
Advanced Techniques for
Logic Program Specialisation

Michael Leuschel

Department of Computer Science, K.U.Leuven

Abstract

Program specialisation, also called partial evaluation or partial deduc-
tion, is an automatic technique for program optimisation. The central
idea is to specialise a given source program for a particular application
domain. Program specialisation encompasses traditional compiler optimi-
sation techniques, but uses more aggressive transformations, yielding both
much greater speedups and more difficulty in controlling the transformation
process.

Because of their clear (and often simple) semantical foundations, declar-
ative languages offer significant advantages for the design of semantics based
program analysers, transformers and optimisers. This thesis exploits these
advantages in the context of logic programming and develops advanced
techniques for program specialisation, striving to produce tangible practi-
cal benefits within the larger objective of turning declarative languages and
program specialisation into valuable tools for constructing reliable, main-
tainable and efficient programs.

This thesis contains contributions within that context around several
themes. New, powerful methods for the control problem within partial de-
duction, based on characteristic trees, are developed. A method for auto-
matic compiler generation, which does not have to resort to self-applicable
specialisers, is presented. A practical and very successful application in the
area of integrity checking in deductive databases is worked out. Finally, an
integration of “unfold/fold” transformations with partial deduction, as well
as a further integration with abstract interpretation, are developed.

Acknowledgements

I would like to direct my first words of gratitude towards my supervisor,
Professor Danny De Schreye. Even when submerged in administrative work
— trying to find money for us, younger researchers — he somehow always
found the time to thoroughly read, comment and improve upon my drafts.
Flaws in the presentation were unavoidably detected and his talent for
presenting complex ideas in a clear and comprehensible manner is hard to
equal. He also helped me to get in touch with the research community, and
provided the necessary focus for my research.

I would also like to thank Professor Van Assche for accepting to be
my second supervisor, as well as him and the other members of the thesis
committee, Professors Maurice Bruynooghe, Karel De Vlaminck, John Gal-
lagher and Neil Jones, for reading my thesis and providing me with very
valuable comments.

I am also indebted to all the colleagues at the Department of Computer
Science at the K.U. Leuven. The research environment proved to be very
stimulating and it was a big help to have so many good researchers in
logic programming close by: for any particular sub-field, a local expert
was always on duty. Among these colleages, Bern Martens had maybe
the biggest impact on my thesis: I co-authored several papers with him
and he should be considered a co-supervisor. He always had an ear for
my latest ideas or comments and the ensuing discussions often lead to
new research ideas. It was always a pleasure to work with him and his
ability to forge phrases in English is unequalled among the people I worked
with. Maurice Bruynooghe, apart from sharing with me his expertise in
abstract interpretation, often pointed me to very relevant references. His
comments were often to the point, helping me to improve the technical
content of my papers as well as providing me with new research ideas.
Bart Demoen helped me uncountable times, notably with efficiency and
implementation issues of logic programming. He even went so far as to
add some custom features to Prolog by BIM for me. Marc Denecker also
often greatly helped me with semantical issues related to model theory and
the treatment of negation. The following is a (probably non-exhaustive)
list of other persons from our department to whom I am grateful for their
help: Eddy Bevers, Dirk Dussart, Gerda Janssens, Anne Mulkers, Jacques
Riche, Kostis Sagonas, Kristof Van Belleghem, Henk Vandecasteele and
Wim Vanhoof.

I would also like to express my appreciation towards Jesper Jørgensen,
Morten Heine Sørensen and André De Waal, with whom I co-authored
some of the papers which are at the basis of my thesis. It was a pleasure

to collaborate with Jesper Jørgensen and his expertise in functional pro-
gramming, partial evaluation and supercompilation was extremely helpful
and stimulating. With Morten Heine Sørensen I managed to write a paper,
after some initial discussions, strictly by e-mail collaboration. It was a very
pleasurable and fruitful experience.

On the more personal side, I am greatly indebted to my wife Béatrice
who helped me attain the perseverance and determination to do the research
which led to this thesis. Also, without the support of my parents, doing
the research would have been much more difficult and I might have chosen
a more commercially oriented career. I also thank my grandparents which,
in contrast to myself, always believed in my ability to become a “Dr.”.

Finally I want to thank all the persons with whom I had discussions over
the years and which helped me in accumulating the necessary knowledge
to write this thesis. In particular, in addition to all the persons already
mentioned above, I would like to thank the participants of the Compulog II
project. The Compulog II meeting in 1994 in Cyprus immediately got me
into contact with a large part of the European logic programming research
community, which, in retrospect, helped me a lot in my subsequent research
efforts. To name but a few additional persons with whom I had stimulat-
ing discussions, sometimes at the source of precious improvements in the
thesis: Krzysztof Apt, Hendrik Decker, Stefan Decker, W lodek Drabent,
Robert Glück, Corin Gurr, Fergus Henderson, Manuel Hermenegildo, Jan
Hric, Robert Kowalski, Laura Lafave, John Lloyd, Torben Mogensen, Ul-
rich Neumerkel, Alberto Pettorossi, Maurizio Proietti, Dan Sahlin, Zoltan
Somogyi and Valentin Turchin.

Michael Leuschel
Leuven, May 1996

Financial support for my work has been kindly provided by:
• the Katholieke Universiteit Leuven,
• ESPRIT Basic Research Action COMPULOG II and
• the GOA “Non-Standard Applications of Abstract Interpretation”

(Belgium).

Brevity is the soul of wit;

William Shakespeare in Hamlet, 2,2

Contents

1 Introduction 1
1.1 Logic programming and program specialisation 1
1.2 Overview of the thesis . 3

I Technical Background 9

2 Logic and Logic Programming 11
2.1 First-order logic and syntax of logic programs 11
2.2 Semantics of logic programs 15

2.2.1 Definite programs 15
2.2.2 Fixpoint characterisation of HP 17
2.2.3 Normal programs . 18

2.3 Proof theory of logic programs 19
2.3.1 Definite programs 20
2.3.2 Normal programs . 24
2.3.3 Programs with built-ins 28

3 Partial Evaluation and Partial Deduction 29
3.1 Partial evaluation . 29
3.2 Partial deduction . 32
3.3 Control of partial deduction 36

3.3.1 Correctness, termination and precision 37
3.3.2 Independence and renaming 37
3.3.3 Local termination and unfolding rules 38
3.3.4 Control of polyvariance 44

i

ii CONTENTS

II On-line Control of Partial Deduction: Control-
ling Polyvariance 47

4 Characteristic Trees 49
4.1 Structure and abstraction 49
4.2 Characteristic paths and trees 51
4.3 An abstraction operator using characteristic trees 55
4.4 Characteristic trees in the literature 61
4.5 Extensions of characteristic trees 63

5 Ecological Partial Deduction 65
5.1 Partial deduction based on characteristic atoms 65

5.1.1 Characteristic atoms 65
5.1.2 Generating resultants 68

5.2 Correctness results . 71
5.2.1 Correctness for unconstrained characteristic

atoms . 72
5.2.2 Correctness for safe characteristic atoms 74
5.2.3 Correctness for unrestricted characteristic atoms . . 84

5.3 A set based algorithm and its termination 86
5.4 Some further discussions . 90

5.4.1 Increasing precision 90
5.4.2 An alternative constraint-based approach 91
5.4.3 Conclusion . 94

6 Removing Depth Bounds by Adding Global Trees 95
6.1 The depth bound problem 95
6.2 Partial deduction using global trees 99

6.2.1 Introduction . 99
6.2.2 More on characteristic atoms 102
6.2.3 Global trees . 116
6.2.4 A tree based algorithm 117

6.3 Post-processing and other improvements 121
6.3.1 Removing superfluous polyvariance 121
6.3.2 Other improvements 123

6.4 Experimental results and discussion 125
6.4.1 Systems . 125
6.4.2 Experiments . 127
6.4.3 Analysing the results 130
6.4.4 Further discussion 131

6.5 Conclusion and future work 136

CONTENTS iii

III Off-line Control of Partial Deduction: Achieving
Self-Application 141

7 Efficiently Generating Efficient Generating Extensions in
Prolog 143
7.1 Introduction . 143

7.1.1 Off-line vs. on-line control 143
7.1.2 The Futamura projections 144
7.1.3 Self-application for logic programming languages and

the cogen approach 146
7.2 Off-line partial deduction 148

7.2.1 Binding-time analysis 148
7.2.2 A particular off-line partial deduction method 151

7.3 The cogen approach for logic programming languages 154
7.4 Examples and results . 159

7.4.1 Experiments with logen 160
7.4.2 Experiments with other systems 161
7.4.3 Comparing transformation times 163

7.5 Discussion and future work 165
7.5.1 BTA based on groundness analysis 166
7.5.2 Related work in partial evaluation and abstract in-

terpretation . 168
7.5.3 Future work . 169

IV Optimising Integrity Checking by Program Spe-
cialisation 171

8 Integrity Checking and Meta-Programming 173
8.1 Introduction and motivation 173
8.2 Deductive databases and specialised integrity checking . . . 174
8.3 Meta-interpreters and pre-compilation 182
8.4 Some issues in meta-programming 184

8.4.1 The ground vs. the non-ground representation . . . 184
8.4.2 The mixed representation 188

9 Pre-Compiling Integrity Checks via Partial Evaluation of
Meta-Interpreters 193
9.1 A meta-interpreter for integrity checking in hierarchical data-

bases . 193
9.1.1 General layout . 193
9.1.2 Implementing potentially added 194

iv CONTENTS

9.2 Partial evaluation of ITE-Prolog 196
9.2.1 Definition of ITE-Prolog 196
9.2.2 Specialising ITE-Prolog 198
9.2.3 Some aspects of leupel 199

9.3 Experiments and results . 202
9.3.1 An example . 202
9.3.2 Comparison with other partial evaluators 205
9.3.3 A more comprehensive study 208

9.4 Moving to recursive databases 213
9.5 Conclusion and future directions 214

V Conjunctive Partial Deduction 219

10 Foundations of Conjunctive Partial Deduction 221
10.1 Partial deduction vs. unfold/fold 221
10.2 Conjunctive partial deduction 224

10.2.1 Resultants . 224
10.2.2 Partitioning and renaming 226

10.3 Correctness results . 231
10.3.1 Mapping to transformation sequences 231
10.3.2 Fair and weakly fair partial deductions 236

10.4 Discussion and conclusion 242
10.4.1 Negation and normal programs 242
10.4.2 Preliminary results and potential 242
10.4.3 Conclusion . 243

11 Redundant Argument Filtering 245
11.1 Introduction . 245
11.2 Correct erasures . 247
11.3 Computing correct erasures 250
11.4 Applications and benchmarks 255
11.5 Polyvariance and negation 259

11.5.1 A polyvariant algorithm 259
11.5.2 Handling normal programs 261

11.6 Reverse filtering (FAR) . 262
11.6.1 The FAR algorithm 262
11.6.2 Polyvariance for FAR 265
11.6.3 Negation and FAR 265
11.6.4 Implementation of FAR 266

11.7 Related work and conclusion 266

CONTENTS v

12 Conjunctive Partial Deduction in Practice 269
12.1 Controlling conjunctive partial deduction for pure Prolog . 269

12.1.1 Splitting and abstraction 269
12.1.2 Contiguous splitting 273
12.1.3 Static conjunctions 274

12.2 The system and its methods 276
12.2.1 The algorithm . 276
12.2.2 Concrete settings . 277

12.3 Benchmarks and conclusion 278
12.3.1 Analysing the results 279
12.3.2 Conclusion . 283

VI Combining Abstract Interpretation and Partial
Deduction 293

13 Logic Program Specialisation: How to Be More Specific 295
13.1 Partial deduction vs. abstract interpretation 295

13.1.1 Lack of success-propagation 296
13.1.2 Lack of inference of global success-information . . . 297

13.2 Introducing more specific programs 298
13.3 Some motivating examples 303

13.3.1 Storing values in an environment 304
13.3.2 Proving functionality 305
13.3.3 The need for a more refined integration 306

13.4 A more refined algorithm 308
13.5 Specialising the ground representation 313
13.6 Discussion . 315

14 Conclusion and Outlook 319

A Notations for Some Basic Mathematical Constructs 323
A.1 Sets and relations . 323
A.2 Sequences . 324
A.3 Graphs and trees . 324

B Counterexample 325

C Benchmark Programs 327

D Extending the Cogen 333

E A Prolog Cogen: Source Code 335

vi CONTENTS

F A Prolog Cogen: Some Examples 339
F.1 The parser example . 339
F.2 The solve example . 341
F.3 The regular expression example 344

G Meta-Interpreters and Databases for Integrity Checking 347
G.1 The ic-solve meta-interpreter 347
G.2 The ic-lst meta-interpreter 351
G.3 A more sophisticated database 353

H Explicit Unification Algorithms 355
H.1 A unification algorithm with accumulators 355
H.2 A unification algorithm without accumulators 357

Bibliography 359

Index 387

List of Figures

1.1 Overview of the chapters . 5

2.1 Complete SLD-tree for Example 2.2.4 24

3.1 Partial evaluation of programs with static and dynamic input 30
3.2 Partial evaluation of a simple imperative program 31
3.3 Incomplete SLD-tree for Example 3.2.5 34
3.4 Global and local level of control 36
3.5 Four forms of determinate trees 40
3.6 Non-leftmost non-determinate unfolding for Example 3.3.3 . 41

4.1 SLD-trees τB and τC for Example 4.1.1 51
4.2 SLD-trees τ∗B and τ∗C for Example 4.1.1 51
4.3 SLD-trees for Example 4.2.5 55
4.4 SLD-trees for Example 4.3.2 57
4.5 SLD-trees for Example 4.3.5 59
4.6 SLD-trees for Example 4.3.7 61
4.7 SLD-trees for Example 4.4.1 63

5.1 SLDNF-tree for Example 5.1.5 67
5.2 Illustrating Lemma 5.2.9 77
5.3 Illustrating the proof of Lemma 5.2.14 81
5.4 Pruning Constraints . 93

6.1 SLD-trees for Example 6.1.1 97
6.2 Lifting the ground representation 98
6.3 Accumulator growth in Example 6.1.2 99
6.4 Initial section of a global tree for Example 6.1.2 and the

unfolding of Figure 6.3 . 100
6.5 SLD-trees for Example 6.2.1 101
6.6 Partial deduction with global trees. 118

vii

viii LIST OF FIGURES

6.7 Labelled global graph of Example 6.3.1 before post-processing123
6.8 Labelled global graph of Example 6.3.1 after post-processing 124
6.9 SLD-trees for Example 6.4.1 132
6.10 SLDNF-tree for Example 6.4.2 133

7.1 Illustrating the 3 Futamura projections 145
7.2 A parser . 154
7.3 Unfolding the parser of Figure 7.2 154
7.4 The generating extension for the parser 159

8.1 SLDNF-tree for Example 8.2.5 181
8.2 A ground representation 184
8.3 Two non-ground meta-interpreters with {p(X)←} as object

program . 186
8.4 Unfolding meta-interpreters 188
8.5 Lifting the ground representation 189
8.6 An interpreter for the ground representation 190
8.7 Comparing the ground, non-ground and mixed representa-

tions . 190

9.1 Skeleton of the integrity checker 194
9.2 Intensional part of Db= . 203
9.3 SLDNF-tree for Example 9.3.1 204
9.4 Specialised update procedure for adding man(A) 205

10.1 SLD-trees τ1 and τ2 for Example 10.2.2 226
10.2 SLD-tree for Example 10.2.7 230

12.1 Weighted speedups and average code size for some systems 281

13.1 A possible outcome of Algorithm 3.3.11 for Examples 13.1.1
and 13.1.2 . 297

13.2 SLD-trees for Example 13.2.4 301
13.3 Unfolding part of an interpreter for an imperative language 305
13.4 Unfolding of Example 13.6.1 317
13.5 Unfolding of a generalisation of Example 13.6.1 317

List of Tables

6.1 Short summary of the results (higher speedup and lower code
size is better) . 129

6.2 Detailed results for ecce-x-10 and ecce-x 137
6.3 Detailed results for ecce-d and sp 138
6.4 Detailed results for mixtus and paddy 139

7.1 Running logen . 160
7.2 Running the generating extension 160
7.3 Running the specialised program 160
7.4 Specialisation times . 164
7.5 Speed of the residual programs (for a large number of queries)

165

9.1 Results for Db+ = {man(A)←}, Db− = ∅ 207
9.2 Results for Db+ = {parent(A,B)←}, Db− = ∅ 208
9.3 Results for Db+ = {father(X ,Y)←}, Db− = ∅ 210
9.4 Results for Db+ = {civil status(X ,Y,Z, T)←}, Db− = ∅ 210
9.5 Results for Db+ = {father(F ,X), civil status(X ,Y,Z, T)←

}, Db− = ∅ . 211
9.6 Results for Db+ = ∅, Db− = {father(X ,Y)←} 211
9.7 Results for Db+ = ∅, Db− = {civil status(X ,Y,Z, T)←} 212

11.1 Code size (in units) . 257
11.2 Execution times (in s) . 258

12.1 Overview: systems and transformation times 280
12.2 Summary of benchmarks (higher speedup and lower code size

is better) . 280
12.3 ecce Determinate conjunctive partial deduction (A) 285
12.4 ecce Determinate conjunctive partial deduction (B) 286

ix

x LIST OF TABLES

12.5 ecce Determinate conjunctive partial deduction (C) 287
12.6 ecce Non-contiguous conjunctive partial deduction 288
12.7 ecce Partial deduction based on indexed unfolding 289
12.8 ecce Standard partial deduction methods 290
12.9 Some existing systems (A) 291
12.10Some existing systems (B) 292

13.1 Resultants and refinements 311
13.2 Specialising the ground representation 315

Chapter 1

Introduction

1.1 Logic programming and program special-
isation

Mathematical logic, then, is a branch of mathematics which has
much the same relation to the analysis and criticism of thought
as geometry does to the science of space.

Haskell B. Curry in [58]

Declarative programming languages

Declarative programming languages, are high-level programming languages
in which one only has to state what is to be computed and not necessarily
how it is to be computed.

Logic programming and functional programming are two prominent mem-
bers of this class of programming languages. While functional programming
is based on the λ-calculus, logic programming has its roots in first-order
logic and automated theorem proving. Both approaches share the view that
a program is a theory and execution consists in performing deduction from
that theory (sometimes complemented by abduction or induction).

Logic programming

Logic programming grew out of the insight that a subset of first-order logic,
based on Horn clauses, has an efficient operational reading and can thus
be used as the basis of a programming language.

1

2 CHAPTER 1. INTRODUCTION

Take the following Horn clause, part of a logic program computing the
derivative of a function:

∀(derivative(F +G ,F ′+G ′)← derivative(F ,F ′)∧derivative(G ,G ′))
This Horn clause has a clear logical semantics, whose validity can be checked
independently of the rest of the logic program. Furthermore a natural lan-
guage translation of this clause can be produced in a straightforward man-
ner, making the program more accessible to people less versed with the
(black) art of computer programming:

If F ′ is the derivative of F and G′ is the derivative of G then
F ′ + G′ is the derivative of F + G.

Finally, the clause has an operational reading as well, allowing for an effi-
cient execution mechanism:

To calculate derivative(F +G ,F ′+G ′) one should first calculate
derivative(F ,F ′) and then calculate derivative(G ,G ′)

Using logic as the basis of a programming language also means that
a uniform language can be used to express and reason about programs,
specifications, databases, queries and integrity constraints.

On the more practical side, logic programming languages allow non-
determinism, making them especially well-suited for applications like pars-
ing. They also provide for automatic memory management, thus avoiding
a major source of errors in other programming languages. Another advan-
tage of logic programming languages is that they can compute with partially
specified data and that the input/output relation is not fixed beforehand.
For instance, the above mentioned program can not only be used to com-
pute the derivative of e.g. x ∗ x via the query ← derivative(x ∗ x ,F) it can
also be used to calculate its integral via the query ← derivative(G , x ∗ x).
Finally, although early logic programming languages have been renowned
for their lack of efficiency, the implementations have grown ever more ef-
ficient, recent efforts reaching or even surpassing the speeds of imperative
languages for some applications.

Program specialisation

Program specialisation, also called partial evaluation or partial deduction,
is an automatic technique for program optimisation. The central idea is to
specialise a given source program for a particular application domain. This
is (mostly) done by a well-automated application of parts of the Burstall
and Darlington unfold/fold transformation framework. Program speciali-
sation encompasses traditional compiler optimisation techniques, such as

1.2. OVERVIEW OF THE THESIS 3

constant folding and in-lining, but uses more aggressive transformations,
yielding both (much) greater speedups and more difficulty in controlling
the transformation process. It is thus similar in concept to, but in several
ways stronger than highly optimising compilers.

Program specialisation can be used to speed up existing programs for
certain application domains, sometimes achieving speedups of several or-
ders of magnitude. It however also allows the user to conceive more gen-
erally applicable programs using a more secure, readable and maintainable
style. The program specialiser then takes care of transforming this general
purpose, readable, but inefficient program into an efficient one (e.g. incor-
porating Knuth-Morris-Pratt like optimisations or taking advantage of the
hidden implementation parts of modules).

Program specialisation has proven to be useful in many application ar-
eas. For instance, a lot of programs exhibit interpretive behaviour, the
overhead of which can be removed by program specialisation. The spe-
cialisation process can in such circumstances be seen as compilation from
the higher level language down to the language in which the interpreter is
written. Furthermore, given that a specialiser is self-applicable, i.e. is able
to effectively specialise itself, one can obtain compilers as well as compiler
generators automatically from an interpreter by the so called Futamura
projections.

Apart from that, whenever part of the input changes more slowly than
the remaining input, program specialisation can prove to be very valuable.
One such often mentioned application is ray tracing, where a ray tracer can
be specialised for a particular scene with an unknown viewpoint. Other
successful applications of program specialisation range from neural network
training, spreadsheet computations over to scientific computing. Simpler
forms of program specialisation have also found their way into compilers
and program analysers. For instance, the Mercury compiler can often get
rid of the overhead of higher-order programming via partial evaluation while
a lot of abstract interpretation systems use a specialisation technique called
abstract compilation.

1.2 Overview of the thesis

Aim of the thesis

Because of their clear (and often simple) semantical foundations, declarative
languages offer significant advantages for the design of semantics based
program analysers, transformers and optimisers.

First, because there exists a clear and simple semantical foundation,

4 CHAPTER 1. INTRODUCTION

techniques for program specialisation can be proven correct in a formal
way. Furthermore, program specialisation does not have to preserve every
execution aspect of the source program, as long as the declarative semantics
is respected. This permits much more powerful optimisations, impossible
to obtain when the specialiser has to preserve every operational aspect of
the source program.

We1 will try to exploit these advantages in the context of logic program-
ming and develop automatic methods for program specialisation, striving
to produce tangible practical benefits within the larger objective of turn-
ing declarative languages and program specialisation into valuable tools for
constructing reliable, maintainable and efficient programs.

Roadmap

This thesis consists of 6 major parts. Figure 1.1 contains a graphical rep-
resentation of the chapters. Arrows indicate dependencies between chap-
ters; topological sorting can be used to determine an admissible reading
sequence.

Structure of the parts

• Part I contains background material about first-order logic, logic
programming and program specialisation. A brief summary of other
mathematical notations and conventions can be found in Appendix A.
Chapter 2 starts out from the roots of logic programming in first-order
logic and automated theorem proving and presents the syntax, seman-
tics and proof theory of logic programs. In Chapter 3 the general idea
of program specialisation, based on Kleene’s S-M-N theorem, is intro-
duced. A particular technique for specialising logic programs, called
partial deduction, is then formalised. The theoretical underpinnings
of this approach, based on the correctness results by Lloyd and Shep-
herdson [185], are exhibited. We also elaborate on the control issues
of partial deduction and define the control of polyvariance problem.
The latter is basically related to how many specialised versions should
be generated for a particular predicate.
• Part II of the thesis attends to a method for precise and fine-grained

control of polyvariance, whose termination only depends on the ter-
mination of the unfolding component. Chapter 4 first shows that a

1The word “we” should not be interpreted as to some royal ambitions of mine. In
fact, as most chapters of this thesis are adapted from papers which other persons have
co-authored, it just avoids confusing switches of narrative.

1.2. OVERVIEW OF THE THESIS 5

?

?

?

?

?

���������)

PPPPPPPPPq
HHHj

����

?
�����

�����

-

Chapter 4

Trees

II

Characteristic

Chapter 7 III

Generating
Extensions

Chapter 8

Meta Programming

IV

Integrity Checks &

Chapter 3

& Deduction

I

Partial Evaluation

Chapter 10

Partial Deduction

V

Conjunctive

Chapter 11

Argument Filtering

V

Redundant

Chapter 12

PD in Practice

V

Conjunctive

Chapter 13

More Specific

VI

How to Be

Chapter 9

Integrity Checks

IV

Pre-compiling

Chapter 5

Partial Deduction

II

Ecological

Chapter 6 II

Removing Depth
Bounds

Chapter 2

Programming

I

Logic

Figure 1.1: Overview of the chapters

good control of polyvariance should not (solely) rely on syntactic in-
formation. Characteristic trees and paths, which are abstractions of
the computational behaviour of goals introduced by Gallagher and
Bruynooghe [100, 97], are shown to be much more viable in that con-
text. The chapter however also illustrates shortcomings of the existing
approaches using characteristic trees, notably their incapacity to pre-
serve them upon generalisation. This can lead to severe specialisation
losses, sometimes combined with non-termination of the partial de-
duction process. Chapter 5 attends to solving this problem. To that
end an extension of the Lloyd and Shepherdson framework, called
ecological partial deduction, is developed which allows the preserva-
tion of characteristic trees upon generalisation in a straightforward
manner. Chapter 6 solves another important problem with the ex-
isting approach based on characteristic trees: an ad-hoc depth bound
has to be imposed on characteristic trees to ensure termination of the
specialisation process. A full-fledged algorithm for partial deduction,
which does not require this depth bound, is developed in the chapter.

6 CHAPTER 1. INTRODUCTION

Finally, an implementation of this algorithm is described and used for
extensive experiments, showing its improved performance over exist-
ing specialisation systems.
• Part III, consisting just of Chapter 7, concentrates on issues related

to self-application. In particular it shows how one can get the ben-
efits of self-application without self-application. Self-application has
not been as much in focus in partial deduction as in partial evalu-
ation of functional and imperative languages, and the attempts to
self-apply partial deduction systems have not been altogether that
successful. To overcome this predicament, the chapter adapts the so
called “cogen approach” for logic programming languages. The cen-
tral idea is to write a compiler generator instead of a self-applicable
specialiser. It is demonstrated that using the cogen approach one gets
very efficient compiler generators which generate very efficient gener-
ating extensions which in turn yield (for some examples at least) very
good and non-trivial specialisation.
• Part IV elaborates on a particular (and novel) application of pro-

gram specialisation to integrity checking in more detail. Integrity
constraints are useful for the specification of deductive databases,
as well as for inductive and abductive logic programs. Verifying in-
tegrity constraints upon updates is a major efficiency bottleneck and
specialised methods have been developed to speedup this task. They
can however still incur a considerable overhead and the main idea in
this part of the thesis is to further optimise these methods in a prin-
cipled way using the techniques of meta-programming and program
specialisation. Chapter 8 first presents some background in deduc-
tive databases, focussing on the problem of integrity checking. It also
discusses issues in meta-programming, notably elaborating on the dif-
ferences between the ground, non-ground and mixed representations.
In Chapter 9, a meta-interpreter for integrity checking in hierarchical
databases is presented, which is then partially evaluated for certain
transaction patterns. Extensive experiments are conducted, exhibit-
ing considerable speedups over existing integrity checking techniques.
The good results hinge on the fact that a lot of the integrity checking
can already be performed given an update pattern without knowing
the actual, concrete update.
• Part V develops a major improvement of partial deduction. In fact,

partial deduction within the Lloyd and Shepherdson framework, as
well as within the extension presented in Part II, cannot achieve cer-
tain optimisations which are possible within the full framework of
unfold/fold transformations. In this part of the thesis we therefore
endeavour to combine the advantages of partial deduction in terms of

1.2. OVERVIEW OF THE THESIS 7

complexity and control with the power of unfold/fold transformations.
In Chapter 10 we present the formal framework of conjunctive par-
tial deduction, extending the Lloyd and Shepherdson framework by
specialising entire conjunctions instead of simply individual atoms.
Chapter 11 presents a complementary technique detecting and re-
moving redundant arguments. Together these techniques are able to
accommodate optimisations like tupling and deforestation. In Chap-
ter 12 these new techniques are put on trial on an extensive set of
pure Prolog programs, illustrating the increased potential of conjunc-
tive partial deduction but also highlighting some remaining control
problems.
• Part VI, consisting just of Chapter 13, presents a further extension

of partial deduction, obtained by integrating abstract interpretation
techniques. Chapter 13 starts out by presenting some remaining lim-
itations of standard and conjunctive partial deduction in terms of
inferring success-information. These shortcomings are remedied by
combining conjunctive partial deduction with an abstract interpre-
tation technique known as more specific program construction. The
practical impact of this approach is illustrated on some applications,
notably specialising meta-programs written in the ground represen-
tation and extending the approach of Part IV to recursive databases.

Origin of the chapters

Earlier versions of Chapters 5 and 6 appeared in [168] and [178] respec-
tively. [179] combines these two papers and was written concurrently with
Part II of the thesis. Parts of [172] have also been incorporated into Chap-
ters 3–5. Chapter 7 is adapted from [142]. Chapters 8 and 9 are revised
and extended versions of [173] 2, [174] and incorporate some parts from
[177]. Chapters 10, 11 and 12 have been adapted from [175], [182] and
[143] respectively. Parts of these chapters have been incorporated into [62].
Finally, Chapter 13 is adapted from [181].

2“Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.”
c©1995 ACM 0-89791-720-0/95/0006...$3.50

8 CHAPTER 1. INTRODUCTION

Part I

Technical Background

9

Chapter 2

Logic and Logic
Programming

In this chapter we summarise some essential background in first-order logic
and logic programming, required for the proper comprehension of this the-
sis. The exposition is mainly inspired by [7] and [184] and in general adheres
to the same terminology. The reader is referred to these works for a more
detailed presentation, comprising motivations, examples and proofs. Some
other good introductions to logic programming can also be found in [218],
[85, 8] and [202], while a good introduction to first-order logic and auto-
mated theorem proving can be found in [94].

2.1 First-order logic and syntax of logic pro-
grams

We start with a brief presentation of first-order logic.

Definition 2.1.1 (alphabet) An alphabet consists of the following classes
of symbols:

1. variables;

2. function symbols;

3. predicate symbols;

4. connectives, which are ¬ negation, ∧ conjunction, ∨ disjunction, ←
implication, and ↔ equivalence;

11

12 CHAPTER 2. LOGIC AND LOGIC PROGRAMMING

5. quantifiers, which are the existential quantifier ∃ and the universal
quantifier ∀;

6. punctuation symbols, which are “(”, “)” and “,”.

Function and predicate symbols have an associated arity, a natural number
indicating how many arguments they take in the definitions following below.
Constants are function symbols of arity 0, while propositions are predicate
symbols of arity 0.

The classes 4 to 6 are the same for all alphabets. In the remainder of
this thesis we suppose the set of variables is countably infinite. In addition,
alphabets with a finite set of function and predicate symbols will simply be
called finite. An infinite alphabet is one in which the number of function
and/or predicate symbols is not finite but countably infinite.

We will try to adhere as much as possible to the following syntactical
conventions throughout the thesis:
• Variables will be denoted by upper-case letters like X, Y, Z, usually

taken from the later part of the (Latin) alphabet.
• Constants will be denoted by lower-case letters like a, b, c, usually

taken from the beginning of the (Latin) alphabet.
• The other function symbols will be denoted by lower-case letters like

f, g, h.
• Predicate symbols will be denoted by lower-case letters like p, q, r.

Definition 2.1.2 (terms, atoms) The set of terms (over some given
alphabet) is inductively defined as follows:

• a variable is a term

• a constant is a term and

• a function symbol f of arity n > 0 applied to a sequence t1, . . . , tn of
n terms, denoted by f(t1, . . . , tn), is also a term.

The set of atoms (over some given alphabet) is defined in the following way:

• a proposition is an atom and

• a predicate symbol p of arity n > 0 applied to a sequence t1, . . . , tn
of n terms, denoted by p(t1, . . . , tn), is an atom.

We will also allow the notations f(t1, . . . , tn) and p(t1, . . . , tn) in case
n = 0. f(t1, . . . , tn) then simply represents the term f and p(t1, . . . , tn)
represents the atom p. For terms representing lists we will use the usual
Prolog [80, 262, 53] notation: e.g. [] denotes the empty list, [H|T] denotes
a non-empty list with first element H and tail T .

2.1. FIRST-ORDER LOGIC 13

Definition 2.1.3 (formula) A (well-formed) formula (over some given
alphabet) is inductively defined as follows:

• An atom is a formula.

• If F and G are formulas then so are (¬F), (F ∨G), (F ∧G), (F ← G),
(F ↔ G).

• If X is a variable and F is a formula then (∀XF) and (∃XF) are also
formulas.

To avoid formulas cluttered with the punctuation symbols we give the con-
nectives and quantifiers the following precedence, from highest to lowest:

1. ¬,∀,∃, 2. ∨, 3. ∧, 4. ←,↔.

For instance, we will write ∀X(p(X) ← ¬q(X) ∧ r(X)) instead of the less
readable (∀X(p(X)← ((¬q(X)) ∧ r(X)))).

The set of all formulas constructed using a given alphabet A is called
the first-order language given by A.

First-order logic assigns meanings to formulas in the form of interpre-
tations over some domain D:

• Each function symbol of arity n is assigned an n-ary function Dn 7→
D. This part, along with the choice of the domain D, is referred to
as a pre-interpretation.

• Each predicate symbol of arity n is assigned an n-ary relation, i.e. a
subset of Dn (or equivalently an n-ary function Dn 7→ {true, false}).

• Each formula is given a truth value, true or false, depending on the
truth values of the sub-formulas. (For more details see e.g. [94] or
[184]).

A model of a formula is simply an interpretation in which the formula
has the value true assigned to it. Similarly, a model of a set S of formulas
is an interpretation which is a model for all F ∈ S.

For example, let I be an interpretation whose domain D is the set of
natural numbers IN and which maps the constant a to 1, the constant b to
2 and the unary predicate p to the unary relation {(1)}. Then the truth
value of p(a) under I is true and the truth value of p(b) under I is false.
So I is a model of p(a) but not of p(b). I is also a model of ∃Xp(X) but
not of ∀Xp(X).

We say that two formulas are logically equivalent iff they have the same
models. A formula F is said to be a logical consequence of a set of formulas

14 CHAPTER 2. LOGIC AND LOGIC PROGRAMMING

S, denoted by S |= F , iff F is assigned the truth value true in all models
of S. A set of formulas S is said to be inconsistent iff it has no model. It
can be easily shown that S |= F holds iff S ∪ {¬F} is inconsistent. This
observation lies at the basis of what is called a proof by refutation: to
show that F is a logical consequence of S we show that S ∪ {¬F} leads to
inconsistency.

From now on we will also use true (resp. false) to denote some arbi-
trary formula which is assigned the truth value true (resp. false) in every
interpretation. If there exists a proposition p in the underlying alphabet
then true could e.g. stand for p∨¬p and false could stand for p∧¬p.1 We
also introduce the following shorthands for formulas:

• if F is a formula, then (F ←) denotes the formula (F ← true) and
(← F) denotes the formula (false← F).

• (←) denotes the formula (false← true).

In the following we define some other frequently occurring kinds of for-
mulas.

Definition 2.1.4 (literal) If A is an atom then the formulas A and ¬A are
called literals. Furthermore, A is called a positive literal and ¬A a negative
literal.

Definition 2.1.5 (conjunction, disjunction) Let A1, . . . , An be literals,
where n > 0. Then A1 ∧ . . . ∧ An is a conjunction and A1 ∨ . . . ∨ An is a
disjunction.

Usually we will assume ∧ (respectively ∨) to be associative, in the sense
that we do not distinguish between the logically equivalent, but syntacti-
cally different, formulas p ∧ (q ∧ r) and (p ∧ q) ∧ r.

Definition 2.1.6 (scope) Given a formula (∀XF) (resp. (∃XF)) the scope
of ∀X (resp. ∃X) is F . A bound occurrence of a variable X inside a formula
F is any occurrence immediately following a quantifier or an occurrence
within the scope of a quantifier ∀X or ∃X. Any other occurrence of X
inside F is said to be free.

Definition 2.1.7 (universal and existential closure) Given a formula
F , the universal closure of F , denoted by ∀(F), is a formula of the form
(∀X1 . . . (∀XmF) . . .) where X1, . . . , Xm are all the variables having a free
occurrence inside F (in some arbitrary order). Similarly the existential
closure of F , denoted by ∃(F), is the formula (∃X1 . . . (∃XmF) . . .).

1In some texts on logic (e.g. [94]) true and false are simply added to the alphabet
and treated in a special manner by interpretations. The only difference is then that true
and false can be considered as atoms, which can be convenient in some places.

2.2. SEMANTICS OF LOGIC PROGRAMS 15

The following class of formulas plays a central role in logic programming.

Definition 2.1.8 (clause) A clause is a formula of the form ∀(H1 ∨ . . . ∨
Hm ← B1 ∧ . . .∧Bn), where m ≥ 0, n ≥ 0 and H1, . . . ,Hm, B1, . . . , Bn are
all literals. H1 ∨ . . .∨Hm is called the head of the clause and B1 ∧ . . .∧Bn

is called the body.
A (normal) program clause is a clause where m = 1 and H1 is an atom.
A definite program clause is a normal program clause in which B1, . . . , Bn

are atoms. A fact is a program clause with n = 0. A query or goal is a
clause with m = 0 and n > 0. A definite goal is a goal in which B1, . . . , Bn

are atoms. The empty clause is a clause with n = m = 0. As we have seen
earlier, this corresponds to the formula false ← true, i.e. a contradiction.
We also use 2 to denote the empty clause.

In logic programming notation one usually omits the universal quanti-
fiers encapsulating the clause and one also often uses the comma (‘,’) instead
of the conjunction in the body, e.g. one writes p(s(X)) ← q(X), p(X) in-
stead of ∀X(p(f(X))← (q(X)∧p(X))). We will adhere to this convention.

Definition 2.1.9 (program) A (normal) program is a set of program
clauses. A definite program is a set of definite program clauses.

In order to be able to express a given program P in a first-order language
L given by some alphabet A, the alphabet A must of course contain the
function and predicate symbols occurring within P . The alphabet might
however contain additional function and predicate symbols which do not
occur inside the program. We therefore denote the underlying first-order
language of a given program P by LP and the underlying alphabet by AP .
For technical reasons related to definitions below, we suppose that there is
at least one constant symbol in AP .

2.2 Semantics of logic programs

Given that a program P is just a set of formulas, which happen to be
clauses, the logical meaning of P might simply be seen as all the formulas
F for which P |= F . For normal programs this approach will turn out to
be insufficient, but for definite programs it provides a good starting point.

2.2.1 Definite programs

To determine whether a formula F is a logical consequence of another for-
mula G, we have to examine whether F is true in all models of G. One big

16 CHAPTER 2. LOGIC AND LOGIC PROGRAMMING

advantage of clauses is that it is sufficient to look just at certain canonical
models, called the Herbrand models.

In the following we will define these canonical models. Any term, atom,
literal, clause will be called ground iff it contains no variables.

Definition 2.2.1 Let P be a program written in the underlying first-order
language LP given by the alphabet AP . Then the Herbrand universe UP

is the set of all ground terms over AP .2 The Herbrand base BP is the set
of all ground atoms in LP .

A Herbrand interpretation is simply an interpretation whose domain is
the Herbrand universe UP and which maps every term to itself. A Herbrand
model of a set of formulas S is an Herbrand interpretation which is a model
of S.

The interest of Herbrand models for logic programs derives from the
following proposition (the proposition does not hold for arbitrary formulas).

Proposition 2.2.2 A set of clauses has a model iff it has a Herbrand model.

This means that a formula F which is true in all Herbrand models of
a set of clauses C is a logical consequence of C. Indeed if F is true in all
Herbrand models then ¬F is false in all Herbrand models and therefore, by
Proposition 2.2.2, C ∪ {¬F} is inconsistent and C |= F .

Note that a Herbrand interpretation or model can be identified with
a subset H of the Herbrand base BP (i.e. H ∈ 2BP): the interpretation
of p(d1, . . . , dn) is true iff p(d1, . . . , dn) ∈ H and the interpretation of
p(d1, . . . , dn) is false iff p(d1, . . . , dn) 6∈ H. This means that we can use
the standard set order on Herbrand models and define minimal Herbrand
models as follows.

Definition 2.2.3 A Herbrand model H ⊆ BP for a given program P is
a minimal Herbrand model iff there exists no H ′ ⊂ H which is also a
Herbrand model of P .

For definite programs there exists a unique minimal Herbrand model,
called the least Herbrand model , denoted by HP . Indeed it can be easily
shown that the intersection of two Herbrand models for a definite program
P is still a Herbrand model of P . Furthermore, the entire Herbrand base
BP is always a model for a definite program and one can thus obtain the
least Herbrand model by taking the intersection of all Herbrand models.

2It is here that the requirement that AP contains at least one constant symbol comes
into play. It ensures that the Herbrand universe is never empty.

2.2. SEMANTICS OF LOGIC PROGRAMS 17

The least Herbrand model HP can be seen as capturing the intended
meaning of a given definite program P as it is sufficient to infer all the
logical consequences of P . Indeed, a formula which is true in the least
Herbrand modelHP is true in all Herbrand models and is therefore a logical
consequence of the program.

Example 2.2.4 Take for instance the following program P :
int(0)←
int(s(X))← int(X)

Then the least Herbrand model of P is HP = {int(0), int(s(0)), . . .} and
indeed P |= int(0), P |= int(s(0)), But also note that for definite
programs the entire Herbrand base BP is also a model. Given a suitable
alphabet AP , we might have BP = {int(a), int(0), int(s(a)), int(s(0)), . . .}.
This means that the atom int(a) is consistent with the program P (i.e.
P 6|= ¬int(a)), but is not implied either (i.e. P 6|= int(a)).

It is here that logic programming goes beyond “classical” first-order
logic. In logic programming one (usually) assumes that the program gives
a complete description of the intended interpretation, i.e. anything which
cannot be inferred from the program is assumed to be false. For example,
one would say that ¬int(a) is a consequence of the above program P because
int(a) 6∈ HP . This means that, from a logic programming perspective, the
above program captures exactly the natural numbers, something which is
impossible to accomplish within first-order logic (for a formal proof see e.g.
Corollary 4.10.1 in [78]).

A possible inference scheme, capturing this aspect of logic programming,
was introduced in [238] and is referred to as the closed world assumption
(CWA). The CWA cannot be expressed in first-order logic (a second-order
logic axiom has to be used to that effect, see e.g. the approach adopted
in [183]). Note that using the CWA leads to non-monotonic inferences,
because the addition of new information can remove certain, previously
valid, consequences. For instance, by adding the clause int(a) ← to the
above program the literal ¬int(a) is no longer a consequence of the logic
program.

2.2.2 Fixpoint characterisation of HP

We now present a more constructive characterisation of the least Herbrand
model, as well as the associated set of consequences, using fixpoint concepts.
We first need the following definitions:

Definition 2.2.5 (substitution) A substitution θ is a finite set of the
form θ = {X1/t1, . . . , Xn/tn} where X1, . . . , Xn are distinct variables and

18 CHAPTER 2. LOGIC AND LOGIC PROGRAMMING

t1, . . . , tn are terms such that ti 6= Xi. Each element Xi/ti of θ is called a
binding.

Alternate definitions of substitutions exist in the literature (e.g. in [89,
84], see also the discussion in [149]), but the above is the most common one
in the logic programming context.

We also define an expression to be either a term, an atom, a literal, a
conjunction, a disjunction or a program clause.

Definition 2.2.6 (instance) Let θ = {X1/t1, . . . , Xn/tn} be a substitu-
tion and E an expression. Then the instance of E by θ, denoted by Eθ, is
the expression obtained by simultaneously replacing each occurrence of a
variable Xi in E by the term t.

We can now define the following operator mapping Herbrand interpre-
tations to Herbrand interpretations.

