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Abstract. Recently well-quasi orders in general, and homeomorphic
embedding in particular, have gained popularity to ensure the termina-
tion of program analysis, specialisation and transformation techniques.
In this paper we investigate and clarify for the first time, both intuitively
and formally, the advantages of such an approach over one using well-
founded orders. Notably we show that the homeomorphic embedding re-
lation is strictly more powerful than a large class of involved well-founded
approaches.

1 Introduction

The problem of ensuring termination arises in many areas of computer science
and a lot of work has been devoted to proving termination of term rewriting
systems (e.g. [7–9, 37] and references therein) or of logic programs (e.g. [6, 38]
and references therein). It is also an important issue within all areas of program
analysis, specialisation and transformation: one usually strives for methods which
are guaranteed to terminate. One can basically distinguish between two kinds of
techniques for ensuring termination:
• static techniques, which prove or ensure termination of a program or process

beforehand (i.e. off-line) without any kind of execution, and
• online (or dynamic) techniques, which ensure termination of a process during

its execution. (The process itself can of course be, e.g., performing a static
analysis.)
Static approaches have less information at their disposal but do not require

runtime intervention (which might be impossible). Which of the two approaches
is taken depends entirely on the application area. For instance, static termination
analysis of logic programs [6, 38] falls within the former context, while termina-
tion of program specialisation, transformation or analysis is often ensured in an
online manner.

This paper is primarily aimed at studying and improving online termination
techniques. Let us examine the case of partial deduction [29, 10, 23] — an au-
tomatic technique for specialising logic programs. Henceforth we suppose some
familiarity with basic notions in logic programming [3, 28].
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Partial deduction based upon the Lloyd and Shepherdson framework [29] gen-
erates (possibly incomplete) SLDNF-trees for a set A of atoms. The specialised
program is extracted from these trees by producing one clause for every non-
failing branch. The resolution steps within the SLDNF-trees — often referred to
as unfolding steps — are those that have been performed beforehand, justifying
the hope that the specialised program is more efficient.

Now, to ensure termination of partial deduction two issues arise [10, 34]. One
is called the local termination problem, corresponding to the fact that each gen-
erated SLDNF-tree should be finite. The other is called the global termination
problem, meaning that the set A should contain only a finite number of atoms.
A similar classification can be done for most other program specialisation tech-
niques (cf. e.g. [26]).

Below we mainly use local termination to illustrate our concepts. (As shown
in [34] the atoms in A can be structured into a global tree and methods similar
to the one for local termination can be used to ensure global termination.)

However, the discussions and contributions of the present paper are also (im-
mediately) applicable in the context of analysis, specialisation and transforma-
tion techniques in general, especially when applied to computational paradigms,
such as logic programming, constrained logic programming, conditional term
rewriting, functional programming and functional & logic programming. For in-
stance, abstract interpretation techniques usually analyse a set of abstract calls
to which new call patterns are continuously added. One thus faces a problem
very similar to global termination of partial deduction.

Depth Bounds One, albeit ad-hoc, way to solve the local termination problem
is to simply impose an arbitrary depth bound. Such a depth bound is of course
not motivated by any property, structural or otherwise, of the program or goal
under consideration. In the context of local termination, the depth bound will
therefore typically lead either to too little or too much unfolding.

Determinacy Another approach, often used in partial evaluation of functional
programs [17] is to (only) expand a tree while it is determinate (i.e. it only has one
non-failing branch). However, this approach can be very restrictive and in itself
does not guarantee termination, as there can be infinitely failing determinate
computations at specialisation time.

Well-founded Orders Luckily, more refined approaches to ensure local ter-
mination exist. The first non-ad-hoc methods [5, 33, 32, 31] in logic and [40, 47]
functional programming were based on well-founded orders, inspired by their
usefulness in the context of static termination analysis. These techniques ensure
termination, while at the same time allowing unfolding related to the structural
aspect of the program and goal to be specialised, e.g., permitting the consump-
tion of static input within the atoms of A.



Definition 1. (wfo) A (strict) partial order >S on a set S is an anti-reflexive,
anti-symmetric and transitive binary relation on S × S. A sequence of elements
s1, s2, . . . in S is called admissible wrt >S iff si > si+1, for all i ≥ 1. We call >S

a well-founded order (wfo) iff there is no infinite admissible sequence wrt >S

To ensure local termination, one has to find a sensible well-founded order on
atoms and then only allow SLDNF-trees in which the sequence of selected atoms
is admissible wrt the well-founded order. If an atom that we want to select is
not strictly smaller than its ancestors, we either have to select another atom or
stop unfolding altogether.

