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Abstract. Well-quasi orders in general, and homeomorphic embedding
in particular, have gained popularity to ensure online termination of pro-
gram analysis, specialisation and transformation techniques. It has been
recently shown that the homeomorphic embedding relation is strictly
more powerful than a large class of involved well-founded approaches.
In this paper we provide some additional investigations on the power of
homeomorphic embedding. We, however, also illustrate that the homeo-
morphic embedding relation suffers from several inadequacies in contexts
where logical variables arise. We therefore present new, extended home-
omorphic embedding relations to remedy this problem.
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1 Introduction

The problem of ensuring termination arises in many areas of computer science
and a lot of work has been devoted to proving termination of term rewriting
systems (e.g. [9-11,40] and references therein) or of logic programs (e.g. [7,41]
and references therein). It is also an important issue within all areas of program
analysis, specialisation and transformation: one usually strives for methods which
are guaranteed to terminate. One can basically distinguish between two kinds of
techniques for ensuring termination:
— offtine (or static) techniques, which prove or ensure termination of a program
or process beforehand without any kind of execution, and
— online (or dynamic) techniques, which ensure termination of a process during
its execution.

Offline approaches have less information at their disposal but do not require
runtime intervention (which might be impossible). Which of the two approaches
is taken depends entirely on the application area. For instance, static termination
analysis of logic programs [7,41] falls within the former context, while termina-
tion of program specialisation, transformation or analysis is often ensured in an
online manner.

* Part of the work was done while the author was Post-doctoral Fellow of the Fund
for Scientific Research - Flanders Belgium (FWO).



This paper is primarily aimed at studying and improving online termination
techniques. Let us examine the case of partial deduction [34,12,26] — an au-
tomatic technique for specialising logic programs. Henceforth we suppose some
familiarity with basic notions in logic programming [4, 33].

Partial deduction based upon the Lloyd and Shepherdson framework [34] gen-
erates (possibly incomplete) SLDNF-trees for a set A of atoms. The specialised
program is extracted from these trees by producing one clause (called a resul-
tant) for every non-failing branch. The resolution steps within the SLDNF-trees
— often referred to as wunfolding steps — are those that have been performed
beforehand, justifying the hope that the specialised program is more efficient.

Now, to ensure termination of partial deduction two issues arise [12, 39]. One
is called the local termination problem, corresponding to the fact that each gen-
erated SLDNF-tree should be finite. The other is called the global termination
problem, meaning that the set A should contain only a finite number of atoms.
A similar classification can be done for most other program specialisation tech-
niques (cf., e.g., [31]).

Below we mainly use local termination to illustrate our concepts. (As shown
in [39] the atoms in A can be structured into a global tree and methods similar
to the one for local termination can be used to ensure global termination. See
also [45] for a very general, language independent, framework for termination.)

However, the discussions and contributions of the present paper are also (im-
mediately) applicable in the context of analysis, specialisation and transforma-
tion techniques in general, especially when applied to computational paradigms,
such as logic programming, constrained logic programming, conditional term
rewriting, functional programming and functional & logic programming. We also
believe that our discussions are relevant for other areas, such as infinite model
checking or theorem proving, where termination has to be insured in non-trivial
ways.

One, albeit ad-hoc, way to solve the local termination problem is to simply
impose an arbitrary depth bound. Such a depth bound is of course not motivated
by any property, structural or otherwise, of the program or goal under considera-
tion. In the context of local termination, the depth bound will therefore typically
lead either to too little or too much unfolding.

Another approach, often used in partial evaluation of functional programs
[19], is to (only) expand a tree while it is determinate (i.e. it only has one
non-failing branch). However, this approach can be very restrictive and in itself
does not guarantee termination, as there can be infinitely failing determinate
computations at specialisation time.

Well-founded Orders Luckily, more refined approaches to ensure local ter-
mination exist. The first non-ad-hoc methods [6, 38,37, 36] in logic and [43, 52]
functional programming were based on well-founded orders, inspired by their
usefulness in the context of static termination analysis. These techniques ensure
termination, while at the same time allowing unfolding related to the structural



aspect of the program and goal to be specialised, e.g., permitting the consump-
tion of static input within the atoms of A.

Definition 1. (wfo) A (strict) partial order >g on a set S is an anti-reflexive,
anti-symmetric and transitive binary relation on S X S. A sequence of elements
51,82,... in S is called admissible wrt >g iff s; > s;41, for all i > 1.

We call >5 a well-founded order (wfo) iff there are no infinite admissible se-
quences wrt >g.

Now, to ensure local termination for instance, one has to find a sensible well-
founded order on atoms and then only allow SLDNF-trees in which the sequence
of selected atoms is admissible wrt the well-founded order. If an atom that we
want to select is not strictly smaller than its ancestors, we either have to select
another atom or stop unfolding altogether.

FEzample 1. Let P be the reverse program using an accumulator:

rev([], Ace, Acc) —

rev([H|T)], Acc, Res) «— rev(T,[H|Acc], Res)
A simple well-founded order on atoms of the form rev(ty, ta,t3) might be based
on comparing the termsize (i.e., the number of function and constant symbols)
of the first argument. We then define the wfo on atoms by:

rev(ty,to,t3) > rev(sy, so, s3) iff term_size(ta) > term_size(sq).

