also require that for all A € AQ and H; «— B; € aunf(A) we have
H; < [A]. The requirement prevents garbage code (any H; A [A] can never
unify with a concretisation of A) and simplifies the construction below.

Definition 2.7 An atomic renaming pa for an abstract conjunction A is an
atom A such that vars([A]) = vars(A). Also, for any Q =< [A] we define
pa(Q) = A where 6 is such that Q = [A]6.

In the PD-domain, we might have A = p(f(X)) Aq(Z), [A] = p(X) A
q(Y), pa = pg(X,Y) and Q@ = p(f(a)) A q(b). In that case pa(Q) =
pq(f(a),b).

Observe that for all Q < [A] we have pa (Q0) = pa(Q)6. Also, to avoid
name clashes, we will always suppose that for any A # A’ the predicate
symbols used by pa and p/, are different.

Given a resultant H; < B; € aunf(A) we can now produce an actual
Horn clause by renaming H; and B;. Renaming H; is easy: we just calculate
pa(H;) (which is always defined). If our flow analysis also contains A; =
ares(A, H; — B;) (and thus code for A; will be generated) then renaming
B, is just as easy: we just calculate pa,(B;). However, suppose that we
have applied a widening step and that we actually did not analyse A; but
an abstraction (Gi,...,Gpn) of it. In that case B; has to be chopped up

4Tt is of course possible to give extra parameters to w, e.g., to take the specialisation
history into account.



and then renamed using the renaming functions of the abstraction. We thus
define pga(B) = pg,(B1) A ... A pg,(Bn) where B = By A... A B,, and
(G1,...,Gy) is an abstraction of A such that G; € A and B; < [G;]. If no
such partitioning exists then we leave p4 A (B) undefined.

Definition 2.8 Let A be a covered set of abstract conjunctions. We then
define an abstract partial deduction of P wrt A to be the set of clauses:
{pa(H)«—pana(B)| H—B € aunf(A)\N A’ = ares(A,H—B) N A € A}.

It is easy to see that, because A be a covered, the renamings of the bodies
B will always be defined.

Observe that, a skeleton always has distinct variables as its only terms.
In other words, we perform no structure filtering (i.e. p(f(a)) might get
renamed into p'(f(a)) but never into p/(a) or p). Filtering could be achieved
by using a concrete dominator, ideally msg(y(A)), instead of the skeleton
[A] for the definition of pa. This, however, makes the exposition more
tricky and would detract from the main points of the paper. Anyway, one
can always apply [8] (as well as RAF, see, e.g., [13]) as a post-processing.

2.5 A Generic Correctness Result and Algorithm
We can now present a very general correctness result.

Theorem 2.9 Let P’ be an abstract partial deduction of P wrt a covered set
of abstract conjunctions A and let @ € v(A) with A € A. Then PU{— Q}
has an SLD-refutation with c.a.s. 6 iff P"U{« pa(Q)} has an SLD-refutation
with c.a.s. 6.

Proofs can be found in the technical report [14]. In order to derive results
about the preservation of finite failure we have to impose that the unfolding
operation aunf(.) is fair®, i.e. when computing aunf(A) it eventually selects
every conjunct of @ € v(A) in every non-failing branch. One can then prove
(by reusing results from [17, 13]) that:
P U {< @} has a finitely failed SLD-tree iff P’ U {< pa(Q)} has.

Based upon the notions introduced above, we can now present a generic
algorithm for top-down program specialisation in a very concise manner:

Algorithm 2.10 (Top-Down Abstract Partial Deduction)
Input: A program P and an abstract conjunction A
Output: A specialised program P’
Initialise: i =0, A9 = {A}

repeat

let A1 := w(A; Uaunf*(A;)); leti:=i+1;
until 4,1 = A;
Let P’ be an abstract partial deduction wrt A;

Or even better weakly fair, see [17, 13].