Example 1. Let P be the reverse program using an accumulator:
rev([], Acc,Acc)←
rev([H|T ], Acc,Res)← rev(T, [H|Acc], Res)

A simple well-founded order on atoms of the form rev(t1, t2, t3) might be based
on comparing the termsize (i.e., the number of function and constant symbols)
of the first argument. We then define the wfo on atoms by:

rev(t1, t2, t3) > rev(s1, s2, s3) iff term size(t2) > term size(s2).
Based on that wfo, the goal← rev([a, b|T ], [], R) can be unfolded into the goal←
rev([b|T ], [a], R) and further into ← rev(T, [b, a], R) because the termsize of the
first argument strictly decreases at each step (even though the overall termsize
does not decrease). However, ← rev(T, [b, a], R) cannot be further unfolded into
← rev(T ′, [H ′, b, a], R) because there is no such strict decrease.

Much more elaborate techniques, which e.g. split the expressions into classes,
use lexicographical ordering on subsequences of the arguments and even continu-
ously refine the orders during the unfolding process, exist and we refer the reader
to [5, 33, 32, 31] for precise details. These works also present some further refine-
ments on how to apply wfo’s, especially in the context of partial deduction. For
instance, instead of requiring a decrease wrt every ancestor, one can only request
a decrease wrt the covering ancestors, i.e. one only compares with the ancestor
atoms from which the current atom descends (via resolution). Other refinements
consist in allowing the wfo’s not only to depend upon the selected atom but on
the context as well [32] or to ignore calls to non-recursive predicates. [32] also
discusses a way to relax the condition of a “strict decrease” when refining a wfo.
(Most of these refinements can also be applied to other approaches, notably the
one we will present in the next section.)

However, it has been felt by several researchers that well-founded orders are
sometimes too rigid or (conceptually) too complex in an online setting. Recently,
well-quasi orders have therefore gained popularity to ensure online termination
of program manipulation techniques [4, 41, 42, 25, 26, 11, 18, 1, 20, 46]. Unfortu-
nately, this move to well-quasi orders has never been formally justified nor has
the relation to well-founded approaches been investigated. We strive to do so in
this paper and will actually prove that a rather simple well-quasi approach is
strictly more powerful than a large class of involved well-founded approaches.



2 Well-quasi orders and homeomorphic embedding

Formally, well-quasi orders can be defined as follows.

Definition 2. (quasi order) A quasi order ≥S on a set S is a reflexive and
transitive binary relation on S × S.

Henceforth, we will use symbols like <, > (possibly annotated by some sub-
script) to refer to strict partial orders and ≤, ≥ to refer to quasi orders. We
will use either “directionality” as is convenient in the context. We also define
an expression to be either a term (built-up from variables and function symbols
of arity ≥ 0) or an atom (a predicate symbol applied to a, possibly empty, se-
quence of terms), and then treat predicate symbols as functors, but suppose that
no confusion between function and predicate symbols can arise (i.e. predicate and
function symbols are distinct).

Definition 3. (wbr,wqo) Let ≤S be a binary relation on S × S. A sequence
of elements s1, s2, . . . in S is called admissible wrt ≤S iff there are no i < j such
that si ≤S sj. We say that ≤S is a well-binary relation (wbr) on S iff there are
no infinite admissible sequences wrt ≤S. If ≤S is a quasi order on S then we
also say that ≤S is a well-quasi order (wqo) on S.

Observe that, in contrast to wfo’s, non-comparable elements are allowed
within admissible sequences. An admissible sequence is sometimes called bad
while a non-admissible one is called good. A well-binary relation is then such
that all infinite sequences are good. There are several other equivalent defini-
tions of well-binary relations and well-quasi orders. Higman [14] used an alter-
nate definition of well-quasi orders in terms of the “finite basis property” (or
“finite generating set” in [19]). A different (but also equivalent) definition of
a wqo is: A quasi-order ≤V is a wqo iff for all quasi-orders �V which contain
≤V (i.e. v≤V v′ ⇒ v�V v′) the corresponding strict partial order ≺V is a wfo.
This property has been exploited in the context of static termination analysis to
dynamically construct well-founded orders from well-quasi ones and led to the
initial use of wqo’s in the offline setting [7, 8]. The use of well-quasi orders in an
online setting has only emerged recently (it is mentioned, e.g., in [4] but also
[41]) and has never been compared to well-founded approaches. There has been
some comparison between wfo’s and wqo’s in the offline setting, e.g., in [37] it is
argued that (for “simply terminating” rewrite systems) approaches based upon
quasi-orders are less interesting than ones based upon a partial orders. In this
paper we will show that the situation is somewhat reversed in an online setting.
Furthermore, in the online setting, transitivity of a wqo is not really interesting
and one can therefore drop this requirement, leading to the use of wbr’s. [24]
contains some useful wbr’s which are not wqo’s.