Based on that wfo, the goal «— rev([a, b|T],[], R) can be unfolded into the goal «
rev([b]T7], [a], R) and further into « rev(T, [b, a], R) because the termsize of the
first argument strictly decreases at each step (even though the overall termsize
does not decrease). However, «— rev(T, [b, a], R) cannot be further unfolded into
— rev(T’,[H',b,a], R) because there is no such strict decrease.

Much more elaborate techniques exist [6,38,37,36], which, e.g., split the
expressions into classes, use lexicographical ordering on subsequences of the ar-
guments and even continuously refine the orders during the unfolding process.
These works also present some further refinements on how to apply wfo’s, es-
pecially in the context of partial deduction. For instance, instead of requiring a
decrease wrt every ancestor, one can only request a decrease wrt the covering
ancestors, i.e. one only compares with the ancestor atoms from which the current
atom descends (via resolution). (Most of these refinements can also be applied
to other approaches, notably the one we will present in the next section.)

However, it has been felt by several researchers that well-founded orders are
sometimes too rigid or (conceptually) too complex in an online setting. Recently,
well-quasi orders have therefore gained popularity to ensure online termination
of program manipulation techniques [5,44, 46, 30, 31, 14, 20, 2,22, 50, 1, 8]. In [28]
the reasons behind this move to well-quasi orders have been formally investi-
gated. Notably, [28] shows that a rather simple well-quasi approach—the home-
omorphic embedding relation— is strictly more powerful than a large class of
involved well-founded approaches. Nonetheless, despite its power, we will show
that the homeomorphic embedding is still unsatisfactory when it comes to vari-
ables. This paper aims at improving this situation by developing more adequate
refinements of the homeomorphic embedding relation.



This paper is structured as follows. In Sections 2 and 3 we provide a gen-
tle introduction to well-quasi orders and summarise the main results of [28].
In Section 4 we provide some additional investigation, discussing the concept
of “near-foundedness” [36]. In Section 5 we show that, despite its power, the
homeomorphic embedding is still unsatisfactory when it comes to variables. We
provide a first solution, which we then improve in Section 6, notably to be able
to cope with infinite alphabets.

2 Well-quasi orders and homeomorphic embedding

Formally, well-quasi orders can be defined as follows.

Definition 2. (quasi order) A quasi order >g on a set S is a reflexive and
transitive binary relation on S x S.

Henceforth, we will use symbols like <, > (possibly annotated by some sub-
script) to refer to strict partial orders and <, > to refer to quasi orders and
binary relations. We will use either “directionality” as is convenient in the con-
text. We also define an expression to be either a term (built-up from variables
and function symbols of arity > 0) or an atom (a predicate symbol applied to a,
possibly empty, sequence of terms), and then treat predicate symbols as function
symbols, but suppose that no confusion between function and predicate symbols
can arise (i.e., predicate and function symbols are distinct).

Definition 3. (wbr,wqo) Let <g be a binary relation on S x S. A sequence
of elements s1, Sa2,... in S is called admissible wrt <g iff there are noi < j such
that s; <g sj. We say that <g is a well-binary relation (wbr) on S iff there are
no infinite admissible sequences wrt <g. If <g is a quasi order on S then we
also say that <g is a well-quasi order (wqo) on S.

Observe that, in contrast to wfo’s, non-comparable elements are allowed
within admissible sequences. An admissible sequence is sometimes called bad
while a non-admissible one is called good. A well-binary relation is then such
that all infinite sequences are good. There are several other equivalent defini-
tions of well-binary relations and well-quasi orders. Higman [17] used an alternate
definition of well-quasi orders in terms of the “finite basis property” (or “finite
generating set” in [21]). Both definitions are equivalent by Theorem 2.1 in [17]. A
different (but also equivalent) definition of a wqo is(e.g., [23,51]): A quasi-order
<y is a wqo iff for all quasi-orders <y, which contain <y, (i.e. v<y v = v=y0’)
the corresponding strict partial order <y is a wfo. This property has been ex-
ploited in the context of static termination analysis to dynamically construct
well-founded orders from well-quasi ones and led to the initial use of wqo’s in
the offline setting [9,10]. The use of well-quasi orders in an online setting has
only emerged recently (it is mentioned, e.g., in [5] but also [44]) and [28] provides
the first formal comparison.! Furthermore, in the online setting, transitivity of

! There has been some comparison between wfo’s and wqo’s in the offline setting, e.g.,
in [40] it is argued that (for “simply terminating” rewrite systems) approaches based
upon quasi-orders are less interesting than ones based upon a partial orders.



a wqo is not really interesting (because one does not have to generate wfo’s) and
one can therefore drop this requirement, leading to the use of whr’s. Later on in
Sections 5 and 6 we will actually develop wbr’s which are not wqo’s.

An interesting wqo is the homeomorphic embedding relation <, which derives
from results by Higman [17] and Kruskal [21]. It has been used in the context of
term rewriting systems in [9, 10], and adapted for use in supercompilation [49] in
[46]. Tts usefulness as a stop criterion for partial evaluation is also discussed and
advocated in [35]. Some complexity results can be found in [48] and [16] (also
summarised in [35]).

The following is the definition from [46], which adapts the pure homeomor-
phic embedding from [10] by adding a rudimentary treatment of variables.

Definition 4. The (pure) homeomorphic embedding relation < on expressions
is inductively defined as follows (i.e. < is the least relation satisfying the rules):

1. X QY for all variables X,Y
2. s f(t1,...,tn) if s <t; for some i
3. f(s1y--y8n) Sf(t1,. . ytn) fVie{l,...,n}: s Jt,.

The second rule is sometimes called the diving rule, and the third rule is
sometimes called the coupling rule (notice that n is allowed to be 0). When s <t
we also say that s is embedded in t or t is embedding s. By s <\t we denote that
s<t and t As.