The differences over “traditional” top-down abstract interpretation meth-
ods for logic programs (like, e.g., the top-down component of [3]) are:
1) abstract conjunctions instead of abstract atoms are used, 2) widening
can generalise by “going up the lattice” and by splitting, 3) a full abstract
unfolding (which can do, e.g., deforestation) is used instead of just a single
abstract resolution step, and 4) there is no sideways information passing be-
tween abstract conjunctions (but perfect [16] sideways propagation within
each abstract conjunction).

2.6 Expressing Existing Partial Deduction Techniques

Classical partial deduction [20, 7] can be seen as an instance of the above
generic framework by taking

— the PD-domain (i.e. the concrete domain is the abstract domain and

an abstract element represents all its instances),

— abstract unfolding performs concrete resolution steps,

— w will only produce sets of atoms and the initial abstract conjunction

A is an atom.

To represent conjunctive partial deduction [17, 10, 13] we just have to
drop the last requirement. FEcological partial deduction [18, 13| can be seen
as an instance of the above generic framework by taking

- AQ = (A, T), where A is the set of atoms and T is the set of charac-

teristic trees.

- v((A,7)) ={A" | A” < A" < AN A’ has characteristic tree T },

— aunf((A, 7)) is based on using the SLD-tree 7 (see [18, 13]).

Similarly, constrained partial deduction [15] can be cast into the present
framework , and its correctness results are a special case of the ones above.

The present framework can now be used to easily extend both methods
to handle conjunctions or even to integrate all of these methods into one
powerful top-down specialisation method.

2.7 Future Prospects

Improved Generalisation A lot of existing specialisation techniques (see,
e.g., [18, 10]) ensure termination by using refined methods, such as homeo-
morphic embedding <, to detect “dangerous” growth of structure. However,
once such a growth has been detected these techniques still have to rely on
rather crude generalisation operators, such as more specific generalisation
(msg), because the resulting generalisation (or part of it, as in [18]) has to
be expressed in the PD-domain. For instance, when a specialiser goes from
A1 = p(a) to Ay = p(f(a)) then the homeomorphic embedding < will signal
danger (A; < Ay) and will even pinpoint the extra f(.) in Az as the potential
source of non-termination. But the msg of A; and Aj is just p(X) and no
use of the information provided by < was made (nor is it possible to do so in



the PD-domain). In the enriched context of abstract partial deduction, how-
ever, we can now derive, e.g., a (regular) type describing the growth detected
by < and arrive at much more intelligent generalisation and much improved
specialisation. For instance A; and As can be abstracted by something like
p(X:7) where the type 7 is defined as 7 := a | f(7). Also, atoms such as
p([]) and p([H|T]) can be abstracted by p(X:list). The example worked
out in [14] makes use of that possibility.

Improved Unfolding and Code Generation As already hinted at in
Section 2.2, our enriched abstract unfolding operation allows us to generate
much more efficient code. Given the simple program

p(l]) <

p(H[T]) < p(T)
one can, e.g., use the information that a particular variable X is a list to
abstractly unfold p(X) into p(Z) <, i.e. generate a single residual fact in-
stead of the “usual” recursive definition. This is something that no other
specialisation framework (we are aware of) can currently achieve. In lan-
guages like Mercury or Godel such type information will even be explicitly
given and does not have to be inferred. We believe that our framework(s)
will be especially useful for these languages.

Improved Handling of Built-in’s If we know that a given variable X
represents an integer we can, e.g., specialise both atomic(X) or number(X)
into true. One can imagine various other optimisations not possible in con-
ventional techniques based upon the PD-domain, like specialising arg or
functor calls based upon type information of the arguments. A similar idea
has been used in [23] and [22] to remove groundness tests (controlling parallel
execution) from the residual program.