An interesting wqo is the homeomorphic embedding relation �, which derives
from results by Higman [14] and Kruskal [19]. It has been used in the context of
term rewriting systems in [7, 8], and adapted for use in supercompilation [45] in
[42]. Its usefulness as a stop criterion for partial evaluation is also discussed and



advocated in [30]. Some complexity results can be found in [44] and [13] (also
summarised in [30]).

The following is the definition from [42], which adapts the pure homeomor-
phic embedding from [8] by adding a rudimentary treatment of variables.

Definition 4. (�) The (pure) homeomorphic embedding relation � on ex-
pressions is defined inductively as follows (i.e. � is the least relation satisfying
the rules):

1. X � Y for all variables X, Y
2. s � f(t1, . . . , tn) if s � ti for some i
3. f(s1, . . . , sn) � f(t1, . . . , tn) if ∀i ∈ {1, . . . , n} : si � ti.

The second rule is sometimes called the diving rule, and the third rule is
sometimes called the coupling rule. When s � t we also say that s is embedded
in t or t is embedding s. By s � t we denote that s � t and t 6�s.

Example 2. The intuition behind the above definition is that A � B iff A can
be obtained from B by “striking out” certain parts, or said another way, the
structure of A reappears within B. For instance we have p(a) � p(f(a)) and
indeed p(a) can be obtained from p(f(a)) by “striking out” the f . Observe that
the “striking out” corresponds to the application of the diving rule 2 and that
we even have p(a) � p(f(a)). We also have, e.g., that:
X � X, p(X) � p(f(Y )), p(X, X) � p(X, Y ) and p(X, Y ) � p(X, X).

Proposition 1. The relation � is a wqo on the set of expressions over a finite
alphabet.

For a complete proof, reusing Higman’s and Kruskal’s results [14, 19] in a
very straightforward manner, see, e.g., [23]. Extensions to infinite alphabets
and improved treatment of variables can be found in [24].

To ensure, e.g., local termination of partial deduction, we have to ensure that
the constructed SLDNF-trees are such that the selected atoms do not embed any
of their ancestors (when using a well-founded order as in Example 1, we had to
require a strict decrease at every step). If an atom that we want to select embeds
one of its ancestors, we either have to select another atom or stop unfolding
altogether. For example, based on �, the goal← rev([a, b|T ], [], R) of Example 1
can be unfolded into ← rev([b|T ], [a], R) and further into ← rev(T, [b, a], R)
as rev([a, b|T ], [], R) 6�rev([b|T ], [a], R), rev([a, b|T ], [], R) 6�rev(T, [b, a], R) and
rev([b|T ], [a], R) 6�rev(T, [b, a], R). However,← rev(T, [b, a], R) cannot be further
unfolded into ← rev(T ′, [H ′, b, a], R) as rev(T, [b, a], R) � rev(T ′, [H ′, b, a], R).
Observe that, in contrast to Example 1, we did not have to choose how to
measure which arguments. We further elaborate on the inherent flexibility of �

in the next section.
The homeomorphic embedding relation is also useful for handling structures

other than expressions. It has, e.g., been successfully applied in [25, 23, 26] to
detect (potentially) non-terminating sequences of characteristic trees. Also, �

seems to have the desired property that very often only “real” loops are detected
and that they are detected at the earliest possible moment (see [30]).



3 Comparing wbr’s and wfo’s

3.1 General Comparison

It follows from Definitions 1 and 3 that if ≤V is a wqo then <V (defined by
v1 <V v2 iff v1 ≤V v2 ∧ v1 6≥V v2) is a wfo, but not vice versa. The following
shows how to obtain a wbr from a wfo. All missing proofs can be found in [24].

Lemma 1. (wbr from wfo) Let <V be a well-founded order on V . Then �V ,
defined by v1 �V v2 iff v1 6>V v2, is a wbr on V . Furthermore,<V and �V have
the same set of admissible sequences.

This means that, in an online setting, the approach based upon wbr’s is in
theory at least as powerful as the one based upon wfo’s. Further below we will
actually show that wbr’s are strictly more powerful.

Observe that �V is not necessarily a wqo: transitivity is not ensured as
t1 6> t2 and t2 6> t3 do not imply t1 6> t3. Let, e.g., s < t denote that s is strictly
more general than t. Then < is a wfo (see below) but p(X, X, a) 6> p(X, Z, b)
and p(X, Z, b) 6> p(X, Y, a) even though p(X, X, a) > p(X, Y, a).

Let us now examine the power of one particular wqo, the earlier defined �.