The intuition behind the above definition is that A < B iff A can be obtained
from B by “striking out” certain parts, or said another way, the structure of A
reappears within B. Indeed, just applying the coupling rule 3 we get syntactic
identity for ground expressions, rule 1 just confounds all variables, and the diving
rule 2 allows to ignore a part (namely f(¢1,...,t;—1,%i41,...,ts)) of the right-
hand term.

Ezample 2. We have p(a)<p(f(a)) and indeed p(a) can be obtained from p(f(a))
by “striking out” the f; see Fig. 1. Observe that the “striking out” corresponds to
the application of the diving rule 2 and that we even have p(a)<ip(f(a)). We also
have, e.g., that: X <X, p(X)<ip(f(Y)), p(X, X)<Ip(X,Y) and p(X,Y)Ip(X, X).

Proposition 1. < is a wqo on the set of expressions over a finite alphabet.

To ensure, e.g., local termination of partial deduction, we have to ensure that
the constructed SLDNF-trees are such that the selected atoms do not embed any
of their ancestors (when using a well-founded order as in Example 1, we had to
require a strict decrease at every step). If an atom that we want to select embeds
one of its ancestors, we either have to select another atom or stop unfolding
altogether. For example, based on <, the goal « rev([a, b|T],[], R) of Example 1
can be unfolded into « rev([b|T], [a], R) and further into « rev(T, [b,al, R)
as rev([a,b|T], [], R) drev([b|T],[a], R), rev([a,b|T],[], R) drev(T,[b,a], R) and
rev([b|T], [a], R) Arev(T, [b, a], R). However, < rev(T, [b, a], R) cannot be further
unfolded into «— rev(T’,[H’,b,a], R) as rev(T,[b,a], R) < rev(T’,[H’,b,al, R).



Fig. 1. Illustrating Example 2

Observe that, in contrast to Example 1, we did not have to choose how to
measure which arguments. We further elaborate on the inherent flexibility of <
in the next section.

The homeomorphic embedding relation is also useful for handling structures
other than expressions. It has, e.g., been successfully applied in [30,26,31] to
detect (potentially) non-terminating sequences of characteristic trees. Also, <
seems to have the desired property that very often only “real” loops are detected
and that they are detected at the earliest possible moment (see [35]).

3 Comparing wbr’s and wfo’s

In this section we summarise the main results of [28].

It follows from Definitions 1 and 3 that if <y is a wqo then <y (defined by
vy <y vy iff v1 <y vy Avy Zv v2) is a wfo, but not vice versa. The following
shows how to obtain a wbr from a wfo.

Lemma 1. Let <y be a well-founded order on V. Then <y, defined by vy <y v
iff vi kv va, is a wbr on V. Furthermore,<y and <y have the same set of
admissible sequences.

This means that, in an online setting, the approach based upon wbr’s is in
theory at least as powerful as the one based upon wfo’s. Further below we will
actually show that wbr’s are strictly more powerful.

Observe that <y is not necessarily a wqo: transitivity is not ensured as
t1 # ty and to ¥ ts do not imply t; # t3. Let, e.g., s < t denote that s is
strictly more general than ¢t. Then < is a wfo [18] but p(X, X,a) ¥ p(X, Z,b)
and p(X, Z,b) # p(X,Y,a) even though p(X, X,a) > p(X,Y,a).

Let us now examine the power of one particular wqo, the earlier defined <.

The homeomorphic embedding < relation is very flexible. It will for example,
when applied to the sequence of covering ancestors, permit the full unfolding of
most terminating Datalog programs, the quicksort or even the mergesort pro-
gram when the list to be sorted is known (the latter poses problems to some static
termination analysis methods [41, 32]; for some experiments see [28]). Also, the



produce-consume example from [36] requires rather involved techniques (consid-
ering the context) to be solved by wfo’s. Again, this particular example poses
no problem to < (cf. [28]).

The homeomorphic embedding < is also very powerful in the context of
metaprogramming. Notably, it has the ability to “penetrate” layers of (non-
ground) meta-encodings (cf. [27] and [13] for further discussions on that matter;
cf. also the appendix of [28] for some computer experiments). For instance, < will
admit the following sequences (where, among others, Example 1 is progressively
wrapped into “vanilla” metainterpreters counting resolution steps and keeping
track of the selected predicates respectively):

Sequence
rev([a, b|T7, [], R) ~ rev([b[T], [a], R)
solve(rev([a, b|T],[], R),0) ~ solve(rev([b|T], [a], R), s(0))
solve’ (solve(rev([a, b|T], [], R),0),[]) ~ solve’ (solve(rev([b|T], [al], R), 5(0)), [rev])
b, [1) ~ path(b, a, [a])
solve’ (solve(path(a,b,[]),0),[]) ~ solve (solve(path(b, a,[al), s(0)), [rev])

Again, this is very difficult for wfo’s and requires refined and involved techniques
(of which to our knowledge no implementation in the online setting exists). For
example, to admit the third sequence we have to measure something like the
“termsize of the first argument of the first argument of the first argument.” For
the fifth sequence this gets even more difficult.