Definition 2.2.7 (TP) Let P be a program. We then define the (ground)
immediate consequence operator TP 2BP 7→ 2BP by:

TP (I) = {A ∈ BP | A← A1, . . . An is a ground instance of a

clause in P and {A1, . . . , An} ⊆ I}

Every pre-fixpoint I of TP , i.e. TP (I) ⊆ I, corresponds to a Herbrand
model of P and vice versa. This means that to study the Herbrand models
of P one can also investigate the pre-fixpoints of the operator TP . For
definite programs, one can prove that TP is a continuous mapping and that
it has a least fixpoint lfp(TP) which is also its least pre-fixpoint.

The following definition will provide a way to calculate the least fixpoint:

Definition 2.2.8 Let T be a mapping 2D 7→ 2D. We then define T ↑ 0 = ∅
and T ↑ i + 1 = T (T ↑ i). We also define T ↑ ∞ to stand for

⋃
i<∞ T ↑ i.

The following theorem from [277] links the least Herbrand model with
the least fixpoint of TP and provides a way of constructing it.

Theorem 2.2.9 (Fixpoint characterisation of the least Herbrand
model) Let P be a definite program. Then HP = lfp(TP) = TP ↑ ∞.

2.2.3 Normal programs

We have already touched upon the CWA. Given a formula F , this rule
amounts to inferring that ¬F is a logical consequence of a program P if F
is not a logical consequence of P . In the context of normal programs the

2.3. PROOF THEORY OF LOGIC PROGRAMS 19

situation is complicated by the fact that negations can occur in the bodies
of clauses and therefore the truth of ¬F can propagate further and may
be used to infer positive formulas as well. This entails that a normal logic
program does not necessarily have a unique minimal Herbrand model. To
give a meaning to normal logic programs a multitude of semantics have
been developed. We cannot delve into the details of these semantics and
have to refer the interested reader to e.g. [9].

We will just present a few details of the completion semantics, which is
the approach closest to first-order logic.

Definition 2.2.10 Given a program P the definition of a predicate p is
the set of clauses in P whose head has p as its predicate symbol.

To make the link with first-order logic, Clark developed the concept of
completion in [52]. The basic idea is to replace every definition of some
predicate p by one if-and-only-if formula, called the completed definition
of p. The resulting formulas are then combined with what is called Clark’s
equality theory or simply CET, which forces equality = to be interpreted as
the identity relation on the Herbrand universe UP . The resulting program is
called the completion of the original program P and is denoted by comp(P).

For instance, the completed definition of the predicate int from the
program P of Example 2.2.4 is:

∀X(int(X)↔ X = 0 ∨ ∃Z(X = s(Z) ∧ int(Z)))
CET for the same program will contain such formulas as:

∀X¬(s(X) = 0)
∀X∀Y (X = Y → s(X) = s(Y))

The completion semantics has its shortcomings (e.g. the program P
from Example 2.2.4 no longer captures only the natural numbers: although
comp(P) |= ¬int(a) whereas P 6|= ¬int(a), comp(P) also has models in
which the interpretation of int is not isomorphic to the natural numbers)
but has the advantage of being rather straightforward and can be seen as
the theoretical basis for “negation as failure”, which we will present in the
next section.

2.3 Proof theory of logic programs

We start with some additional useful terminology related to substitutions.
If Eθ = F then E is said to be more general than F . If E is more general
than F and F is more general than E then E and F are called variants (of
each other). If Eθ is a variant of E then θ is called a renaming substitution
for E. Because a substitution is a set of bindings we will denote, in contrast

20 CHAPTER 2. LOGIC AND LOGIC PROGRAMMING

to e.g. [184], the empty or identity substitution by ∅ and not by the empty
sequence ε. Substitutions can also be applied to sets of expressions by
defining {E1, . . . , En}θ = {E1θ, . . . , Enθ}.

Substitutions can also be composed in the following way:

Definition 2.3.1 (composition of substitutions) Let θ = {X1/s1, . . . ,
Xn/sn} and σ = {Y1/t1, . . . , Yk/tk} be substitutions. Then the composition
of θ and σ, denoted by θσ, is defined to be the substitution {Xi/siσ | 1 ≤
i ≤ n ∧ siσ 6= Xi} ∪ {Yi/ti | 1 ≤ i ≤ k ∧ Yi 6∈ {X1, . . . , Xn}}.3

When viewing substitutions as functions from expressions to expressions,
then the above definition behaves just like ordinary function composition,
i.e. E(θσ) = (Eθ)σ. We also have that (for proofs see [184]) the identity
substitution acts as a left and right identity for composition, i.e. θ∅ = ∅θ =
θ, and that composition is associative, i.e. (θσ)γ = θ(σγ).

We call a substitution θ idempotent iff θθ = θ. We also define the
following notations: the set of variables occurring inside an expression E is
denoted by vars(E), the domain of a substitution θ is defined as dom(θ)
= {X | X/t ∈ θ} and the range of θ is defined as ran(θ) = {Y | X/t ∈
θ∧Y ∈ vars(t)}. Finally, we also define vars(θ) = dom(θ)∪ ran(θ) as well
as the restriction θ|V of a substitution θ to a set of variables V by θ|V =
{X/t | X/t ∈ θ ∧X ∈ V}.

The following concept will form the link between the model-theoretic
semantics and the procedural semantics of logic programs.

Definition 2.3.2 (answer) Let P be a program and G =← L1, . . . , Ln

a goal. An answer for P ∪ {G} is a substitution θ such that dom(θ) ⊆
vars(G).

2.3.1 Definite programs

We first define correct answers in the context of definite programs and goals.

Definition 2.3.3 (correct answer) Let P be a definite program and
G =← A1, . . . , An a definite goal. An answer θ for P ∪ {G} is called a
correct answer for P ∪ {G} iff P |= ∀((A1 ∧ . . . ∧An)θ).

Take for instance the program P = {p(a)←} and the goal G =← p(X).
Then {X/a} is a correct answer for P ∪ {G} while {X/c} and ∅ are not.

We now present a way to calculate correct answers based on the concepts
of resolution and unification.

3This definition deviates slightly from the one in [7, 184, 218]. Indeed, taking the
definition in [7, 184, 218] literally we would have that {X/a}{X/a} = ∅ and not the
desired {X/a} (the definition in [7, 184, 218] says to delete any binding Yi/ti with
Yi ∈ {X1, . . . , Xn} from a set of bindings). Our definition does not share this problem.

2.3. PROOF THEORY OF LOGIC PROGRAMS 21

Definition 2.3.4 (mgu) Let S be a finite set of expressions. A substitution
θ is called a unifier of S iff the set Sθ is a singleton. θ is called relevant
iff its variables vars(θ) all occur in S. θ is called a most general unifier
or mgu iff for each unifier σ of S there exists a substitution γ such that
σ = θγ.

The concept of unification dates back to [119] and has been rediscovered
in [240]. A survey on unification, also treating other application domains,
can be found in [147].

If a unifier for a finite set S of expressions exists then there exists an
idempotent and relevant most general unifier which is unique modulo vari-
able renaming (see [7, 184]). Unifiability of a set of expressions is decidable
and there are efficient algorithms for calculating an idempotent and rel-
evant mgu. See for instance the unification algorithms in [7, 184] or the
more complicated but linear ones in [193, 221]. From now on we denote,
for a unifiable set S of expressions, by mgu(S) an idempotent and relevant
unifier of S. If we just want to unify two terms t1, t2 then we will also
sometimes write mgu(t1 , t2) instead of mgu({t1 , t2}).

We define the most general instance, of a finite set S to be the only
element of Sθ where θ = mgu(S). The opposite of the most general in-
stance is the most specific generalisation of a finite set of expressions S,
also denoted by msg(S), which is the most specific expression M such that
all expressions in S are instances of M . Algorithms for calculating the msg
exist [160], and this process is also referred to as anti-unification or least
general generalisation.

We can now define SLD-resolution, which is based on the resolution
principle [240] and which is a special case of SL-resolution [154]. Its use
for a programming language was first described in [153] and the name
SLD (which stands for Selection rule-driven Linear resolution for Definite
clauses), was coined in [12]. For more details about the history see e.g.
[7, 184].

Definition 2.3.5 (SLD-derivation step) Let G =← L1, . . . , Lm, . . . , Lk

be a goal and C = A← B1, . . . , Bn a program clause such that k ≥ 1 and
n ≥ 0. Then G′ is derived from G and C using θ (and Lm) iff the following
conditions hold:

1. Lm is an atom, called the selected atom (at position m), in G.

2. θ is a relevant and idempotent mgu of Lm and A.

3. G′ is the goal ← (L1, . . . , Lm−1, B1, . . . , Bn, Lm+1, . . . , Lk)θ.

G′ is also called a resolvent of G and C.

22 CHAPTER 2. LOGIC AND LOGIC PROGRAMMING

In the following we define the concept of a complete SLD-derivation (we
will define incomplete ones later on).

Definition 2.3.6 (complete SLD-derivation) Let P be a normal pro-
gram and G a normal goal. A complete SLD+-derivation of P ∪ {G} is
a tuple (G,L, C,S) consisting of a sequence of goals G = 〈G0, G1, . . .〉, a
sequence L = 〈L0, L1 . . .〉 of selected literals,4 a sequence C = 〈C1, C2, . . .〉
of variants of program clauses of P and a sequence S = 〈θ1, θ2, . . .〉 of mgu’s
such that:
• for i > 0, vars(Ci) ∩ vars(G0) = ∅;
• for i > j, vars(Ci) ∩ vars(Cj) = ∅;
• for i ≥ 0, Li is a positive literal in Gi and Gi+1 is derived from Gi

and Ci+1 using θi+1 and Li;
• the sequences G, C,S are maximal given L.

A complete SLD-derivation is just a complete SLD+ derivation of a definite
program and goal.

The process of producing variants of program clauses of P which do not
share any variable with the derivation sequence so far is called standardising
apart. Some care has to be taken to avoid variable clashes and the ensuing
technical problems; see the discussions in [149] or [84].

We now come back to the idea of a proof by refutation and its relation
to SLD-resolution. In a proof by refutation one adds the negation of what
is to be proven and then tries to arrive at inconsistency. The former corre-
sponds to adding a goal G =← A1, . . . , An to a program P and the latter
corresponds to searching for an SLD-derivation of P ∪ {G} which leads to
2. This justifies the following definition.

Definition 2.3.7 (SLD-refutation) An SLD-refutation of P ∪ {G} is a
finite complete SLD-derivation of P ∪ {G} which has the empty clause 2

as the last goal of the derivation.

In addition to refutations there are (only) two other kinds of complete
derivations:

• Finite derivations which do not have the empty clause as the last goal.
These derivations will be called (finitely) failed.

• Infinite derivations. These will be called infinitely failed.

We can now define computed answers, which correspond to the output
calculated by a logic program.

4Again we slightly deviate from [7, 184]: the inclusion of L avoids some minor tech-
nical problems wrt the maximality condition.

2.3. PROOF THEORY OF LOGIC PROGRAMS 23

Definition 2.3.8 (computed answer) Let P be a definite program, G
a definite goal and D a SLD-refutation for P ∪ {G} with the sequence
〈θ1, . . . , θn〉 of mgu’s. The substitution (θ1 . . . θn)|vars(G) is then called a
computed answer for P ∪ {G} (via D).

If θ is a computed (respectively correct) answer for P ∪ {G} then Gθ is
called a computed (respectively correct) instance for P ∪ {G}.

Theorem 2.3.9 (soundness of SLD) Let P be a definite program and
G a definite goal. Every computed answer for P ∪ {G} is a correct answer
for P ∪ {G}.

Theorem 2.3.10 (completeness of SLD) Let P be a definite program
and G a definite goal. For every correct answer σ for P ∪{G} there exists a
computed answer θ for P ∪ {G} and a substitution γ such that Gσ = Gθγ.

A proof of the previous theorem can be found in [7].5

We will now examine systematic ways to search for SLD-refutations.

Definition 2.3.11 (complete SLD-tree) A complete SLD-tree for P ∪
{G} is a labelled tree satisfying the following:

1. Each node of the tree is labelled with a definite goal along with an
indication of the selected atom

2. The root node is labelled with G.

3. Let ← A1, . . . , Am, . . . , Ak be the label of a node in the tree and
suppose that Am is the selected atom. Then for each clause A ←
B1, . . . , Bq in P such that Am and A are unifiable the node has one
child labelled with

← (A1, . . . , Am−1, B1, . . . , Bq, Am+1, . . . , Ak)θ,

where θ is an idempotent and relevant mgu of Am and A.

4. Nodes labelled with the empty goal have no children.
5The corresponding theorem in [184] states that σ = θγ, which is known to be false.

Indeed, take for example the program P = {p(f(X, Y)) ←} and the goal G =← p(Z).
Then {Z/f(a, a)} is a correct answer (because p(f(a, a)) is a consequence of P), but
• there is no computed answer {X/f(a, a)}
• for any computed answer {Z/f(X′, Y ′)} (where either X′ or Y ′ must be different

from Z; these are the only computed answers) composing it with {X′/a, Y ′/a} will
give {Z/f(a, a), X′/a, Y ′/a} (or {Z/f(a, a), Y ′/a} if X′ = Z or {Z/f(a, a), X′/a}
if Y ′ = Z) which is different from {X/f(a)}.

24 CHAPTER 2. LOGIC AND LOGIC PROGRAMMING

To every branch of a complete SLD-tree corresponds a complete SLD-
derivation. The choice of the selected atom is performed by what is called
a selection rule. Maybe the most well known selection rule is the left-to-
right selection rule of Prolog [80, 262, 53], which always selects the leftmost
literal in a goal. The complete SLD-derivations and SLD-trees constructed
via this selection rule are called LD-derivations and LD-trees.

Usually one confounds goals and nodes (e.g. in [7, 184, 218]) although
this is strictly speaking not correct because the same goal can occur several
times inside the same SLD-tree.

We will often use a graphical representation of SLD-trees in which the se-
lected atoms are identified by underlining. For instance, Figure 2.1 contains
a graphical representation of a complete SLD-tree for P ∪ {← int(s(0))},
where P is the program of Example 2.2.4.

2

← int(0)

?

?

← int(s(0))

Figure 2.1: Complete SLD-tree for Example 2.2.4

2.3.2 Normal programs

We now define correct answers in the context of normal goals and the
completion of normal programs.

Definition 2.3.12 (correct answer) Let P be a definite program and
G =← A1, . . . , An a definite goal. A substitution θ is called a correct
answer for comp(P) ∪ {G} iff comp(P) |= ∀((A1 ∧ . . . ∧An)θ).

In [184] it is shown that this concept generalises the earlier concept of a
correct answer in the definite case.

Finding an efficient proof procedure for normal programs is much less
obvious than in the definite case. The most commonly used procedure is
the so called SLDNF-procedure. It is an extension of SLD-resolution which
also allows the selection of ground negative literals. Basically a selected
ground negative literal ¬A succeeds (without computed answer) if ← A
fails finitely. Similarly a selected ground negative literal fails if there exists

2.3. PROOF THEORY OF LOGIC PROGRAMS 25

a refutation for ← A. This implements what is called the “negation as
failure” (NAF) rule, a less powerful but more tractable inference mechanism
than the CWA.

To define SLDNF-derivations we use the approach presented in [184]
based on ranks, where the rank indicates the maximal nesting of sub-
derivations and sub-trees created by negative calls. Note that the definition
of [184] exhibits some technical problems, in the sense that some problem-
atic goals do not have an associated SLDNF-derivation (failed or otherwise,
see [194, 10, 9]). The definition is however sufficient for our purposes, es-
pecially since most correctness results for partial deduction (e.g. [184]), to
be introduced in the next chapter, use this definition anyway.

Note that in Definition 2.3.6 we already introduced SLD+-derivations
for normal programs and goals which do not allow the selection of negative
literals. We also call an SLD+-refutation an SLDNF-refutation of rank 0.

The notions of SLDNF-refutations of rank k and finitely failed SLDNF-
trees of rank k, as well as the notions of SLDNF-derivation and SLDNF-tree,
depend on each other. We start by defining SLDNF-trees.

Definition 2.3.13 (SLDNF-tree) Let P be a normal program and G a
normal goal. A pseudo SLDNF-tree for P ∪{G} is a labelled tree satisfying
the following:

1. Each node of the tree is labelled with a goal along with an indication
of the selected atom

2. The root node is labelled with G.

3. Let ← L1, . . . , Lm, . . . , Lk be the label of a node in the tree and
suppose that Lm is the selected literal which is an atom. Then for
each clause A ← B1, . . . , Bq in P such that Lm and A are unifiable
the node has one child labelled with

← (L1, . . . , Lm−1, B1, . . . , Bq, Lm+1, . . . , Lk)θ,

where θ is an idempotent and relevant mgu of Lm and A.

4. Let ← L1, . . . , Lm, . . . , Lk be the label of a node in the tree and
suppose that Lm = ¬Am is the selected literal. Then Am is ground
and the node is either a leaf or has a child labelled with

← L1, . . . , Lm−1, Lm+1, . . . , Lk.

5. Nodes labelled with the empty goal have no children.

A finitely failed SLDNF-tree of rank 0 for P∪{G} is a finite pseudo SLDNF-
tree which satisfies:

26 CHAPTER 2. LOGIC AND LOGIC PROGRAMMING

1. Only positive literals are selected.

2. Each leaf is labelled with a non-empty goal ← L1, . . . , Lm, . . . , Lk in
which the selected literal Lm is an atom (which thus unifies with no
clause head).

A finitely failed SLDNF-tree of rank k + 1 for P ∪ {G} is a finite pseudo
SLDNF-tree for P ∪ {G} which satisfies:

1. For each non-leaf node labelled with ← L1, . . . , Lm, . . . , Lk′ in which
the selected literal Lm = ¬Am is negative there is a finitely failed
SLNDF-tree of rank k for P ∪ {← Am}.

2. Each leaf is labelled with a non-empty goal ← L1, . . . , Lm, . . . , Lk′ in
which the selected literal Lm is either

• an atom (which thus unifies with no clause head) or
• a negative literal Lm = ¬Am and there is an SLDNF-refutation

of rank k of P ∪ {← Am}.

A finitely failed SLDNF-tree is a finitely failed SLDNF-tree of rank k for
some k.
A complete SLDNF-tree for P ∪ {G} is a finite pseudo SLDNF-tree for
P ∪ {G} which satisfies:

1. For each non-leaf node labelled with ← L1, . . . , Lm, . . . , Lk in which
the selected literal Lm = ¬Am is negative there is a finitely failed
SLNDF-tree for P ∪ {← Am}.

2. If a leaf is labelled with a non-empty goal ← L1, . . . , Lm, . . . , Lk in
which the selected literal Lm = ¬Am is negative then there is an
SLDNF-refutation of P ∪ {← Am}.

Definition 2.3.14 (SLDNF-derivation) Let P be a normal program
and G a normal goal. A pseudo SLDNF-derivation of P ∪ {G} is a tuple
(G,L, C,S) consisting of a sequence of goals G = 〈G0, G1, . . .〉, a sequence
L = 〈L0, L1, . . .〉 of selected literals, a sequence C = 〈C1, C2, . . .〉 of variants
of program clauses of P or ground negative literals and a sequence S =
〈θ1, θ2, . . .〉 of substitutions such that:
• for i > 0, vars(Ci) ∩ vars(G0) = ∅;
• for i > j, vars(Ci) ∩ vars(Cj) = ∅;
• for i ≥ 0, Li is a literal in Gi and either

1. Gi+1 is derived from Gi and Ci+1 using θi+1 and Li or
2. Gi =← L′1, . . . , L

′
m, . . . , L′k and the selected literal Li = L′m =

¬Am is ground. In this case, either Gi is the last goal or θi+1 = ∅
(the identity substitution), Ci+1 = ¬Am and

2.3. PROOF THEORY OF LOGIC PROGRAMS 27

Gi+1 =← L′1, . . . , L
′
m−1, L

′
m+1, . . . , L

′
k.

• the sequences G, C,S are maximal given L.
An SLDNF-refutation of rank k + 1 of P ∪ {G} is a finite pseudo SLDNF-
derivation of P ∪ {G} ending with the empty goal 2 and such that for
every selected ground negative literal Lm = ¬Am there exists a finitely
failed SLNDF-tree of rank k for P ∪ {← Am}.
An SLDNF-refutation is simply a SLDNF-refutation of rank k for some k
and a complete SLDNF-derivation is a pseudo SLDNF-derivation such that
for every selected ground negative literal Lm = ¬Am in some Gi either
• Gi is the last goal and there exists an SLDNF-refutation of P ∪ {←
Am} or
• Gi is not the last goal and there exists a finitely failed SLNDF-tree
for P ∪ {← Am}.

The following theorem establishes soundness of SLDNF and is due to
Clark [52].

Theorem 2.3.15 (Soundness of Negation as Failure and SLDNF)
Let P be a normal program and ← Q a normal goal.
• If P ∪{← Q} has a finitely failed SLDNF-tree then comp(P) |= ¬Q.
• Every computed answer for P ∪ {← Q} is a correct answer for
comp(P) ∪ {← Q}.

Unfortunately SLDNF-resolution is in general not complete, even wrt
the completion semantics, mainly (but not only) due to floundering, i.e.
computation reaches a state in which only non-ground negative literals
exist. See also [253] for some limitations of SLDNF. Some completeness
results for some specific settings have been developed in e.g. [45, 44, 265, 87].

To remedy the incompleteness of SLDNF, several extensions have been
proposed. Let us briefly mention some of them.

First, a straightforward extension is described in [184] (on page 94;
already mentioned in [52] and called SLDNFE in [9]). The idea is to allow
the (tentative) selection of non-ground negative literals ¬A: if a refutation
of P ∪ {← A} with the empty computed answer substitution can be found
then we declare failure of ¬A and if a finitely failed tree can be constructed
for P ∪{← A} we declare success. In the other cases ¬A cannot be selected.

Another extension is the so called SLS procedure [236]. However, its
purpose is mainly theoretical, as it requires the detection of infinitely failed
branches (and treats them like the finitely failed ones in SLDNF).

The approach of constructive negation overcomes some of the incom-
pleteness problems of SLDNF [48, 49, 86, 252, 267, 266] and can be useful
inside partial deduction [115]. The main idea is to allow the selection of

28 CHAPTER 2. LOGIC AND LOGIC PROGRAMMING

non-ground negative literals, replacing them by disequality constraints. For
instance, given P = {p(a)←} the negative literal ¬p(X) could be replaced
by ¬(X = a). Another related approach is presented in [105].

2.3.3 Programs with built-ins

Most practical logic programs make (heavy) usage of built-ins. Although
a lot of these built-ins, like e.g. assert/1 and retract/1, are extra-logical
and ruin the declarative nature of the underlying program, a reasonable
number of them can actually be seen as syntactic sugar. Take for example
the following program which uses the Prolog [80, 262, 53] built-ins = ../2
and call/1.

map(P, [], [])←
map(P, [X|T], [PX |PT])← C = ..[P,X, PX], call(C), map(P, T, PT)
inv(0, 1)←
inv(1, 0)←

For this program the query ← map(inv, [0, 1, 0], R) will succeed with the
computed answer {R/[1, 0, 1]}. Given that query, the Prolog program can
be seen as a pure definite logic program by simply adding the following
definitions (where we use the prefix notation for the predicate = ../2):

= ..(inv(X, Y), [inv, X, Y])←
call(inv(X, Y))← inv(X, Y)

The so obtained pure logic program will succeed for← map(inv, [0, 1, 0], R)
with the same computed answer {R/[1, 0, 1]}.

This means that some predicates like map/3, which are usually taken to
be higher-order, can simply be mapped to pure definite (first-order) logic
programs ([283, 212]). Some built-ins, like for instance is/2, have to be
defined by infinite relations. Usually this poses no problems as long as, when
selecting such a built-in, only a finite number of cases apply (Prolog will
report a run-time error if more than one case applies while the programming
language Gödel [123] will delay the selection until only one case applies).

In the remainder of this thesis we will usually restrict our attention to
those built-ins that can be given a logical meaning by such a mapping.

Chapter 3

Partial Evaluation and
Partial Deduction

3.1 Partial evaluation

In contrast to ordinary (full) evaluation, a partial evaluator is given a pro-
gram P along with only part of its input, called the static input. The
remaining part of the input, called the dynamic input , will only be known
at some later point in time. Given the static input S, the partial evaluator
then produces a specialised version PS of P which, when given the dynamic
input D, produces the same output as the original program P . This pro-
cess is illustrated in Figure 3.1. The program PS is also called the residual
program.

The theoretical feasibility of this process, in the context of recursive
functions, has already been established by Kleene [146] and is known as
Kleene’s S-M-N theorem. However, while Kleene was concerned with the-
oretical issues of computability and his construction yields specialised pro-
grams which are slower than the original, the goal of partial evaluation is
to exploit the static input in order to derive more efficient programs.

To obtain the specialised program PS , a partial evaluator performs a
mixture of evaluation, i.e. it executes those parts of P which only depend on
the static input S, and of code generation for those parts of P which require
the dynamic input D. This process has therefore also been called mixed
computation in [90]. Also, it is precisely this approach which distinguishes
partial evaluation from other program specialisation approaches.

Because part of the computation has already been performed beforehand
by the partial evaluator, the hope that we obtain a more efficient program

29

30 CHAPTER 3. PARTIAL EVALUATION AND DEDUCTION

= Output

= Input
-

-

6

-

-

?

D

S

PS

�
�
�
�

D

6

'
&
$
%

S -

P

Evaluator
Partial

O
-

-

�
 �	
= Program

= Result

Figure 3.1: Partial evaluation of programs with static and dynamic input

PS seems justified. The simple example in Figure 3.2 illustrates this point:
the control of the loop in P is fully determined by the static input e = 3
and was executed beforehand by the partial evaluator, resulting in a more
efficient specialised program Pe.

Partial evaluation has been applied to a lot of programming languages
and paradigms: functional programming (e.g. [138]), logic programming
(e.g. [98, 152, 222]), functional logic programming (e.g. [2]) term rewrite
systems (e.g. [22, 23], [204]) and imperative programming (e.g. [5, 3]). A
general introduction to partial evaluation can also be found in [136]. An
important concern in partial evaluation has also been the issue of self-
application, i.e. to try to write partial evaluators which are able to specialise
themselves. We will return to this issue in Chapter 7.

In the context of logic programming, full input to a program P consists
of a goal G and evaluation corresponds to constructing a complete SLDNF-
tree for P∪{G}. For partial evaluation, the static input then takes the form
of a partially instantiated goal G′. In contrast to other programming lan-
guages and paradigms, one can still execute P for G′ and (try to) construct
a SLDNF-tree for P ∪ {G′}. So, at first sight, it seems that partial evalu-
ation for logic programs is almost trivial and just corresponds to ordinary
evaluation.

However, because G′ is not yet fully instantiated, the SLDNF-tree for
P ∪ {G′} is usually infinite and ordinary evaluation will not terminate. A

3.1. PARTIAL EVALUATION 31

Pe

P

res

res:=b*b*b

for i = 1 to e do
res:=1

res:=res*b

res

e

b

e

b

3

5

125
5

3 -

-

Partial

Evaluator
-

'
&
$
%

6

�
�
�
�

?

-

-

6

Figure 3.2: Partial evaluation of a simple imperative program

more refined approach to partial evaluation of logic programs is therefore
required. A technique which solves this problem is known under the name
of partial deduction. Its general idea is to construct a finite number of finite
trees which “cover” the possibly infinite SLDNF-tree for P ∪{G′}. We will
present the essentials of this technique in the next section.

The term “partial deduction” has been introduced by Komorowski (see
[152]) to replace the term of partial evaluation in the context of pure logic
programs. We will adhere to this terminology because the word “deduction”
places emphasis on the purely logical nature of the source programs. Also,
while partial evaluation of e.g. functional programs evaluates only those
expressions which depend exclusively on the static input, in logic program-
ming one can, as we have seen above, in principle also evaluate expressions
which depend on the unknown dynamic input. This puts partial deduction
much closer to techniques such as supercompilation [273, 274, 258, 114]
and unfold/fold program transformations [43, 222], and therefore using a
different denomination seems justified. We will return to the relation of
partial deduction to these and other techniques in Chapters 6 and 10 (see
also [113, 135, 259]). Finally, note that program specialisation in general
is not limited to just evaluating expressions, whether they depend on the
static input or not. A striking illustration of this statement features in
Chapter 13.

32 CHAPTER 3. PARTIAL EVALUATION AND DEDUCTION

3.2 Partial deduction

In this section we present the technique of partial deduction, which orig-
inates from [150, 151]. Other introductions to partial deduction can be
found in [152, 98, 63].

In order to avoid constructing infinite SLDNF-trees for partially instan-
tiated goals, the technique of partial deduction is based on constructing
finite, but possibly incomplete SLDNF-trees. The derivation steps in these
SLDNF-trees correspond to the computation steps which have already been
performed by the partial deducer and the clauses of the specialised program
are then extracted from these trees by constructing one specialised clause
per branch.

In this section we will formalise this technique and present conditions
which will ensure correctness of the so obtained specialised programs.

Definition 3.2.1 (SLDNF-derivation) A SLDNF-derivation is defined
like a complete SLDNF-derivation but may, in addition to leading to suc-
cess or failure, also lead to a last goal where no literal has been selected
for a further derivation step. Derivations of the latter kind will be called
incomplete.

An SLDNF-derivation can thus be either failed, incomplete, successful
or infinite. Now, an incomplete SLDNF-tree is obtained in much in the
same way.

Definition 3.2.2 An SLDNF-tree is defined like a complete SLDNF-tree
but may, in addition to success and failure leaves, also contain leaves where
no literal has been selected for a further derivation step. Leaves of the latter
kind are called dangling ([199]) and SLDNF-trees containing dangling leaves
are called incomplete. Also, an SLDNF-tree is called trivial iff its root is a
dangling leaf, and non-trivial otherwise.

The process of selecting a literal inside a dangling leaf of an incomplete
SLDNF-tree and adding all the resolvents as children is called unfolding .
An SLDNF-tree for P∪{G} can thus be obtained from a trivial SLDNF-tree
for P ∪{G} by performing a sequence of unfolding steps. We will return to
this issue in Section 3.3.3.

Note that every branch of an SLDNF-tree has an associated (possibly
incomplete) SLDNF-derivation. We also extend the notion of a computed
answer substitution (c.a.s.) to finite incomplete SLDNF-derivations (it is
just the composition of the mgu’s restricted to the variables of the top-level
goal). Also, a resolvent of a finite (possibly incomplete) SLDNF-derivation

3.2. PARTIAL DEDUCTION 33

is just the last goal of the derivation. Finally, if 〈G0, . . . , Gn〉 is the sequence
of goals of a finite SLDNF-derivation, we say D has length n.

We will now examine how specialised clauses can be extracted from
SLDNF-derivations and trees. The following definition associates a first-
order formula with a finite SLDNF-derivation.

Definition 3.2.3 Let P be a program, ← Q a goal and D a finite SLDNF-
derivation of P ∪{← Q} with computed answer θ and resolvent← B. Then
the formula Qθ ← B is called the resultant of D.

This concept can be extended to SLDNF-trees in the following way:

Definition 3.2.4 Let P be a program, G a goal and let τ be a finite
SLDNF-tree for P ∪ {G}. Let D1, . . . , Dn be the non-failing SLDNF-
derivations associated with the branches of τ . Then the set of resultants
resultants(τ) is the union of the resultants of the non-failing SLDNF-
derivations D1, . . . , Dn associated with the branches of τ . We also define
the set of leaves, leaves(τ), to be the atoms occurring in the resolvents of
D1, . . . , Dn.

Example 3.2.5 Let P be the following program:
member(X , [X |T])←
member(X , [Y |T])← member(X ,T)
inboth(X ,L1 ,L2)← member(X ,L1),member(X ,L2)

The tree in Figure 3.3 represents a finite incomplete SLD-tree τ for P ∪{←
inboth(X , [a],L)}. This tree has just one non-failing branch and the set of
resultants resultants(τ) contains the single clause:

inboth(a, [a],L)← member(a,L)

Note that the complete SLD-tree for P ∪ {← inboth(X , [a],L)} is infinite.

If the goal in the root of a finite SLDNF-tree is atomic then the resul-
tants associated with the tree are all clauses. We can thus formalise partial
deduction in the following way.

Definition 3.2.6 (partial deduction) Let P be a normal program and
A an atom. Let τ be a finite non-trivial SLDNF-tree for P ∪{← A}. Then
the set of clauses resultants(τ) is called a partial deduction of A in P .
If A is a finite set of atoms, then a partial deduction of A in P is the union
of one partial deduction for each element of A.
A partial deduction of P wrt A is a normal program obtained from P by
replacing the set of clauses in P , whose head contains one of the predicate
symbols appearing in A (called the partially deduced predicates), with a
partial deduction of A in P .

34 CHAPTER 3. PARTIAL EVALUATION AND DEDUCTION

{X/a}

fail

PPPPPPPPPq
← member(X , []),member(X ,L)← member(a,L)

?

← member(X , [a]),member(X ,L)

← inboth(X , [a],L)

?

Figure 3.3: Incomplete SLD-tree for Example 3.2.5

Example 3.2.7 Let us return to the program P of Example 3.2.5. Based
on the incomplete SLDNF-tree in Figure 3.3, we can construct the following
partial deduction of P wrt A = {inboth(X , [a],L)}:

member(X , [X |T])←
member(X , [Y |T])← member(X ,T)
inboth(a, [a],L)← member(a,L)

Note that if τ is a trivial SLDNF-tree for P ∪{← A} then resultants(τ)
consists of the problematic clause A← A and the specialised program con-
tains a loop. That is why trivial trees are not allowed in Definition 3.2.6.
This is however not a sufficient condition for correctness of the specialised
programs. In [185], Lloyd and Shepherdson presented and proved a fun-
damental correctness theorem for partial deduction. The two (additional)
basic requirements for correctness of a partial deduction of P wrt A are
the independence and closedness conditions. The independence condition
guarantees that the specialised program does not produce additional an-
swers and the closedness condition guarantees that all calls, which might
occur during the execution of the specialised program, are covered by some
definition. Below we summarise the correctness result of [185].

Definition 3.2.8 (closedness, independence) Let S be a set of first
order formulas and A a finite set of atoms. Then S is A-closed iff each
atom in S, containing a predicate symbol occurring in an atom in A, is an
instance of an atom in A. Furthermore we say that A is independent iff no
pair of atoms in A have a common instance.

Note that two atoms which cannot be unified may still have a common
instance (i.e. unify after renaming apart). For example, p(X) and p(f(X))
are not unifiable but have e.g. the common instance p(f(X)).

3.2. PARTIAL DEDUCTION 35

Theorem 3.2.9 (correctness of partial deduction [185]) Let P be a
normal program, G a normal goal, A a finite, independent set of atoms,
and P ′ a partial deduction of P wrt A such that P ′∪{G} is A-closed. Then
the following hold:

1. P ′∪{G} has an SLDNF-refutation with computed answer θ iff P∪{G}
does.

2. P ′ ∪ {G} has a finitely failed SLDNF-tree iff P ∪ {G} does.

For instance, the partial deduction of P wrt A = {inboth(X , [a],L)}
in Example 3.2.7 satisfies the conditions of Theorem 3.2.9 for the goals
← inboth(X , [a], [b, a]) and ← inboth(X , [a],L) but not for the goal ←
inboth(X , [b], [b, a]).

Note that the original unspecialised program P is also a partial de-
duction wrt A = {member(X ,L), inboth(X ,L1 ,L2)} which furthermore
satisfies the correctness conditions of Theorem 3.2.9 for any goal G. In
other words, neither Definition 3.2.6 nor the conditions of Theorem 3.2.9
ensure that any specialisation has actually been performed. Nor do they
give any indication on how to construct a suitable set A and a suitable
partial deduction wrt A satisfying the correctness criteria for a given goal
G of interest. These are all considerations generally delegated to the control
of partial deduction, which we discuss in the next section.

[18] also proposes an extension of Theorem 3.2.9 which uses a notion of
coveredness instead of closedness. The basic idea is to restrict the attention
to those parts of the specialised program P ′ which can be reached from G.
The formalisation is as follows:

Definition 3.2.10 Let P be a set of clauses. The predicate dependency
graph of P is a directed graph

• whose nodes are the predicate symbols in the alphabet AP and

• which contains an arc from p to q iff there exists a clause in P in
which p occurs as a predicate symbol in the head and q as a predicate
symbol in the body.

Definition 3.2.11 Let P be a program and G a goal. We say that G
depends upon a predicate p in AP iff there exists a path from a predicate
symbol occurring in G to p in the predicate dependency graph of P .
We denote by P ↓G the definitions in P of those predicates in AP upon
which G depends.

Let A be a finite set of atoms. We say that P ∪ {G} is A-covered iff
P ↓G ∪{G} is A-closed.

36 CHAPTER 3. PARTIAL EVALUATION AND DEDUCTION

By replacing the condition in Theorem 3.2.9 that “P ′∪{G} is A-closed”
by the more general “P ′ ∪{G} is A-covered”, we still have a valid theorem
(see [18]).

Example 3.2.12 Let us again return to the program P of Example 3.2.5.
By building a complete SLD-tree for P ∪ {← member(X , [a])}, we get the
following partial deduction P ′ of P wrt A = {member(X , [a])}:

member(a, [a])←
inboth(X ,L1 ,L2)← member(X ,L1),member(X ,L2)

Unfortunately, Theorem 3.2.9 cannot be applied for G =← member(X , [a])
because P ′ ∪ {G} is not A-closed (due to the body of the second clause of
P ′). However, P ′ ∪ {G} is A-covered, because P ′ ↓G just consists of the
first clause of P ′. Therefore correctness of P ′ wrt G can be established by
the above extension of Theorem 3.2.9.

3.3 Control of partial deduction

In partial deduction one usually distinguishes two levels of control [98, 201]:

• the global control , in which one chooses the set A, i.e. one decides
which atoms will be partially deduced, and

• the local control , in which one constructs the finite (possibly incom-
plete) SLDNF-trees for each individual atom inA and thus determines
what the definitions for the partially deduced atoms look like.

← An← A1

?

?

��	 @@R

��	 @@R ?

@@R��	

?

An. . .A1A

local level

global level�
�

�
�

Figure 3.4: Global and local level of control

Below we examine how these two levels of control interact.

3.3. CONTROL OF PARTIAL DEDUCTION 37

3.3.1 Correctness, termination and precision

When controlling partial deduction the three following, often conflicting,
aspects have to be reconciled:

1. Correctness, i.e. ensuring that Theorem 3.2.9 or its extension can be
applied. This can be divided into a local condition, requiring the
construction of non-trivial trees, and into a global one related to the
independence and coveredness (or closedness) conditions.

2. Termination. This aspect can also be divided into a local and a global
one. First, the problem of keeping each SLDNF-tree finite is referred
to as the local termination problem. Secondly keeping the set A finite
is referred to as the global termination problem.

3. Precision. For precision of the specialisation we can again discern
two aspects. One which we might call local precision and which
is related to the unfolding rule and to the fact that (potential for)
specialisation can be lost if we stop unfolding an atom in A prema-
turely. Indeed, when we stop the unfolding process at a given goal
Q, then all the atoms in Q are treated separately (partial deduc-
tions are defined for sets of atoms and not for sets of goals; see how-
ever Chapters 10–13). For instance, if we stop the unfolding process
in Example 3.2.5 for G =← inboth(X , [a, b, c], [c, d , e]) at the goal
G′ =← member(X , [a, b, c]), member(X , [c, d , e]), partial deduction
will not be able to infer that the only possible answer for G′ and G
is {X/c}.
The second aspect could be called the global precision and is related to
the structure of A. In general having a more precise and fine grained
setA (with more instantiated atoms) will lead to better specialisation.
For instance, given the set A = {member(a, [a, b]),member(c, [d])},
partial deduction can perform much more specialisation (i.e. detecting
that the goal ← member(a, [a, b]) always succeeds exactly once and
that← member(c, [d]) fails) than given the less instantiated set A′ =
{member(X , [Y |T])}.

A good partial deduction algorithm will ensure correctness and termi-
nation while minimising the precision loss of point 3. Let us now examine
more closely how those three conflicting aspects can be reconciled.

3.3.2 Independence and renaming

On the side of correctness there are two ways to ensure the independence
condition. One is to apply a generalisation operator like the msg on all the

38 CHAPTER 3. PARTIAL EVALUATION AND DEDUCTION

atoms which are not independent (first proposed in [18]). Applying this
technique e.g. on the dependent set A = {member(a,L),member(X , [b])}
yields the independent set {member(X ,L)}. This approach also alleviates
to some extent the global termination problem. However, it also diminishes
the global precision and, as can be guessed from the above example, can
seriously diminish the potential for specialisation.

This loss of precision can be completely avoided by using a renam-
ing transformation to ensure independence. Renaming will map dependent
atoms to new predicate symbols and thus generate an independent set with-
out precision loss. For instance, the dependent set A above can be trans-
formed into the independent set A′ = {member(a,L),member ′(X , [b])}.
The renaming transformation then has to map the atoms inside the resid-
ual program P ′ and the partial deduction goal G to the correct versions of
A′ (e.g. it has to rename the goal G = ← member(a, [a, c]),member(b, [b])
into ← member(a, [a, c]),member ′(b, [b])). Renaming can often be com-
bined with argument filtering to improve the efficiency of the specialised
program. The basic idea is to filter out constants and functors and only
keep the variables as arguments. For instance, instead of renaming A into
A′, A can be directly renamed into {mema(L),memb(X)} and G into
← mema([a, c]),memb(b). Further details about filtering can be found in
e.g. [100] or [17]. See also [232], where filtering can be obtained automat-
ically when using folding. Filtering has also been referred to as “pushing
down meta-arguments” in [261] or “PDMA” in [220]. In functional pro-
gramming the term of “arity raising” has also been used.

Renaming and filtering are used in a lot of practical approaches (e.g.
[97, 98, 100, 173, 167, 168]) and adapted correctness results can be found in
[17]. We will return to filtering in Section 5.1 of Chapter 5 and will prove
some correctness results in Section 5.2.

3.3.3 Local termination and unfolding rules

The local control component is usually encapsulated in what is called an
unfolding rule, defined as follows.

Definition 3.3.1 (unfolding rule) An unfolding rule U is a function
which, given a program P and a goal G, returns a finite and possibly
incomplete SLDNF-tree for P ∪ {G}.

In addition to local correctness, termination and precision, the require-
ments on unfolding rules also include avoiding search space explosion as
well as work duplication. Approaches to the local control have been based
on one or more of the following elements:

3.3. CONTROL OF PARTIAL DEDUCTION 39

• determinacy [100, 98, 97]
Only (except once) select atoms that match a single clause head. The
strategy can be refined with a so-called “look-ahead” to detect failure
at a deeper level. Methods solely based on this heuristic, apart from
not guaranteeing termination, tend not to worsen a program, but are
often somewhat too conservative.
• well-founded orders [37, 200, 199, 196]

Imposing some (essentially) well-founded order on selected atoms
guarantees termination, but, on its own, can lead to overly eager
unfolding.
• homeomorphic embedding [258, 178]

Instead of well-founded ones, well-quasi orders can be used [21, 245].
Homeomorphic embedding on selected atoms has recently gained pop-
ularity as the basis for such an order.

We will examine the above concepts in somewhat more detail. First the
notion of determinate unfolding can be defined as follows.

Definition 3.3.2 (determinate unfolding) A tree is (purely) determi-
nate if each node of the tree has at most 1 child. An unfolding rule is purely
determinate without lookahead if for every program P and every goal G it
returns a determinate SLDNF-tree. An unfolding rule is purely determi-
nate (with lookahead) if for every program P and every goal G it returns
a SLDNF-tree τ such that the subtree τ− of τ , obtained by removing the
failed branches, is determinate.

Usually the above definitions of determinate unfolding rules are ex-
tended to allow one non-determinate unfolding step, ensuring that non-
trivial trees can be constructed. Depending on the definition, this non-
determinate step may either occur only at the root (e.g. in [97]), anywhere
in the tree or only at the bottom (i.e. its resolvents must be leaves, as e.g. in
[100, 172]). These three additional forms of determinate trees, which we will
call shower, fork and beam determinate trees respectively, are illustrated in
Figure 3.5.

Determinate unfolding has been proposed as a way to ensure that par-
tial deduction will never duplicate computations in the residual program
[100, 97, 98]. Indeed, in the context of the left-to-right selection rule of
Prolog, the following fairly simple example shows that non-leftmost, non-
determinate unfolding may duplicate (large amounts of) work in the trans-
formation result. The one non-determinate unfolding step performed by
a shower, fork or beam determinate unfolding rule, is therefore generally
supposed to mimic the runtime selection rule.