3.2 Homeomorphic Embedding and Monotonic Wfo’s

The homeomorphic embedding � relation is very flexible. It will for example,
when applied to the sequence of covering ancestors, permit the full unfolding of
most terminating Datalog programs, the quicksort or even the mergesort pro-
gram when the list to be sorted is known (the latter poses problems to some static
termination analysis methods [38, 27]; for some experiments see Appendix A).
Also, the produce-consume example from [31] requires rather involved tech-
niques (considering the context) to be solved by wfo’s. Again, this example
poses no problem to � (cf. Appendix A). The homeomorphic embedding � is
also very powerful in the context of metaprogramming. Notably, it has the ability
to “penetrate” layers of (non-ground) meta-encodings (cf. also Appendix A). For
instance, � will admit the following sequences (where Example 1 is progressively
wrapped into “vanilla” metainterpreters counting resolution steps and keeping
track of the selected predicates respectively):

Sequence

rev([a, b|T ], [], R) ; rev([b|T ], [a], R)
solve(rev([a, b|T ], [], R), 0) ; solve(rev([b|T ], [a], R), s(0))

solve ′(solve(rev([a, b|T ], [], R), 0), []) ; solve ′(solve(rev([b|T ], [a], R), s(0)), [rev])

Again, this is very difficult for wfo’s and requires refined and involved techniques
(of which to our knowledge no implementation exists).

We have intuitively demonstrated the usefulness of � and that it is often
more flexible than wfo’s. But can we prove some “hard” results? It turns out
that we can and we now establish that — in the online setting — � is strictly
more generous than a large class of refined wfo’s.



Definition 5. A well-founded order ≺ on expressions is said to be monotonic
iff the following rules hold:

1. X 6� Y for all variables X, Y ,
2. s 6� f(t1, . . . , tn) whenever f is a function symbol and s 6� ti for some i and
3. f(s1, . . . , sn) 6� f(t1, . . . , tn) whenever ∀i ∈ {1, . . . , n} : si 6� fi.

Note the similarity of structure with the definition of � (but, contrary to �,
6� does not have to be the least relation satisfying the rules). This similarity of
structure will later enable us to prove that any sequence admissible wrt ≺ must
also be admissible wrt � (by showing that s�t⇒ s 6� t). Also observe that point
2 need not hold for predicate symbols and that point 3 implies that c 6� c for all
constant and proposition symbols c. Finally, there is a subtle difference between
monotonic wfo’s as of Definition 5 and wfo’s which possess the replacement
property (such orders are called rewrite orders in [37] and monotonic in [7]).
More on that below.

Similarly, we say that a norm ‖.‖ (i.e. a mapping from expressions to IN)
is said to be monotonic iff the associated wfo ≺‖.‖ is monotonic (t1 ≺‖.‖ t2 iff
‖t1‖ < ‖t2‖).

For instance the termsize norm (see below) is trivially monotonic. More gen-
erally, any semi-linear norm of the following form is monotonic:

Proposition 2. Let the norm ‖.‖ : Expr →IN be defined by:
• ‖t‖ = cf +

∑n
i=1 cf,i‖ti‖ if t = f(t1, . . . , tn), n ≥ 0

• ‖t‖ = cv otherwise (i.e. t is a variable)
Then ‖.‖ is monotonic if all coefficients cv, cf , cf,i are ≥ 0 and cf,i ≥ 1 for all
function symbols f of arity ≥ 1 (but not necessarily for all predicate symbols).

Proof. As < on IN is total we have that s 6> t is equivalent to s ≤ t. The proof proceeds
by induction on the structure of the expressions and examines every rule of Definition 5
separately:

1. X ≤ Y for all variables X, Y
this trivially holds as we use the same constant cv for all variables.

2. s ≤ f(t1, . . . , tn) whenever s ≤ ti for some i
This holds trivially if all coefficients are ≥ 0 and if cf,i ≥ 1. This is verified, as the
rule only applies if f is a function symbol.

3. f(s1, . . . , sn) ≤ f(t1, . . . , tn) whenever ∀i ∈ {1, . . . , n} : si ≤ fi

This holds trivially, independently of whether f is a function or predicate symbol,
as all coefficients are positive (and the same coefficient is applied to si and ti).

By taking cv = 0 and cf,i = cf = 1 for all f we get the termsize norm ‖.‖ts,
which by the above proposition is thus monotonic. Also, by taking cv = 1 and
cf,i = cf = 1 for all f we also get a monotonic norm, counting symbols. Finally,
a linear norm can always be obtained [38] by setting cv = 0, cf,i = 1 and cf ∈ IN
for all f . Thus, as another corollary of the above, any linear norm is monotonic.

Proposition 3. Let ‖.‖1, . . . , ‖.‖k be monotonic norms satisfying Proposition 2.
Then the lexicographical ordering ≺lex defined by s ≺lex t iff
∃i ∈ {1, . . . , k} such that ‖s‖i < ‖t‖i and ∀j ∈ {1, . . . , i− 1}: ‖s‖j = ‖t‖j

is a monotonic wfo.