3 A Bottom-Up Analysis

Although using refined abstract domains within Algorithm 2.10 can lead to
major improvements over existing specialisation techniques, it is still not
possible to achieve side-ways (between different abstract conjunctions) or
bottom-up success information propagation. A (seemingly) simple way to
add bottom-up success information propagation to our abstract partial de-
duction framework is to request point 1 only for @ € v(A)NSSp (instead of
Q@ € v(A)) in Definition 2.1 of aunf(.), where SSp is the success set of P. In
practice this means that the operation aunf(.) can make use of a subsidiary
(bottom-up) abstract interpretation phase to approximate SSp. In order to
achieve some interaction between the top-down and bottom-up components,
one could imagine that the abstract interpretation takes the unfoldings into
account (this is an approach proposed in [22]). This, however, means that
one has to re-analyse whenever a new unfolding has been performed and to



re-specialise whenever a tighter success set has been derived. The precise de-
tails of this “co-routining” are non-trivial and one can hardly call the above
an algorithm. Furthermore, there are a considerable number of tasks (see
[16]) that such an approach simply cannot handle, because the specialisation
and analysis components basically still work in isolation. In this paper, we
will therefore first present a pure bottom-up analysis algorithm, but which
we then fully integrate with Algorithm 2.10 in Section 4.

In a bottom-up setting we need, instead of an abstraction of the unfold-
ing operation, an abstraction of the bottom-up Tp operator [1, 19], or better
its non-ground version (to capture the C-semantics and thus the computed
answers). The (non-ground) Tp operator maps interpretations to interpreta-
tions, where an interpretation is usually represented by a set of atoms. Each
interpretation in turn can be seen as representing (an approximation to) the
success set. One could thus define an abstract version of Tp which maps a
set of atomic abstract conjunctions to a set of atomic abstract conjunctions
such that y(ATp(A)) D {Hb,...0, | H — By,...,B, € P\ A; € y(A)A
0; = mgu(B;01,...,0,—1,A;)}. However, in light of a full integration with the
framework of Section 2 (and in order to be able to capture all the techniques
of [21]), we will describe a more refined abstraction of Tp based on conjunc-
tions (instead of just atoms) and resultants derived by aunf(.) (instead of
simply the clauses of the original program P).

Abstract Tp for Abstract Conjunctions

So, instead of just representing the success set for each predicate in general,
we want to represent success sets for a given choice of abstract conjunctions
A={A1,...,A,}. This is accomplished by the following definition.

Definition 3.1 An abstracted interpretation is aset {(A1,I1),...,(An,In)}
of couples (AQ, AQ) such that I; T A; and ¢ # j = A; # Aj. We also
define a projection for abstracted interpretations 71(Z) = {A | (A,I) € Z}.

An abstracted interpretation Z represents for each A; a set of possible
computed instances in the form of the abstract conjunction Ij. Let us now
formulate how the knowledge contained in Z can be used to refine some
abstract conjunction, say A (not necessarily identical to some A;), into
another abstract conjunction A’ C A approximating the success set of A.

Definition 3.2 Let 7 = {(A1,11),...,(An,In)} be an abstracted interpre-
tation. Let A be an abstract conjunction such that (G1,...Gj,...Gm) is an
abstraction of A. Also let Gj £ A; for some 7. Then any abstract conjunc-
tion A’ C A such that (Gq,... Gj_1,1i, Gj41,. .., Gm) is an abstraction of
it, is called a refinement of A under Z. A itself, as well as any refinement of
A’ is also called a refinement of A under Z (i.e. we take the transitive and
reflexive closure). By ref7(A) we denote some refinement of A under Z.

Example 3.3 In the PD-domain let A = p(X)Aq(X) as well as T =
{(p(X),p(f(Y))), (a(f(2)),q(f(a)))}. Then A" = p(f(V))Aq(f(V)) is a



refinement of A under Z. Now A” = p(f(a)) A ¢(f(a)) is in turn a refinement
of A’ (and thus also of A) under Z. The previously inapplicable couple
(q(f(Z)),q(f(a))) became applicable for A’ and allowed us to achieve further
refinement.

We can now formulate an abstract bottom-up operator:

Definition 3.4 An abstract bottom-up operator AT p(.) is a function AQ X
2AQXAQ . AQ such that, for every abstracted interpretation 7 = {(Ay, 1),
..., (An,In)}, we have that if H«— B € aunf(A;) and B = ares(A;, H < B)
then BO € y(ref ;(B)) = HO € v(ATp(A;,7)).