Example 3.3.3 Let us return to the program P of Example 3.2.5:

40 CHAPTER 3. PARTIAL EVALUATION AND DEDUCTION

�
��	

@
@@R?

? ??

? ?

?

�
��	 ?

@
@@R

? ?

?

?

?
@

@@R
�

��	

?

?

?

shower fork beam pure

Figure 3.5: Four forms of determinate trees

member(X , [X |T])←
member(X , [Y |T])← member(X ,T)
inboth(X ,L1 ,L2)← member(X ,L1),member(X ,L2)

Let A = {inboth(a,L1 , [X ,Y])}. By performing the non-leftmost non-
determinate unfolding in Figure 3.6, we obtain the following partial deduc-
tion P ′ of P wrt A:

member(X , [X |T])←
member(X , [Y |T])← member(X ,T)
inboth(a,L1 , [a,Y])← member(a,L1)
inboth(a,L1 , [X , a])← member(a,L1)

Let us examine the run-time goal G =← inboth(a, [z , y , . . . , a], [X ,Y]), for
which P ′ ∪ {G} is A-covered. Using the Prolog left-to-right computation
rule the expensive sub-goal ← member(a, [z , y , . . . , a]) is only evaluated
once in the original program P , while it is executed twice in the specialised
program P ′.

Restricting ourselves to determinate unfolding ensures that such bad
cases of deterioration do not occur. It also ensures that the order of solu-
tions, e.g. under Prolog execution, is not altered and that termination is
preserved (termination might however be improved, as e.g.← loop, fail can
be transformed into ← fail ; for further details related to the preservation
of termination we refer to e.g. [230, 27, 30]). Leftmost, non-determinate
unfolding, usually allowed to compensate for the all too cautious nature of
purely determinate unfolding, avoids the more drastic deterioration pitfalls
in the context of e.g. Prolog, but can still lead to multiplying unifications.

Example 3.3.4 Let us adapt Example 3.3.3 by using the following set A
= {inboth(X , [Y], [V ,W])}. We can fully unfold← inboth(X , [Y], [V ,W])
and we then obtain the following partial deduction P ′ of P wrt A:

3.3. CONTROL OF PARTIAL DEDUCTION 41

HHHHj

fail

← member(a,L),member(a, [])← member(a,L)

�����

← member(a,L),member(a, [Y])

H
HHHj

← member(a,L)

�
�	

← member(a,L),member(a, [X ,Y])
?

← inboth(a,L, [X ,Y])

Figure 3.6: Non-leftmost non-determinate unfolding for Example 3.3.3

member(X , [X |T])←
member(X , [Y |T])← member(X ,T)
inboth(X , [X], [X ,W])←
inboth(X , [X], [V ,X])←

No goal has been duplicated by the leftmost non-determinate unfolding, but
the unification X = Y for ← inboth(X , [Y], [V ,W]) has potentially been
duplicated. E.g., when executing the runtime goal← inboth(tx , [ty], [tv , tw])
in P ′ the terms tx and ty will be unified when resolving with the third clause
of P ′ and then unified again when resolving with the fourth clause of P ′.1

In the original program P this unification will only be performed once,
namely when resolving with the first clause defining member . For run-time
goals where tx and ty are very complicated structures this might actually
result in P ′ being slower than the original P . However, as unifications are
generally much less expensive than executing entire goals, this problem is
(usually) less of an issue.

In practical implementations one has also to take care of such issues as
the clause indexing performed by the compiler as well as how terms are
created (i.e. avoid duplication of term construction operations). Again for
these issues, determinate unfolding has proven to be a generally safe, albeit
sometimes too conservative, approach. Fully adequate solutions to these,
more implementation oriented, aspects are still topics of ongoing research.

Let us return to the aspect of local termination. Restricting oneself to
determinate unfolding in itself does not guarantee termination, as there can

1A very smart compiler might detect this and produce more efficient code which does
not re-execute unifications. It is promised that future versions of Mercury [257] will do
this.

42 CHAPTER 3. PARTIAL EVALUATION AND DEDUCTION

be infinitely failing determinate computations. In (strict) functional pro-
grams such a condition is equivalent to an error in the original program. In
logic programming the situation is somewhat different: a goal can infinitely
fail (in a deterministic way) at partial deduction time but still finitely fail
at run time (see also the examples in Chapter 13). In applications like the-
orem proving, even infinite failures at run-time do not necessarily indicate
an error: they might simply be due to unprovable statements. This is why,
contrary to maybe functional programming, additional measures on top of
determinacy should be adopted to ensure local termination.

One, albeit ad-hoc, way to solve this local termination problem is to
simply impose an arbitrary depth bound. Such a depth bound is of course
not motivated by any property, structural or otherwise, of the program or
goal under consideration. The depth bound will therefore lead either to too
little or too much unfolding in a lot of interesting cases.

As already mentioned, more refined approaches to ensure termination
of unfolding exist. The methods in [37, 200, 199, 196] are based on well-
founded orders, inspired by their usefulness in the context of static termina-
tion analysis (see e.g. [83, 61]). These techniques ensure termination, while
at the same time allowing unfolding related to the structural aspect of the
program and goal to be partially deduced, e.g. permitting the consumption
of static input within the atoms of A.

Formally, well-founded sets and orders are defined as follows:

Definition 3.3.5 (s-poset) A strict partial order on a set S is an anti-
reflexive, anti-symmetric and transitive binary relation on S×S. A couple
S, >S consisting of a set S and a strict partial order >S on S is called an
s-poset or partially strictly ordered set.

Definition 3.3.6 (wfo) An s-poset S, >S is called well-founded iff there is
no infinite sequence of elements s1, s2, . . . in S such that si > si+1, for all
i ≥ 1. The order >S is also called a well-founded order (wfo) on S.

To ensure local termination, one has to find a sensible well-founded
order on atoms and then only allow SLDNF-trees in which the sequence of
selected atoms is strictly decreasing wrt the well-founded order. If an atom
that we want to select is not strictly smaller than its ancestors, we either
have to select another atom or stop unfolding altogether.

Example 3.3.7 Let us return to the member program P of Example 3.2.5.
A simple well-founded order on atoms of the form member(t1 , t2) might be
based on comparing the list length of the second argument.
The list length list length(t) of a term t is defined to be:

3.3. CONTROL OF PARTIAL DEDUCTION 43

• 1 + list length(t′) if t = [h|t′] and
• 0 otherwise.

We then define the wfo on atoms by member(t1 , t2) > member(s1 , s2) iff
list length(t2) > list length(s2).

Based on that wfo, the goal← member(X , [a, b|T]) can be unfolded into
← member(X , [b|T]) and further into ← member(X ,T) because the list
length of the second argument strictly decreases at each step. However, ←
member(X ,T) cannot be further unfolded into ← member(X ,T ′) because
the list length does not strictly decrease.

Much more elaborate well-founded orders, which are e.g. continuously
refined in the unfolding process, exist and we refer the reader to [37, 200,
199, 196] for further details. These works also present a further refinement
which, instead of requiring a decrease with every ancestor, only requires
a decrease wrt the covering ancestors, i.e. one only compares with the
ancestor atoms from which the current atom descends (via resolution).

Let us now turn our attention to approaches based on well-quasi orders,
which are formally defined as follows.

Definition 3.3.8 (quasi order) A quasi order on a set S is a reflexive
and transitive binary relation on S × S. A couple S,≥S consisting of a set
S and a quasi order ≥S on S is called a quasi ordered set.

Henceforth, we will use symbols like <, > (possibly annotated by some
subscript) to refer to strict partial orders and ≤, ≥ to refer to quasi orders.
We will use either “directionality” as is convenient in the context.

Definition 3.3.9 (wqo) A quasi ordered set V,≤V is called well-quasi-
ordered (wqo) iff for any infinite sequence of elements e1, e2, . . . in V there
are i < j such that ei ≤V ej . We also say that ≤V is a well-quasi order
(wqo) on V .

One problematic aspect for the approach based on well-founded orders,
is the satisfactory automatic unfolding of meta-interpreters. This issue
remains largely unsolved, although some initial efforts can be found in
[195, 196]. In that context an approach based on well-quasi orders seems
to be more flexible. Indeed, while an approach based on wfo requires a
strict decrease at every unfolding step, an approach based on wqo can
allow incomparable steps as well. This e.g. allows a wqo to have no a priori
fixed weight or order attached to functors and arguments.

An interesting wqo is the homeomorphic embedding relation of [82]. We
will later use it in several experiments, superimposed on e.g. determinate

44 CHAPTER 3. PARTIAL EVALUATION AND DEDUCTION

unfolding to ensure local termination. We will also use it in the context of
global control later in Chapter 6.

The homeomorphic embedding relation is very generous and will for
example allow to unfold from p([], [a]) to p([a], []) but also the other way
around. This illustrates the flexibility of using well-quasi orders compared
to well-founded ones, as there exists no wfo which will allow both these
unfoldings. It however also illustrates why, when using a wqo, one has to
compare with every predecessor. Otherwise one will get infinite derivations
of the form p([a], [])→ p([], [a])→ p([a], [])→. . . . When using a wfo one has
to compare only to the closest predecessor [199], because of the transitivity
of the order and the strict decrease enforced at each step. However, wfo are
usually extended to incorporate variant checking (see e.g. [196, 199]) and
therefore require inspecting every predecessor anyway (though only when
there is no strict weight decrease).

3.3.4 Control of polyvariance

If we use renaming to ensure independence and (for the moment) suppose
that the local termination and precision problems have been solved by the
approaches presented above, we are still left with the problem of ensur-
ing closedness and global termination while minimising the global precision
loss. We will call this combination of problems the control of polyvariance
problem as it is very closely related to how many different specialised ver-
sions of some given predicate should be put into A.2 It is this important
problem we address in Part II of this thesis.

Let us examine how the 3 subproblems of the control of polyvariance
problem interact.
• Coveredness vs. Global Termination

Coveredness (or respectively closedness) can be simply ensured by re-
peatedly adding the uncovered (i.e not satisfying Definition 3.2.11 or
Definition 3.2.8 respectively) atoms to A and unfolding them. Unfor-
tunately this process generally leads to non-termination, even when
using the msg to ensure independence. For instance, the “reverse
with accumulating parameter” program (see Example 4.3.2 below or
e.g. [196, 200]) exposes this non-terminating behaviour.
• Global Termination vs. Global Precision

To ensure finiteness of A we can repeatedly apply an “abstraction”
operator which generates a set of more general atoms. Unfortunately
this induces a loss of global precision.

By using the two ideas above to (try to) ensure coveredness and global

2A method is called monovariant if it allows only one specialised version per predicate.

3.3. CONTROL OF PARTIAL DEDUCTION 45

termination, we can formulate a generic partial deduction algorithm. First,
the concept of abstraction has to be formally defined.

Definition 3.3.10 (abstraction) Let A and A′ be sets of atoms. Then
A′ is an abstraction of A iff every atom in A is an instance of an atom in
A′. An abstraction operator is an operator which maps every finite set of
atoms to a finite abstraction of it.

The above definition guarantees that any set of clauses covered by A is
also covered by A′. Note that sometimes an abstraction operator is also
referred to as a generalisation operator.

The following generic scheme, based on a similar one in [97, 98], de-
scribes the basic layout of practically all algorithms for controlling partial
deduction.

Algorithm 3.3.11 (standard partial deduction)
Input: A program P and a goal G
Output: A specialised program P ′

Initialise: i = 0, A0 = {A | A is an atom in G }
repeat

for each Ak ∈ Ai do
compute a finite SLDNF-tree τk for P ∪ {← Ak} by

applying an unfolding rule U ;
let A′i := Ai∪ {Bl|Bl ∈ leaves(τk) for some tree τk, such that Bl is

not an instance3 of any Aj ∈ Ai};
let Ai+1 := abstract(A′i); where abstract is an abstraction operator
let i := i + 1;

until Ai+1 = Ai

Apply a renaming transformation to Ai to ensure independence;
Construct P ′ by taking resultants.

In itself the use of an abstraction operator does not yet guarantee global
termination. But, if the above algorithm terminates then coveredness is en-
sured, i.e. P ′∪{G} is Ai-covered (modulo renaming). With this observation
we can reformulate the control of polyvariance problem as one of finding an
abstraction operator which maximises specialisation while ensuring termi-
nation.

A very simple abstraction operator which ensures termination can be
obtained by imposing a finite maximum number of atoms in Ai and using
the msg to stick to that maximum. For example, in [200] one atom per
predicate is enforced by using the msg. However, using the msg in this

3One can also use the variant test to make the algorithm more precise.

46 CHAPTER 3. PARTIAL EVALUATION AND DEDUCTION

way can induce an even bigger loss of precision (compared to using the
msg to ensure independence), because it will now also be applied on in-
dependent atoms. For instance, calculating the msg for the set of atoms
{solve(p(a)), solve(q(f(b)))} yields the atom solve(X) and all potential for
specialisation is probably lost.

In [200] this problem has been remedied to some extent by using a static
pre-processing renaming phase (as defined in [18]) which will generate one
extra renamed version for the top-level atom to be specialised. However,
this technique only works well if all relevant input can be consumed in one
local unfolding of this top-most atom. Apart from the fact that this huge
local unfolding is not always a good idea from a point of view of efficiency
(e.g. it can slow down the program as illustrated by the Examples 3.3.3 and
3.3.4), in a lot of cases this simply cannot be accomplished (for instance if
partial input is not consumed but carried along, like the representation of
an object-program inside a meta-interpreter).

The basic goal pursued in Part II of this thesis is to define a flexible
abstraction operator which does not exhibit this dramatic loss of precision
and provides a fine-grained control of polyvariance, while still guaranteeing
termination of the partial deduction process.

Part II

On-line Control of Partial
Deduction: Controlling

Polyvariance

47

Chapter 4

Characteristic Trees

4.1 Structure and abstraction

In the previous chapter we have presented the generic partial deduction Al-
gorithm 3.3.11. This algorithm is parametrised by an unfolding rule for the
local control and by an abstraction operator for the control of polyvariance.
The abstraction operator examines a set of atoms and then decides which of
the atoms should be abstracted and which ones should be left unmodified.

An abstraction operator like the msg is just based on the syntactic struc-
ture of the atoms to be specialised. This is generally not such a good idea.
Indeed, two atoms can be unfolded and specialised in a very similar way in
the context of one program P1, while in the context of another program P2

their specialisation behaviour is drastically different. The syntactic struc-
ture of the two atoms is of course unaffected by the particular context and
a operator like the msg will perform exactly the same abstraction within
P1 and P2, although vastly different generalisations might be called for.

A better candidate for an abstraction might be to examine the finite,
possibly incomplete SLDNF-trees generated for these atoms. These trees
capture (to some depth) how the atoms behave computationally in the con-
text of the respective programs. They also capture (part of) the speciali-
sation that has been performed on these atoms. An abstraction operator
which takes these trees into account will notice their similar behaviour in
the context of P1 and their dissimilar behaviour within P2, and can there-
fore take appropriate actions in the form of different generalisations. The
following example illustrates these points.

49

50 CHAPTER 4. CHARACTERISTIC TREES

Example 4.1.1 Let P be the append program:

(1) append([],Z ,Z)←
(2) append([H |X],Y , [H |Z])← append(X ,Y ,Z)

Note that we have added clause numbers, which we will henceforth take
the liberty to incorporate into illustrations of SLD-trees in order to clarify
which clauses have been resolved with. To avoid cluttering the figures we
will also sometimes drop the substitutions in such figures.

Let A = {B,C} be a dependent set of atoms, where B = append([a],X ,Y)
and C = append(X , [a],Y). Typically a partial deducer will unfold the two
atoms of A in the way depicted in Figure 4.1, returning the finite SLD-trees
τB and τC . These two trees, as well as the associated resultants, have a very
different structure. The atom append([a],X ,Y) has been fully unfolded
and we obtain for resultants(τB) the single fact:

append([a],X , [a|X])←

while for append(X , [a],Y) we obtain for resultants(τC) the following set
of clauses:

append([], [a], [a])←
append([H |X], [a], [H |Z])← append(X , [a],Z)

So, in this case, it is vital to keep separate specialised versions for B and
C and not abstract them by e.g. their msg.
However, it is very easy to come up with another context in which the
specialisation behaviour of B and C are almost indiscernible. Take for
instance the following program P ∗ in which append∗ no longer appends
two lists but finds common elements at common positions:

(1∗) append∗([X |TX], [X |TY], [X])←
(2∗) append∗([X |TX], [Y |TY],E)← append∗(TX ,TY ,E)

The associated finite SLD-trees τ∗B and τ∗C , depicted in Figure 4.2, are now
almost fully identical. In that case, it is not useful to keep different spe-
cialised versions for B and C because the following single set of specialised
clauses could be used for B and C without specialisation loss:

append∗([a|T1], [a|T2], [a])←

This illustrates that the syntactic structures of B and C alone provide
insufficient information for a satisfactory control of polyvariance and that
a refined abstraction operator should also take the associated SLDNF-trees
into consideration.

4.2. CHARACTERISTIC PATHS AND TREES 51

�
��	

@
@@R

@
@@R

�
��	

← append([a],X ,Y) ← append(X , [a],Y)

2 ← append(X ′, [a],Y ′)

(1) (2)

← append([],X ,Y ′)

2

(1)

(2)

Figure 4.1: SLD-trees τB and τC for Example 4.1.1

�
��	

@
@@R

�
��	

@
@@R

2

← append∗([a],X ,Y) ← append∗(X , [a],Y)

2 ← append∗(TX , [],E)

(1∗) (2∗)

← append∗([],TX ,E)

fail fail

(1∗) (2∗)

Figure 4.2: SLD-trees τ∗B and τ∗C for Example 4.1.1

4.2 Characteristic paths and trees

In the previous section we have illustrated the interest of examining the
(possibly incomplete) SLDNF-trees generated for the atoms to be partially
deduced and e.g. only abstract two (or more) atoms if their associated trees
are “similar enough”. A crucial question is of course which part of these
SLDNF-trees should be taken into account to decide upon similarity. If
two atoms are abstracted only if their associated trees are identical, this
amounts to performing no abstraction at all. So an abstraction operator
should focus on the “essential” structure of an SLDNF-tree and for instance
disregard the particular substitutions and goals within the tree. The fol-
lowing two definitions, adapted from [97], do just that: they characterise
the essential structure of SLDNF-derivations and trees.

Definition 4.2.1 (characteristic path) Let G0 be a goal and let P be a
normal program whose clauses are numbered. Let G0, . . . , Gn be the goals

52 CHAPTER 4. CHARACTERISTIC TREES

of a finite, possibly incomplete SLDNF-derivation D of P ∪ {G0}. The
characteristic path of the derivation D is the sequence 〈l0 ◦ c0, . . . , ln−1 ◦
cn−1〉, where li is the position of the selected literal in Gi, and ci is defined
as:
• if the selected literal is an atom, then ci is the number of the clause
chosen to resolve with Gi.
• if the selected literal is ¬p(t̄), then ci is the predicate p.

The set containing the characteristic paths of all finite SLDNF-derivations
of P ∪ {G0} will be denoted by chpaths(P,G0).

For example, the characteristic path of the derivation associated with
the only branch of the SLD-tree τB in Figure 4.1 is 〈1 ◦ 2, 1 ◦ 1〉.

Recall that an SLDNF-derivation D can be either failed, incomplete,
successful or infinite. As we will see below, characteristic paths will only
be used to characterise finite and non-failing derivations of atomic goals,
corresponding to the atoms to be partially deduced. Still, one might wonder
why a characteristic path does not contain information on whether the
associated derivation is successful or incomplete. The following proposition
gives an answer to that question.

Proposition 4.2.2 Let P be a normal program and let G1, G2 be two
goals with the same number of literals. Let D1, D2 be two non-failed, finite
derivations of P ∪ {G1} and P ∪ {G2} respectively. Also let D1 and D2

have the same characteristic path δ. Then
(1) D1 is successful iff D2 is and
(2) D1 is incomplete iff D2 is.

Proof As D1 and D2 can only be successful or incomplete, points (1) and
(2) are equivalent and it is sufficient to prove point (1). Also, as D1 and
D2 have the same characteristic path they must have the same length (i.e.
same number of derivation steps) and we will prove the lemma by induction
on the length of D1 and D2.
Induction Hypothesis: Proposition 4.2.2 holds for derivations D1, D2

with length ≤ n.
Base Case: D1, D2 have the length 0.
This means that G1 is the final goal of D1 and G2 the final goal of D2. As
G1 and G2 have the same number of literals it is impossible to have that
G1 = 2 while G2 6= 2 or G1 6= 2 while G2 = 2.
Induction Step: D1, D2 have length n + 1.
Let R0, . . . , Rn+1 be the sequence of goals of D1 (with R0 = G1) and let
Q0, . . . , Qn+1 be the sequence of goals of D2 (with Q0 = G2). Let D′1 be
the suffix of D1 whose sequence of goals is R1, . . . , Rn+1. Similarly, let

4.2. CHARACTERISTIC PATHS AND TREES 53

D′2 be the suffix of D2 whose sequence of goals is Q1, . . . , Qn+1. Let δ =
〈l0 ◦ c0, . . . , ln ◦ cn〉 be the characteristic path of D1 and D2. There are
two possibilities for l0 ◦ c0, corresponding to whether a positive or negative
literal has been selected. If a negative literal has been selected then (for
both R0 and Q0) one literal has been removed and R1 and Q1 have the
same number of literals. Similarly if a positive literal has been selected
then trivially R1 and Q1 have the same number of literals (because the
same clause c1 in the same program P has been used). In both cases R1

and Q1 have the same number of literals and we can therefore apply the
induction hypothesis on D′1 and D′2 to prove that D′1 is successful iff D′2 is.
Finally, because D1 (respectively D2) is successful iff D′1 (respectively D′2)
is, the induction step holds. 2

The information whether a finite, non-failing derivation of an atomic
goal is incomplete or successful is thus already implicitly present in the
characteristic path and no further precision would be gained by adding it.

Also, once the top-level goal is known, the characteristic path is suffi-
cient to reconstruct all the intermediate goals as well as the final one. So,
one could actually replace the predicate p in point 2 of Definition 4.2.1 and
use a unique symbol to signal the selection of a negative literal.

Now that we have characterised derivations, we can capture the com-
putational behaviour of goals by characterising the derivations of their as-
sociated finite SLDNF-trees.

Definition 4.2.3 (characteristic tree) Let ← Q be a goal, P a normal
program and τQ a finite SLDNF-tree for P∪{← Q}. Then the characteristic
tree τ of τQ is the set containing the characteristic paths of the non-failing
SLDNF-derivations associated with the branches of τQ. τ is called a char-
acteristic tree iff it is the characteristic tree of some finite SLDNF-tree for
some program and goal.
Let U be an unfolding rule such that U(P,← Q) = τQ. Then τ is also
called the characteristic tree of Q in P under U , and will be denoted by
chtree(← Q ,P ,U). When P and U are clear from the context we will
simply talk about the characteristic tree of Q. We also say that τ is
a characteristic tree of Q (in P) iff for some unfolding rule U we have
chtree(← Q ,P ,U) = τ .

Note that the characteristic path of an empty derivation is the empty
path 〈〉, and the characteristic tree of a trivial SLDNF-tree is {〈〉}, while
the characteristic tree of a finitely failed SLDNF-tree is ∅.

Although a characteristic tree only contains a collection of character-
istic paths, the actual tree structure is not lost and can be reconstructed

54 CHAPTER 4. CHARACTERISTIC TREES

without ambiguity. The “glue” is provided by the clause numbers inside the
characteristic paths (branching in the tree is indicated by differing clause
numbers).

Example 4.2.4 The characteristic trees of the finite SLD-trees τB and τC

in Figure 4.1 are {〈1 ◦ 2, 1 ◦ 1〉} and {〈1 ◦ 1〉, 〈1 ◦ 2〉} respectively.
The characteristic trees of the finite SLD-trees τ∗B and τ∗C in Figure 4.2 are
both {〈1 ◦ 1∗〉}.

The following observations reveal the interest of characteristic trees in
the context of partial deduction. Indeed, the characteristic tree of an atom
A explicitly or implicitly captures the following important aspects of spe-
cialisation:

• the branches that have been pruned through the unfolding process
(namely those that are absent from the characteristic tree). For in-
stance, by inspecting the characteristic trees of τB and τC from Exam-
ples 4.1.1 and 4.2.4, we can see that two branches have been pruned for
the atom B (thereby removing recursion) whereas no pruning could
be performed for C.

• how deep ← A has been unfolded and which literals and clauses have
been resolved with each other in that process. This captures the com-
putation steps that have already been performed at partial deduction
time.

• the number of clauses in the resultants of A (namely one per charac-
teristic path) and also (implicitly) which predicates are called in the
bodies of the resultants. As we will see later, this means that a single
predicate definition can (in principle) be used for two atoms which
have the same characteristic tree.

In other words, a characteristic tree captures all the relevant aspects
of specialisation, attained by the local control for a particular atom. A
specialisation aspect that does not materialise within a characteristic tree
is how the atoms in the leaves of the associated SLDNF-tree are further
specialised, i.e. the global control and precision are not captured. However,
the deeper an atom gets unfolded, the more information is carried by the
associated characteristic tree. If the unfolding rule is e.g. based on well-
founded or well-quasi orders, it will (ideally) unfold until all partial input
has been consumed. In that case it is more likely that two atoms with
the same characteristic tree will also have similar call patterns in the leaves
(e.g. atoms containing no more partial input) and thus lead to similar global
specialisation.

4.3. AN ABSTRACTION OPERATOR 55

Also note that a characteristic trees only contains paths for the non-
failing branches and therefore do not capture how exactly some branches
were pruned. The following example illustrates why this is adequate and
even beneficial.

Example 4.2.5 Let P be the following program:
(1) member(X , [X |T])←
(2) member(X , [Y |T])← member(X ,T)

Let A = member(a, [a, b]) and B = member(a, [a]). Suppose that A and
B are unfolded as depicted in Figure 4.3. Then both these atoms have the
same characteristic tree τ = {〈1◦1〉} although the associated SLDNF-trees
differ by the structure of their failing branches. However, this is of no rele-
vance, because the failing branches do not materialise within the resultants
(i.e. the specialised code generated for the atoms) and furthermore the sin-
gle resultant member(a, [a|T])← could be used for both A and B without
loosing any specialisation.

@
@
@R

�
�

�	

@
@
@R

�
�

�	

?

(2)(1)

← member(a, [a])

2 ← member(a, [])

(2)(1)

fail

← member(a, [a, b])

2 ← member(a, [b])

← member(a, [])

(2)

fail

Figure 4.3: SLD-trees for Example 4.2.5

In summary, characteristic trees seem to be an almost ideal vehicle for a
refined control of polyvariance, a fact we will try to exploit in the following
section.

4.3 An abstraction operator using character-
istic trees

The following abstraction operator represents a first attempt at using char-
acteristic trees for the control of polyvariance. Basically it classifies atoms

56 CHAPTER 4. CHARACTERISTIC TREES

by their associated characteristic tree. Generalisation, in this case the msg ,
is then only applied on those atoms which have the same characteristic tree.

Definition 4.3.1 (chabsP,U) Let P be a normal program, U an unfolding
rule and A a set of atoms. For every characteristic tree τ , let Aτ be defined
as Aτ = {A | A ∈ A ∧ chtree(← A,P ,U) = τ}.
The abstraction operator chabsP,U is then defined as:

chabsP,U (A) = {msg(Aτ) | τ is a characteristic tree}

The following example illustrates the above definition.

Example 4.3.2 Let P be the program reversing a list using an accumulat-
ing parameter:

(1) rev([], Acc,Acc)←
(2) rev([H|T], Acc,Res)← rev(T, [H|Acc], Res)

We will use chabsP,U together with an unfolding rule U based on well-
founded orders inside the generic Algorithm 3.3.11 for partial deduction.
When starting out with A0 ={rev([a|B], [], R)} the following steps are per-
formed by Algorithm 3.3.11:

• the only atom in A0 is unfolded (see Figure 4.4) and the atoms in the
leaves are added, yielding: A′0 = {rev([a|B], [], R), rev(B, [a], R)}.

• the abstraction operator chabsP,U is applied:
A1 = chabsP,U (A′0) = {rev([a|B], [], R), rev(B, [a], R)} (because the
atoms in A′0 have different characteristic trees).

• the atoms in A1 are unfolded (see Figure 4.4) and the atoms in the
leaves are added, yielding:
A′1 = {rev([a|B], [], R), rev(B, [a], R), rev(T, [H, a], R)}.

• the abstraction operator chabsP,U is applied:
A2 = chabsP,U (A′1) = {rev([a|B], [], R), rev(T, [A|B], R)} (because
the atoms rev(B, [a], R) and rev(T, [H, a], R) have the same charac-
teristic tree, see Figure 4.4).

• the atoms in A2 are unfolded and the leaf atoms added:
A′2 = {rev([a|B], [], R), rev(T, [A|B], R), rev(T ′, [H ′, A|B], R)}.

• the abstraction operator is applied: A3 = chabsP,U (A′2) = A2 and
we have reached a fixpoint and thus obtain the following partial de-
duction satisfying the coveredness condition (and which is also inde-
pendent without renaming):

rev([a|B], [], R)← rev(B, [a], R)

4.3. AN ABSTRACTION OPERATOR 57

rev([], [A|B], [A|B])←
rev([H|T], [A|B], Res)← rev(T, [H,A|B], Res)

Because of the selective application of the msg , no loss of precision has
been incurred by chabsP,U , i.e. the pruning and pre-computation for e.g. the
atom rev([a|B], [], R) has been preserved. An abstraction operator allowing
just one version per predicate would have lost this local specialisation, while
a method with unlimited polyvariance (also called dynamic renaming, in
e.g. [17]) does not terminate.

For this example, chabsP,U provides a terminating and fine grained
control of polyvariance, conferring just as many polyvariant versions as
necessary. The abstraction operator chabsP,U is thus much more flexible
than e.g. the static pre-processing renaming of [18, 200]).

?

@
@@R

�
��	

@
@@R

�
��	

(2)

(1)

2

(2)

← rev(B, [a], R)

(1)

2

(2)

← rev(T, [H, a], R)

← rev(T ′, [H ′, H, a], R)

← rev(T, [H, a], R)

← rev([a|B], [], R)

← rev(B, [a], R)

Figure 4.4: SLD-trees for Example 4.3.2

The above example is thus very encouraging and one might hope that
chabsP,U always preserves the characteristic trees upon generalisation and
that it already provides a refined solution for the control of polyvariance
problem. Unfortunately, although for a lot of practical cases chabsP,U

performs quite well, it does not always preserve the characteristic trees,
entailing a sometimes quite severe loss of precision and specialisation. Let
us examine an example:

Example 4.3.3 Let P be the program:
(1) p(X)←
(2) p(c)←

Let A = {p(a), p(b)}. Independently of the unfolding rule, p(a) and p(b)
have the same characteristic tree τ = {〈1◦1〉}. Thus chabsP,U (S) = {p(X)}

58 CHAPTER 4. CHARACTERISTIC TREES

and the generalisation p(X) has unfortunately the characteristic tree τ ′ =
{〈1 ◦ 1〉, 〈1 ◦ 2〉} and the pruning that was possible for the atoms p(a) and
p(b) has been lost. More importantly, there exists no atom, more general
than p(a) and p(b), which has τ as its characteristic tree.

The problem in the above example is that, through generalisation, a new
non-failing derivation has been added, thereby modifying the characteristic
tree. Another problem can occur when negative literals are selected by the
unfolding rule.

Example 4.3.4 Let us examine the following program P :
(1) p(X)← ¬q(X)
(2) q(f(X))←

For this program and using e.g. a determinate unfolding rule, p(a) and p(b)
have the same characteristic tree {〈1 ◦ 1, 1 ◦ q〉}. The abstraction operator
chabsP,U will therefore produce {p(X)} as a generalisation of {p(a), p(b)}.
Again however, p(X) has a different characteristic tree, namely {〈1 ◦ 1〉},
because the non-ground literal ¬q(X) cannot be selected in the resolvent
of ← p(X). The problem is that, by generalisation, a previously selectable
ground negative literal in a resolvent can become non-ground and thus no
longer selectable by SLDNF.

These losses of precision can have some regrettable consequences in
practice:

• important opportunities for specialisation can be lost and

• termination of Algorithm 3.3.11 can be undermined.

Let us illustrate the possible precision losses through two simple, but
more realistic examples.

Example 4.3.5 Let P be the following program, checking two lists for
equality.

(1) eqlist([], [])←
(2) eqlist([H|X], [H|Y])← eqlist(X, Y)

Given any determinate unfolding rule, the atoms A = eqlist([1, 2], L) and
B = eqlist(L, [3, 4]) are unfolded as shown in Figure 4.5 and have the same
characteristic tree τ = {〈1 ◦ 2, 1 ◦ 2, 1 ◦ 1〉}. Unfortunately the abstraction
operator chabsP,U is unable to preserve τ . Indeed, chabsP,U ({A,B}) =
{eqlist(X, Y)} whose characteristic tree is {〈1◦1〉, 〈1◦2〉} and the precom-
putation and pruning performed on A and B has been lost.

4.3. AN ABSTRACTION OPERATOR 59

(2)(1)

(2)(2)

(1) (1)

(2) (2)

�
��	

@
@@R
← eqlist(X ′, Y ′)2

← eqlist(X, Y)

← eqlist(X ′, [])

← eqlist(X, [4])

← eqlist(L, [3, 4])

@
@@R

2

@
@@R

�
��	

@
@@R

2

← eqlist([], Y ′)

← eqlist([2], Y)

@
@@R

�
��	

← eqlist([1, 2], L)

Figure 4.5: SLD-trees for Example 4.3.5

The previous example is taken from [97], whose abstraction mechanism
can solve the example. The following two examples can however not be
solved by [97].

Example 4.3.6 Let us return to Example 4.2.5 and specialise the member
program for A = member(a, [a, b]) and B = member(a, [a]). First we put
the atoms into A0: A0 = {member(a, [a, b]),member(a, [a])}. For both
atoms the associated characteristic tree is τ = {〈1 ◦ 1〉}, given e.g. a deter-
minate unfolding rule with lookahead (see Figure 4.3). Thus chabsP,U , as
well as the method of [97], abstracts the two atoms and produces the gen-
eralised set A1 = {member(a, [a|T])}. Unfortunately, the generalised atom
member(a, [a|T]) has a different characteristic tree τ ′, independently of the
particular unfolding rule. For a determinate unfolding rule with lookahead
we obtain τ ′ = {〈1 ◦ 1〉, 〈1 ◦ 2〉}.
This loss of precision leads to sub-optimal specialised programs. At the
next step of the algorithm the atom member(a,T) will be added to A1.
This atom also has the characteristic tree τ ′ under U . Hence the final set
A2 equals {member(a,L)} (containing the msg of member(a, [a|T]) and
member(a,T)}), and we obtain the following specialisation, sub-optimal
for ← member(a, [a, b]),member(a, [a]):

60 CHAPTER 4. CHARACTERISTIC TREES

(1’) member(a, [a|T])←
(2’) member(a, [X |T])← member(a,T)

So, although partial deduction was able to figure out that member(a, [a, b])
as well as member(a, [a]) have only one non-failing resolvent, this informa-
tion has been lost due to an imprecision of the abstraction operator, thereby
leading to a sub-optimal residual program in which the determinacy is not
explicit (and redundant computation steps occur at run-time). Note that a
“perfect” program for ← member(a, [a, b]),member(a, [a]) would just con-
sist of (a filtered version of) clause (1’).

Let us discuss the termination aspects next. One might hope that
chabsP,U ensures termination of the partial deduction Algorithm 3.3.11 if
the number of characteristic trees is finite (which can be ensured by using
a depth-bound for characteristic trees1).

Actually if the characteristic trees are preserved, then the abstraction
operator chabsP,U does ensure termination of the partial deduction Algo-
rithm 3.3.11.2

However, if characteristic trees are not preserved by the abstraction
operator, then termination is no longer guaranteed (even assuming a finite
number of characteristic trees). The following example illustrates this.

Example 4.3.7 Let P be the following program:
(1) p(X, Y)← p(Y, X), p(a,X)
(2) p(c, c)←

Also let U be a very simple unfolding rule with a depth bound of 1. If we
perform Algorithm 3.3.11 with chabsP,U as abstraction operator, starting
from the set of atoms A0 = {p(X, Y)}, we obtain the following:

1. we unfold the atoms in A0 (see Figure 4.6) which gives us the leaves
{p(Y, X), p(a,X)} and thus A′0 = {p(X, Y), p(a,X)}.

2. A1 = chabsP,U ({p(X ,Y), p(a,X)}) = {p(X, Y), p(a,X)}
(because the atom p(a,X) has a different characteristic tree than
p(X, Y), see Figure 4.6).

3. we unfold the atoms in A1 (see Figure 4.6) giving us the leaves:
{p(Y, X), p(a,X), p(X, a), p(a, a)} and thus
A′1 = {p(X, Y), p(a,X), p(X, a), p(a, a)}.

1The unfolding rule can still unfold as deeply as it wants to. See the discussion after
Definition 5.1.8 in Chapter 5.

2The proof of Theorem 5.3.9 (for a more refined partial deduction algorithm) can
actually be easily adapted to demonstrate this.

4.4. CHARACTERISTIC TREES IN THE LITERATURE 61

4. we apply chabsP,U to A′1, giving A2 = {p(X, Y)} (because p(a,X),
p(X, a) and p(a, a) have the same characteristic tree {〈1 ◦ 1〉}, see
Figure 4.6) tree but their msg is (a variant of) p(X, Y). So A2 = A0

and we have a loop.

�
��	

�
��	

@
@@R

�
��	

�
��	

← p(a, a)

← p(a, a), p(a, a)

← p(X, a)

← p(a, X), p(a, X)

← p(X, Y)

← p(Y, X), p(a, X) 2

← p(a, X)

← p(X, a), p(a, a)

(1)

(1)

(1)

(1)

(2)

Figure 4.6: SLD-trees for Example 4.3.7

The above example heavily exploits the non-monotonic nature of Algo-
rithm 3.3.11. Indeed, termination of partial deduction based on chabsP,U ,
given a finite number of characteristic trees, could be ensured by mak-
ing Algorithm 3.3.11 monotonic, i.e. replacing Ai+1 := abstract(A′i) by
Ai+1 := Ai ∪ abstract(A′i). From a practical point of view, this solution is
however not very satisfactory as it might unnecessarily increase the poly-
variance, possibly leading to a code explosion of the specialised program as
well as to an increase in the transformation complexity. The former can
be solved by a post-processing phase removing unnecessary polyvariance.
However, by using an altogether more precise abstraction operator, preserv-
ing characteristic trees, these two problem will disappear automatically. We
will then obtain an abstraction operator for partial deduction with optimal
local precision (in the sense that all the specialisation achieved by the lo-
cal control component is preserved by the abstraction) and guaranteeing
termination. This quest is pursued in Chapters 5 and 6.

4.4 Characteristic trees in the literature

Characteristic trees have been introduced, in the context of definite pro-
grams and determinate unfolding rules without lookahead, by Gallagher

62 CHAPTER 4. CHARACTERISTIC TREES

and Bruynooghe in [100] and were later refined by Gallagher in [97], lead-
ing to the definitions that we have presented in this chapter. Both [100]
and [97] use a refined version of the abstraction operator chabsP,U and [97]
uses a partial deduction algorithm very similar to Algorithm 3.3.11.

Unfortunately, although the abstraction operators in [97, 100] are more
sophisticated than chabsP,U and can e.g. handle the eqlist Example 4.3.5,
they share the same problems. Indeed, for e.g. the Examples 4.3.3 and 4.3.7,
the abstraction operators of [97, 100] behave exactly like chabsP,U and the
examples can thus easily be adapted (to account for some slight differences
in the unfolding rule) to form counterexamples not only for the precision
claim of [100] but also for the termination claims of both [100] and [97].
In Appendix B we actually adapt Example 4.3.3 to form a counterexample
to the Lemma 4.11 in [100], which asserts that the abstraction operator
of [100] preserves a structure quite similar to characteristic trees in the
context of definite programs and beam determinate unfolding rules without
lookahead (cf. Definition 3.3.2). Some additional comments can be found in
[171], where the counterexample to Lemma 4.11 of [100] was first presented,
as well as in its reworked version [172].

Example 4.3.6, based upon the member program, forms another, more
natural counterexample to [97]. However, it is not a counterexample to
[100], as it is crucial in that example to use a determinate unfolding rule
with lookahead (otherwise A and B have a different characteristic tree).
Thus one might wonder if it is possible to come up with “natural” exam-
ples, using definite programs and unfolding rules without lookahead, which
cannot be solved by the techniques in [97] or [100]. (The simple programs of
Example 4.3.3, Appendix B and Example 4.3.7 might be called somewhat
unnatural, Example 4.3.4 uses negation and the eqlist Example 4.3.5 can
be solved by [97, 100].) The following shows that such natural examples do
indeed exist and are not too difficult to come by.

Example 4.4.1 Let P be again the member program from Example 4.2.5
and let A = member(a, [b, c|T]), B = member(a, [c, d |T]). We will use
a beam determinate unfolding rule without lookahead. In that case the
atoms A and B have the same characteristic tree τ = {〈1 ◦ 2, 1 ◦ 2, 1 ◦
1〉, 〈1 ◦ 2, 1 ◦ 2, 1 ◦ 2} (see Figure 4.7). However, chabsP,U ({A,B}) =
{member(a, [X ,Y |T])} and, as can be seen in Figure 4.7, the characteristic
tree of the generalisation is unfortunately {〈1 ◦ 1〉, 〈1 ◦ 2〉}. The precompu-
tation and pruning that was possible for A and B has again not been pre-
served by chabsP,U . Applying e.g. Algorithm 3.3.11, we obtain at the next
iteration the set chabsP,U ({member(a, [X ,Y |T]),member(a, [Y |T])}) =
{member(a, [Y |T])} and then the final set chabsP,U ({member(a, [Y |T]),
member(a,T)}) = {member(a,T)}. We thus obtain the following subop-

4.5. EXTENSIONS OF CHARACTERISTIC TREES 63

timal, unpruned program P ′, performing redundant computations for both
A and B:

(1’) member(a, [a|T])←
(2’) member(a, [Y |T])← member(a,T)

(2)(1)

(1) (2) (1) (2)

(2)(2)

(2) (2)

�
��	

@
@@R
← member(a, [Y |T])2

← member(a, [X ,Y |T])

← member(a,T)

← member(a, [d |T])

← member(a, [c, d |T])

@
@@R

2 member(a,T ′)

@
@@R

�
��	

@
@@R

@
@@R

2 member(a,T ′)

← member(a,T)

← member(a, [c|T])

@
@@R

�
��	

@
@@R

← member(a, [b, c|T])

Figure 4.7: SLD-trees for Example 4.4.1

4.5 Extensions of characteristic trees

Less precision

Sometimes different characteristic trees can represent the same local spe-
cialisation behaviour. Indeed, the characteristic tree also encodes the par-
ticular order in which literals are selected and thus does not take advantage
of the independence of the computation rule. This is not a problem for pre-
cision, but can lead to the production of more specialised versions than
really necessary, as the following example demonstrates.

Example 4.5.1 Let P be this program:
(1) p(X, Y)← q(X), q(Y)
(2) q(a)←

64 CHAPTER 4. CHARACTERISTIC TREES

Let A = p(a,X) and B = p(X, a). Then an unfolding rule U which tries to
unfold more instantiated atoms first will give the following results:
• chtree(← A,P ,U) = {〈1 ◦ 1, 1 ◦ 2, 1 ◦ 2〉}
• chtree(← B ,P ,U) = {〈1 ◦ 1, 2 ◦ 2, 1 ◦ 2〉}

So although the resultants for A and B are identical their characteristic
trees are different.

A quite simple solution to this problem exists:3 after having performed
the local unfolding we just have to normalise the characteristic trees by
imposing a fixed (e.g. left-to-right) computation rule and delaying the se-
lection of all negative literals to the end. The results and discussions of
this and the following chapters remain valid independently of whether this
normalisation is applied or not. In Example 4.5.1 both A and B then have
the same normalised characteristic tree {〈1 ◦ 1, 1 ◦ 2, 1 ◦ 2〉}.

A similar effect can be obtained, in the context of definite programs,
via the trace terms of [103].