We have intuitively demonstrated the usefulness of < and that it is often
more flexible than wfo’s. But can we prove some “hard” results? It turns out
that we can and [28] establishes that — in the online setting — < is strictly
more generous than a large class of refined wfo’s containing the following:

Definition 5. A well-founded order < on exrpressions is said to be monotonic
iff the following rules hold:

1. X #Y for all variables X,Y,
2. s ¥ f(t1,...,t,) whenever f is a function symbol and s ¥ t; for some i and
3. f(s1,--.y8n) ¥ ft1,...,t,) whenever Vi € {1,...,n}:s; 3 fi.

Observe that point 2 need not hold for predicate symbols and that point 3
implies that ¢ ¥ ¢ for all constant and proposition symbols ¢. There is also a
subtle difference between monotonic wfo’s as of Definition 5 and wfo’s which
possess the replacement property (such orders are called rewrite orders in [40]
and monotonic in [9]). More on that below.

[28] shows that most of the wfo’s used in online practice are actually mono-
tonic:

— Definitions 3.4 of [6], 3.2 of [38] and 2.14 of [37] all sum up the number
of function symbols (i.e. termsize) of a subset of the argument positions of
atoms. The algorithms only differ in the way of choosing the positions to
measure. The early algorithms measure the input positions, while the later
ones dynamically refine the argument positions to be measured. All these
wfo’s are monotonic.



— Definitions 3.2 of [37] as well as 8.2.2 of [36] use the lexicographical order
on the termsizes of some selected argument positions. These wfo’s are also
monotonic, as proven in [28].

The only non-monotonic wfo in that collection of articles is the one defined
specifically for metainterpreters in Definition 3.4 of [6] (also in Section 8.6 of
[36]) which uses selector functions to focus on subterms to be measured.

We now adapt the class of simplification orderings from term rewriting sys-
tems. The power of this class of wfo’s is also subsumed by <.

Definition 6. A simplification ordering is a wfo < on expressions which satis-
fies
1. s<t= f(t1,...,8, ..., tn) < f(t1,...,t,...,t,) (replacement property),
2.t =< f(t1,...,t,...,t,) (subterm property) and
3. s <t = so <ty for all variable only substitutions o and ~ (invariance under
variable replacement).

The third rule of the above definition is new wrt term-rewriting systems and
implies that all variables must be treated like a unique new constant. It turns
out that a lot of powerful wfo’s are simplification orderings [9, 40]: recursive path
ordering, Knuth-Bendix ordering or lexicographic path ordering, to name just a
few. However, not all monotonic wfo’s are simplification orderings and there are
wfo’s which are simplification orderings but are not monotonic.

Proposition 2. Let < be a wfo on expressions. Then any admissible sequence
wrt < 48 also an admissible sequence wrt < if < is a) monotonic or if it is b) a
simplification ordering.

This means that the admissible sequences wrt <l are a superset of the union
of all admissible sequences wrt simplification orderings and monotonic wfo’s. In
other words, no matter how much refinement we put into an approach based
upon monotonic wfo’s or upon simplification orderings we can only expect to
approach < in the limit. But by a simple example we can even dispel that hope.

Ezample 3. Take the sequence § = f(a), f(),b,a. This sequence is admissible
wrt < as f(a) Af(b), f(a) Ab, f(a) Aa, f(b) Ab, f(b) Aa and a Ab. However,
there is no monotonic wfo < which admits this sequence. More precisely, to
admit 6 we must have f(a) > f(b) as well as b = a, i.e. a  b. But this violates
rule 3 of Definition 5 and < cannot be monotonic. This also violates rule 1 of
Definition 6 and < cannot be a simplification ordering.

These new results relating <0 to monotonic wfo’s shed light on <’s usefulness
in the context of ensuring online termination.

But of course the admissible sequences wrt < are not a superset of the union
of all admissible sequences wrt any wfo.? For instance the list-length norm ||. | ;7en
is not monotonic, and indeed we have for t; = [1,2, 3] and t2 = [[1,2, 3], 4] that

2 Otherwise < could not be a wqo, as all finite sequences without repetitions are
admissible wrt some wfo (map last element to 1, second last element to 2, ...).



It1llizen = 3 > |It2lizen = 2 although t; <te. So there are sequences admissible
wrt list-length but not wrt <. The reason is that ||.||;jen in particular and non-
monotonic wfo’s in general can completely ignore certain parts of the term, while
< will always inspect that part. E.g., if we have s > f(...t...) and > ignores
the subterm ¢ then it will also be true that s = f(...s...) while s<If(...s...),3
i.e. the sequence s, f(...s...) is admissible wrt > but not wrt <.

Of course, for any wfo (monotonic or not) one can devise a wbr (cf. Lemma 1)
which has the same admissible sequences. Still there are some feats that are
easily attained, even by using <, but which cannot be achieved by a wfo ap-
proach (monotonic or not). Take the sequences S1 = p([],[a]),p([al,[]) and
Sa = p(lal,[]), p([], [a]). Both of these sequences are admissible wrt <. This illus-
trates the flexibility of using well-quasi orders compared to well-founded ones in
an online setting, as there exists no wfo (monotonic or not) which will admit both
these sequences. It, however, also illustrates why, when using a wqo in that way,
one has to compare with every predecessor state of a process. Otherwise one can
get infinite derivations of the form p([a],[]) — p([],[a]) — p([a],[]) —....* In

other words, for wqo’s, the composition sy, ..., s,, of two admissible sequences
S1y-+-,8n and Sp, Sp41,--.,Sm i not necessarily admissible. This is in contrast
to wio’s.