Proof. By standard results (see, e.g., [8]) we know that ≺lex is a wfo (as < is a wfo on
IN). We will prove that ≺lex satisfies all the rules of Definition 5.
1. First, rule 1 is easy as ‖X‖i = ‖Y ‖i for all i and variables X, Y and therefore we
never have X ≺lex Y .
2. Before examining the other rules, let us note that s 6�lex t is equivalent to saying
that either

a) ∀j ∈ {1, . . . , k} ‖s‖j = ‖t‖j or
b) there exists an j ∈ {1, . . . , k} such that ‖s‖j < ‖t‖j and ∀l ∈ {1, . . . , j − 1}:
‖s‖l = ‖t‖l.

Let us now examine rule 2 of Definition 5. We have to prove that whenever s 6�lex ti

the conclusion of the rule holds.
Let us first examine case a) for s 6�lex ti. We have ‖s‖j = ‖ti‖j and thus we know that
‖s‖j ≤ ‖f(t1, . . . , tn)‖j by monotonicity of ‖.‖j (as < on IN is total we have that s 6> t
is equivalent to s ≤ t). As this holds for all ‖.‖j we cannot have sj �lex f(t1, . . . , tn).
Let us now examine the second case b) for s 6�lex ti. Let j ∈ {1, . . . , k} such that
‖s‖j < ‖ti‖j and ∀l ∈ {1, . . . , j−1}: ‖s‖l = ‖ti‖l. For all l we can deduce as above that
‖s‖l ≤ ‖f(t1, . . . , tn)‖l. However, we still have to prove that ‖s‖j < ‖f(t1, . . . , tn)‖j .
By monotonicity of ‖.‖j we only know that ‖s‖j ≤ ‖f(t1, . . . , tn)‖j . But we can also
apply monotonicity of ‖.‖j to deduce that ‖ti‖j ≤ ‖f(t1, . . . , tn)‖j and hence we can
infer the desired property (as ‖s‖j < ‖ti‖j).

3. Now, for rule 3 we have to prove that whenever si 6�lex ti for all i ∈ {1, . . . , n}
the conclusion of the rule holds. There are again two cases.
a) We can have ‖si‖j = ‖ti‖j for all i, j. By monotonicity of each ‖.‖j we know
that ‖f(s1, . . . , sn)‖j ≤ ‖f(t1, . . . , tn)‖j for all j ∈ {1, . . . , k}. Hence, we cannot have
f(s1, . . . , sn) �lex f(t1, . . . , tn).
b) In the other case we know that there must be a value j′ ∈ {1, . . . , k} such that for
some i: ‖si‖j′ < ‖ti‖j′ and ∀l ∈ {1, . . . , j′ − 1}: ‖si‖l = ‖ti‖l. I.e., by letting j denote
the minimum value j′ for which this holds, we know that for some i: ‖si‖j < ‖ti‖j and
for all i′: ∀l ∈ {1, . . . , j}: ‖si′‖l ≤ ‖ti′‖l. By monotonicity of each ‖.‖l we can therefore
deduce that ∀l ∈ {1, . . . , j}: ‖f(s1, . . . , sn)‖l ≤ ‖f(t1, . . . , tn)‖l. We can also deduce by
monotonicity of ‖.‖j that ‖f(s1, . . . , sn)‖j ≤ ‖f(t1, . . . , tn)‖j . We can even deduce that
‖f(s1, . . . , sn)‖j ≤ ‖f(t1, . . . , ti−1, si, ti+1, . . . , tn)‖j ≤ ‖f(t1, . . . , tn)‖j . Now, we just
have to prove that:
‖f(t1, . . . , ti−1, si, ti+1, . . . , tn)‖j < ‖f(t1, . . . , tn)‖j in order to affirm that
‖f(s1, . . . , sn)‖j 6�lex ‖f(t1, . . . , tn)‖j . This does not hold for all monotonic norms, but
as we know that ‖.‖j satisfies Proposition 2, this can be deduced by the fact that the
coefficient cf,i in ‖.‖j must be ≥ 1.

It is important that the norms ‖.‖1, . . . , ‖.‖k satisfy Proposition 2. Otherwise,
a counterexample would be as follows. Let ‖a‖1 = 1, ‖b‖1 = 2 and ‖f(a)‖1 =
‖f(b)‖1 = 5. Also let ‖a‖2 = 2, ‖b‖2 = 1 and ‖f(a)‖2 = 3, ‖f(b)‖2 = 2. Now
we have a ≺lex b, i.e. a 6�lex b, but also f(a) �lex f(b) and condition 3 of
monotonicity for ≺lex is violated.