More precision

Supposing that we have an abstraction operator which preserves the (nor-
malised) characteristic trees, we will in fact get the minimal amount of
polyvariance which avoids any loss of local specialisation: a different char-
acteristic tree now unavoidably leads to different resultants and thus spe-
cialisation. In most cases this will be the ideal amount of polyvariance,
(because too much polyvariance makes the specialised program larger and
often slower) and no further local specialisation can be obtained by intro-
ducing more polyvariance.

For some particular applications however, a need for further polyvari-
ance arises. This is for instance the case for some examples in [66, 68, 201],
where the specialised program is not directly executed but first submitted
to an abstract interpretation phase (in order to detect redundant clauses)
which is monovariant and cannot generate further polyvariance by itself.
In that case further polyvariance can be generated during the specialisa-
tion by adorning the characteristic trees with some extra information. For
instance, in [66] the characteristic trees are extended to include a depth-k
abstraction of the selected literals and the abstraction operator will only
abstract atoms with the same characteristic tree and the same depth-k
abstraction.

3Thanks to Maurice Bruynooghe for pointing this out.

Chapter 5

Ecological Partial
Deduction

5.1 Partial deduction based on characteristic
atoms

In the previous chapter we have dwelled upon the appeal of characteristic
trees for controlling polyvariance, but we have also highlighted the difficulty
of preserving characteristic trees in the abstraction process as well as the
ensuing problems concerning termination and precision. In this chapter, we
present a solution to this entanglement. Its basic idea is to simply impose
characteristic trees on the generalised atoms. This amounts to associating
characteristic trees with the atoms to be specialised, allowing the preserva-
tion of characteristic trees in a straightforward way and circumventing the
need for intricate generalisations.

5.1.1 Characteristic atoms

We first introduce the crucial notion of a characteristic atom, which asso-
ciates a characteristic tree with an atom.

Definition 5.1.1 (characteristic atom) A characteristic atom is a couple
(A, τ) consisting of an atom A and a characteristic tree τ .

Note that τ is not required to be a characteristic tree of A in the context
of the particular program P under consideration.

65

66 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

Example 5.1.2 Let τ = {〈1 ◦ 1〉} be a characteristic tree. Then both
CA1 = (member(a, [a, b]), τ) and CA2 = (member(a, [a]), τ) are charac-
teristic atoms. CA3 = (member(a, [a|T]), τ) is also a characteristic atom,
but e.g. in the context of the member program P from Example 4.2.5, τ
is not a characteristic tree of its atom component member(a, [a|T]) (cf.
Example 4.3.6). Intuitively, such a situation corresponds to imposing the
characteristic tree τ on the atom member(a, [a|T]). Indeed, as we will
see later, CA3 can be seen as a precise generalisation (in P) of the atoms
member(a, [a, b]) and member(a, [a]), solving the problem of Example 4.3.6.

A characteristic atom will be used to represent a possibly infinite set of
atoms, called its concretisations. This is nothing really new: in “standard”
partial deduction, as defined in Chapter 3, an atom A also represents a
possibly infinite set of concrete atoms, namely its instances. The charac-
teristic tree component of a characteristic atom will just act as a constraint
on the instances, i.e. keeping only those instances which have a particular
characteristic tree. This is captured by the following definition.

Definition 5.1.3 (concretisation) Let (A, τA) be a characteristic atom
and P a program. An atom B is a precise concretisation of (A, τA) (in
P)1 iff B is an instance of A and, for some unfolding rule U , chtree(←
B ,P ,U) = τA. An atom is a concretisation of (A, τA) (in P) iff it is an
instance of a precise concretisation of (A, τA) (in P).
We denote the set of concretisations of (A, τA) in P by γP (A, τA).

A characteristic atom with a non-empty set of concretisations in P will
be called well-formed in P or a P -characteristic atom. We will from now
on usually restrict our attention to P -characteristic atoms. In particular,
the partial deduction algorithm presented later on in Section 5.3 will only
bring forth P -characteristic atoms, where P is the original program to be
specialised.

Example 5.1.4 Take the characteristic atom CA3 = (member(a, [a|T]), τ)
with τ = {〈1 ◦ 1〉} from Example 5.1.2 and take the member program
P from Example 4.2.5. The atoms member(a, [a]) and member(a, [a, b])
are precise concretisations of CA3 in P (see Figure 4.3). Also, neither
member(a, [a|T]) nor member(a, [a, a]) are concretisations of CA3 in P .
Finally, observe that CA3 is a P -characteristic atom while for instance
(member(a, [a|T]), {〈2 ◦ 5 〉} or even (member(a, [a|T]), {〈1 ◦ 2 〉} are not.

Example 5.1.5 Let P be the following simple program:

1If P is clear from the context, we will not explicitly mention it.

5.1. PARTIAL DEDUCTION WITH CHARACTERISTIC ATOMS 67

(1) p(a, Y)←
(2) p(X, Y)← ¬q(Y), q(X)
(3) q(b)←

Let τ = {〈1 ◦ 1〉, 〈1 ◦ 2, 1 ◦ q, 1 ◦ 3〉} and CA = (p(X, Y), τ). Then p(X, a)
and p(X, c) are precise concretisations of CA in P (see Figure 5.1) and
neither p(b, b), p(X, b), p(a, Y) nor p(X, Y) are concretisations of CA in
P . Also p(b, a) and p(a, a) are both concretisations of CA in P , but they
are not precise concretisations. Observe that the selection of the negative
literal ¬q(Y), corresponding to 1 ◦ q in τ , is unsafe for ← p(X, Y), but that
for any concretisation of CA in P the corresponding derivation step is safe
and succeeds (i.e. the negated atom is ground and fails finitely, see e.g. the
SLDNF-tree for P ∪ {← p(X, a)} in Figure 5.1).

?

?

@
@@R

2

← p(X, a)

← ¬q(a), q(X)

← q(X)

2

�
��	

(q)

(3)

(1) (2)

Figure 5.1: SLDNF-tree for Example 5.1.5

Note that by definition, the set of concretisations associated with a
characteristic atom is downwards closed (or closed under substitution).2

This observation justifies the following definition.

Definition 5.1.6 (unconstrained characteristic atom) We will call a
P -characteristic atom (A, τA) which has A as one of its concretisations (in
P) unconstrained (in P).

The concretisations of an unconstrained characteristic atom (A, τA) are
identical to the instances of the ordinary atom A (because the concretisa-
tions are downwards closed and γP (A, τ) contains no atom strictly more

2In other words a characteristic atom can (almost) be seen as a type in the sense of
[11] (where a type is defined to be a decidable set of terms closed under substitution).

68 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

general than A). In still other words, characteristic atoms along with Def-
inition 5.1.3 provide a proper generalisation of the way atoms are used in
the standard partial deduction approach.

5.1.2 Generating resultants

We will now address the generation of resultants for characteristic atoms.
The simplest approach is just to unfold the atom A of a characteristic atom
(A, τ) precisely as indicated by τ . As illustrated in Example 5.1.5 above,
this might lead to the selection of non-ground negative literals. This will
not turn out to be a problem however, because, as we will prove later, the
corresponding derivations for any concretisation of (A, τ) will be safe and
the selected negative literals will succeed.

We need the following definition in order to formalise the resultants
associated with a characteristic atom.

Definition 5.1.7 (generalised SLDNF-derivation)
A generalised SLDNF-derivation is either composed of SLDNF-derivation
steps or of derivation steps in which a non-ground negative literal is selected
and removed. Generalised SLDNF-derivations will be called unsafe if they
contain steps of the latter kind and safe if they do not.

Most of the definitions for ordinary SLDNF-derivations, like the asso-
ciated characteristic path and resultant, carry over to generalised deriva-
tions. Observe that a generalised SLDNF-derivation can be seen as a pseudo
SLDNF-derivation (cf. Definition 2.3.14) which is allowed to be incomplete.

We first define a set of possibly unsafe generalised SLDNF-derivations
associated with a characteristic atom:

Definition 5.1.8 (DP (A, τ)) Let P be a program and (A, τ) a P -char-
acteristic atom. If τ 6= {〈〉} then DP (A, τ) is the set of all generalised
SLDNF-derivations of P ∪ {← A} such that their characteristic paths are
in τ . If τ = {〈〉} then DP (A, τ) is the set of all non-failing SLD-derivations
of P ∪ {← A} of length 1.3

Note that the derivations in DP (A, τ) are necessarily finite and non-
failing (because (A, τ) is a P -characteristic atom, see also Lemma 5.2.12).

We will call a P -characteristic atom (A, τ) safe (in P) iff all derivations
in DP (A, τ) are safe. Note that an unconstrained characteristic atom in P
is also inevitably safe in P (because A must be a precise concretisation of

3Just like in Definition 3.2.6 of standard partial deduction, we want to construct only
non-trivial SLDNF-trees for P ∪ {← A} to avoid the problematic resultant A← A.

5.1. PARTIAL DEDUCTION WITH CHARACTERISTIC ATOMS 69

(A, τ) we have that τ is a characteristic tree of A and thus all derivations
in DP (A, τ) are ordinary SLDNF-derivations and therefore safe).

Based on the definition of DP (A, τ), we can now define the resultants,
and hence the partial deduction, associated with characteristic atoms:

Definition 5.1.9 (partial deduction of (A, τ)) Let P be a program
and (A, τ) a P -characteristic atom. Let {D1, . . . , Dn} be the generalised
SLDNF-derivations in DP (A, τ) and let ← G1, . . . ,← Gn be the goals in
the leaves of these derivations. Let θ1, . . . , θn be the computed answers of
the derivations from ← A to ← G1, . . . ,← Gn respectively. Then the set
of resultants {Aθ1 ← G1, . . . , Aθn ← Gn} is called the partial deduction of
(A, τ) in P .
Every atom occurring in some of the Gi will be called a leaf atom (in P)
of (A, τ). We will denote the set of such leaf atoms by leavesP (A, τ).

Example 5.1.10 The partial deduction of (member(a, [a|T]), {〈1 ◦ 1 〉})
in the program P of Example 4.2.5 is {member(a, [a|T]) ←}. Note that
it is different from any set of resultants that can be obtained for the ordi-
nary atom member(a, [a|T]). However, as we will prove below, the partial
deduction is correct for any concretisation of (member(a, [a|T]), {〈1 ◦1 〉}).

Example 5.1.11 The partial deduction P ′ of (p(X, Y), τ) with τ = {〈1◦1〉,
〈1 ◦ 2, 1 ◦ q, 1 ◦ 3〉} of Example 5.1.5 is:

(1’) p(a, Y)←
(2’) p(b, Y)←

Note that using P ′ instead of P is correct for e.g. the concretisations p(b, a)
or p(X, a) of (p(X, Y), τ) but not for p(b, b) or p(X, b) which are not con-
cretisations of (p(X, Y), τ).

We can now generate partial deductions not for sets of atoms, but for
sets of characteristic atoms. As such, the same atom A might occur in sev-
eral characteristic atoms but with different associated characteristic trees.
This means that renaming, as a way to ensure independence, becomes even
more compelling than in the standard partial deduction setting (cf. Sec-
tion 3.3.2).

In addition to renaming, we will also incorporate argument filtering,
leading to the following definition.

Definition 5.1.12 (atomic renaming, renaming function) An atomic
renaming α for a set Ã of characteristic atoms is a mapping from Ã to
atoms such that
• for each (A, τ) ∈ Ã, vars(α((A, τ))) = vars(A);

70 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

• for CA, CA′ ∈ Ã, such that CA 6= CA′, the predicate symbols of
α(CA) and α(CA′) are distinct (but not necessarily fresh, in the sense
that they can occur in Ã).

Let P be a program. A renaming function ρα for Ã in P based on α is a
mapping from atoms to atoms such that:

ρα(A) = α((A′, τ ′))θ for some (A′, τ ′) ∈ Ã with A = A′θ and A ∈
γP (A′, τ ′).

We leave ρα(A) undefined if A is not a concretisation in P of an element
in Ã. A renaming function ρα can also be applied to a first-order formula,
by applying it individually to each atom of the formula.

Note that, if the sets of concretisations of two or more elements in Ã
overlap, then ρα must make a choice for the atoms in the intersection and
several renaming functions based on the same α exist.

Definition 5.1.13 (partial deduction wrt Ã) Let P be a program,
Ã = {(A1, τ1), . . . , (An, τn)} a finite set of P -characteristic atoms and ρα

a renaming function for Ã in P based on the atomic renaming α. For each
i ∈ {1, . . . , n}, let Ri be the partial deduction of (Ai, τi) in P . Then the
program {α((Ai, τi))θ ← ρα(Bdy) | Aiθ ← Bdy ∈ Ri ∧ 1 ≤ i ≤ n ∧
ρα(Bdy) is defined} is called the partial deduction of P wrt Ã and ρα.

Example 5.1.14 Let P be the following program:
(1) member(X , [X |T])←
(2) member(X , [Y |T])← member(X ,T)
(3) t← member(a, [a]),member(a, [a, b])

Let τ = {〈1◦1〉}, τ ′ = {〈1◦3〉} and let Ã = {(member(a, [a|T]), τ), (t , τ ′)}.
Also let α((member(a, [a|T]), τ)) = m1 (T) and α((t, τ ′)) = t. Because the
concretisations in P of the elements in Ã are disjoint there exists only one
renaming function ρα based on α.
Notably ρα(← member(a, [a]),member(a, [a, b])) = ← m1([]),m1([b]) be-
cause both atoms are concretisations of (member(a, [a|T]), τ). Therefore
the partial deduction of P wrt Ã and ρα is:4

(1’) m1(X)←
(2’) t← m1([]),m1([b])

Note that in Definition 5.1.13 the original program P is completely
“thrown away”. This is actually what a lot of practical partial evaluators
for functional or logic programming languages do, but is dissimilar to the

4The FAR filtering algorithm of Chapter 11 can be used to further improve the
specialised program by removing the redundant argument of m1.

5.2. CORRECTNESS RESULTS 71

Lloyd and Shepherdson framework [185] (cf. Definition 3.2.6). However,
there is no fundamental difference between these two approaches: keeping
part of the original program can be simulated in our approach by using
unconstrained characteristic atoms of the form (A, {〈〉}) combined with a
renaming α such that α((A, {〈〉})) = A.

5.2 Correctness results

Let us first rephrase the coveredness condition of Chapter 3 in the context
of characteristic atoms. This definition will ensure that the renamings,
applied for instance in Definition 5.1.13, are always defined.

Definition 5.2.1 (P -covered) Let P be a program and Ã a set of charac-
teristic atoms. Then Ã is called P -covered iff for every characteristic atom
in Ã, each of its leaf atoms (in P) is a concretisation in P of a characteristic
atom in Ã.
Also, a goal G is P -covered by Ã iff every atom A occurring in G is a
concretisation in P of a characteristic atom in Ã.

Note that we use the term coveredness instead of closedness here be-
cause, as mentioned above, the original program is (usually) thrown away,
i.e. our approach already focusses its attention on only part of the pro-
gram and is thus closer to coveredness than closedness. Also, the move
from closedness to coveredness was necessary in the Lloyd and Shepherd-
son framework [185] (c.f. Example 3.2.12) whenever unreachable atoms in
the original program were not instances of a partially deduced atom. In-
deed, because the original program could not be thrown away, there was
no way to apply the standard correctness Theorem 3.2.9 in such situations.
This problem does not arise in the context of Definition 5.1.13, because we
can freely decide which parts of the original program we carry over and
which ones we throw away.

The main correctness result for partial deduction with characteristic
atoms is as follows:

Theorem 5.2.2 Let P be a normal program, G a goal, Ã any finite set of
P -characteristic atoms and P ′ the partial deduction of P wrt Ã and some
ρα. If Ã is P -covered and if G is P -covered by Ã then the following hold:

1. P ′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ iff
P ∪ {G} does.

2. P ′ ∪ {ρα(G)} has a finitely failed SLDNF-tree iff P ∪ {G} does.

72 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

We will prove this theorem in three successive stages.

1. First, in Subsection 5.2.1, we will restrict ourselves to unconstrained
characteristic atoms. This will allow us to reuse the correctness results
for standard partial deduction with renaming in a rather straightfor-
ward manner.

2. In Subsection 5.2.2 we will then move on to safe characteristic atoms.
Their partial deductions can basically be obtained from partial de-
ductions for unconstrained characteristic atoms by removing certain
clauses. We will show that these clauses can be safely removed with-
out affecting computed answers or finite failure.

3. Finally, in Subsection 5.2.3 we will allow any characteristic atom. Ba-
sically, the associated partial deductions can be obtained from partial
deductions for safe characteristic atoms by removing negative liter-
als from the clauses. We will establish correctness by showing that,
for all concrete executions, these negative literals will be ground and
succeed.

The reader not interested in the details of the correctness proof can
immediately continue with Subsection 5.3 starting on page 86.

5.2.1 Correctness for unconstrained characteristic
atoms

If Ã is a set of unconstrained characteristic atoms, a partial deduction wrt
Ã can be seen as a standard partial deduction with renaming. We will
make use of this observation to prove the following theorem.

Theorem 5.2.3 Let P ′ be a partial deduction of P wrt Ã and ρα such
that Ã is a finite set of unconstrained P -characteristic atoms and such that
Ã is P -covered and G is P -covered by Ã. Then:

1. P ′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ iff
P ∪ {G} does.

2. P ′ ∪ {ρα(G)} has a finitely failed SLDNF-tree iff P ∪ {G} does.

Proof First note that the P -coveredness conditions on Ã and G ensure
that the renamings performed to obtain P ′ (according to Definition 5.1.13),
as well as the renaming ρα(G), are defined (because all the atoms in G, as
well as all the leaf atoms of Ã, are concretisations of elements in Ã). The
result then follows in a rather straightforward manner from the Theorems

5.2. CORRECTNESS RESULTS 73

3.5 and 4.11 in [17]. In [17] the renaming has been split into 2 phases:
one which does just the renaming to ensure independence (called partial
deduction with dynamic renaming; correctness of this phase is proven in
Theorem 3.5 of [17]) and one which does the filtering (called post-processing
renaming; the correctness of this phase is proven in Theorem 4.11 of [17]).

To apply these results we simply have to notice that:

• P ′ corresponds to partial deduction with dynamic renaming and post-
processing renaming for the multiset of atoms A = {A | (A, τ) ∈ Ã}
(indeed the same atom could in principle occur in several character-
istic atoms; this is not a problem however, as the results in [17] carry
over to multisets of atoms — alternatively one could add an extra un-
used argument to P ′, ρα(G) and A and then place different variables
in that new position to transform the multiset A into an ordinary
set).

• P ′∪{ρα(G)} is A-covered (cf. Definition 3.2.11 in Chapter 3) because
Ã is P -covered and G is P -covered by Ã (and because the original
program P is unreachable in the predicate dependency graph from
within P ′ or within ρα(G)).

Three minor technical issues have to be addressed in order to reuse the
theorems from [17]:

• Theorem 3.5 of [17] requires that no renaming be performed on G,
i.e. ρα(G) must be equal to G. However, without loss of general-
ity, we can assume that the top-level query is the unrenamed atom
new(X1, . . . , Xk), where new is a fresh predicate symbol and where
vars(G) = {X1, . . . , Xk}. We then just have to add the clause
new(X1, . . . , Xk)← Q, where G =← Q, to the initial program. Triv-
ially the query ← new(X1, . . . , Xk) and G are equivalent wrt c.a.s.
and finite failure (see also Lemma 2.2 in [99]).

• Theorem 4.11 of [17] requires that G contains no variables or predi-
cates in A. The requirement about the variables is not necessary in
our case because we do not base our renaming on the mgu. The re-
quirement about the predicates is another way of ensuring that ρα(G)
must be equal to G, which can be circumvented in a similar way as
for the point above.

• Theorems 3.5 and 4.11 of [17] require that the predicates of the re-
naming do not occur in the original P . Our Definition 5.1.12 does
not require this. This is of no importance as the original program is
always “completely thrown away” in our approach. We can still apply

74 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

these theorems by using an intermediate renaming ρ′ which satisfies
the requirements of Theorems 3.5 and 4.11 of [17] and then applying
an additional one step post-processing renaming ρ′′, with ρα = ρ′ρ′′,
along with an extra application of Theorem 4.11 of [17].

2

5.2.2 Correctness for safe characteristic atoms

We first need the following adaptation of Lemma 4.12 from [185] (we just
formalise the use in [185] of “corresponding SLDNF-derivation” in terms of
characteristic paths).

Lemma 5.2.4 Let R be the resultant of a finite (possibly incomplete)
SLDNF-derivation of P ∪ {← A} whose characteristic path is δ. If ← Aθ
resolves with R giving the resultant RA then there exists a finite (possibly
incomplete) SLDNF-derivation of P ∪{← Aθ} whose characteristic path is
δ and whose resultant is RA.

The following lemma is based upon Lemma 5.2.4 and will prove useful
later on. It establishes a link between SLD+-derivations in the unrenamed
specialised program and the original one.

Lemma 5.2.5 Let P be a program, G a goal, Ã a set of safe characteristic
atoms and P ′′ the union of partial deductions R(A,τ) (in P), one for every
element (A, τ) of Ã. Let D be a finite SLD+-derivation of P ′′ ∪ {G} with
computed answer θ and resultant R and such that every selected atom A′,
which is resolved with a clause in R(A,τ), is a concretisation of (A, τ). Then
there exists a finite SLD+-derivation of P ∪ {G} with computed answer θ
and resultant R.

Proof We do the proof by induction on the length of the SLD+-derivation
D of P ′′ ∪ {G}.
Induction Hypothesis: Lemma 5.2.5 holds for SLD+-derivations of P ′′∪
{G} with length ≤ k.
Base Case: Let D have length 0. Then, trivially, the empty derivation of
P ∪ {G} has the same resultant G← G and the same computed answer ∅.
Induction Step: Let D have length k+1. Let D′′k be the SLD+-derivation
of P ′′ ∪ {G} consisting of the first k steps of D. Let θk be the computed
answer of D′′k and Rk its resultant. We can then apply the induction hy-
pothesis to conclude that there is a SLD+-derivation Dk of P∪{G} with the
same resultant and computed answer. This also means that the resolvent
— which is just the body of the resultant — of D′′k and Dk are the same.

5.2. CORRECTNESS RESULTS 75

We denote this resolvent by RG. Let A′ be the atom selected at the last
step of D in the resolvent RG. Let C ∈ P ′′ be the clause with which A′

is resolved. We know that C is the resultant of a finite SLDNF-derivation
of an atom P ∪ {A}, where (A, τ) ∈ Ã, because Ã contains only safe char-
acteristic atoms. We also know, by assumption, that A′ is a concretisation
of (A, τ) and therefore an instance of A. We can thus apply Lemma 5.2.4
for the last derivation step of D to conclude that we can extend Dk in a
similar way, obtaining the same resolvent (the resolvent is just the body
of the resultant), the same overall computed answer θ (if the head of two
resultants for the same goal RG are identical then so are the c.a.s., and
by composing with θk we obtain the same overall computed answer) and
thus also the same overall resultant (because, conversely, if the c.a.s. and
resolvent, for a derivation starting from the same goal G, are the same then
so are the resultants). 2

We will now extend Lemmas 5.2.4 and 5.2.5 and establish a more precise
link between derivations in the renamed (standard) partial deduction and
derivations in the original program. For that, the following concept will
prove to be useful.

Definition 5.2.6 (admissible renaming) Let F and F ′ be first-order
formulas. Let P be a program and α an atomic renaming for a set Ã of
characteristic atoms. We call F ′ an admissible renaming of F under α in
P iff there exists some renaming function ρ′α for Ã in P based on α such
that F ′ = ρ′α(F).

Example 5.2.7 Let P be the member program (from Example 4.2.5) and
let Ã = {CA1, CA2} with CA1 = (member(a,L), {〈1 ◦ 1 〉}) and CA2 =
(member(a,L), {〈1 ◦ 1 〉, 〈1 ◦ 2 〉}). Let α be an atomic renaming such that
α(CA1) = mem1(L) and α(CA2) = mem2(L). Then both mem1([a]) and
mem2([a]) are admissible renamings of member(a, [a]) under α in P . Now
mem2([a, a]) is an admissible renaming of member(a, [a, a]) under α in P ,
while mem1([a, a]) is not (because member(a, [a, a]) is not a concretisation
of CA1). Also, member(b, [a]) has no admissible renamings under α in P .

The following lemma establishes a link between SLD+-derivation steps
in the (renamed) specialised program and the unrenamed specialised pro-
gram.

Lemma 5.2.8 Let P ′ be a partial deduction of P wrt Ã and ρα such that
Ã is a finite set of safe P -characteristic atoms and such that Ã is P -covered
and G is P -covered by Ã.
Let C ′ = α((A, τ))θ ← ρα(Body), with (A, τ) ∈ Ã, be a clause in P ′

76 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

and let C = Aθ ← Body be the unrenamed version of C ′. Let G′ be an
admissible renaming of G under α in P and let γ be a substitution (which
e.g. standardises C ′ apart wrt G′). If RG′ is derived from G′ and C ′γ using
θ′ then there exists a goal RG such that:

1. RG is derived from G and Cγ using θ′ and

2. RG′ is an admissible renaming of RG under α in P .

Proof Let L′ be the selected atom in G′ and let L be the corresponding
atom in G. Because G′ is an admissible renaming of G under α in P , we
know that for some renaming function ρ′α, we have ρ′α(G) = G′ and thus
also ρ′α(L) = L′. Furthermore, as L′ unifies with α((A, τ))θγ, we know
that L ∈ γP (A, τ) and thus also L = Aσ and L′ = α((A, τ))σ for some
substitution σ.
Now, as of Definition 2.3.5, we know that θ′ is an idempotent and relevant
mgu of L′ = α((A, τ))σ and α((A, τ))θγ. Because vars(A) = vars(α(A, τ))
(cf. Definition 5.1.12), we have that θ′ is also an idempotent and relevant
mgu of L = Aσ and Aθγ. Hence, by selecting L in G for resolution with
Cγ, we obtain a goal RG which is derived from G and Cγ using the same
θ′.
Finally, RG′ is an admissible renaming of RG under α in P because:

• all atoms in Body are P -covered by Ã (because Ã is P -covered) and
are therefore, by Definition 5.1.12 of a renaming, admissible renam-
ings under α in P .

• the resolvent RG′ will contain, in addition to instances of atoms in
G′, instances of the atoms in Body, all of which are still P -covered
by Ã, because the set of concretisations of characteristic atoms is
downwards closed. RG′ is therefore still an admissible renaming of
RG under α in P .

2

Observe that if the substitution γ in the above lemma standardises
C ′ apart wrt G′, then it also standardises C apart wrt G (because, by
Definition 5.1.12, vars(G) = vars(G′) as well as vars(C) = vars(C ′)).

Usually one will call the specialised program with one specific renaming
and not just with an admissible one. So one might wonder why we only
prove in Lemma 5.2.8 above that RG′ is an admissible renaming of RG un-
der α in P and not that RG′ = ρα(RG). The reason is that in the course of
performing resolution steps, atoms might become more instantiated and ap-
plying the renaming function ρα on the more instantiated atom might result

5.2. CORRECTNESS RESULTS 77

in a different renaming. Take for example the set Ã = {(p(X), τ), (p(a), τ ′)}
of unconstrained characteristic atoms, the goal G =← p(X), p(X) and take
α such that:
• α((p(X), τ)) = p′(X) and
• α((p(a), τ ′)) = pa.

Then ρα(G) = ← p′(X), p′(X). Also assume that ρα(p(a)) = pa. Now
suppose that the clause C ′ = p′(a)← is in the partial deduction P ′ wrt an
original P and the set Ã. The clause C = p(a) ← is then the unrenamed
version of C ′. Then RG′ =← p′(a) is derived from ρα(G) and C ′ using
{X/a}. Similarly, RG =← p(a) is derived from G and C using {X/a}
(no matter which literal we select). Now ρα(← p(a)) =← pa 6=← p′(a),
i.e. RG′ 6= ρα(RG)! However, ← p′(a) is still an admissible renaming of
← p(a) under α in P and Lemma 5.2.8 holds.

We now combine Lemmas 5.2.5 and 5.2.8 to establish a link between
entire SLDNF-derivations in the renamed specialised program and original
one. However, for the time being, we have restricted ourselves to uncon-
strained characteristic atoms in order to establish the result. An illustration
of the following lemma can be found in Figure 5.2.

Lemma 5.2.9 Let P ′ be a partial deduction of P wrt Ã and ρα such that
Ã is a finite set of unconstrained P -characteristic atoms and such that Ã
is P -covered and G is P -covered by Ã.
Let G′ be an admissible renaming of G under α in P . Let D′ be a finite
SLDNF-derivation of P ′ ∪ {G′} leading to the resolvent RG′ via the c.a.s.
θ. Then there exists a finite SLDNF-derivation of P ∪ {G} leading to a
resolvent RG via c.a.s. θ such that RG′ is an admissible renaming of RG
under α in P and such that RG is P -covered by Ã.

?

�

?Y
...

...
...

..RG′

P ′

θ

G′ G

RG

P

θ

ρ′α

ρ′′α

Figure 5.2: Illustrating Lemma 5.2.9

78 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

Proof First note that, if RG′ is an admissible renaming of RG, RG
must by definition be P -covered by Ã.
Also note that not all resolvents of P ∪ {G} are P -covered by Ã — there
can be some intermediate goals which have no correspondent goal in P ′

(because entire derivation sequences can be compressed into one resultant
of P ′). So it is only at some specific points that a resolvent of P ∪ {G} has
a counterpart in P ′ ∪ {G′}. We will however show in the following that, as
asserted by the lemma, every derivation of P ′ ∪ {G′} has a counterpart in
P ∪ {G}.
We first do the proof for SLD+-derivations, i.e. SLDNF-derivations in which
no negative literals are selected. Let P ′′ be the unrenamed version of P ′

(i.e. the union of the partial deductions of the elements of Ã). We can now
inductively apply Lemma 5.2.8 on every step of the SLD+-derivation D′ of
P ′ ∪ {G′} and thus obtain a SLD+-derivation of P ′′ ∪ {G} with the same
computed answer θ and with a resolvent RG, such that RG′ is an admissible
renaming of RG. Furthermore, the so obtained derivation of P ′′ ∪{G} will
satisfy the conditions of Lemma 5.2.5 (because every intermediate goal of
this derivation can be renamed into an intermediate goal of D′ and is thus
P -covered by Ã in P , i.e. every selected atom is a concretisation of an
element of Ã). We can thus apply Lemma 5.2.5 to conclude that an SLD+-
derivation of P ∪ {G} with the same c.a.s. θ and the same resolvent RG
(which is just the body of the resultant) — of which RG′ is an admissible
renaming — exists.
So the lemma holds for SLDNF-derivations in which no negative literals
are selected.
Let us now allow the selection of a negative literal in the SLD+-derivation
D′ (of P ′ ∪ {G′} leading to the resolvent RG′). In that case we can apply
the just established result for the derivation leading up to the goal NG′,
in which the selected negative literal is selected and succeeds (because D′

is not a failed derivation as it leads to a goal RG′). Then, because NG′ =
ρ′α(NG) for some P -covered goal NG and some renaming function ρ′α, and
because Ã contains only unconstrained characteristic atoms, we can apply
Theorem 5.2.3, to deduce that the negative literal must also succeed in
the original program (with the same computed answer, namely the identity
substitution ∅). The next resolvents, ÑG and ÑG

′
, are obtained from NG

and NG′ respectively, by simply removing a negative literal at the same
position. Therefore, ÑG

′
is still an admissible renaming of ÑG. We can

thus re-apply the above result for SLD+-derivations until the end of the
derivation D′. Finally, we can repeat this same reasoning inductively for
any number of selected negative literals. 2

5.2. CORRECTNESS RESULTS 79

In the proof of Lemma 5.2.9, we used the fact that Ã contained only un-
constrained characteristic atoms (to show that the behaviour of the selected
negative literals was preserved). We will now move to safe characteristic
atoms and show that their partial deductions can be obtained from par-
tial deductions of unconstrained characteristic atoms by removing certain
clauses. This means that Lemma 5.2.9 can actually be used to show sound-
ness of SLD+-derivations for partial deductions of safe characteristic atoms.
To be able to show completeness, as well as allowing the selection of neg-
ative literals, we then show that these additional clauses can be removed
without affecting the finite failure behaviour.

The following lemmas will prove useful later on.

Lemma 5.2.10 Let τ be a characteristic tree. Let δ1 ∈ τ and δ2 ∈ τ . If δ2

is a prefix of δ1 then δ1 = δ2.

Proof The property follows immediately from the definitions of SLDNF-
trees and characteristic trees. 2

Lemma 5.2.11 Let A and B be atoms and τA a characteristic tree of A in
the program P . If B is an instance of A then there exists a characteristic
tree τB of B in P such that τB ⊆ τA.

Proof By Definition 4.2.3, for some unfolding rule U we have that τA =
chtree(← A,P ,U). Because B is more instantiated than A, all resolution
steps for ← A are either also possible for ← B or they fail. Therefore, for
some unfolding rule U ′, we have that τB = chtree(← B ,P ,U ′) ⊆ τA. 2

Lemma 5.2.12 Let τ be a characteristic tree, P a program and (A, τ) a
P -characteristic atom. If (A, τ) is safe then there exists an unfolding rule
such that τ ⊆ chtree(← A,P ,U).

Proof As (A, τ) is a P -characteristic atom, we must have by definition at
least one precise concretisation A′ whose characteristic path is τ in P . As
all the derivations in DP (A, τ) are safe, we can unfold ← A in a similar
way as ← A′. This will result in a characteristic tree τ ′ which contains all
the paths in τ as well as possibly some additional paths (which failed for
← A′). 2

The above Lemma 5.2.12 (also) establishes that the partial deduction
P(A,τ) of a safe characteristic atom (A, τ) is a subset of a partial deduction
PA of the ordinary atom A. The Lemma 5.2.14 below shows that it is cor-
rect to remove the resultants PA \ P(A,τ) for the concretisations of (A, τ).
In the proof of this lemma we need to combine characteristic paths. A

80 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

characteristic path being a sequence, we can simply concatenate two char-
acteristic paths δ1, δ2. For this we will use the standard notation δ1δ2 from
formal language theory (cf. Appendix A.2 or [1, 128]).

We also need the following lemma from [185], where it is Lemma 4.10.

Lemma 5.2.13 (persistence of failure) Let P be a normal program and
G a normal goal. If P ∪ {G} has a finitely failed SLDNF-tree of height
h and there is an SLDNF-derivation from G to G1, then P ∪ {G1} has a
finitely failed SLDNF-tree of height ≤ h.

Lemma 5.2.14 Let P be a program and (A, τA), (A, τ∗A) be safe P -
characteristic atoms with τA ⊆ τ∗A. Let C ∈ resultants(τ∗A)\resultants(τA)
and let A′ ∈ γP (A, τA).
If ← A′ resolves with C to G′ then G′ fails finitely in P .

Proof Let δC be the characteristic path associated in Definition 5.1.8
(of DP (A, τ)) with C, i.e. C is the resultant of the generalised SLDNF-
derivation for P ∪ {← A} whose characteristic path is δC . Because (A, τ∗A)
is safe, C is even the resultant of an SLDNF-derivation (and not of an
unsafe generalised one). We can therefore apply Lemma 5.2.4 to deduce
that:

(1) there exists a finite SLDNF-derivation of P ∪ {← A′} whose charac-
teristic path is δC and whose resolvent is G′.

Because C ∈ resultants(τ∗A) \ resultants(τA) we know that δC ∈ τ∗A and
δC 6∈ τA. Furthermore A′ ∈ γP (A, τA) implies by Lemma 5.2.11 that, for
some unfolding rule U , τ̂ = chtree(← A′,P ,U) ⊆ τA.
If τ̂ = ∅ then ← A′ fails finitely. Therefore, because a finite SLDNF-
derivation from ← A′ to G′ exists, we can deduce by persistence of failure
(Lemma 5.2.13), that G′ must also fail finitely.
If τ̂ 6= ∅ then the largest prefix δ′C of δC , such that for some γ̂ we have
δ′C γ̂ ∈ τ̂ , must exist (the smallest one being 〈〉). By Lemma 5.2.10 we
know that no proper prefix of δC can be in τ∗A (because δC ∈ τ∗A), and
therefore neither in τA nor τ̂ (because τ̂ ⊆ τA ⊆ τ∗A). This means that γ̂
must be non-empty. We also know, again by Lemma 5.2.10, that δ′C is a
proper prefix of δC (because δC ∈ τ∗A and δ′C γ̂ ∈ τ∗A), i.e. δC = δ′C〈l ◦m〉δ′′C .
We can also see that γ̂ 6= 〈l ◦m〉δ′′C because δ′C γ̂ ∈ τ̂ while δC 6∈ τ̂ . This
means that there is branching immediately after δ′C (otherwise δ′C is not
the largest prefix of δC such that an extension of it is in τ̂). We even know
that in δC = δ′C〈l◦m〉δ′′C the selected literal at position l is a positive literal
(the selection of a negative literal can never lead to branching), that m is
therefore a clause number and also that γ̂ = 〈l ◦ m̂〉γ̂′ with m̂ 6= m. The
situation is summarised in Figure 5.3.

5.2. CORRECTNESS RESULTS 81

?

@@R

?

 γ̂G

l ◦m l ◦ m̂

G′

 δ′C

@@R
δC

 ?

��	

← A′

Figure 5.3: Illustrating the proof of Lemma 5.2.14

Let G be the goal obtained from the finite SLDNF-derivation of P ∪{← A′}
whose characteristic path is δ′C〈l ◦m〉 (this must exist because an SLDNF-
derivation of P ∪ {← A′} with characteristic path δC exists by point (1)
above). In order to arrive at the characteristic tree τ̂ for← A′ the unfolding
rule U also had to reach the goal G, because τ̂ contains the characteristic
path δ′C〈l ◦ m̂〉γ̂′ and G is “reached” via δ′C〈l ◦m〉, a step which cannot be
avoided by U if it wants to get as far as δ′C〈l ◦ m̂〉. Furthermore, as neither
δ′C〈l ◦m〉 nor any extension of it are in τ̂ (by definition of δ′C) this means
that ← G finitely fails.
Finally, as δC is an extension of δ′C〈l ◦m〉, we know that a finite (possibly
empty) SLDNF-derivation from G to G′ exists and therefore, by persistence
of failure (Lemma 5.2.13), G′ must also fail finitely. 2

We now present a correctness theorem for safe characteristic atoms.

Theorem 5.2.15 Let P be a normal program, G a goal, Ã a finite set of
safe P -characteristic atoms and P ′ the partial deduction of P wrt Ã and
some ρα. If Ã is P -covered and if G is P -covered by Ã then the following
hold:

1. P ′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ iff
P ∪ {G} does.

2. P ′ ∪ {ρα(G)} has a finitely failed SLDNF-tree iff P ∪ {G} does.

Proof The basic idea of the proof is as follows.

82 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

1. First, we transform the characteristic atoms in Ã so as to make them
unconstrained (which is possible by Lemma 5.2.12). For the so ob-
tained partial deduction P ′′ we can reuse Theorem 5.2.3 to prove that
P ′′ is totally correct.

2. By construction, P ′′ will be a superset of P ′, i.e. P ′′ = P ′ ∪ PNew,
and we will show, mainly using Lemma 5.2.14, that the clauses PNew

can be safely removed without affecting the total correctness.

The details of the proof are elaborated in the following.
1. In order to make a characteristic atom (A, τ) in Ã unconstrained

we have to add some characteristic paths to τ . We have that, for every
(A, τ) ∈ Ã, the set of derivations DP (A, τ) is safe. By Lemma 5.2.12 we
then know that for some unfolding rule U : τ ⊆ chtree(← A,P ,U). Let
τ ′ = chtree(← A,P ,U)\ τ and let RNew be the partial deduction of (A, τ ′)
(i.e. the unrenamed clauses that have to be added to the partial deduction of
(A, τ) in order to arrive at a standard partial deduction of the unconstrained
characteristic atom (A, chtree(← A,P ,U))). We denote by New(A,τ) the
following set of clauses {α((A, τ))θ ← ρα(Bdy) | Aθ ← Bdy ∈ RNew}.
By adding for each (A, τ) ∈ Ã the clauses New(A,τ) to P ′ we obtain a
partial deduction of P wrt an unconstrained set Ã′5 and the renaming
function ρα (where we extend α so that α(A, τ ∪ τ ′) = α(A, τ)). Note that,
every concretisation of (A, τ) is also a concretisation of (A, τ ∪ τ ′) (because
(A, τ ∪τ ′) is unconstrained, and thus any instance of A is a concretisation).
Unfortunately, although G remains P -covered by Ã′, Ã′ is not necessarily
P -covered any longer. The reason is that new uncovered leaf atoms can
arise inside New(A,τ). Let UC be these uncovered atoms. To arrive at a P -
covered partial deduction we simply have to add, for every predicate symbol
p of arity n occurring in UC, the characteristic atom (p(X1, . . . , Xn), 〈〉) to
Ã′, where X1, . . . , Xn are distinct variables. This will give us the new set
Ã′′ ⊇ Ã′ (and we extend α and ρα in an arbitrary manner for the elements
in Ã′′ \ Ã′). Let P ′′ be the partial deduction of P wrt Ã′′ and ρα. Now
Ã′′ is trivially P -covered and we can apply the correctness Theorem 5.2.3
to deduce that the computations of P ′′ ∪ {ρα(G)} are totally correct wrt
the computations in P ∪ {G}.

2. Note that, by construction, we have that P ′ ⊆ P ′′. We will now
show that by removing the clauses PNew = P ′′ \ P ′ we do not lose any
computed answer nor do we remove any infinite failure, i.e.:

5As in the proof of Theorem 5.2.3, Ã′ might actually be a multiset. However, this
poses no problems, as all results so far also hold for multisets of characteristic atoms.
Alternatively, one could add an extra unused argument to all predicates and ensure that
all elements in Ã have a different variable in that position, thus guaranteeing that Ã′ is
an ordinary set.

5.2. CORRECTNESS RESULTS 83

• P ′′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ iff
P ′ ∪ {ρα(G)} does.
• P ′′ ∪ {ρα(G)} has a finitely failed SLDNF-tree iff P ′ ∪ {ρα(G)} does.

Combined with point 1., this is sufficient to establish that P ′ is also totally
correct wrt P . We do the proof by induction of the rank of the SLDNF-
derivations and trees.
Induction Hypothesis:
• if P ′′ ∪ {ρα(G)} has an SLDNF-refutation of rank k with computed

answer θ then P ′∪{ρα(G)} has an SLDNF-refutation with computed
answer θ.
• if P ′ ∪ {ρα(G)} has an SLDNF-refutation of rank k with computed

answer θ then P ′′ ∪ {ρα(G)} has an SLDNF-refutation (of rank k)
with computed answer θ.

• if P ′′ ∪ {ρα(G)} has a finitely failed SLDNF-tree of rank k then P ′ ∪
{ρα(G)} has a finitely failed SLDNF-tree (of rank k).
• if P ′ ∪ {ρα(G)} has a finitely failed SLDNF-tree of rank k then P ′′ ∪
{ρα(G)} has a finitely failed SLDNF-tree.

Base Case: Because P ′ ⊆ P ′′, we have that whenever P ′′ ∪{ρα(G)} has a
finitely failed SLD+-tree so does P ′ ∪{ρα(G)}, and whenever P ′ ∪{ρα(G)}
has a SLD+-refutation with computed answer θ so does P ′′ ∪ {ρα(G)}.
We now show that every SLD+-derivation of P ′′ ∪ {ρα(G)}, which uses at
least a clause in P ′′ \ P ′, fails finitely. This will ensure that P ′′ ∪ {ρα(G)}
cannot have any additional computed answer and that it fails finitely iff
P ′ ∪ {ρα(G)} does.
Let D be an SLD+-derivation of P ′′ ∪ {ρα(G)} which uses at least one
clause in P ′′ \ P ′. Let D′ be the largest prefix SLD+-derivation of D such
that D′ uses only clauses within P ′. Let RG′ be the last goal of D′. We
can apply Lemma 5.2.9 to deduce that there exists an SLD+-derivation of
P ∪ {G} leading to RG such that RG′ is an admissible renaming of RG
under α in P and such that RG is P -covered by Ã′′. Let RG′ = ρ′α(RG)
and let ρ′α(p(t̄)) be the literal selected in RG′ by D (i.e. the next step after
performing D′).

?

�

?Y
....

....
...