Finally, one could argue that it is possible to extend the power of the wfo-
approach by defining wfo’s over histories (i.e., sequences) instead of the individ-
ual elements. This is, however, not the way that wfo’s are used in practice and one
is faced with the difficulty of defining a sensible order on sequences. Of course, one
could always use a wqo = to define such an order: s1,...,5, > S1,...,Sn, Snt1
iff Vi e {1,...,n}: 8; Z sps1. One would thus get an approach with ezactly the
same power and complexity as the wqo-approach.

4 Nearly-Foundedness and Over-Eagerness

In [37], as well as in Section 8.2.4 of [36], a technique for wfo’s is formally in-
troduced, based upon nearly-foundedness. As already mentioned earlier, some
of the techniques in [6, 38,37, 36] start out with a very coarse wfo <; which is
then continuously refined, enabling a clever choice of weights for predicates and
their respective arguments (deciding beforehand upon appropriate weights can
be extremely difficult or impossible; see examples in Section 3). For example
we might have that <; is based upon measuring the sum of the termsize of all
arguments and the process of refining consists in dropping one or more argu-
ments. For example, suppose that we have some sequence s1, So, ..., s; which is

3 Observe that if f is a predicate symbols then f(...s...) is not a valid expression,
which enabled us to ignore arguments to predicates.

4 When using a wfo one has to compare only to the closest predecessor [37], because of
the transitivity of the order and the strict decrease enforced at each step. However,
wfo’s are usually extended to incorporate variant checking and then require inspect-
ing every predecessor anyway (though only when there is no strict weight decrease,
see, e.g., [36,37]).



admissible wrt the initial wfo <; but where s;11 £1 s; with ;11 = p(a, s(s(b)))
and s; = p(s(a),b). In that case we can move to a refinement <5 of <; in
which only the termsize of the first argument is measured, enabling the move
from s; to s;y1 (as s;y1 <2 s;). This, however, does not guarantee that the
whole sequence 1, Sa,...,S;, S;+1 is admissible wrt <. E.g., for the sequence
p(s(a),s(s(s(c)))),p(s(a),b),p(a,s(s(b))) with i = 2 we have sy £2 s1 even
though sy <3 s7.

To solve this problem, the earlier algorithms verified that a refinement keeps
the whole sequence admissible (otherwise it was disallowed). The problem with
this approach is that re-checking the entire sequence can be expensive. [37, 36]
therefore advocates another solution: not re-checking the entire sequence on the
grounds that it does not threaten termination (provided that the refinements
themselves are well-founded). This leads to sequences si, sg, ... which are not
well-founded but nearly-founded [37,36] meaning that s; £ s; only for a finite
number of pairs (4, 7) with ¢ > j.

In summary, the motivation for nearly-foundedness lies in speeding up the
construction of admissible sequences (not re-scanning the initial sequence upon
refinement). As a side-effect, this approach will admit more sequences and, e.g.,
solve some of our earlier examples (as a suitably large depth bound would as
well). However, from a theoretical point of view, we argue below that nearly-
foundedness is difficult to justify and somewhat unsatisfactory.

First, we call a technique over-eager if it admits sequences which are not
admitted by the variant test (i.e., it admits sequences containing variants). We
call such a technique strictly over-eager if it admits sequences which contain
more than 1 occurrence of the same syntactic term.

A depth bound based technique is strictly over-eager, which is obviously a
very undesirable property indicating some ad-hoc behaviour. The same can (al-
most always)® also be said for over-eagerness. For instance, in the context of par-
tial deduction or unfold/fold program transformation, over-eager unfolding will
“hide” possibilities for perfect folding (namely the variants) and also lead to too
large specialised programs. An approach based upon homeomorphic embedding
is not over-eager nor is any other wfo/wqo based approach which does not dis-
tinguish between variants. However, as we show below, using nearly-foundedness
leads to strict over-eagerness.

Let us first describe the way nearly-founded sequences are constructed in [37,
36]. First, we define a well-founded order <,y acting on a set W of well-founded
orders on expressions. To construct admissible sequences of expressions wrt <yy
we start by using one wfo <3 € W until the sequence can no longer be extended.
Once this is the case we can use another wfo <€ W which admits the offending
step, provided that <;<yy <. It is not required that the whole initial sequence is
admissible wrt <o, just the last step (not admitted by <;). We can now continue
expanding the sequence until we again reach an offending step, where we can
then try to refine <5 into some <3 with <3<jy<s, and so on, until no further
expansion is possible.

% See discussion in Section 5 concerning the variant test on covering ancestors.



Example 4. Take the following program.

p(la, a|T), [a]Y]) — p(T,Y)

p([b, b, b|T]7 Y) < p(T, [b7 b|Y])

p(T, [b,b]Y]) — p([a, a, b, b,b[T], [a]Y])
Let us now define the following well-founded orders, where ||¢||¢s denotes the
termsize of t:

<q1,23: p(s1,82) < p(ty,te) iff [[s1lles + |Is2lles < [[t1lles + [[E2lles

<q1y: p(s1,82) < plty,t2) i [[s1]les < [[£1]]es

<q2y: p(s1,82) < p(te,t2) if [|s2lles < [[t2fes
We also define the wfo <)y on the above well-founded orders: <;;}<yy<y1 2y and
<{2y=w<{1,2}- In other words we can refine <{1,2} into <gqy or <{2y, which in
turn cannot be further refined.