Intuitively, the above states that if a runtime resolvent («— B6) of A;
may succeed given the abstracted interpretation Z (i.e., B8 € y(ref£(B)))
then the corresponding head H6 should potentially succeed in AT p(Aj,Z).
In other words, ATp(A;,7) is a safe approximation of one concrete non-
ground® bottom-up propagation step performed on the resultants of Aj.
We also define AT p(.) to work on abstracted interpretations: AT p(Z) =
{(A1,ATp(A1,2)),..., (An, ATp(An,7))}.

For an abstract domain with no infinite ascending chains, we can now for-

mulate a terminating bottom-up analysis algorithm basically as calculating
ATp 1% (Zy) where Zp = {(A1,L),...,(An, L)}

Exploiting Success Information for the Code Generation

The following shows how the information derivation by such an analysis can
be exploited to derive a specialised program.

Definition 3.5 Let Z be an abstracted interpretation. We then define an
abstract partial deduction of P wrt T to be the set of clauses:

{pa(HO) —paar(BY) | H—B € aunf(A)N A € m(Z)N A" =
ref 7(ares(A, H + B))A B is a concrete dominator” of A"}

If for all A” we have that {A"} Ty m1(Z) then we call Z covered (and all
renamings pa a»(B0) above are defined).

The big difference over Definition 2.8 is that the resultants get instan-
tiated using the success information contained in Z and that the notion of
coveredness also takes the success information into account. Indeed, Z might
be covered even though 7 (Z) is not (we might have {A'} Zgu m1(7)).
Example 3.6 Let P be the program from Example 2.2 and Z = {(eq(X,Y),
eq(X, X))} in the PD-domain. Also, let aunf(eq(X,Y)) = {C1,C2} and
ares(eq(X,Y),C2) = eq(X,Y) with C1 = eq([],[]) « as well as Cy =
eq([H|S],[H|T]) < eq(S,T). Then, obviously, eq(X, X) is a refinement of
eq(X,Y) and the following is an abstract partial deduction of P wrt Z (using
Peq(X,Y) = €41 (X7 Y))

SH@ and B# are not necessarily ground.

“One could also allow a set of instantiations 01, ...,0, such that all concretisations of A"
are an instance of at least one atom in {B(91, ce, Bﬁn}. This can lead to more instantiated
resultants but might also lead to code duplication and considerable slow-downs.



equ([],[]) <
eqi([H|T],[H|T]) — equ(T,T)

The main technique of [21] can be seen an instance of this analysis by:
taking the PD-domain and using a composition of predicate-wise msg with
the non-ground Tp operator on conjunctions. However, only a simple one-
step unfolding is performed in [21] and it is not allowed to further refine
refinements (which can be crucial, see [16]).

Theorem 3.7 Let P’ be an abstract partial deduction of P wrt ATp T
(Z). Let Q € v(A), A € m(Z), ATp 1> (Z) be covered and aunf(.) be
conservative.® Then P U {+ Q} has an SLD-refutation with c.a.s. 6 iff
P'U{— pa(Q)} has.

For finite failure we can also derive that, if aunf(.) is fair then if P U{«
@} has a finitely failed SLD-refutation then so does P’ U {«— pa(Q)} (but
not necessarily the other way around).

One major problem is now of course how to find interesting sets of ab-
stract conjunctions A = {A1,..., An} (this was left open in [21]) as well as
how to to ensure that ATp 1T ({(A1,L1),...,(An,L)}) is covered. Here
the top-down framework can help, which in turn can benefit from the infor-
mation provided by the bottom-up phase. This full integration is developed
in the next section.

4 A Combined Top-Down/Bottom-Up Framework

The idea of the following algorithm is to combine the top-down with the
bottom-up approach so that the mutually benefit from each other:

— the top-down component can, in addition to propagating goal depen-
dent information downwards, provide interesting sets of abstract con-
junctions for the bottom-up phase and ensure coveredness.

— the bottom-up phase can give the top-down component information
about the global success-patterns, allowing a more focussed unfolding,
producing more instantiated resultants as well as achieving side-ways
information passing.

As shown in [16], for a particular abstract domain, such an integration
can achieve optimisation and analysis which cannot be derived by either
approach alone, nor by combining them in a naive manner (i.e. running them
successively in isolation, as, e.g., discussed at the beginning of Section 3).