RG′

P ′

ρα(G) G

RG

P

ρα

ρ′α

Because RG′ is an admissible renaming of RG, we have p(t̄) ∈ γP (A, τ)
where ρ′α(p(t̄)) = α((A, τ))σ′ for some σ′, ρ′α and (A, τ). Furthermore, we

84 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

now that p(t̄) ∈ γP (A, τ ′) for some (A, τ ′) ∈ Ã with τ ′ ⊆ τ , because the
elements in Ã′′ \ Ã′ cannot be reached from the clauses in P ′. We can
therefore apply Lemma 5.2.14 to deduce that ← p(t̄), and therefore also
RG, fails finitely in P . We can now apply the correctness Theorem 5.2.3
for the goal ← p(t̄) (it is possible to apply this theorem because ← p(t̄) is
P -covered by Ã) to deduce that ← ρα(p(t̄)) also fails finitely in P ′′.
Induction Step: Let us now prove the hypothesis for SLDNF-derivations
and trees of rank k + 1. Because P ′ ⊆ P ′′, and by the induction hypothesis
(because all sub-derivations and sub-trees for negative literals have rank
≤ k), we have that whenever P ′′∪{ρα(G)} has a finitely failed SLDNF-tree
of rank k+1 so does P ′∪{ρα(G)}, and whenever P ′∪{ρα(G)} has a SLDNF-
refutation or rank k + 1 with computed answer θ so does P ′′ ∪ {ρα(G)}.
Similar to the base case, if we show that every SLDNF-derivation D of rank
k + 1 of P ′′ ∪ {ρα(G)} which uses at least a clause in P ′′ \ P ′ fails finitely,
then P ′′ ∪ {ρα(G)} cannot have any additional computed answer (over P)
and it fails finitely iff P ′ ∪ {ρα(G)} does. This can be done in exactly
the same manner as for the base case, because Lemmas 5.2.9, 5.2.14 and
Theorem 5.2.3 hold for SLDNF-derivations and trees of any rank. 2

5.2.3 Correctness for unrestricted characteristic atoms

We are finally in the position to prove the general correctness Theorem 5.2.2
for partial deductions of safe and unsafe P -characteristic atoms.
Proof of Theorem 5.2.2 For every (A, τ) ∈ Ã let us remove the derivation
steps from τ which correspond to the selection of a non-ground negative
literal in DP (A, τ), resulting in a modified characteristic tree τ ′. Note that,
trivially, any concretisation of (A, τ) is also a concretisation of (A, τ ′) (if
we can build and SLDNF-tree for P ∪{← Aθ} with characteristic tree τ we
can also construct an SLDNF-tree with characteristic tree τ ′ by simply not
selecting the offending negative literals). By substituting (A, τ ′) for (A, τ)
in Ã we obtain a set Ã′ of safe characteristic atoms.6 Every clause in the
partial deduction wrt Ã′ and ρα can be obtained from a clause of P ′ by
adding the negative literals which are no longer selected. So, just like in
the proof of Theorem 5.2.15, we might have to add characteristic atoms to
Ã′ (to cover all these negative literals), in order to arrive at a P -covered
set, giving the new set of characteristic atoms Ã′′ ⊇ Ã′. As in the proof of

6As in the proofs of Theorems 5.2.3 and Theorem 5.2.15, Ã′ might actually be a
multiset. Again, this poses no problems, as all results so far also hold for multisets
of characteristic atoms. Alternatively, one could add an extra unused argument to all
predicates and ensure that all elements in Ã have a different variable in that position,
thus guaranteeing that Ã′ is an ordinary set.

5.2. CORRECTNESS RESULTS 85

Theorem 5.2.15 we also extend α so that α(A, τ ′) = α(A, τ) (and we extend
α and ρα in an arbitrary manner for the elements in Ã′′ \ Ã′).
Let P ′′ be the partial deduction of P wrt Ã′′ and ρα. We can apply Theo-
rem 5.2.15 to deduce that the computations of P ′′ ∪ {←ρα(G)} are totally
correct wrt P ∪ {←G}.
We will now establish total correctness of P ′ (wrt P) by proving that:
• P ′′ ∪ {ρα(G)} has an SLDNF-refutation with computed answer θ iff

P ′ ∪ {ρα(G)} does.
• P ′′ ∪ {ρα(G)} has a finitely failed SLDNF-tree iff P ′ ∪ {ρα(G)} does.

We will do this proof by induction on the rank of the SLDNF-refutations
and trees.
Induction Hypothesis:
• if P ′′ ∪ {ρα(G)} has an SLDNF-refutation of rank k with computed

answer θ then P ′ ∪ {ρα(G)} has an SLDNF-refutation (of rank k)
with computed answer θ.

• if P ′ ∪ {ρα(G)} has an SLDNF-refutation of rank k with computed
answer θ then P ′′∪{ρα(G)} has an SLDNF-refutation with computed
answer θ.
• if P ′′ ∪ {ρα(G)} has a finitely failed SLDNF-tree of rank k then P ′ ∪
{ρα(G)} has a finitely failed SLDNF-tree.

• if P ′ ∪ {ρα(G)} has a finitely failed SLDNF-tree of rank k then P ′′ ∪
{ρα(G)} has a finitely failed SLDNF-tree (of rank k).

Base Case: For every SLD+-derivation in P ′ there exists a correspond-
ing SLD+-derivation in P ′′, with however additional negative literals in
the resolvent. Thus, every computed answer of P ′′ ∪ {ρα(G)} (via an
SLD+-refutation) is also a computed answer of P ′∪{ρα(G)} (via an SLD+-
refutation). Also, if P ′ ∪ {ρα(G)} has a finitely failed SLD+-tree then
P ′′ ∪ {ρα(G)} also has a finitely failed SLD+-tree. We will now show that
these additional negative literals always succeed. Thus, if for every deriva-
tion in P ′′ we impose the (fair) condition that the additional negative liter-
als are immediately selected, we can establish a one to one correspondence
between derivations in P ′′ and P ′. Also, the clauses that had to be added
for coveredness are not reachable within P ′ and can therefore also be re-
moved. So by showing that the additional negative literals always succeed,
we establish the base case.
Let G′1 be a goal which is an admissible renaming (under α in P) of a
goal G1 for P (i.e. G′1 = ρ′α(G1) for some ρ′α — only such goals can occur
for derivations inside P ′) which resolves with a clause Cδ (constructed for
the characteristic path δ) in P ′ and with selected literal ρ′α(p(t̄)) leading
to a resolvent RG′. Then G′1 also resolves with a clause C ′ in P ′′, under
the same selected literal, leading to a resolvent RG′′ which has the same
atoms as RG′ plus possibly some additional negative literals N . Because

86 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

G′1 is an admissible renaming of G1 we know that p(t̄) ∈ γP (A, τ) where
ρ′α(p(t̄)) = α((A, τ))σ′ for some σ′. Because p(t̄) is a concretisation of an el-
ement in Ã we know that it must be the instance of a precise concretisation
A. For this concretisation A there exists a characteristic tree which contains
the characteristic path δ and for which the negative literals corresponding
to N are ground and succeed. Therefore, because p(t̄) is an instance of A,
the literals in N are identical to the ones selected for P∪{← A} and are thus
also ground and succeed. We can thus immediately (by Theorem 5.2.15)
select them in P ′′ and can thus construct a corresponding derivation in P ′.
Induction Step: The induction step is very similar to the base case and
can basically be obtained by replacing SLD+ by SLDNF of rank k + 1. 2

5.3 A set based algorithm and its termination

In this section, we present a first, simple (set based) algorithm for partial
deduction through characteristic atoms. We will prove correctness as well
as termination of this algorithm, given certain conditions.

We first define an abstraction operator which, by definition, preserves
the characteristic trees.

Definition 5.3.1 (chmsg(.), Ã|τ) Let Ã be a set of characteristic atoms.
Also let, for every characteristic tree τ , Ã|τ be defined as Ã|τ = {A |
(A, τ) ∈ Ã}. The operator chmsg() is defined as:

chmsg(Ã) = {(msg(Ã|τ), τ) | τ is a characteristic tree }.

In other words, only one characteristic atom per characteristic tree
is allowed in the resulting abstraction. For example, given the set Ã =
{(p(a), {〈1 ◦ 1〉}), (p(b), {〈1 ◦ 1〉})}, we obtain the abstraction chmsg(Ã) =
{(p(X), {〈1 ◦ 1 〉})}.

Definition 5.3.2 (chatom) Let A be an ordinary atom, U an unfolding
rule and P a program. We then define:

chatom(A,P ,U) = (A, τ), where τ = chtree(← A,P ,U).
We extend chatom to sets of atoms:

chatoms(Ã,P ,U) = {chatom(A,P ,U) | A ∈ Ã}.

Note that A is a precise concretisation of chatom(A,P ,U).
The following algorithm for partial deduction with characteristic atoms

is parametrised by an unfolding rule U , thus leaving the particulars of local
control unspecified. Recall that leavesP (A, τA) represents the leaf atoms
of (A, τA) (see Definition 5.1.9).

5.3. A SET BASED ALGORITHM AND ITS TERMINATION 87

Algorithm 5.3.3

Input
a program P and a goal G

Output
a specialised program P ′

Initialisation
k := 0; Ã0 := chatoms({A | A is an atom in G},P ,U);

repeat
L̃k := chatoms({leavesP (A, τA) | (A, τA) ∈ Ãk},P ,U);
Ãk+1 := chmsg(Ãk ∪ L̃k);
k := k + 1;

until Ãk = Ãk+1 (modulo variable renaming)
Ã := Ãk;
P ′ := a partial deduction of P wrt Ã and some renaming function ρα;

Let us illustrate the operation of Algorithm 5.3.3 on Example 4.2.5.

Example 5.3.4 Let G =← member(a, [a]),member(a, [a, b]) and P be the
program from Example 4.2.5. Also let chtree(← member(a, [a]),P ,U) =
chtree(← member(a, [a, b]),P ,U) = {〈1 ◦ 1〉} = τ (see Figure 4.3 for the
corresponding SLD-trees). The algorithm operates as follows:

1. Ã0 = {(member(a, [a]), τ), (member(a, [a, b]), τ)}

2. leavesP (member(a, [a]), τ) = leavesP (member(a, [a, b]), τ) = ∅,
Ã1 = chmsg(Ã0) = {(member(a, [a|T]), τ)}

3. leavesP (member(a, [a|T]), τ) = ∅, Ã2 = chmsg(Ã1) = Ã1 and we
have reached the fixpoint Ã.

A partial deduction P ′ wrt Ã and ρα with α((member(a, [a|T]), τ)) =
m1 (T) is:

m1(X)←
Ã is P -covered and every atom in G is a concretisation of a characteristic
atom in Ã. Hence Theorem 5.2.2 can be applied: we obtain the renamed
goal G′ = ρα(G) =← m1([]),m1([b]) and P ′∪{G′} yields the correct result.

In the remainder of this subsection, we formally prove the correctness
of Algorithm 5.3.3, as well as its termination under a certain condition.

As already defined in Section 2, an expression is either a term, an atom,
a literal, a conjunction, a disjunction or a program clause. Expressions are

88 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

constructed using the language LP which we implicitly assume underly-
ing the program P under consideration. Remember that LP may contain
additional symbols not occurring in P , but that, unless explicitly stated
otherwise, LP contains only finitely many constant, function and predicate
symbols. To simplify the presentation we also assume that, when talking
about expressions, predicate symbols and connectives are treated like func-
tors which cannot be confounded with the original functors and constants
(e.g. ∧ and ← are binary functors distinct from the other binary functors).

The following well-founded measure function is taken from [100] (also
in the extended version of [201]):

Definition 5.3.5 (s(.), h(.)) Let Expr denote the sets of expressions. We
define the function s : Expr →IN counting symbols by:
• s(t) = 1 + s(t1) + . . . + s(tn) if t = f(t1, . . . , tn), n > 0
• s(t) = 1 otherwise

Let the number of distinct variables in an expression t be v(t). We now
define the function h : Expr →IN by h(t) = s(t)− v(t).

The well-founded measure function h has the property that h(t) ≥ 0
for any expression t and h(t) > 0 for any non-variable expression t. The
following important lemma is proven for h(.) in [99] (see also [201]).

Lemma 5.3.6 If A and B are expressions such that B is strictly more
general than A, then h(A) > h(B).

It follows that, for every expression A, there are no infinite chains of
strictly more general expressions.

Definition 5.3.7 (weight vector) Let Ã be a set of characteristic atoms
and let T = 〈τ1, . . . , τn〉 be a finite vector of characteristic trees. We then
define the weight vector of Ã wrt T by hvecT (Ã) = 〈w1, . . . , wn〉 where
• wi =∞ if Ã|τi

= ∅
• wi =

∑
A∈Ã|τi

h(A) if Ã|τi
6= ∅

The set of weight vectors is partially ordered by the usual order relation
among vectors:
〈w1, . . . , wn〉 ≤ 〈v1, . . . , vn〉 iff w1 ≤ v1, . . . , wn ≤ vn. Also, given a quasi
order ≤S on a set S, we from now on assume that the associated equivalence
relation ≡S and the associated strict partial order >S are implicitly defined
in the following way:
• s1 ≡S s2 iff s1 ≤ s2 ∧ s2 ≤ s1 and s1 <S s2 iff s1 ≤ s2 ∧ s2 6≤ s1.
The set of weight vectors is well-founded (no infinitely decreasing se-

quences exist) because the weights of the atoms are well-founded.

5.3. A SET BASED ALGORITHM AND ITS TERMINATION 89

Proposition 5.3.8 Let P be a normal program, U an unfolding rule and
let T = 〈τ1, . . . , τn〉 be a finite vector of characteristic trees. For every pair
of finite sets of characteristic atoms Ã and B̃, such that the characteristic
trees of their elements are in T , we have that one of the following holds:
• chmsg(Ã ∪ B̃) = Ã (up to variable renaming) or
• hvecT (chmsg(Ã ∪ B̃)) < hvecT (Ã).

Proof Let hvecT (Ã) = 〈w1, . . . , wn〉 and let hvecT (chmsg(Ã ∪ B̃)) =
〈v1, . . . , vn〉. Then for every τi ∈ T we have two possible cases:
• {msg(Ã|τi ∪ B̃|τi)} = Ã|τi (up to variable renaming). In this case the

abstraction operator performs no modification for τi and vi = wi.
• {msg(Ã|τi

∪ B̃|τi
)} = {M } 6= Ã|τi

(up to variable renaming). In
this case (M, τi) ∈ chmsg(Ã ∪ B̃), vi = h(M) and there are three
possibilities:
• Ã|τi = ∅. In this case vi < wi =∞.
• Ã|τi = {A} for some atom A. In this case M is strictly more

general than A (by definition of msg because M 6= A up to
variable renaming) and hence vi < wi.
• #(Ã|τi

) > 1. In this case M is more general (but not necessarily
strictly more general) than any atom in Ã|τi

and vi < wi because
at least one atom is removed by the abstraction.

We have that ∀i ∈ {1, . . . , n} : vi ≤ wi and either the abstraction operator
performs no modification (and ~v = ~w) or the well-founded measure hvecT

strictly decreases. 2

Theorem 5.3.9 If Algorithm 5.3.3 generates a finite number of distinct
characteristic trees then it terminates and produces a partial deduction
satisfying the requirements of Theorem 5.2.2 for any goal G′ whose atoms
are instances of atoms in G.
Proof Reaching the fixpoint guarantees that all predicates in the bodies
of resultants are precise concretisations of at least one characteristic atom
in Ãk, i.e. Ãk is P -covered. Furthermore chmsg() always generates more
general characteristic atoms (even in the sense that any precise concreti-
sation of an atom in Ãi is a precise concretisation of an atom in Ãi+1

— this follows immediately from Definitions 5.1.3 and 5.3.1). Hence, be-
cause any instance of an atom in the goal G is a precise concretisation of a
characteristic atom in Ã0, the conditions of Theorem 5.2.2 are satisfied for
goals G′ whose atoms are instances of atoms in G, i.e. G′ is P -covered by
Ãk. Finally, termination is guaranteed by Proposition 5.3.8, given that the
number of distinct characteristic trees is finite. 2

The method for partial deduction as described in this section, using
the framework of Section 5.1, has been called ecological partial deduction

90 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

in [168] because it guarantees the preservation of characteristic trees. A
prototype partial deduction system, using Algorithm 5.3.3, has been im-
plemented and experiments with it can be found in [168] and [203]. We
will however further refine the algorithm in the next chapter and present
extensive benchmarks in Section 6.4.2.

5.4 Some further discussions

5.4.1 Increasing precision

Let us return Definition 5.1.8 of DP . For a given characteristic atom (A, τ),
DP (A, τ) uses the characteristic tree τ to determine exactly how ← A
should be unfolded (to generate the resultants). This is not always totally
satisfactory. For instance, it might be interesting to use a very deep and
precise tree τ , in order to arrive at a precise control of polyvariance, but
only use a shallow, determinate unfolding for the resultants to guarantee
efficiency of the specialised program.

Example 5.4.1 Let P be the Program from Examples 3.2.5 and 3.3.3:
member(X , [X |T])←
member(X , [Y |T])← member(X ,T)
inboth(X ,L1 ,L2)← member(X ,L1),member(X ,L2)

Let A = inboth(a,L1 , [a, a]) and B = inboth(b,L1 ,L2). If we use a
(shower) determinate unfolding rule U then chtree(← A,P ,U) = chtree(←
B ,P ,U) = {〈1 ◦ 3〉}. If we start Algorithm 5.3.3 with G =← A,B then
A and B are abstracted by (inboth(X ,L1 ,L2), τ), resulting in a loss of
specialisation. Note that even if we allow left-most non-determinate un-
folding the characteristic trees of A and B will remain identical. Only if
we use a more aggressive unfolding rule U ′, which performs non-leftmost
non-determinate unfolding, will the difference between ← A and ← B be
spotted, thus preventing the unnecessary abstraction. However, as shown
in Example 3.3.3, such an unfolding will yield resultants in which (possibly
expensive) work gets duplicated.

In such a case it might be interesting to base the control of polyvari-
ance on U ′ but construct the specialised program using U . Fortunately,
Definition 5.1.8 can be quite easily adapted to account for this desire.
More formally, any unfolding whose associated characteristic tree τ ′ sat-
isfies γP (A, τ ′) ⊇ γP (A, τ) can be used in Definition 5.1.8 and the correct-
ness theorems still hold.7 This refinement might be especially interesting

7Note that, by adapting the definition of DP , we also implicitly adapt the definition
of the leaf atoms leavesP (A, τ) and therefore Algorithm 5.3.3 still ensures coveredness

5.4. SOME FURTHER DISCUSSIONS 91

for very conservative unfolding rules, e.g. based solely on determinacy.
The ecce partial deduction system, which we are going to present in the

next chapter, actually incorporates this refinement (which we will not use
in the experiments; it will however turn out to be useful for some examples
in Chapter 12).

5.4.2 An alternative constraint-based approach

In this subsection we summarise an alternative approach to preserving char-
acteristic trees upon generalisation. We will only mention the essentials;
the full details can be found in the revised version of [172].

In standard partial deduction an atom A ∈ A represents a possibly infi-
nite set of concretisations, namely all its instances. As shown in Chapter 4,
this makes it impossible to preserve characteristic trees upon generalisation.
In this chapter we have solved this problem by introducing the framework
of ecological partial deduction. By using characteristic atoms instead of
plain atoms, together with a more refined notion of concretisation, we were
able to exclude certain instances from the concretisations (namely those
which do not have the desired characteristic tree). [172] presents a gen-
eralisation of this idea, which, in the context of definite programs, allows
to restrict the set of potential concretisations by using constraints. Based
upon the so obtained framework of constrained partial deduction, [172] also
presents a concrete technique which ensures the preservation of character-
istic trees for certain unfolding rules. The benefits of constrained partial
deduction however surpass that context, and it can for instance also be used
to “drive negative information”(using the terminology of supercompilation
[273, 275]).

Constraint logic programming

We briefly recall some basic terminology from constraint logic programming
(CLP) [133]. In CLP the predicate symbols are partitioned into two dis-
joint sets Πc (the predicate symbols to be used for constraints, notably
including “=”) and Πb (the predicate symbols for user-defined predicates).
A constraint is a first-order formula whose predicate symbols are all con-
tained in Πc. In the context of CLP one often uses the connective “ 2 ” in
the place of “∧” to separate constraints from “ordinary” formulas. For in-
stance, a CLP-goal is denoted by← c 2 B1, . . . , Bn, where c is a constraint
and B1, . . . , Bn are ordinary atoms. The semantics of constraints is given
by a structure D, consisting of a domain D and an assignment of functions
and relations on D to function symbols and to predicate symbols in Πc.

and correctness.

92 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

Given a constraint c, D |= c then denotes the fact that c is true under the
interpretation provided by D.

[172] defines a counterpart to SLD-derivations for CLP-goals. In the
given context of partial deduction, the initial and final programs are ordi-
nary logic programs (ordinary logic programs can be seen as CLP-programs
using equality constraints over the structure of feature terms FT , see [189]).
In order for the constraint manipulations to be sound wrt the initial logic
program, we have to ensure that equality in the constraint domain is a safe
approximation of equality as used for ordinary logic programs. In other
words, if there is no SLD-refutation for P ∪{← Q} then there should be no
CLP-refutation for any P ∪ {← c 2 Q} either. This property is ensured by
adapting the definition of CLP-derivations from [92] such as to make sub-
stitutions explicit. This also makes it possible in [172] to define computed
answers and CLP-resultants for CLP-derivations.

Constrained partial deduction

The basic idea is instead of producing a partial deduction for a set of atoms
to produce it for a set of constrained atoms. A constrained atom is a formula
of the form c 2 A, where A is an ordinary atom and c a constraint. The set
of concretisations of a constrained atom c 2 A are then all the atoms Aθ
such that cθ holds, i.e. D |= ∀(cθ). This set of concretisations (called valid
instances in [172]) is downwards-closed.

A partial deduction of c 2 A in P is then obtained by taking the CLP-
resultants of a finite, non-trivial and possibly incomplete CLP-tree for P ∪
{← c 2 A}. This partial deduction still contains constraints, which are
then removed by a renaming function, defined in a very similar manner
to Definition 5.1.12 (i.e. based upon an atomic renaming α which maps
constrained atoms to ordinary atoms). Given a coveredness condition, all
the necessary constraint processing has been performed at partial deduction
time and correctness is formally established in [172]

Pruning constraints

As we have shown on multiple occasions in Chapter 4, when taking the
msg of two atoms A and B with the same characteristic tree τ , we do not
necessarily obtain an atom C which has the same characteristic tree. Now,
instead of C, the technique in [172] generates c 2 C as the generalisation of
A and B, where the constraint c is designed in such a way as to prune the
possible computations of C into the right shape, namely τ . Indeed, all the
derivations that were possible for A and B are also possible for C (because
we only consider definite programs and goals) and c only has to ensure that

5.4. SOME FURTHER DISCUSSIONS 93

the additional matches wrt τ are pruned off at some point (cf. Figure 5.4).

← A

?

�
��	 ??

�
��	

@
@@R

?

�
��	

�
��	

@
@@R

τ

← C

?

�
��	 ??

�
��	

@
@@R

@@

@@

c

c

c

Figure 5.4: Pruning Constraints

To be able to calculate a finite constraint, covering all instances of C
which have τ as their characteristic tree, [172] is restricted to certain unfold-
ing rules (basically beam determinate unfolding rules without lookahead;
cf. Definition 3.3.2). The pruning constraints are then formulated using
Clark’s equality theory). More precisely, [172] uses the structure D = FT
consisting of CET over the domain of finite trees (with infinitely many
functors of every arity). It is basically the same structure as the one used
for CLP(FT) (see e.g. [256, 254, 255]) as well as in constructive negation
techniques (e.g. [48, 49, 86, 252, 267, 266]).

Let us revisit Example 4.3.3 and illustrate how characteristic trees can
be preserved using constrained partial deduction.

Example 5.4.2 Let us return to the program P from Example 4.3.3:
(1) p(X)←
(2) p(c)←

We can abstract the atoms p(a) and p(b) of Example 4.3.3 (as well as the
equivalent constrained atoms true 2 p(a) and true 2 p(b)) by the more
general constrained atom ¬(X = c) 2 p(X), having the same characteristic
tree τ = {〈1 ◦ 1〉}. The additional match with clause (2) is pruned for
¬(X = c) 2 p(X), because ¬(c = c) is unsatisfiable in CET.

Let us also briefly discuss some further applications of constrained par-
tial deduction, beyond preserving characteristic trees. For example, a con-
straint structure over integers or reals could handle Prolog built-ins like
<,>,≤,≥ in a much more sophisticated manner than ordinary partial
evaluators. Also, one can provide a refined treatment of the \== Pro-
log built-in using the FT structure. The following example illustrates this,

94 CHAPTER 5. ECOLOGICAL PARTIAL DEDUCTION

where a form of “driving of negative information”(using the terminology of
supercompilation [273, 275]) is achieved by constrained partial deduction.

Example 5.4.3 Take the following adaptation of the member program
which only succeeds once.

(1) member(X , [X |T])←
(2) member(X , [Y |T])← X\==Y ,member(X ,T)

Let us start specialisation with the goal ← member(X , [a,Y , a]). Using a
determinate unfolding rule (even with a lookahead) we would unfold this
goal once and get the resolvent ← X\==a,member(X , [Y , a]) in the sec-
ond branch. Ordinary partial deduction would ignore X\==a and unfold
member(X , [Y , a]), thus producing an extra superfluous resultant with the
impossible (given the context) computed answer {X/a}. In the constrained
partial deduction setting, we can incorporate X\==a as a constraint and
unfold ¬(X = a) 2member(X , [Y , a]) instead of just member(X , [Y , a])
and thereby prune the superfluous resultant. (We will see a technique
which can achieve a similar effect in Part V of the thesis).

Some discussions

Compared to ecological partial deduction, the method of [172] using prun-
ing constraints is more complex and restricted to determinate unfolding
rules without lookahead as well as to definite programs. Within that con-
text however, it enjoys a better overall precision than ecological partial
deduction. In fact, the characteristic tree τ inside a characteristic atom
(A, τ) can be seen as an implicit representation of constraints on A. In eco-
logical partial deduction, these constraints are used only locally to ensure
preservation of the characteristic tree and are not propagated towards other
characteristic atoms. The pruning constraints in [172] are propagated and
thus used globally. Future work is needed to determine whether this has
any real influence in practice.

5.4.3 Conclusion

We have presented a new framework and a new algorithm for partial deduc-
tion. The framework and the algorithm can handle normal logic programs
and place no restrictions on the unfolding rule. We provided general cor-
rectness results for the framework as well as correctness and termination
proofs for the algorithm. Also, the abstraction operator of the algorithm
preserves the characteristic trees of the atoms to be specialised and ensures
termination (when the number of distinct characteristic trees is bounded)
while providing a fine grained control of polyvariance.

Chapter 6

Removing Depth Bounds
by Adding Global Trees

6.1 The depth bound problem

The algorithm for ecological partial deduction presented in Section 5.3
only terminates when imposing a depth bound on characteristic trees. In
this section we present some natural examples which show that this leads
to undesired results in cases where the depth bound is actually required.
(These examples can also be adapted to prove a similar point about neigh-
bourhoods in the context of supercompilation of functional programs. We
will return to the relation of neighbourhoods to characteristic trees in Sec-
tion 6.4.4.)

When, for the given program, query and unfolding rule, the method of
Section 5.3 generates a finite number of different characteristic trees, its
global control regime guarantees termination and correctness of the spe-
cialised program as well as “optimal” polyvariance: For every predicate,
exactly one specialised version is produced for each of its different associ-
ated characteristic trees. Now, Algorithm 5.3.3 of the previous chapter, as
well as all earlier approaches based on characteristic trees ([100, 97, 172]),
achieves the mentioned finiteness condition at the cost of imposing an ad
hoc (typically very large) depth bound on characteristic trees. However,
for a fairly large class of realistic programs (and unfolding rules), the num-
ber of different characteristic trees generated, is infinite. In those cases,
the underlying depth bound will have to ensure termination, meanwhile
propagating its ugly, ad hoc nature into the resulting specialised program.

We illustrate this problem through some examples, setting out with a

95

96 CHAPTER 6. REMOVING DEPTH BOUNDS

slightly artificial, but very simple one.

Example 6.1.1 The following is the well known reverse with accumulating
parameter where a list type check on the accumulator has been added.

(1) rev([],Acc,Acc)←
(2) rev([H |T],Acc,Res)← ls(Acc), rev(T , [H |Acc],Res)
(3) ls([])←
(4) ls([H |T])← ls(T)

As can be noticed in Figure 6.1, (determinate [100, 97, 172] and well-
founded [37, 200, 199], among others) unfolding produces an infinite number
of different characteristic atoms, all with a different characteristic tree. Im-
posing a depth bound of say 100, we obtain termination, but 100 different
characteristic trees (and instantiations of the accumulator) arise and the
algorithm produces 100 different versions of rev : one for each characteristic
tree. The specialised program thus looks like:

(1’) rev([], [], [])←
(2’) rev([H |T], [],Res)← rev2 (T , [H],Res)
(3’) rev2 ([], [A], [A])←
(4’) rev2 ([H |T], [A],Res)← rev3 (T , [H ,A],Res)
...
(197’) rev99 ([], [A1 , . . . ,A98], [A1 , . . . ,A98])←
(198’) rev99 ([H |T], [A1 , . . . ,A98],Res)←

rev100 (T , [H ,A1 , . . . ,A98],Res)
(199’) rev100 ([], [A1 , . . . ,A99 |AT], [A1 , . . . ,A99 |AT]) ←
(200’) rev100 ([H |T], [A1 , . . . ,A99 |AT],Res)←

ls(AT), rev100 (T , [H ,A1 , . . . ,A99 |AT],Res)
(201’) ls([])←
(202’) ls([H |T])← ls(T)

This program is certainly far from optimal and clearly exhibits the ad hoc
nature of the depth bound.

Situations like the above typically arise when an accumulating parame-
ter influences the computation, because then the growing of the accumula-
tor causes a corresponding growing of the characteristic trees. To be fair, it
must be admitted that with most simple programs, this is not the case. For
instance, in the standard reverse with accumulating parameter, the accu-
mulator is only copied in the end, but never influences the computation. As
illustrated by Example 6.1.1 above, this state of affairs will often already
be changed when one adds type checking in the style of [101] to even the
simplest logic programs.

Among larger and more sophisticated programs, cases like the above
become more and more frequent, even in the absence of type checking. For

6.1. THE DEPTH BOUND PROBLEM 97

@
@R

�
�	

?

(1)

2

(2)

← rev(L, [],R)

← ls([]), rev(T , [H],R)

← rev(T , [H],R)

(3)

@
@R

�
�	

?

?

(1)

2

(2)

← rev(T , [H],R)

← ls([H]), rev(T ′, [H ′,H],R)

← rev(T ′, [H ′,H],R)

(3)

← ls([]), rev(T ′, [H ′,H],R)

(4)

@
@R

�
�	

?

?

?

In general:

(1)

2

(2)

(4)

← rev(T ,

n︷︸︸︷
[...] ,R)

← ls([...]), rev(T ′, [H ′, ...],R)

← rev(T ′, [H ′, ...],R)

(3)

← ls([]), rev(T ′, [H ′, ...],R)

(4)

...

 n

Figure 6.1: SLD-trees for Example 6.1.1

instance, in an explicit unification algorithm, one accumulating parameter is
the substitution built so far. It heavily influences the computation because
new bindings have to be added and checked for compatibility with the
current substitution. Another example is the “mixed” meta-interpreter of
[122, 173] (part of it is depicted in Figure 6.2; see also Chapter 8, notably
Section 8.4.2) for the ground representation in which the goals are “lifted”
to the non-ground representation for resolution. To perform the lifting, an
accumulating parameter is used to keep track of the variables that have
already been encountered. This accumulator influences the computation:
Upon encountering a new variable, the program inspects the accumulator.

Example 6.1.2 Let A = l mng(Lg ,Ln, [sub(N ,X)],S) and P be the pro-
gram of Figure 6.2 in which the predicate l mng transforms a list of ground
terms into a list of non-ground terms. As can be seen in Figure 6.3, unfold-
ing A (e.g. using well-founded measures), the atom

l mng(Tg ,Tn, [sub(N ,X), sub(J ,Hn)],S)

is added at the global control level (this situation arose in an actual experi-
ment). Notice that the third argument has grown, i.e. we have an accumu-

98 CHAPTER 6. REMOVING DEPTH BOUNDS

Program:
(1) make non ground(GrTerm,NgTerm)←

mng(GrTerm,NgTerm, [],Sub)

(2) mng(var(N),X , [], [sub(N ,X)])←
(3) mng(var(N),X , [sub(N ,X)|T], [sub(N ,X)|T])←
(4) mng(var(N),X , [sub(M ,Y)|T], [sub(M ,Y)|T1])←

not(N = M), mng(var(N),X ,T ,T1)

(5) mng(struct(F ,GrArgs), struct(F ,NgArgs), InSub,OutSub)←
l mng(GrArgs,NgArgs, InSub,OutSub)

(6) l mng([], [],Sub,Sub)←
(7) l mng([GrH |GrT], [NgH |NgT], InSub,OutSub)←

mng(GrH ,NgH , InSub, InSub1),

l mng(GrT ,NgT , InSub1 ,OutSub)

Example query:
← make non ground(struct(f , [var(1), var(2), var(1)]),F)

; c.a.s. {F/struct(f , [Z ,V ,Z])}

Figure 6.2: Lifting the ground representation

lator. When in turn unfolding l mng(Tg ,Tn, [sub(N ,X), sub(J ,Hn)],S),
we will obtain a deeper characteristic tree (because mng traverses the third
argument and thus needs one more step to reach the end) with

l mng(Tg ′,Tn ′, [sub(N ,X), sub(J ,Hn), sub(J ′,Hn ′)],S)

as one of its leaves. An infinite sequence of ever growing characteristic trees
results and again, as in Example 6.1.1, we obtain non-termination without
a depth bound, and very unsatisfactory ad hoc specialisations with it.

Summarising, computations influenced by one or more growing data
structures are by no means rare and will, very often, lead to ad hoc be-
haviour of partial deduction, where the global control is founded on char-
acteristic trees with a depth bound. In the next section, we show how this
annoying depth bound can be removed without endangering termination.

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 99

HHHHj

�����

�����

?

H
HHHj

?

(6) (7)

2 ← mng(Hg, Hn, [sub(N , X)], S1), l mng(Tg, Tn, S1 , S)

(3) (5)
(4)

← l mng(Lg, Ln,

accumulator︷ ︸︸ ︷
[sub(N, X)], S)

← l mng(Ag, An, [sub(N , X)], S1),
l mng(Tg, Tn, S1 , S)

← l mng(Tg, Tn, [sub(N , X)], S)

(2)

← not(J = N), mng(var(J), Hn, [], T1), l mng(Tg, Tn, [sub(N , X)|T1], S)

← not(J = N), l mng(Tg, Tn, [sub(N, X), sub(J, Hn)]︸ ︷︷ ︸
accumulator

, S)

Figure 6.3: Accumulator growth in Example 6.1.2

6.2 Partial deduction using global trees

6.2.1 Introduction

A general framework for global control, not relying on any depth bounds, is
proposed in [201]. Marked trees (m-trees) are introduced to register descen-
dency relationships among atoms at the global level. These trees are sub-
divided into classes of nodes and associated measure functions map nodes
to well-founded sets. The overall tree is then kept finite through ensuring
monotonicity of the measure functions and termination of the algorithm
follows, provided the abstraction operator is similarly well-founded. It is to
this framework that we now turn for inspiration on how to solve the depth
bound problem uncovered for characteristic trees in Section 6.1.

First, we have chosen to use the term “global tree” rather than “marked
tree” in the present chapter, because it better indicates its functionality.
Moreover, global trees rely on a well-quasi-order (or a well-quasi relation)
between nodes, rather than a well-founded one, to ensure their finiteness.
Apart from that, in essence, their structure is similar: They register which
atoms derive from which at the global control level. The initial part of
such a tree, showing the descendency relationship between the atom in the
root and those in the dangling leaves of the SLDNF-tree in Figure 6.3, is
depicted in Figure 6.4.1

1Observe that the global tree in Figure 6.3 also contains two nodes which are variants
of their parent node. Usually, atoms which are variants of one of their ancestor nodes, will

100 CHAPTER 6. REMOVING DEPTH BOUNDS

��
����

�
�

�
�

��/

S
S

S
S

SSw

HH
HHHj

l mng(Tg, Tn, [sub(N , X), sub(J , Hn)], S) l mng(Ag, An, [sub(N , X)], S1)

l mng(Lg, Ln, [sub(N , X)], S)

l mng(Tg, Tn, S1 , S)l mng(Tg, Tn, [sub(N , X)], S)

Figure 6.4: Initial section of a global tree for Example 6.1.2 and the un-
folding of Figure 6.3

Now, the basic idea will be to have just a single class covering the whole
global tree structure and to watch over the evolution of characteristic trees
associated to atoms along its branches. Obviously, just measuring the depth
of characteristic trees would be far too crude: Global branches would be
cut off prematurely and entirely unrelated atoms could be mopped together
through generalisation, resulting in unacceptable specialisation losses. No,
as can be seen in Figure 6.1, we need a more refined measure which would
somehow spot when a characteristic tree (piecemeal) “contains” character-
istic trees appearing earlier in the same branch of the global tree. If such
a situation arises — as it indeed does in Example 6.1.1 — it seems reason-
able to stop expanding the global tree, generalise the offending atoms and
produce a specialised procedure for the generalisation instead.

However, a closer look at the following variation of Example 6.1.2 shows
that also this approach would sometimes overgeneralise and consequently
fall short of providing sufficiently detailed polyvariance.

Example 6.2.1 Reconsider the program in Figure 6.2, and suppose that
determinate unfolding is used for the local control.
The atom A = mng(G , struct(cl , [struct(f , [X ,Y])|B]), [],S) will now be
the starting point for partial deduction (also this situation arose in an actual
experiment). When unfolding A (see Figure 6.5), we obtain an SLD-tree
containing the atom mng(H , struct(f , [X ,Y]), [],S1) in one of its leaves. If
we subsequently determinately unfold the latter atom, we obtain a tree that
is “larger” than its predecessor, also in the more refined sense. Potential
non-termination would therefore be detected and a generalisation operator
executed. However, the atoms in the leaves of the second tree are more
general than those already met, and simply continuing partial deduction

not be explicitly added to the global tree, as they do not give rise to further specialisation.

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 101

without generalisation will lead to natural termination without any depth
bound intervention.

�
�	

@
@R

?

← l mng(A, [struct(f , [X , Y])|B]), [], S)2

← mng(H , struct(f , [X , Y]), [], S1)︸ ︷︷ ︸, l mng(T , B, S1 , S)

(2) (5)

(7)

← mng(G, struct(cl, [struct(f , [X , Y])|B]), [], S)

�
�	

@
@R

?

?

?

2

(2) (5)

(7)

← mng(H , X , [], S2), l mng(T , [Y], S2 , S1)

← l mng(A, [X , Y], [], S1)

←
︷ ︸︸ ︷
mng(H , struct(f , [X , Y]), [], S1)

(7)

← mng(H , X , [], S2), mng(H ′, Y , S2 , S3), l mng(T ′, [], S3 , S1)

← mng(H , X , [], S2), mng(H ′, Y , S2 , S1)

(6)

Figure 6.5: SLD-trees for Example 6.2.1

Example 6.2.1 demonstrates that only measuring growth of characteris-
tic trees, even in a refined way, does not always lead to satisfactory special-
isation. In fact, whenever the unfolding rule does not unfold “as deeply” as
would be possible using a refined termination relation (for whatever reason,
e.g. efficiency of the specialised program or because the unfolding rule is not
refined enough), then a growing characteristic tree might simply be caused
by splitting the “maximally deep tree” (i.e. the one constructed using a
refined termination relation) in such a way that the second part “contains”
the first part. Indeed, in Example 6.2.1, an unfolding rule based on well-
founded measures could have continued unfolding more deeply for the first
atom, thus avoiding the fake growing problem in this case.

Luckily, the same example also suggests a solution to this problem:
Rather than measuring and comparing characteristic trees, we will scru-
tinise entire characteristic atoms, comparing both the syntactic content of
the ordinary atoms they contain and the associated characteristic trees. Ac-

102 CHAPTER 6. REMOVING DEPTH BOUNDS

cordingly, the global tree nodes will not be labelled by plain atoms as in
[201], but by entire characteristic atoms. A growing of a characteristic tree
not coupled with a growing of the syntactic structure then indicates a fake
growing caused by a conservative unfolding rule.

The rest of this section, then, contains the formal elaboration of this new
approach. In Subsection 6.2.2, we first extend the familiar generalisation
notion defined on atoms to characteristic atoms, and subsequently proceed
to introduce the precise comparison operation to be used on the latter.
Some important properties connecting both operations are also stated and
proved. Next, Subsection 6.2.3 introduces global trees and a characterisa-
tion of their finiteness. Finally, our refined algorithm for partial deduction
is presented and proved correct and terminating in Subsection 6.2.4.

6.2.2 More on characteristic atoms

Generalising characteristic atoms

In this subsection we extend the notions of variants, instances and gener-
alisations, familiar for ordinary atoms, to characteristic trees and atoms.

For ordinary atoms, A1 � A2 will denote that A1 is more general than
A2. We will now define a similar notion for characteristic atoms along with
an operator to compute the most specific generalisation. In a first attempt
one might use the concretisation function to that end, i.e. one could stip-
ulate that (A, τA) is more general than (B, τB) iff γP (A, τA) ⊇ γP (B, τB).
The problem with this definition, from a practical point of view, is that
this notion is undecidable in general and a most specific generalisation is
uncomputable. For instance, γP (A, τ) = γP (A, τ ∪ {δ}) holds iff for every
instance of A, the last goal associated with δ fails finitely. Deciding this
is equivalent to the halting problem. We will therefore present a safe but
computable approximation of the above notion, for which a most specific
generalisation can be easily computed and which has some nice properties
in the context of a partial deduction algorithm (see e.g. Definition 6.2.27
below).

We first define an ordering on characteristic trees. In that context, the
following notation will prove to be useful:

prefix (τ) = {δ | ∃γ such that δγ ∈ τ}.

Definition 6.2.2 (�τ) Let τ1, τ2 be characteristic trees. We say that τ1 is
more general than τ2, and denote this by τ1 �τ τ2, iff

1. δ ∈ τ1 ⇒ δ ∈ prefix (τ2) and

2. δ′ ∈ τ2 ⇒ ∃δ ∈ prefix ({δ′}) such that δ ∈ τ1.

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 103

Note that �τ is a quasi order on the set of characteristic trees and that
τ1 �τ τ2 is equivalent to saying that τ2 can be obtained from τ1 by attaching
sub-trees to the leaves of τ1. Remember that, given a quasi order �, we
also use the associated equivalence relation ≡ and strict partial order ≺ as
defined in Section 5.3.

Example 6.2.3 Given τ1 = {〈1 ◦ 3〉}, τ2 = {〈1 ◦ 3, 2 ◦ 4〉} and τ3 =
{〈1 ◦ 3〉, 〈1 ◦ 4〉} we have that τ1 �τ τ2 and even τ1 ≺τ τ2 but not that
τ1 �τ τ3 nor τ2 �τ τ3. We also have that {〈〉} ≺τ τ1 but not that ∅ �τ τ1.
In fact, {〈〉} �τ τ holds for any τ 6= ∅, while ∅ �τ τ only holds for τ = ∅.
Also τ �τ {〈〉} only holds for τ = {〈〉} and τ �τ ∅ only holds for τ = ∅.

The next two lemmas respectively establish a form of anti-symmetry as
well as transitivity of the order relation on characteristic trees.

Lemma 6.2.4 Let τ1, τ2 be two characteristic trees. Then τ1 ≡τ τ2 iff
τ1 = τ2.

Proof The if part is obvious because δ and δ′ can be taken as prefixes of
themselves for the two points of Definition 6.2.2.

For the only-if part, let us suppose that τ1 �τ τ2 and τ2 �τ τ1 but
τ1 6= τ2. This means that there must be a characteristic path δ in τ1 which
is not in τ2 (otherwise we reverse the roles of τ1 and τ2). We know however,
by point 1 of Definition 6.2.2, that an extension δx = δγ of δ must be in
τ2, as well as, by point 2 of the same definition, that a prefix δs of δ must
be in τ2. Therefore τ2 contains the paths δx and δs, where δx = δsγ

′γ and
δx 6= δs (because δ 6∈ τ2). But this is impossible by Lemma 5.2.10. 2

Lemma 6.2.5 Let τ1, τ2 and τ3 be characteristic trees. If τ1 �τ τ2 and
τ2 �τ τ3 then τ1 �τ τ3.