We can now construct the following admissible sequence in which two terms
(p([a. a,b,b, ], [a]) and p([b, b,8], [])) appear twice:

p(la,a,b,b,b], [a])
l <q.,2)
p([b, b, b}v H)
L <@z
p((], 1b,6])
| <2y (refinement)
p([a7a,b, b, b]> [a])
I <@
p([b, b, 0], [])

Example 4 thus proves that nearly-foundedness may result in strict over-
eagerness. (As a side-effect, the example also shows that the nearly-foundedness
approach cannot be mapped to a wfo-approach, however involved it might be.)
Although it is unclear how often such situations will actually arise in practice,
we believe that the strict over-eagerness is just one of the (mathematically)
unsatisfactory aspects of nearly-foundedness.

5 A more refined treatment of variables

While < has a lot of desirable properties it still suffers from some drawbacks.
Indeed, as can be observed in Example 2, the homeomorphic embedding relation
< as defined in Definition 4 is rather crude wrt variables. In fact, all variables
are treated as if they were the same variable, a practice which is clearly un-
desirable in a logic programming context. Intuitively, in the above example,
p(X,Y) 94 p(X,X) can be justified (see, however, Definition 8 below), while
p(X, X) <p(X,Y) is not. Indeed p(X, X) can be seen as standing for something
like and(eq(X,Y),p(X,Y)), which embeds p(X,Y’), but the reverse does not
hold.

Secondly, < behaves in quite unexpected ways in the context of general-
isation, posing some subtle problems wrt the termination of a generalisation
process.



Ezample 5. Take for instance the following generalisation algorithm, which ap-
pears (in disguise) in a lot of partial deduction algorithms (e.g., [30, 26, 31]). (In
that context A is the set of atoms for which SLDNF-trees have already been
constructed while B are the atoms in the leaves of these trees. The goal of the
algorithm is then to extend A such that all leaf atoms are covered.)

Input: two finite sets A, B of atoms
Output: a finite set A’ D A s.t. every atom in B is an instance of an atom in A’
Initialisation: A" := A, B’ := B
while B’ # () do
remove an element B from B’
if B is not an instance of an element in 4’ then
if 3A € A’ such that A < B then
add msg(4, B) to B’
else add B to A’

The basic idea of the algorithm is to use < to keep the set A’ finite in the limit.
However, although the above algorithm will indeed keep A’ finite, it still does not
terminate. Take for example A = {p(X, X)} and B = {p(X,Y)}. We will remove
B =p(X,Y) from B’ = {p(X,Y)} in the first iteration of the algorithm and we
have that B is not an instance of p(X, X) and also that p(X, X) Ip(X,Y). We
therefore calculate the msg({p(X, X),p(X,Y)}) = p(X,Y) and we have a loop
(we get B' = {p(X,Y)}).

To remedy these problems, [30, 26, 31] introduced the so called strict home-
omorphic embedding as follows:

Definition 7. Let A, B be expressions. Then B (strictly homeomorphically) em-
beds A, written as A<t B, iff A< B and A is not a strict instance of B.%

Ezample 6. We now still have that p(X,Y) <T p(X, X) but not p(X,X) <
p(X,Y). Note that still X <TY and X <+ X.

A small experiment, specialising a query rotate(X,X) (using the ECCE sys-
tem [25] with < and <% respectively on conjunctions for global control; the
rotate program, rotating a binary tree, can be found in [25]) demonstrates the
interest of <I: when using <™ we obtain an overall speedup of 2.5 compared to
“only” 2.0 using <.

Notice that, if we replace <! of Example 5 by <™ we no longer have a problem
with termination (see [31, 26] for a termination proof of an Algorithm containing
the one of Example 5).

The following is proven in [26, 31].

Theorem 1. The relation <7 is a wbr on the set of expressions over a finite
alphabet.

5 A is a strict instance of B iff there exists a substitution ~ such that A = By and
there exists no substitution o such that B = Ao.



Observe that <t is not a wqo as it is not transitive: we have for exam-
ple p(X, X,Y)Y) <t p(X,Z,Z,X) as well as p(X,Z,Z,X) <t p(X, XY, Z)
but p(X, X,Y,Y) Atp(X,X,Y,Z). One might still feel dissatisfied with that
definition for another reason. Indeed, although going from p(X) to the in-
stance p(f(X)) (and on to p(f(f(X))),...) looks very dangerous, a transi-
tion from p(X,Y) to p(X,X) is often not dangerous, especially in a data-
base setting. Take for example a simple Datalog program just consisting of the
clause p(a,b) — p(X, X). Obviously P will terminate (i.e., fail finitely) for all
queries but < will not allow the selection of p(X, X) in the following derivation
—p(X,Y) ~— p(X,X) ~«— fail of PU{— p(X,Y)}, hence preventing full
unfolding and the detection of finite failure. On the practical side this means
that neither < nor < will allow full unfolding of all terminating queries to
Datalog programs (although they will allow full unfolding of terminating ground
queries to range-restricted Datalog programs). To remedy this, we can develop
the following refinement of <.

Definition 8. We define s Qo t iff s <t or s is a variant of t.

We have p(X)<parp(f(X)) and p(X,Y) Lparp(Z, X) but p(X, X) Aparp(X,Y)
and p(X,Y) Avarp(X, X).