One could make Proposition 3 slightly more general, but the current version
is sufficient to show the desired result, namely that most of the wfo’s used in
online practice are actually monotonic. For example almost all of the refined
wfo’s defined in [5, 33, 32, 31] are monotonic:
• Definitions 3.4 of [5], 3.2 of [33] and 2.14 of [32] all sum up the number

of function symbols (i.e. termsize) of a subset of the argument positions of



atoms. These wfo’s are therefore immediately covered by Proposition 2. The
algorithms only differ in the way of choosing the positions to measure. The
early algorithms simply measure the input positions, while the later ones
dynamically refine the argument positions to be measured (but which are
still measured using the termsize norm).
• Definitions 3.2 of [32] as well as 8.2.2 of [31] use the lexicographical order on

the termsizes of some selected argument positions. These wfo’s are therefore
monotonic as a corollary to Propositions 2 and 3.
The only non-monotonic wfo in that collection of articles is the one defined

specifically for metainterpreters in Definition 3.4 of [5] (also in Section 8.6 of
[31]) which uses selector functions to focus on subterms to be measured. We will
return to this approach below.

Also, as already mentioned, some of the techniques in [32, 31] (in sections 3.4
and 8.2.4 respectively) do not require the whole sequence to be admissible wrt a
unique wfo, i.e. one can split up a sequence into a (finite) number of subsequences
and apply different (monotonic) wfo’s on these subsequences. Similar refinements
can also be developed for wqo’s and the formal study of these refinements are
(thus) not the main focus of the paper.

Before showing that � is strictly more powerful than the union of all mono-
tonic wfo’s, we adapt the class of simplification orderings from term rewriting
systems. It will turn out that the power of this class is also subsumed by �.

Definition 6. A simplification ordering is a wfo ≺ on expressions which satis-
fies

1. s ≺ t⇒ f(t1, . . . , s, . . . , tn) ≺ f(t1, . . . , t, . . . , tn) (replacement property),
2. t ≺ f(t1, . . . , t, . . . , tn) (subterm property) and
3. s ≺ t⇒ sσ ≺ tγ for all variable only substitutions σ and γ (invariance under

variable replacement).

The third rule of the above definition is new wrt term-rewriting systems and
implies that all variables must be treated like a unique new constant. It turns
out that a lot powerful wfo’s are simplification orderings [7, 37]: recursive path
ordering, Knuth-Bendix ordering or lexicographic path ordering, to name just a
few. However, not all wfo’s of Proposition 2 are simplification orderings: e.g., for
cf = 0, ca = 1 we have ‖a‖ = ‖f(a)‖ and the subterm property does not hold
(for the associated wfo). In addition, Proposition 2 allows a special treatment for
predicates. On the other hand, there are wfo’s which are simplification orderings
but are not monotonic according to Definition 5.

Proposition 4. Let ≺ be a wfo on expressions. Then any admissible sequence
wrt ≺ is also an admissible sequence wrt � if ≺ is a) monotonic or if it is b) a
simplification ordering.

Proof. First, let us observe that for a given wfo ≺ on expressions, any admissible
sequence wrt ≺ is also an admissible sequence wrt � iff s � t ⇒ s 6�t. Indeed (⇒),
whenever s � t then s 6� t, and this trivially implies (by transitivity of ≺) that any
sequence not admissible wrt � cannot be strictly descending wrt ≺. On the other hand



(⇐), let us assume that for some s and t s� t but s � t. This means that the sequence
s, t is admissible wrt � but not wrt � and we have a contradiction.

a) The proof that for a monotonic wfo ≺ we have s�t ⇒ s 6� t is by straightforward
induction on the structure of s and t. The only “tricky” aspect is that the second rule
for monotonicity only holds if f is a function symbol. But if f is a predicate symbol,
then s � ti cannot hold because we supposed that predicate and function symbols are
distinct.

b) If ≺ is a simplification ordering then we can apply Lemma 3.3 of [37] to deduce
that ≺ is the superset of the strict part of � (i.e., ≺⊇ �). Let us examine the two
possibilities for s � t. First, we can have s � t. In that case we can deduce s ≺ t and
thus s 6� t. Second, we can have s � t and t � s. In that case s and t are identical,
except for the variables. If we now take the substitution σ which assigns all variables
in s and t to a unique variable we have sσ = tσ, i.e., sσ 6� tσ. This means that s � t
cannot hold (because � is invariant under variable replacement).

This means that the admissible sequences wrt � are a superset of the union
of all admissible sequences wrt simplification orderings and monotonic wfo’s. In
other words, no matter how much refinement we put into an approach based
upon monotonic wfo’s or upon simplification orderings we can only expect to
approach � in the limit. But by a simple example we can even dispel that hope.

Example 3. Take the sequence δ = f(a), f(b), b, a. This sequence is admissible
wrt � as f(a) 6�f(b), f(a) 6�b, f(a) 6�a, f(b) 6�b, f(b) 6�a and a 6�b. However,
there is no monotonic wfo ≺ which admits this sequence. More precisely, to
admit δ we must have f(a) � f(b) as well as b � a, i.e. a 6� b. But this violates
rule 3 of Definition 5 and ≺ cannot be monotonic. This also violates rule 1 of
Definition 6 and ≺ cannot be a simplification ordering.