Proof Immediate from Definition 6.2.2 because a prefix of a prefix remains
a prefix. 2

We now present an algorithm to generalise two characteristic trees by
computing the common intial subtree. We will later prove that this algo-
rithm calculates the most specific generalisation.

The following notations will be useful in formalising the algorithm.

Definition 6.2.6 Let τ be a characteristic tree and δ a characteristic path.
We then define the notations

τ ↓ δ = {γ | δγ ∈ τ}
and

104 CHAPTER 6. REMOVING DEPTH BOUNDS

top(τ) = {l ◦m | 〈l ◦m〉 ∈ prefix (τ)}.

Note that, for a non-empty characteristic tree τ , top(τ) = ∅ ⇔ τ = {〈〉}.

Algorithm 6.2.7 (msg of characteristic trees)

Input
two non-empty characteristic trees τA and τB

Output
the msg τ of τA and τB

Initialisation
i := 0; τ0 := {〈〉};

while ∃δ ∈ τi such that top(τA ↓ δ) = top(τB ↓ δ) 6= ∅ do
τi+1 := (τi \ {δ})∪ {δ〈l ◦m〉 | l ◦m ∈ top(τA ↓ δ)};
i := i + 1;

end while
return τ = τi

Example 6.2.8 Take the characteristic trees τA = {〈1 ◦ 1, 1 ◦ 2〉} and
τB = {〈1 ◦ 1, 1 ◦ 2〉, 〈1 ◦ 1, 1 ◦ 3〉}. Then Algorithm 6.2.7 proceeds as
follows:
• τ0 = {〈〉},
• τ1 = {〈1 ◦ 1〉} as for 〈〉 ∈ τ0 we have top(τA ↓ 〈〉) = top(τB ↓ 〈〉) =
{1 ◦ 1}.
• τ = τ1 as top(τA ↓ 〈1 ◦ 1 〉) = {1 ◦ 2} and top(τB ↓ 〈1 ◦ 1 〉) =
{1 ◦ 2, 1 ◦ 3} and the while loop terminates.

We first establish that Algorithm 6.2.7 indeed produces a proper char-
acteristic tree as output.

Lemma 6.2.9 Any τi arising during the execution of Algorithm 6.2.7 sat-
isfies the property that δ ∈ τi ⇒ δ ∈ prefix (τA) ∩ prefix (τB).

Proof We prove this by induction on i.
Induction Hypothesis: For i ≤ k ≤ max (where max is the maximum
value that i takes during the execution of Algorithm 6.2.7) we have that
δ ∈ τi ⇒ δ ∈ prefix (τA) ∩ prefix (τB).
Base Case: For i = 0 we have τi = {〈〉} and trivially 〈〉 ∈ prefix (τA) ∩
prefix (τB) because τA 6= ∅ and τB 6= ∅.
Induction Step: Let i = k+1 ≤ max. For δ ∈ τk+1 we either have δ ∈ τk,
and we can apply the induction hypothesis to prove the induction step, or
we have δ = δ′〈l ◦m〉 with l ◦m ∈ top(τA ↓ δ′)} and l ◦m ∈ top(τB ↓ δ′)}.
By definition this implies that δ′〈l ◦m〉γ ∈ τA for some γ, i.e. δ′〈l ◦m〉 ∈

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 105

prefix (τA). The same holds for τB , i.e. δ′〈l ◦m〉 ∈ prefix (τB), and we have
proven the induction step. 2

Lemma 6.2.10 Algorithm 6.2.7 terminates and produces as output a char-
acteristic tree τ such that if chtree(G ,P ,U) = τA (respectively τB), then
for some U ′, chtree(G ,P ,U ′) = τ . The same holds for any τi arising during
the execution of Algorithm 6.2.7.

Proof Termination of Algorithm 6.2.7 is obvious as τA and τB are finite,
τ cannot grow larger (e.g. in terms of the sum of the lengths of the char-
acteristic paths) than τA or τB and τi+1 is strictly larger than τi. For the
remaining part of the lemma we proceed by induction. Note that Algo-
rithm 6.2.7 is symmetrical wrt τA and τB and it suffices to show the result
for τA.
Induction Hypothesis: For i ≤ k we have that if chtree(G ,P ,U) = τA
then for some U ′ chtree(G ,P ,U ′) = τi .
Base Case: τ0 = {〈〉} is a characteristic tree of every goal and the prop-
erty trivially holds.
Induction Step: Let i = k + 1 and let τk+1 = (τk \ {δ})∪ {δ〈l1 ◦
m1〉, . . . , δ〈ln ◦ mn〉} where top(τA ↓ δ)} = {l1 ◦ m1, . . . , ln ◦ mn}. By
Lemma 6.2.9 we know that δ〈lj ◦mj〉 ∈ prefix (τA). Because τA is a char-
acteristic tree we therefore know that l1 = . . . = ln = l. By the induction
hypothesis we know that for some U ′ chtree(G ,P ,U ′) = τk . Let G′ be
the goal of the SLDNF-derivation of P ∪ {G} whose characteristic path
is δ (which must exist because chtree(G ,P ,U ′) = τk) and let T be the
SLDNF-tree for P ∪ {G} whose characteristic tree is τk. If we expand
T by selecting the literal at position l in G we obtain a SLDNF-tree T ′

whose characteristic tree is τ ′ = (τk \ {δ})∪ {δ〈l ◦ m1〉, . . . , δ〈l ◦ mn〉}∪
{δ〈l ◦m′1〉, . . . , δ〈l ◦m′q〉} (because δ〈lj ◦mj〉 ∈ prefix (τA) and because ad-
ditional clauses might match). If a negative literal is selected we have that
n = 1, q = 0, τk+1 = τ ′ and the induction step holds. If a positive literal is
selected then we can further unfold the goals associated with derivations of
P ∪{G} whose characteristic paths are δ〈l◦m′j〉 and make them fail finitely
(because δ〈l ◦m′j〉 6∈ τA). In both cases we can come up with an unfolding
rule U ′′ such that chtree(G ,P ,U ′′) = τk+1 2

Proposition 6.2.11 Let τA, τB be two non-empty characteristic trees.
Then the output τ of Algorithm 6.2.7 is the (unique) most specific gen-
eralisation of τA and τB .

Proof We first prove that each τi arising during the execution of Algo-
rithm 6.2.7 is a generalisation of both τA and τB . For this we have to show

106 CHAPTER 6. REMOVING DEPTH BOUNDS

that the two points of Definition 6.2.2 are satisfied; the fact that τ and
all τi are proper characteristic trees (a fact required by Definition 6.2.2) is
already established in Lemma 6.2.10.

1. We have to show that δ ∈ τi ⇒ δ ∈ prefix (τA) ∩ prefix (τB). But this
is already proven in Lemma 6.2.9.

2. We have to show that δ′ ∈ τA ∪ τB ⇒ ∃δ ∈ prefix ({δ′}) such that
δ ∈ τi. Again we prove this by induction on i.
Induction Hypothesis: For i ≤ k ≤ max (where max is the maxi-
mum value that i takes during the execution of Algorithm 6.2.7) we
have that δ′ ∈ τA ∪ τB ⇒ ∃δ ∈ prefix ({δ′}) such that δ ∈ τi.
Base Case: For all δ′ we have that 〈〉 ∈ prefix ({δ′}) and 〈〉 ∈ τ0.
Induction Step: Let i = k + 1 ≤ max and take a δ′ ∈ τA ∪ τB . Let
δ ∈ prefix ({δ′}) be such that δ ∈ τk, which must exist by the induc-
tion hypothesis. Either we have that δ ∈ τk+1, and the induction step
holds for δ, or δ〈l ◦m〉 ∈ τk+1 for every l ◦m ∈ top(τA ↓ δ) where also
top(τA ↓ δ) = top(τB ↓ δ) 6= ∅. Let γ be such that δ′ = δγ (which
must exist because δ ∈ prefix ({δ′})). By Lemma 5.2.10 and because
top(τA ↓ δ) top(τB ↓ δ) 6= ∅ we know that γ cannot be empty and
thus γ = 〈l ◦m〉γ′ where l ◦m ∈ top(τA ↓ δ). Hence, we have found
a prefix δ〈l ◦m〉 of δ′ such that δ〈l ◦m〉 ∈ τk+1.

We have thus proven that every τi, and thus also the output τ , is a gener-
alisation of both τA and τB . We will now prove that τ is indeed the most
specific generalisation. For this we will prove that, whenever τ∗ �τ τA and
τ∗ �τ τB then τ∗ �τ τ . This is sufficient to show that τ is a most specific
generalisation; uniqueness then follows from Lemma 6.2.4. To establish
τ∗ �τ τ we now show that the two points of Definition 6.2.2 are satisfied.

1. Let δ ∈ τ∗. We have to prove that δ ∈ prefix (τ). As τ∗ �τ τA and
τ∗ �τ τB , we have by Definition 6.2.2 that δ ∈ prefix (τA)∩prefix (τB).
In order to prove that δ ∈ prefix (τ) it is sufficient to prove that if
δ = δ′〈l ◦m〉δ′′ then top(τA ↓ δ′) = top(τB ↓ δ′) 6= ∅. Indeed, once
we have proven this statement, we can proceed by induction (starting
out with δ′ = 〈〉) to show that for some i we have δ ∈ τi (because
top(τA ↓ δ′) = top(τB ↓ δ′) 6= ∅ and δ ∈ prefix (τA)∩prefix (τB) ensure
that if δ′ ∈ τj then δ′〈l ◦m〉 ∈ τj+k for some k > 0). From then on,
the algorithm will either leave δ unchanged or extend it, and thus we
will have established that δ ∈ prefix (τ).

(a) Let us first assume that top(τA ↓ δ′) = top(τB ↓ δ′) = ∅ and
show that it leads to a contradiction. By this assumption we

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 107

know that no extension of δ′ can be in τA or τB , which is in
contradiction with δ = δ′〈l ◦m〉δ′′ ∈ prefix (τA) ∩ prefix (τB).

(b) Now let us assume that top(τA ↓ δ′) 6= top(τB ↓ δ′). This means
that, for some l ◦ m′, δ′〈l ◦ m′〉 ∈ prefix (τA) and δ′〈l ◦ m′〉 6∈
prefix (τB) (otherwise we reverse the roles of τA and τB). We
can thus deduce that, for any γ (even γ = 〈〉), δ′〈l ◦m′〉γ 6∈ τ∗

(because otherwise, by point 1 of Definition 6.2.2, τ∗ 6�τ τB).
Thus, in order to satisfy point 2 of Definition 6.2.2 for τ∗ �τ τA,
we know that some prefix of δ′ must be in τ∗ (because δ′〈l ◦
m′〉γ′ ∈ τA for some γ′). But this is impossible by Lemma 6.2.4,
because δ = δ′〈l ◦m〉δ′′ ∈ τ∗.

So, assuming either top(τA ↓ δ′) = top(τB ↓ δ′) = ∅ or top(τA ↓ δ′) 6=
top(τB ↓ δ′) leads to a contradiction and we have established the
desired result.

2. Let δ′ ∈ τ . We have to prove point 2 of Definition 6.2.2 (for τ∗ �τ

τ), namely that ∃δ′′ ∈ prefix ({δ′}) such that δ′′ ∈ τ∗. We have
already proven that τ is a generalisation of both τA and τB , and thus
δ′ ∈ prefix (τA)∩ prefix (τB). We also know, by the while-condition in
Algorithm 6.2.7, that either

a) top(τA ↓ δ′) = top(τB ↓ δ′) = ∅ or
b) top(τA ↓ δ′) 6= top(τB ↓ δ′).

Let us examine each of these cases.

(a) In that case we have δ′ ∈ τA ∩ τB which implies, by point 2
of Definition 6.2.2, that ∃δ′′ ∈ prefix ({δ′}) such that δ′′ ∈ τ∗

because τ∗ �τ τA and τ∗ �τ τB .
(b) In that case we can find δ′〈l◦m〉γA ∈ τA and l◦m 6∈ top(τB ↓ δ′)

(otherwise we reverse the roles of τA and τB). As τ∗ �τ τA, we
know by point 2 of Definition 6.2.2, that a prefix δ′′ of δ′〈l ◦
m〉γA is in τ∗. Finally, δ′′ must be a prefix of δ′ (otherwise
δ′′ = δ′〈l ◦m〉γ′A ∈ τ∗ and, as δ′〈l ◦m〉γ′A 6∈ prefix (τB) because
l ◦ m 6∈ top(τB ↓ δ′), we cannot have τ∗ �τ τB by point 1 of
Definition 6.2.2).

2

For τA 6= ∅ and τB 6= ∅ we denote by msg(τA, τB) the output of Algo-
rithm 6.2.7. If both τA = ∅ and τB = ∅ then ∅ is the unique most specific
generalisation and we therefore define msg(∅, ∅) = ∅. Only in case one of
the characteristic trees is empty while the other is not, do we leave the msg
undefined.

108 CHAPTER 6. REMOVING DEPTH BOUNDS

Example 6.2.12 Given τ1 = {〈1 ◦ 3〉}, τ2 = {〈1 ◦ 3, 2 ◦ 4〉}, τ3 = {〈1 ◦
3〉, 〈1 ◦ 4〉}, τ4 = {〈1 ◦ 3, 2 ◦ 4〉, 〈1 ◦ 3, 2 ◦ 5〉}, we have that msg(τ1 , τ2) =
τ1, msg(τ1 , τ3) = msg(τ2 , τ3) = {〈〉} and msg(τ2 , τ4) = τ1.

The above Lemma 6.2.10 and Proposition 6.2.11 can also be used to
prove an interesting property about the �τ relation.

Corollary 6.2.13 Let τ1 and τ2 be characteristic trees such that τ1 �τ τ2.
If chtree(G ,P ,U) = τ2 then for some U ′, chtree(G ,P ,U ′) = τ1 .

Proof First we have that Algorithm 6.2.7 will produce for τ1 and τ2 the
output τ = τ1 (because Algorithm 6.2.7 computes the most specific gen-
eralisation by Proposition 6.2.11). Hence we have the desired property by
Lemma 6.2.10. 2

Definition 6.2.14 (�ca) A characteristic atom (A1, τ1) is more general
than another characteristic atom (A2, τ2), denoted by (A1, τ1) �ca (A2, τ2),
iff A1 � A2 and τ1 �τ τ2. Also (A1, τ1) is said to be a variant of (A2, τ2)
iff (A1, τ1) ≡ca (A2, τ2).

The following proposition shows that the above definition safely approx-
imates the optimal but impractical “more general” definition based on the
set of concretisations.

Proposition 6.2.15 Let (A, τA), (B, τB) be two characteristic atoms. If
(A, τA) �ca (B, τB) then γP (A, τA) ⊇ γP (B, τB).

Proof Let C be a precise concretisation of (B, τB). By Definition 5.1.3,
there must be an unfolding rule U such that chtree(← C ,P ,U) = τB .
By Corollary 6.2.13 we can find an unfolding rule U ′, such that chtree(←
C ,P ,U ′) = τA. Furthermore, by Definition 6.2.14, B is an instance of A
and therefore C is also an instance of A. We can conclude that C is also a
precise concretisation of (A, τA). In other words, any precise concretisation
of (B, τB) is also a precise concretisation of (A, τA). The result for general
concretisations follows immediately from this by Definition 5.1.3. 2

The converse of the above proposition does of course not hold. Take
the member program from Example 4.2.5 and let A = member(a, [a]),
τ = {〈1 ◦ 1〉, 〈1 ◦ 2〉} and τ ′ = {〈1 ◦ 1〉}. Then γP (A, τ) = γP (A, τ ′)
= {member(a, [a])} (because the resolvent← member(a, []) associated with
〈1◦2〉 fails finitely) but neither (A, τ) �ca (A, τ ′) nor (A, τ ′) �ca (A, τ) hold.

The following is an immediate corollary of Proposition 6.2.15.

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 109

Corollary 6.2.16 Let P be a program and CA, CB be two characteristic
atoms such that CA �ca CB. If CB is a P -characteristic atom then so is
CA.

Finally, we extend the notion of most specific generalisation (msg) to
characteristic atoms:

Definition 6.2.17 Let (A1, τ1), (A2, τ2) be two characteristic atoms such
that msg(τ1 , τ2) is defined.
Then msg((A1 , τ1), (A2 , τ2)) = (msg(A1 ,A2),msg(τ1 , τ2)).

Note that the above msg for characteristic atoms is indeed a most specific
generalisation (because msg(A1 ,A2) and msg(τ1 , τ2) are most specific gen-
eralisations for the atom and characteristic tree parts respectively) and is
still unique up to variable renaming. Its further extension to sets of char-
acteristic atoms (rather than just pairs) is straightforward, and will not be
included explicitly.

Well-quasi ordering of characteristic atoms.

We now proceed to introduce another order relation on characteristic atoms.
It will be instrumental in guaranteeing termination of the refined partial
deduction method to be presented.

We recall Definition 3.3.9 from Chapter 3:
Definition 3.3.9 (wqo) A poset V,≤V is called well-quasi-ordered (wqo)
iff for any infinite sequence of elements e1, e2, . . . in V there are i < j such
that ei ≤V ej . We also say that ≤V is a well-quasi order (wqo) on V .

An interesting wqo is the homeomorphic embedding relation �. It has
been adapted from [81, 82], where it is used in the context of term rewrit-
ing systems, for use in supercompilation in [258]. Its usefulness as a stop
criterion for partial evaluation is also discussed and advocated in [190].
Some complexity results can be found in [264] and [117] (also summarised
in [190]).

Recall that expressions are formulated using the alphabet AP which we
implicitly assume underlying the programs and queries under considera-
tion. Remember that it may contain symbols occurring in no program and
query but that it contains only finitely many constant, function and pred-
icate symbols (but always infinitely many variables). The latter property
is of crucial importance for some of the propositions and proofs below. In
Section 6.4.1 we will present a way to lift this restriction.

Definition 6.2.18 (�) The homeomorphic embedding relation � on ex-
pressions is defined inductively as follows:

110 CHAPTER 6. REMOVING DEPTH BOUNDS

1. X � Y for all variables X, Y
2. s � f(t1, . . . , tn) if s � ti for some i
3. f(s1, . . . , sn) � f(t1, . . . , tn) if ∀i ∈ {1, . . . , n} : si � ti.

Example 6.2.19 We have that: p(a) � p(f(a)), X � X, p(X) � p(f(Y)),
p(X, X) � p(X, Y) and p(X, Y) � p(X, X).

Proposition 6.2.20 The relation � is a wqo on the set of expressions over
a finite alphabet.

Proof (Proofs similar to this one are standard in the literature. We include
it for completeness.) We first need the following concept from [82]. Let ≤
be a relation on a set S of functors (of arity ≥ 0). Then the embedding
extension of ≤ is a relation ≤emb on terms, constructed (only) from the
functors in S, which is inductively defined as follows:

1. s ≤emb f(t1, . . . , tn) if s ≤emb ti for some i

2. f(s1, . . . , sn) ≤emb g(t1, . . . , tn) if f ≤ g and ∀i ∈ {1, . . . , n} : si ≤emb

ti.

The definition in [82] actually also allows functors of variable arity, but we
will not need this in the following. We define the relation ≤ on the set
S = V ∪ F of symbols, containing the (infinite) set of variables V and the
(finite) set of functors and predicates F , as the least relation satisfying:

• x ≤ y if x ∈ V ∧ y ∈ V

• f ≤ f if f ∈ F

This relation is a wqo on S (because F is finite) and hence by Higman-
Kruskal’s theorem ([121, 155], see also [82]), its embedding extension to
terms, ≤emb, which is by definition identical to �, is a wqo on the set of
expressions. 2

The intuition behind Definition 6.2.18 is that when some structure re-
appears within a larger one, it is homeomorphically embedded by the latter.
As is argued in [190] and [258], this provides a good starting point for
detecting growing structures created by possibly non-terminating processes.

However, as can be observed in Example 6.2.19, the homeomorphic
embedding relation � as defined in Definition 6.2.18 is rather crude wrt
variables. In fact, all variables are treated as if they were the same variable,
a practice which is clearly undesirable in a logic programming context.
Intuitively, in the above example, p(X, Y) � p(X, X) is acceptable, while
p(X, X) � p(X, Y) is not. Indeed p(X, X) can be seen as standing for

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 111

something like and(eq(X, Y), p(X, Y)), which clearly embeds p(X, Y), but
the reverse does not hold.

To remedy the problem (as well as another one related to the msg which
we discuss later), we refine the above introduced homeomorphic embedding
as follows:

Definition 6.2.21 (�∗) Let A,B be expressions. Then B (strictly home-
omorphically) embeds A, written as A �∗ B, iff A � B and A is not a strict
instance of B.

Example 6.2.22 We now still have that p(X, Y) �∗ p(X, X) but not
p(X, X) �∗ p(X, Y). Note that still X �∗ Y and X �∗ X.

An alternate approach might be based on numbering variables using
some mapping #(.) and then stipulating that X �# Y iff #(X) ≤ #(Y).
For instance in [190] a de Bruijn numbering of the variables is proposed.
Such an approach, however, has a somewhat ad hoc flavor to it. Take for
instance the terms p(X, Y,X) and p(X, Y, Y). Neither term is an instance
of the other and we thus have p(X, Y,X) �∗ p(X, Y, Y) and p(X, Y, Y) �∗

p(X, Y,X). Depending on the particular numbering we will have either
p(X, Y,X) 6�#p(X, Y, Y) or p(X, Y, Y) 6�#p(X, Y,X), while there is no
apparent reason why one expression should be considered smaller than the
other.2

Theorem 6.2.23 The relation �∗ is a wqo on the set of expressions over
a finite alphabet.

The following lemmas will enable us to prove Theorem 6.2.23.

Lemma 6.2.24 (wqo from wfo) Let <V be a well-founded order on V .
Then �V , defined by v1 �V v2 iff v1 6>V v2, is a wqo on V .

Proof Suppose that there is an infinite sequence v1, v2, . . . of elements
of V such that, for all i < j, vi 6�V vj . By definition this means that,
for all i < j, vi >V vj . In particular this means that we have an infinite
sequence with vi >V vi+1, for all i ≥ 1. We thus have a contradiction with
Definition 3.3.6 of a well-founded order and �V must be a wqo on V . 2

Lemma 6.2.25 Let �V be a wqo on V and let σ = v1, v2, . . . be an infinite
sequence of elements of V .

2[190] also proposes to consider all possible numberings, but (leading to n! complexity,
where n is the number of variables in the terms to be compared). It is unclear how such
a relation compares to �∗ of Definition 6.2.21.

112 CHAPTER 6. REMOVING DEPTH BOUNDS

1. There exists an i > 0 such that the set {vj | i < j ∧ vi �V vj} is
infinite.

2. There exists an infinite subsequence σ∗ = v∗1 , v∗2 , . . . of σ such that for
all i < j we have v∗i �V v∗j .

Proof The proof will make use of the axiom of choice at several places.
Given a sequence ρ, we denote by ρv′�V ◦ the subsequence of ρ consisting
of all elements v′′ which satisfy v′ �V v′′. Similarly, we denote by ρv′ 6�V ◦
the subsequence of ρ consisting of all elements v′′ which satisfy v′ 6�V v′′.
Let us now prove point 1. Assume that such an i does not exist. We
can then construct the following infinite sequence σ0, σ1, . . . of sequences
inductively as follows:
• σ0 = σ
• if σi = v′i.ρ

i then σi+1 = ρi
v′

i
6�V ◦

All σi are indeed properly defined because at each step only a finite num-
ber of elements are removed (by going from ρi to ρi

v′
i
6�V ◦; otherwise we

would have found an index i satisfying point 1). Now the infinite sequence
v′1, v

′
2, . . . has by construction the property that, for i < j, v′i 6�V v′j . Hence

�V cannot be a wqo on V and we have a contradiction.
We can now prove point 2. Let us construct σ∗ = v∗1 , v∗2 , . . . inductively as
follows:
• σ0 = σ
• if σi = r1, r2, . . . then v∗i+1 = rk and σi+1 = ρi

rk�V ◦ where k is the
first index satisfying the requirements of point 1 for the sequence σi

(i.e. {rj | k < j ∧ rk �V rj} is infinite) and where ρi = rk+1, rk+2,. . . .
By point 1 we know that each ρi

rk�V ◦ is infinite and σ∗ is thus an infinite
sequence which, by construction, satisfies v∗i �V v∗j for all i < j. 2

Lemma 6.2.26 (combination of wqo) Let �1
V and �2

V be wqo’s on V .
Then the quasi order �V defined by v1 �V v2 iff v1 �1

V v2 and v1 �2
V v2,

is also a wqo on V .

Proof Let σ be any infinite sequence of elements from V . We can apply
point 2 of Lemma 6.2.25 to obtain the infinite subsequence σ∗ = v∗1 , v∗2 , . . .
of σ such that for all i < j we have v∗i �1

V v∗j . Now, as �2
V is also a wqo

we know that, for some i < j, v∗i �2
V v∗j holds as well. Hence, for these

particular indices, v∗i �V v∗j and �V satisfies the requirements of a wqo on
V . 2

We can now actually prove Theorem 6.2.23.

Proof of Theorem 6.2.23. �∗ can be expressed as a combination of two

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 113

quasi orders on expressions: � and �NotStrictInst where A �NotStrictInst B
iff B 6≺ A (i.e. B is not strictly more general than A or equivalently A is
not a strict instance of B). By Lemma 5.3.6 we know that ≺ is a well-
founded order on expressions. Hence by Lemma 6.2.24 �NotStrictInst is a
wqo on expressions. By Proposition 6.2.20 we also have that � is a wqo
on expressions (given a finite underlying alphabet). Hence we can apply
Lemma 6.2.26 to deduce that �∗ is also a wqo on expressions over a finite
alphabet. 2

We now extend the embedding relation of Definition 6.2.21 to charac-
teristic atoms. Notice that the relation �τ is not a wqo on characteristic
trees, even in the context of a given fixed program P . Take for example
the infinite sequence of characteristic trees depicted in Figure 6.1. None of
these trees is an instance of any other tree.

One way to obtain a wqo is to first define a term representation of
characteristic trees and then apply the embedding relation �∗ to this term
representation.

Definition 6.2.27 (d.e) By d.e we denote a total mapping from character-
istic trees to terms (expressible in some finite alphabet) such that:
• τ1 ≺τ τ2 ⇒ dτ1e ≺ dτ2e (i.e. d.e is strictly monotonic) and
• dτ1e�∗ dτ2e ⇒ msg(τ1 , τ2) is defined.

The conditions of Definition 6.2.27 will be essential for the termination
of a partial deduction algorithm to be presented later.

In the following we show that such a mapping d.e actually exists.
Recall that τ ↓ δ = {γ | δγ ∈ τ} and prefix (τ) = {δ | ∃γ such that

δγ ∈ τ}. The following lemma will prove useful to establish the existence
of a mapping d.e.

Lemma 6.2.28 Let τ1 and τ2 be two characteristic trees and let δ ∈
prefix (τ1) be a characteristic path. If τ1 �τ τ2 then τ1 ↓ δ �τ τ2 ↓ δ.

Proof If δ′ ∈ τ1 ↓ δ then by definition δδ′ ∈ τ1. Therefore, by point 1 of
Definition 6.2.2, δδ′ ∈ prefix (τ2) because τ1 �τ τ2. Thus δ′ ∈ prefix (τ2 ↓ δ)
and point 1 of Definition 6.2.2 is verified for τ1 ↓ δ and τ2 ↓ δ.

Secondly, if δ′ ∈ τ2 ↓ δ then δδ′ ∈ τ2 and we have, by point 2 of
Definition 6.2.2, ∃δ̂ ∈ prefix ({δδ′}) such that δ̂ ∈ τ1. Now, because δ ∈
prefix (τ1) we know that δ̂ must have the form δ̂ = δγ (otherwise we arrive at
a contradiction with Lemma 5.2.10) where γ ∈ prefix ({δ′}). Thus γ ∈ τ1 ↓ δ
(because δγ ∈ τ1) and also point 2 of Definition 6.2.2 is verified for τ1 ↓ δ
and τ2 ↓ δ. 2

114 CHAPTER 6. REMOVING DEPTH BOUNDS

Proposition 6.2.29 A function d.e satisfying Definition 6.2.27 exists.

Proof The strict monotonicity condition of Definition 6.2.27 is slightly
tricky, but can be satisfied by representing leaves of the characteristic tree
by variables. First, recall that top(τ) = {l ◦m | 〈l ◦m〉 ∈ prefix (τ)}. Let
us now define the representation dτe of a non-empty characteristic tree τ
inductively as follows (using a binary functor m to represent clause matches
as well as the usual functors for representing lists):

• dτe = X where X is a fresh variable if top(τ) = ∅

• dτe = [m(m1, dτ ↓ 〈l ◦m1〉e), . . . , m(mk, dτ ↓ 〈l ◦mk〉e)] if top(τ) =
{l ◦m1, . . . , l ◦mk} and where m1 < . . . < mk.

For example, using the above definition, we have

d{〈1 ◦ 3〉}e = [m(3, X)]

and
d{〈1 ◦ 3, 2 ◦ 4〉}e = [m(3, [m(4, X)])].

Note that {〈1◦3〉} ≺τ {〈1◦3, 2◦4〉} and indeed d{〈1◦3〉}e ≺τ d{〈1◦3, 2◦4〉}e.
Also note that, because there are only finitely many clause numbers, these
terms can be expressed using a finite alphabet.3

Note that if τ1 ≺τ τ2 we immediately have by Definition 6.2.2 that
τ1 6= ∅ and τ2 6= ∅. It is therefore sufficient to prove strict monotonicity
for two non-empty characteristic trees τ1 ≺τ τ2. We will prove this by
induction on the depth of τ1, where the depth is the length of the longest
characteristic path in τ1. We also have to perform an auxiliary induction,
showing that dτ1e �τ dτ2e whenever τ1 �τ τ2.
Induction Hypothesis: For all characteristic trees τ1 of depth ≤ d we
have that dτ1e ≺τ dτ2e whenever τ1 ≺τ τ2 and dτ1e �τ dτ2e whenever
τ1 �τ τ2

Base Case: τ1 has a depth of 0, i.e. top(τ1) = ∅. This implies that dτ1e is
a fresh variable X. If we have τ1 ≺τ τ2 then top(τ2) 6= ∅ and dτ2e will be a
strict instance of X, i.e. dτ1e ≺ dτ2e. If we just have τ1 �τ τ2 we still have
dτ1e � dτ2e.
Induction Step: Let τ1 have depth d + 1. This implies that top(τ1) 6= ∅
and, because τ1 ≺τ τ2 or τ1 �τ τ2, we have by Definition 6.2.2 and
Lemma 5.2.10 that top(τ1) = top(τ2) (more precisely, by point 1 of Defi-
nition 6.2.2 we have top(τ1) ⊆ top(τ2) and by point 2 of Definition 6.2.2

3We can make d.e injective (i.e. one-to-one) by adding the numbers of the selected
literals. But because these numbers are not a priori bounded we then have to represent
them differently than the clause numbers, e.g. in the form of s(. . . (0) . . .), in order to
stay within a finite alphabet.

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 115

combined with Lemma 5.2.10 — the latter affirming that 〈〉 6∈ τ1 — we
get top(τ1) ⊇ top(τ2)). Let top(τ1) = {l ◦ m1, . . . , l ◦ mk}. Both dτ1e
and dτ2e will by definition have the same top-level term structure — they
might only differ in their respective subterms {dτ1 ↓ 〈l ◦mi〉e | 1 ≤ i ≤ k}
and {dτ2 ↓ 〈l ◦ mi〉e | 1 ≤ i ≤ k}. We can now proceed by induction.
First by Lemma 6.2.28 we have that τ1 ↓ 〈l ◦ mi〉 �τ τ2 ↓ 〈l ◦ mi〉. Fur-
thermore, in case τ1 ≺τ τ2, there must be at least one index j such that
τ1 ↓ 〈l ◦ mj〉 ≺τ τ2 ↓ 〈l ◦ mj〉, otherwise τ1 ≡τ τ2. For this index j we
can apply the first part of the induction hypothesis (because the depth of
the respective sub-trees is strictly smaller) to show that dτ1 ↓ 〈l ◦ mj〉e
≺ dτ2 ↓ 〈l ◦mj〉e. For the other indexes i 6= j we can apply the second part
of the induction hypothesis to show that dτ1 ↓ 〈l ◦mi〉e � dτ2 ↓ 〈l ◦mi〉e.
Finally, because all variables used are fresh and thus distinct, there can be
no aliasing between the respective subterms and we can therefore conclude
that dτ1e � dτ2e if τ1 �τ τ2 as well as dτ1e ≺ dτ2e if τ1 ≺τ τ2.
Remember that msg(τ1 , τ2) is defined unless one of the characteristic trees
is empty while the other one is not. Therefore, to guarantee that if dτ1e�∗
dτ2e holds then msg(τ1 , τ2) is defined, we simply have to ensure that
• d∅e�∗ dτe iff τ = ∅ and
• dτe�∗ d∅e iff τ = ∅.

This can be done by defining d∅e = empty where the functor empty is not
used in the representation of characteristic trees different from ∅. 2

The existence of such a mapping also implies, by Lemma 5.3.6, that
there are no infinite chains of strictly more general characteristic trees.
(This would not have been true for a more refined definition of “more
general” based on just the set of concretisations.)

Also note that the inverse of the mapping d.e, introduced in the proof
of Proposition 6.2.29, is not total (it seems to be very difficult or even
impossible to find a mapping satisfying Definition 6.2.27 whose inverse is
total) but still strictly monotonic. We will not need this property in the
following however. But note that, because the inverse is not total, we
cannot simply apply the msg to the term representation of characteristic
trees in order to obtain a generalisation. In other words, the definition of
d.e does not make the notion of an msg for characteristic trees, as well as
Algorithm 6.2.7, superfluous.

From now on, we fix d.e to be a particular mapping satisfying Defini-
tion 6.2.27. The mapping developed in the proof of Proposition 6.2.29 is
actually a good candidate, as it has the desirable property that the structure
of a characteristic tree τ is reflected in the tree-structure of the term dτe,
thus ensuring that the value of � for spotting non-terminating processes
(see e.g. [190]) carries over to characteristic trees.

116 CHAPTER 6. REMOVING DEPTH BOUNDS

Definition 6.2.30 (�∗ca) Let (A1, τ1), (A2, τ2) be characteristic atoms. We
say that (A2, τ2) embeds (A1, τ1), denoted by (A1, τ1)�∗ca (A2, τ2), iff A1 �∗

A2 and dτ1e�∗ dτ2e.

Proposition 6.2.31 Let Ã be a set of P -characteristic atoms. Then Ã,�∗ca

is well-quasi-ordered.

Proof Let E be the set of expressions over the finite alphabet AP . By
Theorem 6.2.23, �∗ is a wqo on E . Let F be the alphabet containing
just one binary functor ca/2 as well as all the elements of E as constant
symbols. Let us extend �∗ from E to F by (only) adding that ca�∗ ca. �∗

is still a wqo on F , and hence, by Higman-Kruskal’s theorem ([121, 155],
see also [82]), its embedding extension (see proof of Proposition 6.2.20) to
terms constructed from F is also a wqo. Let us also restrict ourselves to
terms ca(A, T) constructed by using this functor exactly once such that
A is an atom and T the representation of some characteristic tree. For
this very special case, the embedding extension �∗emb of �∗ coincides with
Definition 6.2.30 (i.e. ca(A1, dτ1e)�∗emb ca(A2, dτ2e) iff (A1, τ1)�∗ca (A2, τ2))
and hence Ã,�∗ca is well-quasi-ordered. 2

6.2.3 Global trees

In this subsection, we adapt and instantiate the m-tree concept presented
in [201] according to our particular needs.

Definition 6.2.32 (global tree) A global tree γP for a program P is a
(finitely branching) tree where nodes can be either marked or unmarked
and each node carries a label which is a P -characteristic atom.

In other words, a node in a global tree γP looks like (n,mark ,CA), where
n is the node identifier, mark an indicator that can take the values m
or u, designating whether the node is marked or unmarked, and the P -
characteristic atom CA is the node’s label. Informally, a marked node
corresponds to a characteristic atom which has already been treated by the
partial deduction algorithm.

In the sequel, we consider a global tree γ partially ordered through the
usual relationship between nodes: ancestor node >γ descendent node.
Given a node n ∈ γ, we denote by Ancγ(n) the set of its γ ancestor nodes
(including itself).

We now introduce the notion of a global tree being well-quasi-ordered,
and subsequently prove that it provides a sufficient condition for finiteness.
Let γP be a global tree. Then we will henceforth denote as LblγP the set
of its labels. And for a given node n in a tree γ, we will refer to its label
by lbln .

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 117

Definition 6.2.33 (label mapping) Let γ be a global tree. Then we
define its associated label mapping fγ as the mapping fγ : (γ, >γ) →
(Lblγ ,�∗ca) such that n 7→ lbln . fγ will be called quasi-monotonic iff ∀n1, n2

n1 >γ n2 ⇒ lbln1
6�∗ca lbln2

.

Definition 6.2.34 We call a global tree γ well-quasi-ordered if fγ is quasi-
monotonic.

Theorem 6.2.35 A global tree γ is finite if it is well-quasi-ordered.

Proof Assume that γ is not finite. Then it contains (König’s Lemma)
at least one infinite branch n1 >γ n2 >γ Consider the corresponding
infinite sequence of elements lbln1

, lbln2
, . . . ∈ Lblγ ,�∗ca . From Proposi-

tion 6.2.31, we know that Lblγ ,�∗ca is wqo and therefore, there must exist
lblni

, lblnj
, i < j in the above mentioned sequence such that lblni

�∗ca lblnj
.

But this implies that fγ is not quasi-monotonic. 2

6.2.4 A tree based algorithm

In this subsection, concluding Section 6.2, we present the actual refined
partial deduction algorithm where global control is imposed through char-
acteristic atoms in a global tree.

A formal description of the algorithm can be found in Figure 6.6. Please
note that it is parametrised by an unfolding rule U , thus leaving the par-
ticulars of the local control unspecified. As for Algorithm 5.3.3, we need
the notation chatom(A,P ,U) (see Definition 5.3.2). Also, without loss
of generality, we suppose that the initial goal contains just a single atom
(otherwise we get a global forest instead of a global tree).

As in e.g. [98, 201] (but unlike Algorithm 5.3.3), Algorithm 6.2.36 does
not output a specialised program, but rather a set of (characteristic) atoms
from which the actual code can be generated in a straightforward way. Most
of the algorithm is self-explanatory, except perhaps the inner while-loop.
In B̃, all the characteristic atoms are assembled, corresponding to the atoms
occurring in the leaves of the SLDNF-tree built for An according to τAn .
Elements of B̃ are subsequently inserted into γ as (unmarked) child nodes
of L if they do not embed the label of n or any of its ancestor nodes. If one
does, and it is a variant of n’s label or that of another node in γ, then it is
simply not added to γ. (Note that one can change to an instance test by
simply replacing �ca by ≡ca.) Finally, if a characteristic atom CAB ∈ B̃
does embed an ancestor label, but there is no variant to be found in γ, then
the most specific generalisation M of CAB and all embedded ancestor labels
H̃ is re-inserted into B̃. The latter case is of course the most interesting:

118 CHAPTER 6. REMOVING DEPTH BOUNDS

Algorithm 6.2.36

Input
a normal program P and goal ←A

Output
a set of characteristic atoms Ã

Initialisation
γ := {(1, u, (A, τA))};

while γ contains an unmarked leaf do
let n be such an unmarked leaf in γ: (n, u, (An, τAn

));
mark n;
B̃ := {chatom(B ,P ,U) |B ∈ leavesP (An, τAn)};
while B̃ 6= ∅ do

select CAB ∈ B̃;
remove CAB from B̃;
if H̃ = {CAC ∈ Ancγ(n)|CAC �∗ca CAB} = ∅ then

add (nB , u, CAB) to γ as a child of n;
else if 6 ∃CAD ∈ Lblγ such that CAD ≡ca CAB then

add msg(H̃ ∪ {CAB}) to B̃;
end while

end while

return Ã := Lblγ

Figure 6.6: Partial deduction with global trees.

Simply adding a node labelled CAB would violate the well-quasi ordering
of the tree and thus endanger termination. Calculating the msg M (which
always exists by the conditions of Definition 6.2.27) and trying to add it
instead secures finiteness, as proven below, while trying to preserve as much
information as seems possible (see however Sections 6.3 and 6.4). Note
that, similarly to CAB , we cannot add the msg M directly to the tree
because this might produce a tree which is not well-quasi ordered (and
termination would also be endangered). Indeed, although by generalising
CAB into M we are actually sure that M will not embed any characteristic
atom in H̃ (for a proof of this property see [178]) it might embed other
characteristic atoms in the tree. Take for example a branch in a global tree
which contains the characteristic atoms (p(f(a)), τ) and (p(X), τ). Then
CAB = (p(f(f(a))), τ) embeds (p(f(a)), τ) but not (p(X), τ). Thus H̃
= {(p(f(a)), τ)} and msg({(p(f (a)), τ), (p(f (f (a))), τ)}) = (p(f(X)), τ),

6.2. PARTIAL DEDUCTION USING GLOBAL TREES 119

which no longer embeds (p(f(a)), τ) but now embeds (p(X), τ)! So, to
ensure that the global tree remains well-quasi ordered it is important to
re-check the msg for embeddings before adding it to the global tree.

We obtain the following theorems:

Theorem 6.2.37 Algorithm 6.2.36 always terminates.

Proof Upon each iteration of the outer while-loop in Algorithm 6.2.36,
exactly one node in γ is marked, and zero or more (unmarked) nodes are
added to γ. Moreover, Algorithm 6.2.36 never deletes a node from γ, nei-
ther does it ever “unmark” a marked node. Hence, since all branchings are
finite, non-termination of the outer while-loop must result in the construc-
tion of an infinite branch. It is therefore sufficient to argue that the inner
while-loop terminates and that after every iteration of the outer loop, γ is
a wqo global tree.
First, this holds after initialisation. Also, obviously, a global tree will be
converted into a new global tree through the outer while-loop. Now, a
while-iteration adds zero or more, but finitely many, child nodes to a par-
ticular leaf n in the tree, thus creating a (finite) number of new branches
that are extensions of the old branch leading to n. We prove that on all of
the new branches, fγ is quasi-monotonic. The branch extensions are actu-
ally constructed in the inner while-loop, at most one for every element of
B̃. So, let us take an arbitrary characteristic atom CAB ∈ B̃, then there
are three cases to consider:

1. Either CAB does not embed any label on the branch up to (and
including) n. It is then added in a fresh leaf. Obviously, fγ will be
quasi-monotonic on the newly created branch.

2. Or some such label is embedded, but there is also a variant (or more
general respectively, in case an instance test is used) label already in
some node of the tree γ. Then, no corresponding leaf is inserted in
the tree, and there is nothing left to prove.

3. Or, finally, some labels on the branch are embedded, but no variants
(or more general characteristic atoms respectively) are to be found
in γ. We then calculate the msg M of CAB and all4 the labels
H̃ = {L1, . . . , Lk} on the branch it embeds. In that case, M must be
strictly more general than CAB . Indeed, if M would be a variant of
CAB then CAB must be more general than all the elements in H̃ (by
property of the msg), and even strictly more general because no label
was found of which it was a variant (or instance respectively). This is

4The algorithm would also terminate if we only pick one such label at every step.

120 CHAPTER 6. REMOVING DEPTH BOUNDS

in contradiction with the definition of �∗, which requires that each Li

is not a strict instance of CAB for Li�
∗CAB to hold. (More precisely,

given Li = (Ai, τi) and CAB = (AB , τB), Li �∗ CAB implies that Ai

is not a strict instance of AB and that dτie is not a strict instance
of dτBe; the latter implies, by strict monotonicity5 of d.e that τi is
not a strict instance of τB and thus, by Definition 6.2.14, we have
that Li is not a strict instance of CAB .) So in this step we have not
modified the tree (and it remains wqo), but replaced an atom in B̃ by
a strictly more general one, which we can do only finitely many times
(by Lemma 5.3.6) and thus termination of the inner while-loop is
ensured (as in the other two cases above an element is removed from
B and none are added).