It is obvious that <4, is strictly more powerful than <% (if ¢ is strictly more
general than s, then it is not a variant of s and it is also not possible to have
s <t). It thus also solves the generalisation problems of < (i.e., if we produce a
strict generalisation g of some expression ¢, then ¢ Z,4.g). In addition <, has
the following property: if we have a query < @ to a Datalog program which left-
terminates then the LD-tree for «+ @ is admissible in the sense that, for every
selected literal L, we have L A,.-A for all covering ancestors A of L. Indeed,
whenever we have that L < A for two Datalog atoms L and A then we must also
have A <L (as the diving rule of < cannot be applied). Thus, for Datalog, <,
is equivalent to the variant test. Now, if a derivation from «— A leads to a goal
«— Ly,...,L, where L; is a variant of a covering ancestor A, then it is possible
to repeat this left-to-right derivation again and again and we have a real loop.

Theorem 2. The relation <,q, is a wgo on the set of expression over a finite
alphabet.

The proof can be found in [27]. Observe that <, is, like < and <%, not a
wqo over an infinite alphabet. More on that in Section 6.

Discussion

Observe that the variant test is (surprisingly) not complete for Datalog in gen-
eral (under arbitrary computation rules). Take the program just consisting of
p(b,a) — p(X,Z),p(Z,Y). Then the query « p(X,Y) is finitely failed as the
following derivation shows:

P(X,Y) ~ (X', Z'), p(Z', V")~ p(X", Z"),p(2",Y"), pla, Y') ~» fail.




However, at the second step (no matter what we do) we have to select a variant
of the covering ancestor p(X,Y’) and the variant test will prevent full unfolding.

An alternate approach to Definitions 7 and 8 — at least for the aspect of treat-
ing variables in a more refined way — might be based on numbering variables
using some mapping #(.) and then stipulating that X <# Y iff #(X) < #(Y).
For instance in [35] a de Bruijn numbering of the variables is proposed. Such an
approach, however, has a somewhat ad hoc flavour to it. Take for instance the
terms p(X,Y, X) and p(X,Y,Y). Neither term is an instance of the other and
we thus have p(X,Y, X) <7 p(X,Y,Y) and p(X,Y,Y) <" p(X,Y, X). Depending
on the particular numbering we will either have that p(X,Y, X) ##p(X,Y,Y)
or that p(X,Y,Y) A#p(X,Y, X), while there is no apparent reason why one
expression should be considered smaller than the other.”

6 Extended homeomorphic embedding

Although <% from Definition 7 has a more refined treatment of variables and
has a much better behaviour wrt generalisation than < of Definition 4, it is still
somewhat unsatisfactory.

One point is the restriction to a finite alphabet. Indeed, for a lot of practical
logic programs, using, e.g., arithmetic built-ins or even = ../2, a finite alphabet
is no longer sufficient. Luckily, the fully general definition of homeomorphic em-
bedding as in [21, 10] remedies this aspect. It even allows function symbols with
variable arity.® We will show below how this definition can be adapted to a logic
programming context.

However, there is another unsatisfactory aspect of I (and <,,). Indeed, it
will ensure that p(X,X) 4+p(X,Y) while p(X, X) < p(X,Y) but we still have
that, e.g., f(a,p(X, X)) <t f(f(a),p(X,Y)). In other words, the more refined
treatment of variables is only performed at the top, but not recursively within
the structure of the expressions. For instance, this means that <t will handle
rotate(X,X) much better than < but this improvement will often vanish when
we add a layer of metainterpretation.

The following, new and more refined embedding relation remedies this some-
what ad hoc aspect of <.

Definition 9. Given a wbr <p on the function symbols and a wbr <g on se-
quences of expressions, we define the extended homeomorphic embedding on
expressions by the following rules:
1. X<*Y if X and Y are variables
2. s9* f(t1,...,tn) if s <I*t; for some i
3. f(s1yeey8m) L gt ..y tn) if f3pgand 31 <iy <...<iy <n such
that Vj € {1,...,m} : s; <" t;, and (s1,...,5m) 25 (t1,...,tn)

" [35] also proposes to consider all possible numberings (but leading to n! complexity,
where n is the number of variables in the terms to be compared). It is unclear how
such a relation compares to <T and <yer.

8 Which can also be seen as associative operators.



Observe that for rule 3 both n and m are allowed to be 0, but we must
have m < n. In contrast to Definition 4 for <, the left- and right-hand terms in
rule 3 do not have to be of the same arity. The above rule therefore allows to
ignore n — m arguments form the right-hand term (by selecting the m indices
i1 < ... <im).

Furthermore, the left- and right-hand terms in rule 3 do not have to use the
same function symbol: the function symbols are therefore compared using the
wbr <. If we have a finite alphabet, then equality is a wqo on the function
symbols (one can thus obtain the pure homeomorphic embedding as a special
case). In the context of, e.g., program specialisation or analysis, we know that
the function symbols occurring within the program (text) and call to be analysed
are of finite number. One might call these symbols static and all others dynamic.
A wqo can the be obtained by defining f < g if either f and g are dynamic or
if f = g. For particular types of symbols a natural wqo or wbr exists (e.g., for
numbers) which can be used instead. Also, for associative symbols (such as A)
one can represent ¢; A. .. Acy, by A(ey, ..., ¢,) and then use equality up to arities
(e.g., /2= N/3) for <p.