To formalise the flow analysis component of our integrated algorithm we
define a refined abstract unfolding and resolution operator, which takes the
current success information into account: aiunf*(Z) = {(L/, L) | (A,I) € ZA

8The difference with Theorem 2.9 is that calls to predicates are no longer guaranteed
to be concretisations of the abstract conjunctions from which their definition has been
derived; only their success patterns are ! Therefore the code also has to be sound (but
not complete) for calls which are not concretisations. An alternative is to allow non-
conservative rules but use the refinements only in, e.g., a left-to-right fashion.



H — B € aunf(A)AN L' = ref7(ares(A, H—B))}. We also extend w to
abstracted interpretations and request that mi(w(Z)) Jgpiie m1(Z).

Algorithm 4.1 (Refined Abstract Partial Deduction)
Input: A program P and an abstract conjunction A
Output: A specialised program P’
Initialise: i =0, Zp = {(A, 1)}
repeat
let j:=1i; Zj41:= ATp(Z;); leti:=i+1; /* one BUP step */
repeat
let 7,11 = w(Z; U aiunf*(Z;)); leti:=i+1;
until Zi—l = Il
until Ij = Ii
Let P’ be an abstract partial deduction wrt P and Z;

One can easily see that, once the algorithm has terminated, Z; is cov-
ered. In fact, the inner repeat-loop — performing top-down abstract partial
deduction — ensures (refined) coveredness. Also, abstract unfolding is ap-
plied after every single bottom-up step, i.e. before the fixpoint of AT p(.)
is reached. This is the important aspect which makes this algorithm more
powerful than running the top-down and bottom-up components in isolation
(see [13] for a fully worked out example in the PD-domain).

The algorithm in [16, 13] is an instance of the above algorithm using
the PD-domain and where AT p(.) is the predicate-wise msg composed with
the non-ground Tp operator. Algorithm 4.1 is also strictly more powerful
than [9, 6] (which uses the analysis information just to remove redundant
clauses, and not, e.g., to instantiate them) or [22] (which cannot perform
deforestation or tupling as it is restricted to specialising atoms individually).
One can actually also express techniques based upon tabling (OLDT [12] or
even EOLDT [2]) in a slight extension of our framework. In other words,
the reconciliation of bottom-up and top-down evaluation [4] is then just a
special case of our reconciliation of specialisation and analysis.

In [14] the reader can find how the reverse-last open problem from [16, 13]
can be solved in our framework in a rather straightforward manner. Being
able to solve this example is of prime relevance, e.g., whenever a statically
known value is stored in a dynamic accumulator (e.g., an environment of
an interpreter or a substitution in an explicit unification algorithm). No
existing analysis, specialisation or transformation technique we are aware
of, was able to solve this problem.

It is also possible to use the same approach to prove inductive theorems
in a much less ad-hoc (and more generally reusable manner) than, e.g., [24].
We also believe that automation of this approach is feasible and endeavour
to incorporate these possibilities into the ECCE partial deduction system
in the not too distant future. We believe that the improved specialisation
capabilities conferred by our new framework will further extend the practical
applicability of program specialisation.



5 Conclusion

In this paper we have presented a generic framework and algorithm for top-
down program specialisation, which supersedes earlier top-down approaches
in generality and power. We have established a generic correctness result and
have shown how the additional power can be exploited in practice, for im-
proved generalisation, unfolding and code-generation. We have also clarified
the relationship of top-down partial deduction with abstract interpretation,
establishing a common basis and terminology. This clarification allowed us
to precisely pinpoint shortcomings both of existing top-down specialisation
methods and of existing abstract interpretation techniques. We then pro-
ceeded to remedy these shortcomings by incorporating bottom-up success in-
formation propagation, thereby fully reconciling program specialisation with
abstract interpretation and providing a unifying framework into which al-
most all existing specialisation techniques can be cast. This new integrated
framework with its generic algorithm provides the foundation for new, pow-
erful specialisation and analysis outside the scope of existing techniques.
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