Note that, when using the � relation instead of �∗, M would not
necessarily be more general than CAB , i.e. the algorithm could loop.
For example, take a global tree having the single node (p(X, X), τ)
and where we try to add B̃ = {(p(X, Y), τ)}. Now we have that
p(X, X) � p(X, Y) and we calculate the msg

msg({(p(X ,X), τ), (p(X ,Y), τ)}) = (p(X ,Y), τ)

and we have a loop.

2

Theorem 6.2.38 Let P be a program, input to Algorithm 6.2.36, and Ã
the corresponding set of characteristic atoms produced as output. Then Ã
is P -covered.

Proof First, it is straightforward to prove that throughout the execution
of Algorithm 6.2.36, any unmarked node in γ must be a leaf. It therefore
suffices to show, because the output contains only marked nodes, that after
each iteration of the outer while-loop, only unmarked leaves in γ possibly
carry a non-covered label.6 Trivially, this property holds after initialisation.
Now, in the outer while-loop, one unmarked leaf n is selected and marked.
The inner while-loop then precisely proceeds to incorporate (unmarked
leaf) nodes into γ such that all leaf atoms of n’s label are concretisations
of at least one label in the new, extended γ. 2

The correctness of the specialisation now follows from Theorem 5.2.2 pre-
sented earlier.

5Note that the proof also goes through if d.e is not strictly monotonic but just satisfies
that whenever τi is a strict instance of τB then τi 6 �∗τB .

6I.e. a label with at least one leaf atom (in P) that is not a concretisation of any label
in γ.

6.3. POST-PROCESSING AND OTHER IMPROVEMENTS 121

6.3 Post-processing and other improvements

6.3.1 Removing superfluous polyvariance

In this section we first outline a possible post-processing phase to remove
superfluous polyvariance. As mentioned in Chapter 4.5, this might not al-
ways be a good idea, e.g. when the specialised program is further analysed
by a monovariant abstract interpretation phase which cannot generate fur-
ther polyvariance by itself. In that case, it is impossible for the partial
deducer to know exactly which polyvariance is superfluous and which is
not. However, if the specialised program is destined to be executed di-
rectly, without any further specialisation, then it is possible to reduce the
polyvariance to some minimal level which does not remove any of the spe-
cialisation performed by the proper partial deduction phase described in
Algorithm 6.2.36.

Indeed, unlike ecological partial deduction as presented in Section 5.3,
Algorithm 6.2.36 will obviously often output several characteristic atoms
with the same characteristic tree, each giving rise to a different specialised
version of the same original predicate definition. Such “duplicated” poly-
variance is however superfluous, in the context of simply running the result-
ing program, when it increases neither local nor global precision. As far as
preserving local precision is concerned, matters are simple: One procedure
per characteristic tree is what you want. The case of global precision is
slightly more complicated: Generalising atoms with identical characteristic
trees might lead to the occurrence of more general atoms in the leaves of
the associated local tree. In other words, we might loose subsequent instan-
tiation at the global level, possibly leading to a different and less precise
set of characteristic atoms.

The polyvariance reducing post-processing that we propose in this sec-
tion therefore avoids the latter phenomenon. In order to obtain the desired
effect, it basically collapses and generalises several characteristic atoms with
the same characteristic tree only if this does not modify the global special-
isation. To that end we number the leaf atoms of each characteristic atom
and then label the arcs of the global tree with the number of the leaf atom
it refers to. We also add arcs in case a leaf atom is a variant of another
characteristic atom in the tree and has therefore not been lifted to the
global level. We thus obtain a labelled global graph. We then try to collapse
nodes with identical characteristic trees using the well-known algorithm for
minimisation of finite state automata [1, 128]: we start by putting all char-
acteristic atoms with the same characteristic tree into the same class, and
subsequently split these classes if corresponding leaf atoms fall into differ-
ent classes. As stated in [128], the complexity of this algorithm is O(kn2)

122 CHAPTER 6. REMOVING DEPTH BOUNDS

where n is the maximum number of states (in our case the number of char-
acteristic atoms) and k the number of symbols (in our case the maximum
number of leaf atoms).

The following example illustrates the use of this minimisation algorithm
for removing superfluous polyvariance.

Example 6.3.1 Let us return to the member program of Example 4.2.5,
augmented with one additional clause:

(1) member(X , [X |T])←
(2) member(X , [Y |T])← member(X ,T)
(3) t(T)← member(a, [a, b, c, d |T]),member(b,T)

Suppose that after executing Algorithm 6.2.36 we obtain the following set of
characteristic atoms Ã = {(member(b,L), τ), (member(a, [a, b, c, d |T]), τ),
(member(a, [b, c, d |T]), τ ′), (member(a,L), τ), (t(T), {〈1 ◦ 3〉})} where τ =
{〈1 ◦ 1〉, 〈1 ◦ 2〉} and τ ′ = {〈1 ◦ 2, 1 ◦ 2, 1 ◦ 2〉}. Depending on the particular
renaming function, a partial deduction of P wrt Ã will look like:

mema,[a,b,c,d](T)←
mema,[a,b,c,d](T)← mema,[b,c,d](T)
mema,[b,c,d](T)← mema(T)
mema([a|T])←
mema([Y |T])← mema(T)
memb([b|T])←
memb([Y |T])← memb(T)
t(T)← mema,[a,b,c,d](T),memb(T)

The labelled graph version of the corresponding global tree can be found in
Figure 6.7. Adapting the algorithm from [1, 128] to our needs, we start out
by generating three classes (one for each characteristic tree) of states:
• C1 = {(member(a, [a, b, c, d |T]), τ), (member(a,L), τ),

(member(b,L), τ)},
• C2 = {(member(a, [b, c, d |T]), τ ′)} and
• C3 = {(t(T), {〈1 ◦ 3〉})}.

The class C1 must be further split, as the state (member(a, [a, b, c, d |T]), τ)
has a transition via the label #1 to a state of C2 while the other states of
C1, (member(a,L), τ) and (member(b,L), τ), do not. This means that by
actually collapsing all elements of C1 we would lose subsequent specialisa-
tion at the global level (namely the pruning and pre-computation that is
performed within (member(a, [b, c, d |T]), τ ′)).
We now obtain the following 4 classes:
• C2 = {(member(a, [b, c, d |T]), τ ′)},
• C3 = {(t(T), {〈1 ◦ 3〉})},
• C4 = {(member(a, [a, b, c, d |T]), τ)} and
• C5 = {(member(a,L), τ), (member(b,L), τ)}.

6.3. POST-PROCESSING 123

The only class that might be further split is C5, but both states of C5

have transitions with identical labels leading to the same classes, i.e. no
specialisation will be lost by collapsing the class. We can thus generate
one characteristic atom per class (by taking the msg of the atom parts
and keeping the characteristic tree component). The resulting, minimised
program is thus:

mema,[a,b,c,d](T)←
mema,[a,b,c,d](T)← mema,[b,c,d](T)
mema,[b,c,d](T)← memx(a, T)
memx(X, [X|T])←
memx(X, [Y |T])← memx(X, T)
t(T)← mema,[a,b,c,d](T),memx(b, T)

�(member(a,L), τ)

#1

?

?
�

(t(T), {〈1 ◦ 3〉})

?

�

#2

#1
(member(a, [a, b, c, d |T]), τ)

(member(a, [b, c, d |T]), τ ′)

#1

#1

(member(b,L), τ)

#1

Figure 6.7: Labelled global graph of Example 6.3.1 before post-processing

A similar use of this minimisation algorithm is made in [285] and [237].
The former aims at minimising polyvariance in the context of multiple spe-
cialisation by optimising compilers. The latter, in a somewhat different
context, studies polyvariant parallelisation and specialisation of logic pro-
grams based on abstract interpretation.

6.3.2 Other improvements

Upon close inspection, Algorithm 6.2.36 itself might be made more precise
by choosing another, less general, label to insert upon generalisation. As
it currently stands, the algorithm computes the msg of the characteristic
atom to be added and the labels of all its embedded (future) ancestors.
Now, there may be less general generalisations of CAB that likewise do
not embed any ancestor label, and can be added safely instead of CAB .

124 CHAPTER 6. REMOVING DEPTH BOUNDS

?

?
�

(t(T), {〈1 ◦ 3〉})
�

�
�

�
�

�
�=

�

#2

#1
(member(a, [a, b, c, d |T]), τ)

(member(a, [b, c, d |T]), τ ′)

#1

#1

(member(X ,L), τ)

#1

Figure 6.8: Labelled global graph of Example 6.3.1 after post-processing

For example, given H̃ = {(p(a, b), τB)} and B = p(f(a), f(b)), the atom
part of msg(H̃ ∪ {(B , τB)}) is p(X, Y). However, both p(f(X), f(b)) and
p(f(a), f(Y)) are more specific generalisations of B that nevertheless do not
embed p(a, b). A similar consideration applies to the case where no node
is added since some ancestor carries a label, more general than CAB . To
what extent such refinements would significantly influence the specialisation
potential, and, if so, whether it is actually possible to incorporate them into
a concrete algorithm, are topics for future research.

One further possibility for improvement lies in refining the ordering re-
lation �ca on characteristic atoms and the related msg operator, so that
they more precisely capture the intuitive, but uncomputable order based on
the set of concretisations.7 Alternatively, one could try to use an altogether
more accurate abstraction operator than taking an msg on characteristic
atoms. For instance, one can endeavour to extend the constraint based ab-
straction operator proposed in [172] (and briefly discussed in Section 5.4.2)
to normal programs and arbitrary unfolding rules. This would probably
result in a yet (slightly) more precise abstraction, causing a yet smaller
global precision loss.

Finally, one might also try to incorporate more detailed efficiency and
cost estimates into the global control, e.g. based on [70, 71, 69], in order to
analyse the trade-off between improved specialisation and increased poly-
variance and code size.

7For example, suppose that a given predicate is defined by 3 clauses, numbered 1
to 3. Then the msg of τ = {〈1 ◦ 1〉} and τ ′ = {〈1 ◦ 2〉}, according to Definitions 6.2.14
and 6.2.17, would be {〈〉}, meaning that the associated specialised predicate definition
would contain a resultant for clause (3) (see Definition 5.1.8). This could be remedied
by using a more refined order relation �∗ca for which τ∗ = {〈1 ◦ 1〉, 〈1 ◦ 2〉} �∗ca τ and
τ∗ �∗ca τ ′. Hence the msg of τ and τ ′ would no longer be {〈〉}, but the more precise τ∗.

6.4. EXPERIMENTAL RESULTS AND DISCUSSION 125

6.4 Experimental results and discussion

6.4.1 Systems

In this section we present an implementation of the ideas of the preced-
ing sections, as well as an extensive set of experiments which highlight
the practical benefits of the implementation over existing partial deduction
systems.

The system which integrates the ideas of Chapters 5 and 6, called ecce,
is publicly available in [170] and is actually an implementation of a generic
version of Algorithm 6.2.36 which allows the advanced user to change and
even implement e.g. the unfolding rule as well as the abstraction oper-
ator and non-termination detection method. For instance, by adapting
the settings of ecce, one can obtain exactly Algorithm 6.2.36. But one
can also simulate a (global tree oriented) version of Algorithm 5.3.3 using
depth bounds to ensure termination. The system even offers some further
possibilities, beyond (ecological) partial deduction. We will return to this
aspect of the system and present the underlying generic algorithm of ecce
in Chapter 12.

All unfolding rules of ecce were complemented by simple more specific
resolution steps in the style of sp [97]. Constructive negation (see [49],[115])
has not yet been incorporated, but the selection of ground negative literals
is allowed. Post-processing removal of unnecessary polyvariance, using the
algorithm outlined in Section 6.3, determinate post-unfolding as well as
redundant argument filtering (which we will present later in Chapter 11)
were enabled throughout the experiments discussed below.

The ecce system also handles a lot of Prolog built-ins, like for instance
=, is, <, =<, <, >=, nonvar , ground , number , atomic, call , \==, \=.
All built-ins are supposed to be declarative and their selection delayed
until they are sufficiently instantiated (e.g. the built-in ground is supposed
to be delayed until its argument is ground, i.e. ground just functions as a
delay declaration and is probably the least interesting of the above built-
ins). The method presented in this chapter is extended by also registering
built-ins in the characteristic trees. One problematic aspect is that, when
generalising calls to built-ins which generate bindings (like is/2 or =../2 but
unlike >/2 or </2) and which are no longer executable after generalisation,
these built-ins have to be removed from the generalised characteristic tree
(i.e. they are no longer selected). With that, the concretisation definition
for characteristic atoms scales up and the technique will ensure correct
specialisation. It should also be possible to incorporate the if-then-else
into characteristic trees.

Also, the embedding relation � of Definition 6.2.18 (and the relations

126 CHAPTER 6. REMOVING DEPTH BOUNDS

�∗ and �∗ca based on it) has to be adapted. Indeed, some built-ins (like
= ../2 or is/2) can be used to dynamically construct infinitely many new
constants and functors and thus � is no longer a wqo. To remedy this, the
constants and functors are partitioned into the static ones, occurring in the
original program and the partial deduction query, and the dynamic ones.
(This approach is also used in [244, 245].) The set of dynamic constants and
functors is possibly infinite, and we will therefore treat it like the infinite
set of variables in Definition 6.2.18 by adding the following rule to the ecce
system:

f(s1, . . . , sm) �∗ g(t1, . . . , tn) if both f and g are dynamic

Some dynamic functors, which already have a natural wqo (or a wfo, which
can be turned into a wqo by Lemma 6.2.24) associated with them, might
be treated in a more refined way. For instance for integers we can define:

i � j if both i and j are integers and i ≤ j.

An even more refined solution (not implemented for the current experi-
ments), might be based on using the general homeomorphic embedding
relation of [155], which can handle infinitely many function symbols pro-
vided that a wqo � on the function symbols is given:8

f(s1, . . . , sm) �∗ g(t1, . . . , tn) if f � g and ∃1 ≤ i1 < . . . im ≤ n
such that ∀j ∈ {1, . . . ,m} : sj �∗ tij .

We present benchmarks using 3 different settings of ecce, hereafter
called ecce-d, ecce-x-10 and ecce-x. The settings ecce-d and ecce-x
use Algorithm 6.2.36, with a different unfolding rule, while ecce-x-10 uses
a (global tree oriented) version of Algorithm 5.3.3 with a depth bound of
10 to ensure termination. We also compare with mixtus [245, 244], paddy
[227, 228, 229] and sp [97, 98], of which the following versions have been
used: mixtus 0.3.3, the version of paddy delivered with eclipse 3.5.1 and
a version of sp dating from September 25th, 1995.

Basically, the above mentioned systems use the following two different
unfolding rules:

• “mixtus-like” unfolding: This is the unfolding strategy explained in
[245, 244] which in general unfolds deeply enough to solve the “fully
unfoldable” problems9 but also has safeguards against excessive un-
folding and code explosion. It requires however a number of ad hoc

8A simple one might be f � g if both f and g are dynamic or if f = g.
9I.e. those problems for which normal evaluation terminates (cf. the end of Section 3.1

in Chapter 3).

6.4. EXPERIMENTAL RESULTS AND DISCUSSION 127

settings. (In the future, we plan experiments with unfolding along
the lines of [199] which is free of such elements.) For instance, for
ecce-x and ecce-x-10 we used the settings (see [245]) max rec = 2,
max depth = 2, maxfinite = 7, maxnondeterm = 10 and only al-
lowed non-determinate unfolding when no user predicates were to the
left of the selected literal. The method ecce-x-10 was also comple-
mented by a level 10 depth bound. For mixtus and paddy we used
the respective default settings of the systems. Note that the “mixtus-
like” unfolding strategies of ecce, mixtus and paddy differ slightly
from each other, probably due to some details not fully elaborated in
[245, 227] as well as the fact that the different global control regimes
influence the behaviour of the “mixtus-like” local control.

• Determinate unfolding: Only (except once) select atoms that match
a single clause head. The strategy is refined with a “lookahead” to
detect failure at a deeper level (c.f. Definition 3.3.2). This approach
is used by ecce-d and sp. Note however that sp seems to employ a
refined determinate unfolding rule (as indicated e.g. by the results for
the benchmark depth.lam below).

Both of these unfolding rules actually ensure that neither the number
nor the order of the solutions under Prolog execution are altered. Also,
termination under Prolog will be preserved by these unfolding rules (ter-
mination behaviour might however be improved, as e.g. ← loop, fail can be
transformed into ← fail). For more details related to the preservation of
(Prolog) termination we refer to [230, 27, 30].

6.4.2 Experiments

The benchmark programs can be found in [170], short descriptions are pre-
sented in Appendix C. In addition to the “Lam & Kusalik” benchmarks
(originally in [159]) they contain a whole set of more involved and real-
istic examples, like e.g. a model-elimination theorem prover and a meta-
interpreter for an imperative language. For some of these new benchmark
tasks it is impossible to get (big) speedups — the goal of these tasks con-
sists in testing whether no pessimisation, code explosion or non-termination
occurs.

For the experimentation, we tried to be as realistic and practice-oriented
as possible. In particular, we did not count the number of inferences, the
cost of which varies a lot, or some other abstract measure, but the actual
execution time and size of compiled code. The results are summarised in
Table 6.1, while the full details can be found in Tables 6.2, 6.3 and 6.4.
Further details and explanations about the benchmarks are listed below:

128 CHAPTER 6. REMOVING DEPTH BOUNDS

• Transformation times (TT):
The transformation times of ecce and mixtus also include the time
to write the specialised program to file. Time for sp does not and
for paddy we do not know. We briefly explain the use of ∞ in the
tables:

• ∞, sp: this means “real” non-termination (based upon the de-
scription of the algorithm in [97])
• ∞, mixtus: heap overflow after 20 minutes
• ∞, paddy: thorough system crash after 2 minutes

In Tables 6.2, 6.3 and 6.4, the transformation times (TT) are ex-
pressed in seconds while the total transformation time in Table 6.1
is expressed in minutes (on a Sparc Classic running under Solaris,
except for paddy which for technical reasons had to be run on a Sun
4). Each system was executed using the Prolog system it runs on:
Prolog by BIM for ecce, SICStus Prolog for mixtus and sp and
Eclipse for paddy). So, except when comparing the different settings
of ecce, the transformation times should thus only be used for a
rough comparison.

It seems that the latest version 0.3.6 of mixtus does terminate for
the missionaries example, but we did not yet redo the experiments.
paddy and sp did not terminate for one other example (memo-solve
and imperative.power respectively) when we accidentally used not
instead of \+ (not is not defined in SICStus Prolog; paddy and sp
follow this convention and interpreted not as an undefined, failing
predicate). After changing to \+, both systems terminated.

• Relative Runtimes (RRT) of the specialised code:
The timings are not obtained via a loop with an overhead but via
special Prolog files, generated automatically by ecce. These files call
the original and specialised programs directly (i.e. without overhead),
at least 100 times for the respective run-time queries, using the time/2
predicate of Prolog by BIM 4.0.12 on a Sparc Classic under Solaris.
Sufficient memory was given to the Prolog system to prevent garbage
collection. Runtimes in Tables 6.2, 6.3 and 6.4 are given relative to
the runtimes of the original programs. In computing averages and
totals, the time and size of the original program were taken in case
of non-termination (i.e. we did not punish mixtus, paddy and sp
for the non-termination). The total speedups are obtained by the
formula

n∑n
i=1

speci

origi

6.4. EXPERIMENTAL RESULTS AND DISCUSSION 129

System Total Worst FU Not FU Total Code Total TT
Speedup Speedup Speedup Speedup Size in KB in min

ecce-d 1.90 0.85 2.57 1.74 166.69 2.64
ecce-x-10 2.13 0.79 7.07 1.71 224.35 112.72
ecce-x 2.51 0.92 8.36 2.02 135.91 2.70
mixtus 2.08 0.65 8.13 1.65 152.26 ∞+2.49
paddy 2.08 0.68 8.12 1.65 196.19 ∞+0.28

sp 1.46 0.86 2.08 1.32 182.02 3∞+1.92

Table 6.1: Short summary of the results (higher speedup and lower code
size is better)

where n is the number of benchmarks and speci and origi are the
absolute execution times of the specialised and original programs re-
spectively. In Table 6.1 the column for “FU” holds the total speedup
for the fully unfoldable benchmarks (see Appendix C) while the col-
umn for “Not FU” holds the total speedup for the benchmarks which
are not fully unfoldable.

All timings were for renamed queries, except for the original programs
and for sp (which does not rename the top-level query — this puts
sp at a disadvantage of about 10% in average for speed but at an
advantage for code size). Note that paddy systematically included
the original program and the specialised part could only be called in
a renamed style. We removed the original program whenever possible
and added 1 clause which allows calling the specialised program also
in an unrenamed style (just like mixtus and ecce). This possibility
was not used in the benchmarks but avoids distortions in the code
size figures (wrt mixtus and ecce).

Note that timing in Prolog (by BIM), especially on Sparc machines,
can sometimes be problematic. It is not uncommon that a simple
reordering of the predicates can lead to a 10% difference in speed
(and in some rare cases even more, as we will see later in Chapter 12).
The problem is probably due to the caching performed by the Sparc
processor.

• Size of the specialised code:
The compiled code size was obtained via statistics/4 and is expressed
in units, were 1 unit = 4.08 bytes (in the current implementation of
Prolog by BIM).

130 CHAPTER 6. REMOVING DEPTH BOUNDS

6.4.3 Analysing the results

The ecce based systems did terminate on all examples, as would be ex-
pected by the results presented earlier in the chapter. To our surprise
however, all the existing systems, mixtus, paddy and sp, did not prop-
erly terminate for at least one benchmark each. Even ignoring this fact,
the system ecce-x clearly outperforms mixtus, paddy and sp, as well for
speed as for code size, while having the best worst case performance. Even
though ecce is still a prototype, the transformation times are reasonable
and usually close to the ones of mixtus. ecce can certainly be speeded up
considerably, maybe even by using the ideas in [229] which help paddy to
be (except for one glitch) the fastest system overall.

Note that even the system ecce-x-10 based on a depth bound of 10,
outperforms the existing systems on account of the speed of the specialised
programs. Its transformation times as well as the size of the specialised
code are not so good however. Also note that for some benchmarks the
ad-hoc depth bound of 10 was too shallow (e.g. relative) while for others
it was too deep and resulted in excessive transformation times (e.g. model-
elim.app). But by removing the depth bound (ecce-x) we increase the
total speedup from 2.13 to 2.51 while decreasing the size of the specialised
code from 224 KB down to 136 KB. Also the total transformation time
drastically decreases by a factor of 42. This clearly illustrates that getting
rid of the depth bound is a very good idea in practice.

The difference between ecce-d and ecce-x in the resulting speedups
shows that determinate unfolding, at least in the context of standard partial
deduction,10 is in general not sufficient for fully satisfactory specialisation.
The “mixtus-like” unfolding seems to be a good compromise for standard
partial deduction. Also note that for the not fully unfoldable benchmarks
(most applications will fall into this category: if a benchmark is fully un-
foldable one does not need a partial evaluator, normal evaluation suffices)
ecce-d actually outperforms mixtus, paddy and sp (but not ecce-x).

The total speedup of ecce-x is 2.51 and the speedup for the fully un-
foldable benchmarks is 2.02, i.e. by partial deduction we were able to cut
execution time more than in half. Compared to speedups that are usually
obtained by low-level compiler optimisations, these figures are extremely
satisfactory. Taken on its own, however, these figures might look a bit
disappointing as to the potential of partial deduction. But, as already
mentioned, for some benchmark tasks it is impossible to get significant
speedups. Also, partial deduction is of course not equally suited for all
tasks; but for those tasks for which it is suited, partial deduction can be even

10See Chapter 12 for benchmarks on “conjunctive partial deduction”, in which deter-
minate unfolding is better than mixtus-like unfolding.

6.4. EXPERIMENTAL RESULTS AND DISCUSSION 131

much more worthwhile. For instance for the benchmarks model elim.app,
liftsolve.app and liftsolve.db1 — which exhibit interpretation overhead —
ecce-x obtains speedup factors of about 8, 17 and 50 respectively. Getting
rid of higher-order overhead also seems highly beneficial, yielding about
one order of magnitude speedup. Another area in which partial deduction
might be very worthwhile is handling overly general programs, e.g. getting
rid of unnecessary intermediate variables or making use of the hidden part
of abstract data types. We will return to some such programs (and the
techniques required to adequately specialise them) in Part V of the thesis.
So, given the difficulty of the benchmarks (and the worst case slowdown of
only 8 %), the speedup figures are actually very satisfactory and we con-
jecture that it will be beneficial to integrate the techniques, developed in
this part of the thesis, into a compiler.

In conclusion, the ideas presented in this chapter and the previous chap-
ters do not only make sense in theory on accounts of precision and termi-
nation, but they also pay off in practice, resulting in a specialiser which
improves upon some major existing systems on accounts of speed and size
of the specialised programs.

6.4.4 Further discussion

Note that Algorithm 6.2.36, as well as the ecce system based on it, struc-
ture the characteristic atoms in a global tree, and do not just put them in
a set as in Algorithm 5.3.3 of Section 5.3. The following example shows
that generalisation with non-ancestors may significantly limit specialisation
potential.

Example 6.4.1 Let P be the usual append program where a type check
on the second argument has been added:

(1) app([],L,L)←
(2) app([H |X],Y , [H |Z])← ls(Y), app(X ,Y ,Z)
(3) ls([])←
(4) ls([H |T])← ls(T)

Let A = app(X , [],Z) and B = app(X , [Y],Z). When unfolding as de-
picted in Figure 6.9, we obtain chtree(← A,P ,U) = {〈1 ◦ 1〉, 〈1 ◦ 2, 1 ◦ 3〉}
= τA and chtree(← B ,P ,U) = {〈1 ◦ 1〉, 〈1 ◦ 2, 1 ◦ 4, 1 ◦ 3〉} = τB . The
only leaf atom of (A, τA) is app(X ′, [],Z ′) and the sole leaf atom of (B, τB)
is app(X ′, [Y],Z ′). In other words, the set {(A, τA), (B, τB)} is P -covered
and no potential for non-termination exists. However, if we collect char-
acteristic atoms in a set rather than a tree, we do not notice that (B, τB)
does not descend from (A, τA). Consequently, a growing of characteristic

132 CHAPTER 6. REMOVING DEPTH BOUNDS

trees (and syntactic structure) will be detected, leading to an unnecessary
generalisation of (B, τB), and an unacceptable loss of precision.

@
@@R

�
��	

?

@
@@R

�
��	

?

?

(1)

2

(2)

(3)

(1)

2

(2)

(3)

(4)

← app(X , [],Z)

← app(X ′, [],Z ′)

← app(X , [Y],Z)

← ls([]), app(X ′, [Y],Z])

← app(X ′, [Y],Z ′)

← ls([Y]), app(X ′, [Y],Z ′)← ls([]), app(X ′, [],Z ′)

Figure 6.9: SLD-trees for Example 6.4.1

One might also wonder whether, in a setting where the characteristic
atoms are structured in a global tree, it would not be sufficient to just
test for homeomorphic embedding on the atom part. The intuition behind
this would be that a growth of the structure of an atom part would for
reasonable programs and unfolding rules lead to a growth of the associ-
ated characteristic tree as well — so, using characteristic trees for deciding
when to abstract would actually be superfluous. For instance, in Exam-
ple 6.1.1 we observe that rev(L, [],R) �∗ rev(T , [H],R) and, indeed, for
the corresponding characteristic trees d{〈1 ◦ 1〉, 〈1 ◦ 2, 1 ◦ 3〉}e �∗ d{〈1 ◦ 1〉,
〈1◦2, 1◦4, 1◦3〉}e holds. Nonetheless, the intuition turns out to be incorrect.
The following examples illustrate this point.

Example 6.4.2 Let P be the following normal program searching for paths
without loops:

(1) path(X ,Y ,L)← ¬member(X ,L), arc(X ,Y)
(2) path(X ,Y ,L)← ¬member(X ,L), arc(X ,Z), path(Z ,Y , [X |L])
(3) arc(a, b)←
(4) arc(b, a)←
(5) member(X , [X |T])←
(6) member(X , [Y |T])← member(X ,T)

Let A = path(a,Y , []) and B = path(a,Y , [b, a]) and U an unfolding rule
based on �∗ (i.e. only allow the selection of an atom if it does not embed a
covering ancestor). The SLDNF-tree accordingly built for ← A is depicted

6.4. EXPERIMENTAL RESULTS AND DISCUSSION 133

in Figure 6.10. B occurs in a leaf (A �∗ B) and will hence descend from A
in the global tree. But the (term representation of) the characteristic tree
τA = {〈1◦1, 1◦member , 1 ◦3 〉, 〈1◦2, 1◦member , 1 ◦3 , 1◦1, 1◦member , 1 ◦4 〉,
〈1 ◦ 2, 1 ◦ member , 1 ◦ 3 , 1 ◦ 2, 1 ◦ member , 1 ◦ 4 〉} is not embedded in
(the representation of) τB = ∅, and no danger for non-termination exists
(more structure resulted in this case in failure and thus less unfolding). A
method based on testing only �∗ on the atom component would abstract
B unnecessarily.

��
���

HH
HHj

HH
HHj

�
����

? ?

? ?

? ?

? ?

←

A︷ ︸︸ ︷
path(a, Y , [])

(1) (2)

(2)(1)

2

← arc(a, Y)

(3) (3)

2

← ¬mem(a, []), arc(a, Y) ← ¬mem(a, []), arc(a, Z), path(Z , Y , [a])

← arc(a, Z), path(Z , Y , [a])

← path(b, Y , [a])

← arc(b, Y)

(4) (4)

← path(a, Y , [b, a])︸ ︷︷ ︸
B

← ¬mem(b, [a]), arc(b, Z ′), path(Z ′, Y , [b, a])

← arc(b, Z ′), path(Z ′, Y , [b, a])

← ¬mem(b, [a]), arc(b, Y)

Figure 6.10: SLDNF-tree for Example 6.4.2

Example 6.4.3 Let P be the following definite program:
(1) path([N])←
(2) path([X ,Y |T])← arc(X ,Y), path([Y |T])
(3) arc(a, b)←

Let A = path(L). Unfolding ← A (using an unfolding rule U based on �∗)
will result in lifting B = path([b|T]) to the global level. The characteristic
trees are:
τA = {〈1 ◦ 1〉, 〈1 ◦ 2, 1 ◦ 3〉},
τB = {〈1 ◦ 1〉}. Again, A �∗ B holds, but not dτAe�∗ dτBe.

134 CHAPTER 6. REMOVING DEPTH BOUNDS

In recent experiments, it also turned out that characteristic trees might
be a vital asset when trying to solve the parsing problem [196], which ap-
pears when unfolding meta-interpreters with non-trivial object programs.
In such a setting a growing of the syntactic structure also does not imply
a growing of the characteristic tree.

Example 6.4.4 Take the vanilla meta-interpreter with a simple family
database at the object level:

solve(empty)←
solve(A&B)← solve(A), solve(B)
solve(A)← clause(A,B), solve(B)
clause(anc(X ,Y), parent(X ,Y))←
clause(anc(X ,Z), parent(X ,Y)&anc(Y ,Z))←
clause(parent(peter , paul), empty)←
clause(parent(paul ,mary), empty)←

Let A = solve(anc(X ,Z)) and B = solve(parent(X ,Y)&anc(Y ,Z)). We
have A �∗ B and without characteristic trees these two atoms would be
generalised (supposing that both these atoms occur at the global level) by
their msg solve(G). If however, we take characteristic trees into account, we
will notice that the object level atom anc(Z ,X) within A has more solutions
than the object level atom anc(Y ,Z) within B (because in the latter one
Y will get instantiated through further unfolding). I.e. the characteristic
tree of B does not embed the one of A and no unnecessary generalisation
will occur.

Returning to the global control method as laid out in Section 6.2, one
can observe that a possible drawback might be its complexity. Indeed, first,
ensuring termination through a well-quasi-ordering is structurally more
costly than the alternative of using a well-founded ordering. The latter
only requires comparison with a single “ancestor” object and can be en-
forced without any search through “ancestor lists” (see [199]). Testing for
well-quasi-ordering, however, unavoidably does entail such searching and
repeated comparisons with several ancestors. Moreover, in our particu-
lar case, checking �∗ca on characteristic atoms might seem to be in itself
a quite costly operation, adding to the complexity of maintaining a well-
quasi-ordering. But as the experiments of the previous subsection show, in
practice, the complexity of the transformation does not seem to be all that
bad, especially since the experiments were still conducted with a prototype
which was not yet tuned for transformation speed.

As already mentioned in Section 4.5 of Chapter 4, the partial deduction
method of [97] was extended in [66] by adorning characteristic trees with a
depth-k abstraction of the corresponding atom component. This was done

6.4. EXPERIMENTAL RESULTS AND DISCUSSION 135

in order to increase the amount of polyvariance so that a post-processing
abstract interpretation phase — detecting useless clauses — can obtain a
more precise result. However, this k parameter is of course yet another ad
hoc depth bound. Our method is free of any such bounds and, without the
Section 6.3 post-processing, nevertheless obtains a similar effect.

Algorithm 6.2.36 can also be seen as performing an abstract interpre-
tation on an infinite domain of infinite height (i.e. the ascending chain
condition of [57] is not satisfied) and without a priori limitation of the
precision (i.e., if possible, we do not perform any abstraction at all and ob-
tain simply the concrete results). Very few abstract interpretations of logic
programs use infinite domains of infinite height (some notable exceptions
are [36, 134, 118]) and to our knowledge all of them have some a priori
limitation of the precision, at least in practice.11 An adaptation of Algo-
rithm 6.2.36, with its non ad hoc termination and precise generalisations,
might provide a good starting point to introduce similar features into ab-
stract interpretation methods, where they might prove equally beneficial.12

We conclude this section with a brief discussion on the relation between
our global control and what may be termed as such in supercompilation
[273, 274, 258, 114]. (A distinction between local and global control is not
yet made in supercompilation.) We already pointed out that the inspira-
tion for using � derives from [190] and [258]. In the latter, a generalisation
strategy for positive supercompilation (no negative information propaga-
tion while driving) is proposed. It uses � to compare nodes in a marked
partial process tree; a notion originating from [111] and corresponding to
global trees in partial deduction. These nodes, however, only contain syn-
tactical information corresponding to ordinary atoms (or rather goals, see
Chapter 10). It is our current understanding that both the addition of
something similar to characteristic trees and the use of the refined �∗ em-
bedding can lead to improvements of the method proposed in [258]. Finally,
it is interesting to return to an observation already made in Section 4 of
[201]: Neighbourhoods of order “n”, forming the basis for generalisation in
full supercompilation ([274]), are essentially the same as classes of atoms or
goals with an identical depth n characteristic tree. Adapting our technique
to the supercompilation setting will therefore allow to remove the depth
bound on neighbourhoods.

11In theory the type graphs of [134] can be as precise as one wants, but in practice
widening is applied whenever an upper bound is computed.

12For instance, one might adapt the wqo �∗ so that they work on the type graphs
on [134] instead of characteristic trees. One could then combine the method of [134]
with Algorithm 6.2.36 and obtain a more precise abstract interpretation method, which
only selectively applies widening where it seems necessary for termination. See also
Chapter 13 for a concrete cross-fertilisation between abstract interpretation and partial
deduction.

136 CHAPTER 6. REMOVING DEPTH BOUNDS

6.5 Conclusion and future work

In this chapter, we have first identified the problems of imposing a depth
bound on characteristic trees (or neighbourhoods for that matter) using
some practical and realistic examples. We have then developed a sophisti-
cated on-line global control technique for partial deduction of normal logic
programs. Importing and adapting m-trees from [201], we have overcome
the need for a depth bound on characteristic trees to guarantee termination
of partial deduction. Plugging in a depth bound free local control strategy
(see e.g. [37, 199]), we thus obtain a fully automatic, concrete partial deduc-
tion method that always terminates and produces precise and reasonable
polyvariance, without resorting to any ad hoc techniques. To the best of
our knowledge, this is the very first such method.

Along the way, we have defined generalisation and embedding on char-
acteristic atoms, refining the homeomorphic embedding relation � from
[81, 82, 190, 258] into �∗, and showing that the latter is more suitable in
a logic programming setting. To that end, we have also developed a way
to combine two well-quasi orders into a more powerful one, as well as a
way to obtain a well-quasi order from a well-founded one. We have also
discussed an interesting post-processing intended to sift superfluous poly-
variance, possibly produced by the main algorithm. Extensive experiments
with an implementation of the method showed its practical value; outper-
forming existing partial deduction systems for speedup as well as code size
while guaranteeing termination.

We believe that the global control proposed in this and the previous
chapters is a very good one, but the quality of the specialisation produced
by any fully concrete instance of Algorithm 6.2.36 will obviously also heavily
depend on the quality of the specific local control used. At the local control
level, a number of issues are still open: fully automatic satisfactory unfold-
ing of meta-interpreters and a good treatment of truly non-determinate
programs are among the most pressing.

Later in Chapters 10 and 11 we will also present an extension of partial
deduction, called conjunctive partial deduction, which incorporates more
powerful unfold/fold-like transformations [222], allowing for example to
eliminate unnecessary variables from programs [231]. The extension boils
down to the lifting of entire goals (instead of separate atoms) to the global
level, as for instance in supercompilation (where non-atomic goals translate
into nested function calls). This opens up a whole range of challenging new
control issues. As we will see later in Chapter 12, the technique presented
in this part of the thesis will significantly contribute in that context too.

6.5. CONCLUSION AND FUTURE WORK 137

ecce-x-10 ecce-x

Benchmark RRT Size TT RRT Size TT

advisor 0.32 809 1.01 0.31 809 0.78
contains.kmp 0.80 1974 11.53 0.09 685 4.48
depth.lam 0.06 1802 2.25 0.02 2085 1.91
doubleapp 0.95 216 0.59 0.95 216 0.53
ex depth 0.32 350 1.73 0.32 350 1.58
grammar.lam 0.14 218 2.27 0.14 218 1.90
groundunify.complex 0.53 4511 29.10 0.53 4800 0.75
groundunify.simple 0.25 368 0.83 0.25 368 22.03
imperative.power 0.56 1578 18.14 0.54 1578 27.42
liftsolve.app 0.53 4544 16.70 0.06 1179 6.57
liftsolve.db1 0.02 2767 22.15 0.02 1326 7.33
liftsolve.db2 0.47 11303 154.94 0.61 4786 34.25
liftsolve.lmkng 1.02 2385 3.44 1.02 2385 2.75
map.reduce 0.08 348 0.84 0.08 348 0.86
map.rev 0.13 427 1.02 0.11 427 0.89
match.kmp 0.70 669 1.24 0.70 669 1.23
memo-solve 1.26 2033 10.56 1.09 2241 4.31
missionaries 1.03 2927 26.67 0.72 2226 9.21
model elim.app 0.42 6092 5864.28 0.13 532 3.56
regexp.r1 0.29 435 6.77 0.29 435 0.98
regexp.r2 0.43 1373 8.63 0.51 1159 4.87
regexp.r3 0.48 2041 10.82 0.42 1684 14.92
relative.lam 0.02 709 506.89 0.00 261 4.06
rev acc type 0.99 2188 22.95 1.00 242 0.83
rev acc type.inffail 0.55 1503 21.47 0.60 527 0.80
ssuply.lam 0.14 426 7.84 0.06 262 1.18
transpose.lam 0.18 2312 8.75 0.17 2312 1.98

Average 0.47 2085 250.50 0.40 1263 6.00
Total 12.67 56308 6763.41 10.75 34177 161.96
Speedup 2.13 2.51

Table 6.2: Detailed results for ecce-x-10 and ecce-x

138 CHAPTER 6. REMOVING DEPTH BOUNDS

ecce-d sp

Benchmark RRT Size TT RRT Size TT

advisor 0.47 412 0.79 0.40 463 0.29
contains.kmp 0.83 1363 2.90 0.75 985 1.13
depth.lam 0.94 1955 1.53 0.53 928 0.99
doubleapp 0.98 277 0.61 1.02 160 0.11
ex depth 0.76 1614 2.78 0.27 786 1.35
grammar.lam 0.17 309 1.92 0.15 280 0.71
groundunify.complex 0.40 9502 25.04 0.73 4050 2.46
groundunify.simple 0.25 368 0.78 0.61 407 0.20
imperative.power 0.37 2401 61.28 0.97 1706 6.97
liftsolve.app 0.06 1179 5.42 0.23 1577 2.46
liftsolve.db1 0.01 1280 12.95 0.82 4022 3.95
liftsolve.db2 0.17 4694 14.95 0.82 3586 3.71
liftsolve.lmkng 1.07 1730 1.70 1.16 1106 0.37
map.reduce 0.07 507 0.84 0.09 437 0.23
map.rev 0.11 427 0.88 0.13 351 0.20
match.kmp 0.73 639 1.17 1.08 527 0.49
memo-solve 1.17 2318 4.22 1.15 1688 3.65
missionaries 0.81 2294 4.31 0.73 16864 82.59
model elim.app 0.63 2100 2.83 - - ∞
regexp.r1 0.50 594 1.29 0.54 466 0.37
regexp.r2 0.55 629 1.29 1.08 1233 0.67
regexp.r3 0.50 828 1.74 1.03 1646 1.20
relative.lam 0.82 1074 1.92 0.69 917 0.35
rev acc type 1.00 242 0.70 - - ∞
rev acc type.inffail 0.60 527 0.71 - - ∞
ssuply.lam 0.06 262 1.18 0.06 231 0.52
transpose.lam 0.17 2312 2.56 0.26 1267 0.52

Average 0.53 1550 5.86 0.68 1903 4.81
Total 14.19 41837 158.29 18.48 45683 115.5
Speedup 1.90 1.46

Table 6.3: Detailed results for ecce-d and sp

6.5. CONCLUSION AND FUTURE WORK 139

mixtus paddy

Benchmark RRT Size TT RRT Size TT

advisor 0.31 809 0.85 0.31 809 0.10
contains.kmp 0.16 533 2.48 0.11 651 0.55
depth.lam 0.04 1881 4.15 0.02 2085 0.32
doubleapp 1.00 295 0.30 0.98 191 0.08
ex depth 0.40 643 2.40 0.29 1872 0.53
grammar.lam 0.17 841 2.73 0.43 636 0.22
groundunify.complex 0.67 5227 11.68 0.60 4420 1.53
groundunify.simple 0.25 368 0.45 0.25 368 0.13
imperative.power 0.57 2842 5.35 0.58 3161 2.18
liftsolve.app 0.06 1179 4.78 0.06 1454 0.80
liftsolve.db1 0.01 1280 5.36 0.02 1280 1.20
liftsolve.db2 0.31 8149 58.19 0.32 4543 1.60
liftsolve.lmkng 1.16 2169 4.89 0.98 1967 0.32
map.reduce 0.68 897 0.17 0.08 498 0.20
map.rev 0.11 897 0.16 0.26 2026 0.37
match.kmp 1.55 467 4.89 0.69 675 0.28
memo-solve 0.60 1493 12.72 1.48 3716 1.70
missionaries - - ∞ - - ∞
model elim.app 0.13 624 5.73 0.10 931 0.90
regexp.r1 0.20 457 0.73 0.29 417 0.13
regexp.r2 0.82 1916 2.85 0.67 3605 0.63
regexp.r3 0.60 2393 4.49 1.26 10399 1.35
relative.lam 0.01 517 7.76 0.00 517 0.42
rev acc type 1.00 497 0.99 0.99 974 0.33
rev acc type.inffail 0.97 276 0.77 0.94 480 0.28
ssuply.lam 0.06 262 0.93 0.08 262 0.08
transpose.lam 0.18 1302 3.89 0.18 1302 0.43

Average 0.48 1470 5.76 0.48 1894 0.64
Total 13.00 38214 149.7 12.96 49239 16.7
Speedup 2.08 2.08

Table 6.4: Detailed results for mixtus and paddy

140 CHAPTER 6. REMOVING DEPTH BOUNDS

Part III

Off-line Control of Partial
Deduction: Achieving

Self-Application

141

Chapter 7

Efficiently Generating
Efficient Generating
Extensions in Prolog

7.1 Introduction

7.1.1 Off-line vs. on-line control

The control problems of specialisation have been tackled from two differ-
ent angles: the so-called off-line versus on-line approaches. The on-line
approach performs all the control decisions during the actual specialisa-
tion phase. It is within this methodology that Part II of this thesis was
situated. The off-line approach on the other hand performs an analysis
phase prior to the actual specialisation phase, based on some rough de-
scriptions of what kinds of specialisations will have to be performed. The
analysis phase provides annotations which then guide the control aspect of
the proper specialisation phase, often to the point of making it completely
trivial.