Ezample 7. If we take <p to be equality up to arities and ignore <g (i.e., define
=s to be always true) we get all the embeddings of <, e.g., p(a) <* p(f(a)).
But we also get p(a) <* p(b, f(a),c) (while p(a) < p(b, f(a),c) does not hold),
A(p(a),q(d)) <* A(s,p(f(a)),r,q(b)) and A(a,b,c) <* A(a,b,c,d). One can see
that <* provides a convenient way to handle associative operators such as the
conjunction A. (Such a treatment of A has been used in [14,20,8] to ensure
termination of conjunctive partial deduction. It might prove equally beneficial
for constrained partial deduction [29].) Indeed, in the context of < one cannot use
A with all possible arities and one has to use, e.g., a binary representation. But
then whether A(a,b,c) is embedded in A(a,b,c,d) (which, given associativity,
it is) depends on the particular representation: A(a, A(b,c)) < A(a, A(A(b, ¢),d))
but Aa, A(b,c)) AN (Aa,b),A(c,d)).

In the above definition we can now instantiate <g such that it performs a
more refined treatment of variables, as discussed in Section 5. For example we
can define: (s1,...,8m) <g (t1,...,t,) iff {t1,...,t,) is not strictly more general
than (s1,...,8m). (Observe that this means that if m # n then <g will hold.)
This relation is a wbr (by Lemma 1, as the strictly more general relation is
a wfo [18]). Then, in contrast to T and <, this refinement will be applied
recursively within <*. For example we now not only have p(X, X) A*p(X,Y) but
also f(a, p(X, X)) 2 f(f(a), p(X,Y)) while f(a,p(X, X)) <+ f(f(a),p(X,Y)).

The reason why a recursive use of, e.g., the “not strict instance” test was not
incorporated in [30, 26, 31] which use <™ was that the authors were not sure that
this would remain a wbr (no proof was found yet). In fact, recursively applying
the “not strict instance” looks very dangerous. Take, e.g., the following two atoms
Ap =p(X, X) and A; = q(p(X,Y),p(Y, X)). In fact, although Ay <t A; we do
not have Ag <* A; (when, e.g., considering both ¢ and p as static function sym-
bols) and one wonders whether it might be possible to create an infinite sequence



of atoms by, e.g., producing As = p(q(p(X,Y),p(Y, Z)),q(p(Z,V),p(V, X))). We
indeed have A; £*As, but luckily A9 <* A; and <* satisfies the wqo require-
ment of Definition 3. But can we construct some sequence for which <I* does not
conform to Definition 37

The following Theorem 3 shows that such a sequence cannot be constructed.
However, if we slightly strengthen point 3 of Definition 9 by requiring that
(S1,...,8m) Is not a strict instance of the selected subsequence (t;,,...,%;, ),
we actually no longer have a wqo, as the following sequence of expression shows:
Ag = f(p(X,X)), A= f(p(X7Y)7p(Y,X)), Ap = f(p(va)ap(Yv Z),p(Z,X)),
.... Using the slightly strengthened embedding relation no A; would be embed-
ded in any A; with j # 4, while using Definition 9 unmodified we have, e.g.,
A <* Ay (but not Ag <* A or Ag <* Ag)

Theorem 3. <* is a wbr on expressions. Additionally, if <p and <g are wqo’s
then so is <*.

The proof can be found in [27].

7 Discussion and Conclusion

Of course <* is not the ultimate relation for ensuring online termination. Al-
though it has proven to be extremely useful superimposed, e.g., on determinate
unfolding, on its own in the context of local control of partial deduction, <* (as
well as < and <) will sometimes allow too much unfolding than desirable for
efficiency concerns: more unfolding does not always imply a better specialised
program. We refer to the solutions developed in, e.g., [31,20]. Similar problems
can arise in the setting of global control and we again refer to [31,20] for dis-
cussions and experiments. Also, the issue of an efficient implementation of the
homeomorphic embedding relation still remains open. (However, in Section 4
we have shown that the efficient way to use wfo’s, which avoids re-scanning the
entire sequence upon refinement, has very undesirable properties.)

For some applications, < as well as <t and <* remain too restrictive. In par-
ticular, they do not always deal satisfactorily with fluctuating structure (arising,
e.g., for certain metainterpretation tasks) [50]. The use of characteristic trees
[26, 31] remedies this problem to some extent, but not totally. A further step to-
wards a solution is presented in [50]. In that light, it might be of interest to study
whether the extensions of the homeomorphic embedding relation proposed in [42]
and [24] (in the context of static termination analysis of term rewrite systems)
can be useful in an online setting.

In summary, we have discussed the relation between wqo’s and wfo’s. We have
illustrated that <, despite its simplicity, is strictly more generous than the class
of monotonic wfo’s and simplification orderings combined. As all the wfo’s used
for automatic online termination (so far) are actually monotonic, this formally
establishes the interest of < in that context. We have also compared to techniques
based upon nearly-foundedness, and have shown that such techniques—contrary
to <— can lead to the undesirable property of strict over-eagerness.



We have also presented new embedding relations <T, <,,, and <*, which
inherit all the good properties of < while providing a refined treatment of (log-
ical) variables. We believe that these refinements can be of value in other con-
texts and for other languages (such as in the context of partial evaluation of
functional-logic programs [3,2,22, 1] or of supercompilation [49, 15,47] of func-
tional programming languages, where — at specialisation time — variables also
appear). For instance, one can simply plug <* into the language-independent
framework of [45].

We also believe that <* provides both a theoretically and practically more
satisfactory basis than < or <. We also believe that <I* can play a contributing
role in other areas, such as controlling abstraction and ensuring termination of
infinite model checking.
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