These new results relating � to monotonic wfo’s shed light on �’s usefulness
in the context of ensuring online termination.

But of course the admissible sequences wrt � are not a superset of the union
of all admissible sequences wrt any wfo.1 For instance the list-length norm ‖.‖llen

is not monotonic, and indeed we have for t1 = [1, 2, 3] and t2 = [[1, 2, 3], 4] that
‖t1‖llen = 3 > ‖t2‖llen = 2 although t1 � t2. So there are sequences admissible
wrt list-length but not wrt �. The reason is that ‖.‖llen in particular and non-
monotonic wfo’s in general can completely ignore certain parts of the term, while
� will always inspect that part. E.g., if we have s � f(. . . t . . .) and � ignores
the subterm t then it will also be true that s � f(. . . s . . .) while s�f(. . . s . . .),2

i.e. the sequence s, f(. . . s . . .) is admissible wrt � but not wrt �.
For that same reason the wfo’s for metainterpreters defined in Definition 3.4

of [5] mentioned above are not monotonic, as they are allowed to completely
focus on subterms, fully ignoring other subterms. However, automation of that
technique is not addressed in [5]. E.g., for this wfo one cannot immediately apply
the idea of continually refining the measured subterms, because otherwise one
1 Otherwise � could not be a wqo, as all finite sequences without repetitions are

admissible wrt some wfo (map last element to 1, second last element to 2, . . . ).
2 Observe that if f is a predicate symbols then f(. . . s . . .) is not a valid expression,

which enabled us to ignore arguments to predicates in e.g. Proposition 2.



might simply plunge deeper and deeper into the terms and termination would
not be ensured. A step towards an automatic implementation is presented in
Section 8.6 of [31] and it will require further work to formally compare it with
wqo-based approaches and whether the ability to completely ignore certain parts
of an expression can be beneficial for practical programs. But, as we have seen
earlier, � alone is already very flexible for metainterpreters, even more so when
combined with characteristic trees [26] (see also [46]).

Of course, for any wfo (monotonic or not) one can devise a wbr (cf. Lemma 1)
which has the same admissible sequences. Still there are some feats that are
easily attained, even by using �, but which cannot be achieved by a wfo ap-
proach (monotonic or not). Take the sequences S1 = p([], [a]), p([a], []) and
S2 = p([a], []), p([], [a]). Both of these sequences are admissible wrt � This il-
lustrates the flexibility of using well-quasi orders compared to well-founded ones
in an online setting, as there exists no wfo (monotonic or not) which will admit
both these sequences. It however also illustrates why, when using a wqo in that
way, one has to compare with every predecessor state of a process. Otherwise one
can get infinite derivations of the form p([a], [])→ p([], [a])→ p([a], [])→. . . .3

Short Note on Offline Termination This example also shows why � (or well-
quasi orders in general) cannot be used directly for static termination analysis.
Let us explain what we mean. Take, e.g., a program containing the clauses C1 =
p([a], [])← p([], [a]) and C2 = p([], [a])← p([a], []). Then, in both cases the body
is not embedding the head, but still the combination of the two clauses leads to
a non-terminating program. However, � can be used to construct well-founded
orders for static termination analysis. Take the clause C1. The head and the
body are incomparable according to �. So, we can simply extend � by stating
that p([a], [])�p([], a) (thus making the head strictly larger than the body atom).
As already mentioned, for any extension ≤ of a wqo we have that < is a wfo.
Thus we know that the program just consisting of C1 is terminating. If we now
analyse C2 we have that, according to the extended wqo, the body is strictly
larger than the head and (luckily) we cannot prove termination (i.e. there is no
way of extending � so that for both C1 and C2 the head is strictly larger than
the body).

4 Discussion and Conclusion

Of course � is not the ultimate relation for ensuring online termination. On its
own in the context of local control of partial deduction, � will sometimes allow
too much unfolding than desirable for efficiency concerns (i.e. more unfolding

3 When using a wfo one has to compare only to the closest predecessor [32], because of
the transitivity of the order and the strict decrease enforced at each step. However,
wfo’s are usually extended to incorporate variant checking and then require inspect-
ing every predecessor anyway (though only when there is no strict weight decrease,
see, e.g., [31, 32]).



does not always imply a better specialised program) and we refer to the solutions
developed in, e.g., [26, 18].

For some applications, � remains too restrictive. In particular, it does not
always deal satisfactorily with fluctuating structure (arising, e.g., for certain
meta-interpretation tasks) [46]. The use of characteristic trees [23, 26] remedies
this problem to some extent, but not totally. A further step towards a solution
is presented in [46]. In that light, it might be of interest to study whether the
extensions of the homeomorphic embedding relation proposed in [39] and [21]
(in the context of static termination analysis of term rewrite systems) can be
useful in an online setting. As shown in [24] the treatment of variables of � is
rather rudimentary and several ways to remedy this problem are presented.

In summary, we have shed new light on the relation between wqo’s and wfo’s
and have formally shown (for the first time) why wqo’s are more interesting than
wfo’s for ensuring termination in an online setting (such as program specialisa-
tion or analysis). We have illustrated the inherent flexibility of � and proved
that, despite its simplicity, it is strictly more generous than the class of mono-
tonic wfo’s. As all the wfo’s used for automatic online termination (so far) are
actually monotonic, this formally establishes the interest of � in that context.
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A Small Experiments with the ecce system

The purpose of this appendix is to illustrate the flexibility which the home-
omorphic embedding relation provides straight “out of the box” (other more
intricate well-quasi orders, like the one used by Mixtus [41], can handle some of
the examples below as well).

For that we experiment with the ecce partial deduction system [22] using
an unfolding rule based on � which allows the selection of either determinate
literals or left-most literals within a goal, given that no covering ancestor [5] is
embedded (via �). To ease readability, the specialised programs are sometimes
presented in unrenamed form.

First, let us take the mergesort program, which is somewhat problematic for
a lot of static termination analysis methods [38, 27].

mergesort([],[]).

mergesort([X],[X]).

mergesort([X,Y|Xs],Ys) :-

split([X,Y|Xs],X1s,X2s),

mergesort(X1s,Y1s),mergesort(X2s,Y2s),

merge(Y1s,Y2s,Ys).

split([],[],[]).

split([X|Xs],[X|Ys],Zs) :- split(Xs,Zs,Ys).

merge([],Xs,Xs).

merge(Xs,[],Xs).

merge([X|Xs],[Y|Ys],[X|Zs]) :- X =< Y, merge(Xs,[Y|Ys],Zs).

merge([X|Xs],[Y|Ys],[Y|Zs]) :- X>Y, merge([X|Xs],Ys,Zs).

The partial evaluation query:

?- mergesort([3,1,2],X).

As the following resulting specialised program shows, homeomorphic embed-
ding allowed the full unfolding of mergesort:

mergesort([3,1,2],[1,2,3]).

It took ecce less than 0.5 s on a Sparc Classic to produce the above program
(including post-processing and writing to file).

We can even achieve this same feat even if we interpose one or more levels of
metainterpretation! Take a vanilla solve metainterpreter with mergesort at the
object-level:

solve([]).

solve([H|T]) :-

claus(H,Bdy),solve(Bdy),solve(T).

claus(mergesort([],[]), []).

claus(mergesort([X],[X]), []).



claus(mergesort([X,Y|Xs],Ys),

[split([X,Y|Xs],X1s,X2s),

mergesort(X1s,Y1s),mergesort(X2s,Y2s),

merge(Y1s,Y2s,Ys) ]).

claus(split([],[],[]), []).

claus(split([X|Xs],[X|Ys],Zs) , [ split(Xs,Zs,Ys) ]).

claus(merge([],Xs,Xs), []).

claus(merge(Xs,[],Xs), []).

claus(merge([X|Xs],[Y|Ys],[X|Zs]) ,

[ X =< Y, merge(Xs,[Y|Ys],Zs) ]).

claus(merge([X|Xs],[Y|Ys],[Y|Zs]) ,

[ X>Y, merge([X|Xs],Ys,Zs)]).

claus(’=<’(X,Y),[]) :- X =< Y.

claus(’>’(X,Y),[]) :- X > Y.

mergesort_test(X) :- solve([mergesort([3,1,2],X)]).

The partial evaluation query:

?- mergesort_test(X).

Again homeomorphic embedding allowed the full unfolding:

mergesort_test([1,2,3]).

It took ecce 2.86 s on a Sparc Classic to produce the above program (including
post-processing and writing to file).

The following example is taken from [31].

produce([],[]).

produce([X|Xs],[X|Ys]) :- produce(Xs,Ys).

consume([]).

consume([X|Xs]) :- consume(Xs).

The partial evaluation query:

?- produce([1,2|X],Y), consume(Y).

To solve it in the setting of unfolding based upon wfo’s one needs both partition
based measure functions as well as taking the context into account. The same
adequate unfolding can simply be achieved by � based determinate unfolding,
as illustrated by the following specialised program derived by ecce (default
settings):

produce_conj__1([],[1,2]).

produce_conj__1([X1|X2],[1,2,X1|X3]) :-

produce_conj__2(X2,X3).

produce_conj__2([],[]).

produce_conj__2([X1|X2],[X1|X3]) :-

produce_conj__2(X2,X3).