Partial evaluation of functional programs [56, 138] has mainly stressed
off-line approaches, while supercompilation of functional [273, 274, 258, 114]
and partial deduction of logic programs [100, 245, 21, 37, 199, 201, 168, 178]
have concentrated on on-line control. (Some exceptions are [284, 207, 173,
167].)

On-line methods, like the one presented in Part II of this thesis, usu-
ally obtain better specialisation, because no control decisions have to be
taken beforehand, i.e. at a point where the full specialisation information

143

144 CHAPTER 7. GENERATING GENERATING EXTENSIONS

is not yet available. The main reason for using the off-line approach is to
make specialisation more amenable to effective self-application [140, 141],
as explained below.

7.1.2 The Futamura projections

A partial evaluation or deduction system is called self-applicable if it is able
to effectively1 specialise itself. The practical interests of such a capability
are manifold. The most well-known lie with the so called second and third
Futamura projections (a term coined in [91]; the idea of these projections as
well as the idea of self-application in general originated in [96]). The general
mechanism of the Futamura projections is depicted in Figure 7.1. The first
Futamura projection consists in specialising an interpreter for a particular
object program, thereby producing a specialised version of the interpreter
which can be seen as a compiled version of the object program. If the par-
tial evaluator is self-applicable then one can specialise the partial evaluator
for performing the first Futamura projection, thereby obtaining a compiler
for the interpreter under consideration. This process is called the second
Futamura projection. The third Futamura projection now consists in spe-
cialising the partial evaluator to perform the second Futamura projection.
By this process we obtain a compiler generator (cogen for short).

Guided by these Futamura projections a lot of effort, specially in the
functional partial evaluation community, has been put into making sys-
tems self-applicable. First successful self-application was reported in [140],
and later refined in [141] (see also [138]). The main idea which made this
self-application possible was to separate the specialisation process into two
phases:
• first a binding-time analysis (BTA for short) is performed which,

based on some rough description of the specialisation task, safely
approximates the values that will be known at specialisation time
and
• a (simplified) specialisation phase, which is guided by the result of

the BTA.
Such an approach is off-line because some, or even most, control decisions
are taken beforehand. The interest for self-application lies with the fact
that only the second, simplified phase has to be self-applied. On a more
technical level, such an approach also avoids (due to the rough description
of the specialisation task) the generation of overly general compilers and
compiler generators. We refer to [140, 141, 138] for further details.

1This implies some efficiency considerations, e.g. the system has to terminate within
reasonable time constrains, using an appropriate amount of memory.

7.1. INTRODUCTION 145

In the context of logic programming languages the off-line approach was
used in [207] and to some extent also in [115].

On-line methods are much more difficult to self-apply, and no results,
comparable to the ones obtained for off-line methods, have been obtained
so far. Note however the research in [107, 275] which tries to remedy this
problem as well as recent promising results obtained in [213], [276], [260].
Finally, before discussing the issue of self-application for logic programming
languages in more detail, we would like to mention other possibilities of
self-applicable partial evaluators beyond the Futamura projections, namely
the specialiser projections [108]. These allow e.g. the generation of new
specialisers from interpreters.

-

�-

?

Partial

Evaluator (1)

Partial

Evaluator (2)
-

6

Compiler-2nd

? #
"

!Interpreter

Object
Program

Interpreter

Object
Program

Object
Program

Interpreter

Generator

?

�

6

Compiler-3rd

? #
"

!Evaluator (3)

Partial

Input
Object-level -

Object-level
Input

�

Output
Object-level

6

-1st

�
�
�
�

#
"

!Program

Compiled

Evaluator (1)

Partial-

= Output

= Input
-

-�� ��= Program

= Result

Figure 7.1: Illustrating the 3 Futamura projections

146 CHAPTER 7. GENERATING GENERATING EXTENSIONS

7.1.3 Self-application for logic programming languages
and the cogen approach

From now on we will restrict our attention to self-application of specialisers
for logic programming languages.

Above we have discussed the interest of self-applicable specialisers for
automatically deriving compilers and compiler generators (cogen’s). How-
ever, even when using an off-line approach, writing an effectively self-
applicable specialiser is a non-trivial task — the more features one uses
in writing the specialiser the more complex the specialisation process be-
comes, because the specialiser then has to handle these features as well.
Also, when non-declarative features come into play, certain powerful op-
timisation might no longer be admissible, because the specialiser is now
forced to preserve the operational semantics. All this explains why so far
no partial evaluator for full Prolog (like mixtus [245], or paddy [227]) has
been made effectively self-applicable. On the other hand a partial deducer
which specialises only purely declarative logic programs (like sage in [115]
or the system in [26]) has itself to be written purely declaratively, currently
leading to slow systems and impractical compilers and compiler generators.

So far, the only practical compilers and compiler generators have been
obtained by striking a delicate balance between the expressivity of the un-
derlying language and the ease with which it can be specialised. Two
approaches for logic programming languages along this line are [95] and
[207]. However, the specialisation in [95] is incorrect with respect to some
of the extra-logical built-ins, leading to incorrect compilers and compiler
generators when attempting self-application (a problem mentioned in [26],
see also [207, 167]). The partial evaluator logimix of [207] does not share
this problem, but gives only modest speedups (when compared to results
for functional programming languages, see the remarks in [207]) when self-
applied.

The actual creation of the cogen according to the third Futamura pro-
jection is not of much interest to users since, given the specialiser, cogen
can be generated once and for all. Therefore, from a user’s point of view,
whether a cogen is produced by self-application or not is of little importance
— it is important that it exists and that it has an improved performance
over direct self-application. This is the background behind the approach to
program specialisation called the cogen approach: instead of trying to write
a partial evaluation system which is neither too inefficient nor too difficult
to self-apply one simply writes a compiler generator directly. This is not
as difficult as one might imagine at first sight: basically cogen turns out to
be a rather straightforward extension of a binding-time analysis for logic
programs (something first discovered for functional languages in [125]).

7.1. INTRODUCTION 147

In this chapter we will describe the first cogen written in this way for a
logic programming language: a small subset of Prolog.

The most noticeable advantages of the cogen approach is that the co-
gen and the compilers it generates can use all features of the implemen-
tation language. Therefore, no restrictions due to self-application have to
be imposed (the compiler and the compiler generator don’t have to be
self-applied)! As we will see, this leads to extremely efficient compilers and
compiler generators. So, in this case, being able to use extra-logical features
actually makes the compilers more efficient as well as easier to generate.

Some general advantages of the cogen approach are: the cogen manipu-
lates only syntax trees and there is no need to implement a self-interpreter2;
values in the compilers are represented directly (there is no encoding over-
head); and it becomes easier to demonstrate correctness for non-trivial
languages (due to the simplicity of the transformation). In addition, the
compilers are stand-alone programs that can be distributed without the
cogen.

A further advantage of the cogen approach for logic languages is that the
compilers and compiler generators can use the non-ground representation
(as we will see even a compiled version of it). This is in contrast to self-
applicable partial deducers which must use the ground representation in
order to be declarative. We will return to this issue in Chapter 8. Further-
more, the non-ground representation executes several orders of magnitude
faster than the ground representation (even after specialising, see [35]) and,
as we will see later in Chapter 13, can be impossible to specialise satisfac-
torily by partial deduction alone. (Note that even [207] uses a “mixed”
representation approach which lies in between the ground and non-ground
style; see Chapter 8).

Although the Futamura projections focus on how to generate a compiler
from an interpreter, the projections of course also apply when we replace
the interpreter by some other program which is not an interpreter. In
this case the program produced by the second Futamura projection is not
called a compiler, but a generating extension. The program produced by
the third Futamura projection could rightly be called a generating extension
generator or gengen, but we will stick to the more conventional cogen.

The main contributions of this chapter are:

• the first description of a handwritten compiler generator (cogen) for
a logic programming language which shows that such a program has
quite an elegant and natural structure.

2I.e. a meta-interpreter for the underlying language. Indeed the cogen just trans-
forms the program to be specialised, yielding a compiler which is then evaluated by the
underlying system (and not by a self-interpreter).

148 CHAPTER 7. GENERATING GENERATING EXTENSIONS

• a formal specification of the concept of binding-time analysis (BTA)
in a (pure) logic programming setting and a description of how to
obtain a generic algorithm for partial deduction from such a BTA (by
describing how to obtain an unfolding and a generalisation strategy
from the result of a BTA).
• benchmark results showing the efficiency of the cogen, the generating

extensions and the specialised programs.

The remainder of this chapter is organised as follows: In Section 7.2
we formalise the concept of off-line partial deduction and the associated
binding-time analysis. In Section 7.3 we present and explain our cogen
approach in a pure logic programming setting (details on how to extend
this approach to handle some extra-logical built-ins and the if-then-else
can be found in Appendix D). In Section 7.4 we present some examples
and results underlining the efficiency of the cogen. We conclude with some
discussions in Section 7.5.

7.2 Off-line partial deduction

As mentioned in the introduction, the main reason for using the off-line ap-
proach is to achieve effective self-application ([140, 141]). But the off-line
approach is in general also more efficient, since many decisions concerning
control are made before and not during specialisation. For the cogen ap-
proach to be efficient it is vital to use the off-line approach, since then the
(local) control can be hard-wired into the generating extension.

7.2.1 Binding-time analysis

Most off-line approaches perform what is called a binding-time analysis
(BTA) prior to the specialisation phase. This phase classifies arguments to
predicate calls as either static or dynamic. The value of a static argument
is definitely known (bound) at specialisation time whereas a dynamic argu-
ment is not definitely known (it might only be known at the actual run-time
of the program). In the context of partial deduction, a static argument can
be seen as a term which is guaranteed not to be more instantiated at run-
time (it can never be less instantiated at run-time). For example, if we
specialise a program for all instances of p(a,X) then the first argument to
p is static while the second one is dynamic — actual run-time instances
might be p(a, b), p(a, Z) or p(a,X) but not p(b, c). We will also say that
an atom is static if all its arguments are static and likewise that a goal is
static if it consist only of static (literals) atoms.

7.2. OFF-LINE PARTIAL DEDUCTION 149

We will now formalise the concept of a binding-time analysis. For that
we first define the concept of divisions which classify arguments into static
and dynamic ones.

Definition 7.2.1 (division) A division ∆ of arity n is a subset of the set
{1, . . . , n} of integers. Given ∆, we denote by ∆̄ the set {1, . . . , n} \∆.

The elements of ∆ represent the dynamic argument positions of an atom,
while ∆̄ represents the static positions. As a notational convenience we will
use (δ1, . . . , δn) to denote a division ∆ of arity n, where δi = s if i ∈ ∆̄
and δi = d if i ∈ ∆. For example, (s, d) denotes the division {2} of arity 2.
From now on we will also use the notation Pred(P) to denote the predicate
symbols occurring inside a program P . We now define a division for a
program P which divides the arguments of every predicate p ∈ Pred(P)
into the static and the dynamic ones:

Definition 7.2.2 (division for a program) A division ∆ for a program
P is a mapping from Pred(P) to divisions having the arity of the corre-
sponding predicates.
We say that an argument ti of an atom p(t1, . . . , tn) is dynamic wrt ∆
(respectively static wrt ∆) iff i ∈ ∆(p) (respectively i ∈ ∆(p)).

Example 7.2.3 (d, s) is a division of arity 2 and (s, d, d) a division of arity
3. Let P be a program containing the predicate symbols p/2 and q/3. Then
∆ = {p/2 7→ (d, s), q/3 7→ (s, d, d)} is a division for P . Then the arguments
b and X of q(a, b, X) are dynamic wrt ∆ while a is static wrt ∆.

Divisions can be ordered in a straightforward manner: a division of
arity n is more general than another one if it classifies more arguments as
dynamic. In the following we extend the order to divisions of programs.

Definition 7.2.4 (partial order of divisions) Let ∆ and ∆′ be divisions
for a program P . We say that ∆′ is more general than ∆, denoted by
∆ v ∆′,3 iff for all predicates p ∈ Pred(P): ∆(p) ⊆ ∆′(P).

As already mentioned, a binding-time analysis will, given a program
P (and some description of how P will be specialised), perform a pre-
processing analysis and return a division for P describing when values will
be bound (i.e. known). It will also return an annotation which will then
guide the local unfolding process of the actual partial deduction. From a

3In fact we can even construct a lattice based on the lub for divisions of arity n
defined by ∆ t∆′ = ∆ ∪∆′, the glb defined by ∆ u∆ = ∆ ∩∆′, as well as ⊥n = ∅ and
>n = {1, . . . , n}.

150 CHAPTER 7. GENERATING GENERATING EXTENSIONS

theoretical viewpoint an annotation restricts the possible unfolding rules
that can be used (e.g. the annotation could state that predicate calls to
p should never be unfolded whereas calls to q should always be unfolded).
We therefore define annotations as follows:

Definition 7.2.5 (annotation) An annotation U is a set of unfolding
rules (i.e. it is a subset of the set of all possible unfolding rules).

In order to be really off-line, the unfolding rules in the annotation should
not take the unfolding history into account and should not depend “too
much” on the actual values of the static (nor dynamic) arguments. We will
come back in the following subsection on what annotations can look like
from a practical viewpoint. We are now in a position to formally define a
binding-time analysis in the context of (pure) logic programs:

Definition 7.2.6 (BTA, BTC) A binding-time analysis (BTA) yields,
given a program P and an initial division ∆0 for P , a couple (U , ∆) con-
sisting of an annotation U and a division ∆ for P more general than ∆0. We
will call the result of a binding-time analysis a binding-time classification
(BTC)

The initial division ∆0 gives information about how the program will be
specialised. In fact ∆0 specifies what the initial atom(s) to be specialised
(i.e. the ones in A0 of Algorithm 3.3.11) will look like (if p′ does not occur
in A0 we simply set ∆0(p′) = ∅). The role of ∆ is to give information about
what the atoms in Algorithm 3.3.11 will look like at the global level. In
that light, not all BTC as specified above are correct and we now develop
a safety criterion for a BTC wrt a given program. Basically a BTC is
safe iff every atom that can potentially appear in one of the sets Ai of
Algorithm 3.3.11 (given the restrictions imposed by the annotation of the
BTA) corresponds to the patterns described by ∆. Note that if a predicate
p is always unfolded by the unfolding rule used in Algorithm 3.3.11 then it
is irrelevant what the value of ∆p is.

For simplicity, we will from now on impose that a static argument must
be ground.4 In particular this guarantees our earlier requirement that the
argument will not be more instantiated at run-time.

Definition 7.2.7 (safe wrt ∆) Let P be a program and let ∆ be a division
for P and let p(t̄) be an atom with p ∈ Pred(P). Then p(t̄) is safe wrt ∆
iff all its static arguments wrt ∆ are ground. A set of atoms S is safe wrt
∆ iff every atom in S is safe wrt ∆. Also a goal G is safe wrt ∆ iff all the
atoms occurring in G are safe wrt ∆.

4This simplifies stating the safety criterion of a BTA because one does not have to
reason about “freeness”. In a similar vein this also makes the BTA itself easier.

7.2. OFF-LINE PARTIAL DEDUCTION 151

For example, p(a,X) is safe wrt ∆ = {p/2 7→ (s, d)} while p(X, a) is
not.

Definition 7.2.8 (safe BTC, safe BTA) Let β = (U , ∆) be a BTC for a
program P and let U ∈ U be an unfolding rule. Then β is a safe BTC for
P iff for every U ∈ U and for every goal G, which is safe wrt ∆, U returns
an incomplete SLDNF-tree whose leaf goals are safe wrt ∆. A BTA is safe
if for any program P it produces a safe BTC for P .

Example 7.2.9 Let P be the well known append program

(1) app([],L,L)←
(2) app([H |X],Y , [H |Z])← app(X ,Y ,Z)

Let ∆ = {app 7→ (s, d , d)} and let U be the set of all unfolding rules. Then
(U , ∆) is a safe BTC for P . For example, the goal ← app([a, b],Y ,Z)
is safe wrt ∆ and an unfolding rule can either stop at ← app([b],Y ,Z),
← app([],Y ′,Z ′) or at the empty goal 2. All of these goals are safe wrt
∆. In general, unfolding a goal ← app(t1 , t2 , t3) where t1 is ground, leads
only to goals whose first arguments are ground.

So, the above Definition 7.2.8 requires atoms to be safe in the leaves of
incomplete SLDNF-trees, i.e. at the point where the atoms get abstracted
and then lifted to the global level.5 So, in order for the above condition to
ensure safety at all stages of Algorithm 3.3.11, the particular abstraction
operator should not abstract atoms which are safe wrt ∆ into atoms which
are no longer safe wrt ∆. This motivates the following definition:

Definition 7.2.10 An abstraction operator abstract is safe wrt a division
∆ for some program P iff for every finite set of atoms S, which is safe wrt
∆, abstract(S) is also safe wrt ∆.

7.2.2 A particular off-line partial deduction method

In this subsection we define a specific off-line partial deduction method
which will serve as the basis for the cogen developed in the remainder
of this chapter. For simplicity, we will from now on restrict ourselves to
definite programs. Negation will in practice be treated in the cogen either
as a built-in or via the if-then-else construct (see Appendix D).

Let us first define a particular unfolding rule.

5Also, when leaving the pure logic programming context and allowing extra-logical
built-ins (like = ../2) a local safety condition will also be required.

152 CHAPTER 7. GENERATING GENERATING EXTENSIONS

Definition 7.2.11 (UL) Let L ⊆ Pred(P) be a set of predicates, called the
reducible predicates. Also an atom will be called reducible iff its predicate
symbol is in L and non-reducible otherwise. We then define the unfolding
rule UL to be the unfolding rule which applies an unfolding step to the goal
in the root and then unfolds the leftmost reducible atom in each goal.

We will use such unfolding rules in Algorithm 3.3.11 and we will restrict
ourselves (to avoid distracting from the essential points) to safe BTA’s
which return results of the form β = ({UL}, ∆). In the actual implementa-
tion of the cogen (Appendix E) we use a slightly more liberal approach, in
the sense that specific program points (calls to predicates) are annotated as
either reducible or non-reducible. Also note that nothing prevents a BTA
from having a pre-processing phase which splits the predicates according
to their different uses.

Example 7.2.12 Let P be the following program

(1) p(X)← q(X, Y), q(Y, Z)
(2) q(a, b)←
(3) q(b, a)←

Let ∆ = {p 7→ (s), q 7→ (s, d)}. Then β = ({U{q}}, ∆) is a safe BTC for P .
For example, the goal ← p(a) is safe wrt ∆ and unfolding it according to
U{q} will lead (via the intermediate goals← q(a, Y), q(Y, Z) and← q(b, Z))
to the empty goal 2 which is safe wrt ∆. Note that every selected atom
is safe wrt ∆.6 Also note that β′ = ({U{}}, ∆) is a not a safe BTC for P .
For instance, for the goal ← p(a) the unfolding rule U{} just performs one
unfolding step and thus stops at the goal← q(a, Y), q(Y,Z) which contains
the unsafe atom q(Y, Z).

The only thing that is missing in order to arrive at a concrete instance
of Algorithm 3.3.11 is a (safe) abstraction operator, which we define in the
following.

Definition 7.2.13 (gen∆, abstract∆) Let P be a program and ∆ be a di-
vision for P . Let A = p(t̄) with p ∈ Pred(P). We then denote by gen∆(A)
an atom obtained from A by replacing all dynamic arguments of A (wrt
∆p) by distinct, fresh variables not occurring in A.
We also define the abstraction operator abstract∆ to be the natural exten-
sion of the function gen∆: abstract∆(A) = {gen∆(A) | A ∈ A}.

6As already mentioned, this is not required in Definition 7.2.8 but (among others)
such a condition will have to be incorporated for the selection of extra-logical built-ins.

7.2. OFF-LINE PARTIAL DEDUCTION 153

For example, if the division ∆ is {p/2 7→ (s, d), q/3 7→ (d, s, s)} then
gen∆(p(a, b)) = p(a,X) and gen∆(q(a, b, c)) = q(X, b, c).
Then abstract∆({p(a, b), q(a, b, c)}) = {p(a,X), q(X, b, c)}. Note that, triv-
ially, abstract∆ is safe wrt ∆.

Observe that in Algorithm 3.3.11 the uncovered leaf atoms are all added
and abstracted simultaneously, i.e. the algorithm progresses in a breadth-
first manner. In general this will yield a different result from a depth-
first progression (i.e. adding one leaf atom at a time). However, because
abstract∆ is a homomorphism7 we can use a depth-first progression in Algo-
rithm 3.3.11 and still get the same specialisation. This is something which
we will actually do in the practical implementation.

In the remainder of this chapter we will use the following off-line partial
deduction method:

Algorithm 7.2.14 (off-line partial deduction)
1. Perform a BTA (possibly by hand) returning results of the form

({UL}, ∆)

2. Perform Algorithm 3.3.11 with UL as unfolding rule and abstract∆ as
abstraction operator. The initial set of atoms A0 should only contain
atoms which are safe wrt ∆.

Proposition 7.2.15 Let ({UL}, ∆) be a safe BTC for a program P . Let
A0 be a set of atoms safe wrt ∆. If Algorithm 7.2.14 terminates then the
final set Ai only contains atoms safe wrt ∆.

Proof Trivial, by induction on i. 2

We will illustrate this particular partial deduction method on an exam-
ple.

Example 7.2.16 We use a small generic parser for a set of languages which
are defined by grammars of the form S ::= aS|X (where X is a placeholder
for a terminal symbol). The example is adapted from [152] and the parser
P is depicted in Figure 7.2.

Given the initial division ∆0 = {nont/3 7→ (s, d , d), t/3 7→ ∅} a BTA
might return the following BTC β = ({U{t/3}}, ∆) where ∆ = {nont/3 7→
(s, d , d), t/3 7→ (s, d, d)}. It can be seen that β is a safe BTC for P .

Let us now perform the proper partial deduction starting from A0 =
{nont(c,R,T)}. Note that the atom nont(c,R,T) is safe wrt ∆0 (and
hence also wrt ∆). Unfolding the atom in A0 yields the SLD-tree in
Figure 7.3. We see that the set of leaf atoms is {nont(c,V ,T)}. As

7I.e. abstract∆(∅) = ∅ and abstract∆(S ∪ S′) = abstract∆(S) ∪ abstract∆(S′).

154 CHAPTER 7. GENERATING GENERATING EXTENSIONS

nont(c,V ,T) is a variant of nont(c,R,T) we obtain A1 = A0. The spe-
cialised program after renaming and filtering looks like:

nontc([a|V],R)← nontc(V ,R)
nontc([c|R],R)←

(1) nont(X ,T ,R)← t(a, T, V),nont(X ,V ,R)

(2) nont(X ,T ,R)← t(X, T, R)

(3) t(X, [X|ES], ES)←

Figure 7.2: A parser

@
@@R

�
��	

? ?

(2)

← t(a, T, V),nont(c,V ,R) ← t(c, T, R)

← nont(c,V ,R) 2

(3)(3)

(1)

← nont(c,T ,R)

Figure 7.3: Unfolding the parser of Figure 7.2

7.3 The cogen approach for logic program-
ming languages

For presentation purposes, and without loss of generality, we from now
on suppose that in Algorithm 7.2.14 the initial set A0 consists of just a
single atom A0 (a convention followed by a lot of practical partial deduction
systems). Thus, a generating extension, is a program that, given a safe
BTC ({UL}, ∆) for P , performs part 2 of the off-line partial deduction
Algorithm 7.2.14 for a given atom A0 which is safe wrt ∆. For instance,
in the case of the parser and the BTC from Example 7.2.16, a generating
extension is a program that, when given the atom A0 = nont(c,R,T),
produces the residual program shown in the example.

7.3. COGEN APPROACH FOR LOGIC PROGRAMMING 155

Given a program P and a safe BTC β for P , a compiler generator ,
cogen, is then simply a program that produces a generating extension of P
wrt β.8

We will first examine in more detail the structure of an efficient gener-
ating extension. Based on this investigation the design of the cogen will be
rather straightforward (given the BTC).

To perform the required specialisation, a generating extension first has
to unfold the initial atom A0 once (to ensure a non-trivial tree). In each
branch, it then has to unfold the left-most reducible atom until no more
reducible atoms can be found. The atoms in the leaves of the thus obtained
SLDNF-tree have to be collected and generalised. This process is repeated
for all the new generalised atoms which have not yet been unfolded, until
no more new atoms are found.

The unfolding component of a generating extension might be imple-
mented via a meta-program, working on a representation of the program
P to be specialised. However, this would not be the most efficient way to
tackle that problem. Indeed, the generating extension is tailored towards a
particular program P (and a particular BTC) and we can use this informa-
tion to get rid of some unnecessary overhead. The crucial idea is to write
a specific predicate p u for each predicate p of arity n, tailored towards
unfolding atoms of the form p(t1, . . . , tn). This predicate p u has n + 1
arguments: the first n arguments contain the arguments t1, . . . , tn of the
atom that has to be unfolded while the last argument collects the result of
the unfolding process. More precisely, p u(t1, ..., tn, B) will succeed for each
branch of the incomplete SLDNF-tree obtained by applying the unfolding
rule UL to p(t1, ..., tn), whereby it will return in B the atoms in the leaf of
the branch9 and also instantiate t1, ..., tn via the composition of mgu’s of
the branch. For complete SLDNF-trees (i.e. for atoms which get fully un-
folded) the above can be obtained very efficiently by simply executing the
original predicate definition of p for the goal← p(t1, ..., tn) (no atoms in the
leaves have to be returned because there are none). To handle incomplete
SLDNF-trees we just have to adapt the definition of p so that unfolding
can be stopped (for non-reducible predicates) and so that the atoms in the
leaves are collected.

This can be obtained by transforming every clause for p/n into a clause
for p u/(n + 1), as done in the following definition.

Definition 7.3.1 Let P be a program and C = p(t̄)← A1, ..., Ak a clause of

8The BTA itself can also be seen as part of the cogen. In that case a cogen is a
program that, given an initial division ∆0 produces a generating extension of P wrt
some (U , ∆), where ∆ is more general than ∆0.

9For reasons of clarity and simplicity in unflattened form.

156 CHAPTER 7. GENERATING GENERATING EXTENSIONS

P defining a predicate symbol p/n. Let L ⊆ Pred(P) be a set of reducible
predicate symbols. We then define the clause CLu to be:

p u(t̄, [R1, ...,Rk])← S1, ...,Sk

where

1. Si = q u(s̄,Ri) and Ri is a fresh unused variable, if Ai = q(s̄) is
reducible

2. Si = true and Ri = Ai, if Ai is non-reducible

We will denote by PLu the program obtained by applying the above transfor-
mation to every clause in P and removing all true atoms from the bodies.

In the above definition inserting a literal of the form q u(s̄,Ri) into the
body corresponds to further unfolding whereas inserting true corresponds
to stopping the unfolding process. In the case of Example 7.2.16 with
L = {t/3}, applying the above to the program P of Figure 7.2 gives rise
to the following program PLu (which could be further improved by a simple
partial evaluation):

nont_u(X,T,R,[V1,nont(X,V,R)]) :- t_u(a,T,V,V1).
nont_u(X,T,R,[V1]) :- t_u(X,T,R,V1).
t_u(X,[X|R],R,[]).

This piece of code might actually be called a compiled non-ground rep-
resentation, and contributes much to the final efficiency of the generating
extensions. Evaluating it for the call nont u(c,T,R,Leaves) yields two
computed answers which correspond to the two branches in Figure 7.2:

> ?-nont_u(c,T,R,Leaves).
T = [a | _52]
Leaves = [[],nont(c,_52,R)]

Yes ;
T = [c | R]
Leaves = [[]]

Yes

The above code is of course still incomplete as it only handles the unfolding
process and we have to extend it to treat the global level as well. Firstly,
calling p u only returns the atoms of one leaf of the SLDNF-tree, so we
need to add some code that collects the information from all the leaves.
This can be done very efficiently using Prolog’s findall predicate. Note

7.3. COGEN APPROACH FOR LOGIC PROGRAMMING 157

that here we leave the purely declarative context. This poses no problem,
because our generating extensions do not have to be self-applied. To stay
declarative one would have to use something like meta-programming in the
ground representation (see Chapter 8), which would severely undermine
our efficiency (and simplicity) concerns. This is why the cogen approach is
(probably) much more difficult to realise in a language like Gödel (maybe
intensional sets can be used to achieve the above) and having some non-
declarative features at our disposal is a definite advantage.

Using the call findall(B,nont u(c,R,T,B),Bs), the Bs will be instan-
tiated to the list [[[],nont(c, 48, 49)],[[]]], which essentially corre-
sponds to the leaves of the SLDNF-tree in Figure 7.3, since by flattening
out we obtain: [nont(c, 48, 49)]. Furthermore, if we call

findall(clause(nont(c,T,R),Bdy),nont u(c,T,R,Bdy),Cs)

we will even get in Cs a representation of the two resultants of Exam-
ple 7.2.16.

Once all the resultants have been generated, the body atoms have to be
generalised (using gen∆) and unfolded if they have not been encountered
yet. The easiest way to achieve this is to add a function p m, for each non-
reducible predicate p, such that p m implements the global control aspect
of the specialisation. That is, for every atom p(t̄), if one calls p m(t̄, R)
then R will be instantiated to the residual call of p(t̄) (i.e. the call after
filtering and renaming, for instance the residual call of p(a, b, X) might be
p1(X)). At the same time p m also generalises this call, checks if it has
been encountered before and if not, unfolds the atom, generates code and
prints the resultants (residual code) of the atom. We have the following
definition of p m, where we denote the Prolog conditional by If->Th;El.
An illustration of this definition, for the predicate nont of Example 7.2.16,
can be found in Figure 7.4.

Definition 7.3.2 Let P be a program and p/n be a predicate defined in P .
Let L ⊆ Pred(P) be a set of reducible predicate symbols. For p ∈ Pred(P)
we define the clause Cp

m, defining the predicate p m, to be:

p m(t̄,R) :-

(find pattern(p(t̄),R) -> true

; (insert pattern(p(s̄),H),

findall(C,(p u(s̄,B), treat clause(H,B,C)),Cs),

pp(Cs),

find pattern(p(t̄),R))).

where t̄ is a sequence of n distinct, fresh variables and p(s̄) = gen∆(p(t̄)).
Finally we define PLm = {Cp

m | p ∈ Pred(P) \ L}.10

10This corresponds to saying that only reducible atoms can occur at the global level,

158 CHAPTER 7. GENERATING GENERATING EXTENSIONS

In the above, the predicate find pattern checks whether its first argu-
ment is a call that has been encountered before, and if so its second argu-
ment will be instantiated to the corresponding residual call (with renaming
and filtering performed). This is achieved by keeping a list of the predicates
that have been encountered before along with their renamed and filtered
calls. So if the call find pattern(p(t̄),R) succeeds, then R has been in-
stantiated to the residual call of p(t̄), if not then the other branch of the
conditional is executed.

The predicate insert pattern will add a new atom (its first argument)
to the list of atoms encountered before and return (in its second argument
H) the generalised, renamed and filtered version of the atom. The atom
H will provide (maybe further instantiated) the head of the resultants to
be constructed. This call to insert pattern is put first to ensure that an
atom is not specialised over and over again at the global level.

The call to findall(C,(p u(s̄,B),treat clause(H,B,C)),Cs) unfolds
the generalised atom p(s̄) and returns a list of residual clauses for p(s̄) (in
Cs). The call p u(s̄,B) inside findall returns a leaf goal of the SLDNF-
tree for p(s̄), which is going to be the body of a residual clause with head
H. For each of the atoms in the body of this clause two things have to be
done. First, for each atom a specialised residual version has to be gen-
erated if necessary. Second, each atom has to be replaced by a call to a
corresponding residual version. Both of these tasks can be performed by
calling the corresponding “m” function of the atoms, so if a body contains
an atom p(t̄) then p m(t̄,R) is called and the atom is replaced by the value
of R. This task is performed by the predicate treat clause, whose third
argument will contain the new clauses.

The predicate pp pretty-prints the clauses of the residual program. The
last call to find pattern will instantiate R to the residual call of the atom
p(t̄).

We can now define the generating extension of a program:

Definition 7.3.3 Let P be a program, L ∈ Pred(P) a set of predicates
and ({UL}, ∆) a safe BTC for P , then the generating extension of P with
respect to ({UL}, ∆) is the program Pg = PLu ∪ PLm.

The complete generating extension for Example 7.2.16 is shown in Fig-
ure 7.4.
The generating extension is called as follows: if one wants to specialise an
atom p(t̄), where p is one of the non-reducible predicates of the subject
program P , then one simply calls p m(t̄,).

and hence only reducible atoms can be put into the initial set of atoms A0 of Algo-
rithm 3.3.11. To be able to put non-reducible atoms into A0, one just hast to replace
“p ∈ Pred(P) \ L” by “p ∈ Pred(P)”.

7.4. EXAMPLES AND RESULTS 159

nont m(B,C,D,E) :-

(find pattern(nont(B,C,D),E) -> true

; (insert pattern(nont(B,F,G),H),

findall(I,(nont u(B,F,G,J),treat clause(H,J,I)),K),

pp(K),

find pattern(nont(B,C,D),E)

)).

nont u(B,C,D,[E,nont(B,G,D)]) :- t u(a,C,G,E).

nont u(H,I,J,[K]) :- t u(H,I,J,K).

t u(L,[L|M],M,[]).

Figure 7.4: The generating extension for the parser

The job of the cogen is now quite simple: given a program P and a
safe BTC β for P , generate a generating extension for P consisting of the
two parts described above. The code of the essential parts of our cogen
is shown in Appendix E. The predicate predicate generates the defini-
tion of the global control m-predicates for each non-reducible predicate of
the program, whereas the predicates clause, bodys and body take care of
translating clauses of the original predicate into clauses of the local control
u-predicates. Note how the second argument of bodys and body corre-
sponds to code of the generating extension whereas the third argument
corresponds to code produced at the next level, i.e. at the level of the spe-
cialised program. Further details on extending the cogen to handle built-ins
and the if-then-else can be found in Appendix D.

7.4 Examples and results

In this section we present some experiments with our cogen implementation,
henceforth referred to as logen, as well as with some other specialisation
systems. We will use three example programs to that effect.

The first program is the parser from Example 7.2.16. We will use the
same annotation as in the previous sections: nont 7→ (s, d , d).

The second example program is the “mixed” meta-interpreter for the
ground representation of [173] in which the goals are “lifted” to the non-
ground representation for resolution. See Chapter 8 for further details.
We will specialise this program given the annotation solve 7→ (s, d), i.e.
we suppose that the object program is given and the query to the object
program is dynamic.

160 CHAPTER 7. GENERATING GENERATING EXTENSIONS

Finally we also experimented with a regular expression parser, which
tests whether a given string can be generated by a given regular expression.
The example is taken from [207]. In the experiment we used dgenerate 7→
(s, d) for the initial division, i.e. the regular expression is fully known
whereas the string is dynamic.

7.4.1 Experiments with logen

The Tables 7.1, 7.2 and 7.3 summarise our benchmarks of the logen sys-
tem. The timings were obtained by using the cputime/1 predicate of Prolog
by BIM on a Sparc Classic under Solaris (timings, at least for Table 7.1,
were almost identical for a Sun 4).

Program Time Annotation

parser 0.02 s nont 7→ (s, d , d)
solve 0.06 s solve 7→ (s, d)
regexp 0.02 s dgenerate 7→ (s, d)

Table 7.1: Running logen

Program Time Query

parser 0.01 s nont(c,T ,R)
solve 0.01 s solve(“{q(X)← p(X), p(a)←}”, Q)
regexp 0.03 s dgenerate(”(a + b) ∗ .a.a.b”,S)

Table 7.2: Running the generating extension

Program Speedup Factor Runtime Query

parser 2.35 nont(c, [

18︷ ︸︸ ︷
a, . . . , a, c, b], [b])

solve 7.23 solve(“{q(X)← p(X), p(a)←}”,“← q(a)”)
regexp 101.1 dgenerate(”(a + b) ∗ .a.a.b”, ”abaaaabbaab”)

Table 7.3: Running the specialised program

The results depicted in Tables 7.1, 7.2 and 7.3 are very satisfactory.
The generating extensions are generated very efficiently and also run very
efficiently. Furthermore the specialised programs are also very efficient
and the speedups are very satisfactory. The specialisation for the parser
example corresponds to the one obtained in 7.2.16. By specialising solve
our system logen was able to remove almost all11 the overhead of the

11To get rid also of the encoding overhead using struct/2 one would also have to apply

7.4. EXAMPLES AND RESULTS 161

ground representation, something which has been achieved for the first
time in [97]. In fact, the specialised program looks like this:

solve__0([]).
solve__0([struct(q,[B])|C]) :-
solve__0([struct(p,[B])]), solve__0(C).

solve__0([struct(p,[struct(a,[])])|D]) :-
solve__0([]), solve__0(D).

The specialised program obtained for the regexp example actually cor-
responds to a deterministic automaton, a feat that has also been achieved
by the system logimix in [207]. For further details about the examples see
Appendices F.1, F.2 and F.3.

7.4.2 Experiments with other systems

We also performed the experiments using other specialisation systems, some
of which we already encountered in Chapter 6. All systems were able to
satisfactorily handle the parser example and came up with (almost) the
same specialised program as logen. More specific information is presented
in the following.

mixtus. mixtus ([245]) is a partial evaluator for full Prolog which is not
(effectively) self-applicable. We experimented with version 0.3.3 of mixtus
running under SICStus Prolog 2.1. mixtus came up with exactly the same
specialisation as our logen for the parser and solve examples. mixtus
was also able to specialise the regexp program, but not to the extent of
generating a deterministic automaton.

sp. We experimented with the sp system (see [97]), a specialiser for a
subset of Prolog (comparable to our subset, with the exception that sp
does not handle the if-then-else). For the solve example sp was able to
obtain the same specialisation as logen, but only after re-specialising the
specialised program a second time (also sp does not perform filtering which
might account for some loss in efficiency). Due to the heavy usage of the
if-then-else the regexp example could not be handled (directly) by sp.

logimix. logimix ([207]) is a self-applicable partial evaluator for a sub-
set of Prolog, containing if-then-else, side-effects and some built-ins. This

a technique called constructor specialisation (for functional programming languages, see
e.g. [206] or [88]).

162 CHAPTER 7. GENERATING GENERATING EXTENSIONS

system incorporates ideas developed for functional programming and falls
within the off-line setting and requires a binding time annotation. It is
not (yet) fully automatic in the sense that the program has to be hand-
annotated. For the parser and regexp examples, logimix came up with
almost the same programs than logen (a little bit less efficient because
bindings were not back-propagated on the head of resultants). We were
not able to annotate solve properly, in every case logimix aborted due to
an “instantiation error” on the =../2 built-in. This could either be due to
a misunderstanding (on our part) of the annotations of logimix or simply
due to a bug in logimix. It might also be that the example cannot be
handled by logimix because the restrictions on the annotations are more
severe than ours (in logen the unfoldable predicates do not require a divi-
sion and logen allows non-deterministic unfolding — the latter seems to
be crucial for the solve example).

leupel. leupel ([167, 173], see also Chapter 9) is a (not yet effectively
self-applicable) partial evaluator for a subset of Prolog, very similar to the
one treated by logimix. The system is guided by an annotation phase
which is unfortunately also not automatic. The annotations are “semi-on-
line”, in the sense that conditions (tested in an on-line manner) can be given
on when to make a call reducible, non-reducible or even unfoldable (given
no loop is detected at on-line specialisation time). We will re-examine
that system in Chapter 9. For the parser and regexp examples the system
performed the same specialisation as logen. For the solve example leupel
even came up with a better specialisation than logen, in the sense that
unfolding has also been performed at the object level:

solve__1([]).
solve__1([struct(q,[struct(a,[])])|A]) :- solve__1(A).
solve__1([struct(p,[struct(a,[])])|A]) :- solve__1(A).

Such optimisations depend on the particular object program and are
therefore outside the reach of purely off-line methods.

ecce. This is the system we already described and used in Chapter 6. It is
a fully automatic on-line system for a declarative subset of Prolog (similar
to the language handled by SP). We used the settings corresponding to
ecce-x, as described in Section 6.4. For the parser example ecce produced
the same specialisation as logen. For the solve example the ecce came
up with a better specialisation than logen, identical to the one obtained
by leupel (but this time fully automatically). Due to the heavy usage of

7.4. EXAMPLES AND RESULTS 163

the if-then-else the regexp example could, similarly to SP, not be handled
(directly) by ecce.

paddy. We also did some experiments with the paddy system (see [227])
written for full Eclipse (a variant of Prolog). paddy basically performed the
same specialisation of solve as ecce or leupel, but left some useless tests
and clauses inside. paddy was also able to specialise the regexp program,
but again not to the extent of generating a deterministic automaton.

sage. Finally, we tried out the self-applicable partial deducer sage (see
[115, 116]) for the logic programming language Gödel. sage came up with
(almost) the same specialised program for the parser example as logen.
sage performed little specialisation on the solve example, returning almost
the unspecialised program back. Due to the heavy usage of the if-then-else
the regexp example could not be handled by sage.

7.4.3 Comparing transformation times

We were able to measure transformation times (to be compared with the
results of Table 7.2) for all systems except for sage. Also, all systems
except paddy were run on the same machine as logen. In fact, paddy
runs under Eclipse and had for technical reasons to be executed on a Sun 4.
mixtus and logimix were executed under SICStus Prolog 2.1, while sp was
executed using SICStus Prolog 3 (for sp we only benchmarked one iteration,
although two were required for an optimal result for solve). leupel and
ecce were benchmarked using Prolog by BIM.12

As logimix is self-applicable, we were also able to produce generating
extensions to perform the specialisation more efficiently. Producing these
generating extensions by using logimixcogen (obtained via the third Fu-
tamura projection) took 1.103s for the parser example and 0.983s for the
regexp example.13 The corresponding generating extensions then performed
the specialisation in 0.015s instead of 0.018s for the parser example, and
in 0.078s instead of 0.093s for the regexp example (so only modestly faster
than running logimix directly). We also tested the size of the logen and
logimixcogen using statistics(program,S) of SICStus Prolog. The result
for logimixcogen (without front- and back-end) was 161616 bytes and the

12leupel uses the ground representation and is therefore rather slow. Also, the timings
of ecce include the printing of tracing information as well as some run-time type checks.
As mentioned in Chapter 6, ecce is still a prototype and its transformation speed can
still be (dramatically) improved.

13Producing these generating extensions via the second Futamura projection took
1.469s for the parser example and 1.277s for the regexp example.

164 CHAPTER 7. GENERATING GENERATING EXTENSIONS

size of logen (without the interactive shell and various tools) was 20464
bytes, so about 1/8th of the size of logimixcogen.

A summary of all the transformation times can be found in Table 7.4.
The columns marked by spec contain the times needed to produce the
specialised program (using the generating extensions in the case of logen
and logimixcogen), whereas the columns marked by genex contain the times
needed to produce the generating extensions. As can be seen, logen is
by far the fastest system overall, as well for specialisation as for compiler
generation. Table 7.5 contains a comparison of the run-times of some of
the residual programs for a variety of run-time queries.14 It highlights the
good specialisation obtained by logen but also shows that for the solve
example, as explained earlier, the on-line systems were able to produce
better specialisation.

Specialiser parser parser solve solve regexp regexp
genex spec genex spec genex spec

Off-line

logen 0.02 s 0.01 s 0.06 s 0.01 s 0.02 s 0.03 s
logimix 1.47 s 0.02 s - - 1.28 s 0.09 s
logimixcogen 1.10 s 0.02 s - - 0.98 s 0.08 s

Semi On-line

leupel - 0.11 s - 0.64 s - 4.00 s

On-line

ecce-x - 0.09 s - 3.48 s - -
mixtus - 0.14 s - 1.36 s - 13.63 s
paddy - 0.05 s - 0.80 s - 3.17 s
sp - 0.07 s - 0.47 s - -

Table 7.4: Specialisation times

Finally the figures in Tables 7.1 and 7.2 really shine when compared
to the compiler generator and the generating extensions produced by the
self-applicable sage system. Unfortunately self-applying sage is currently
not possible for normal users, so we had to take the timings from [115]:
generating the compiler generator takes about 100 hours (including garbage
collection), generating a generating extension took for the examples (which
are probably more complex than the ones treated in this section) in [115]

14The parser example is not included as all systems performed practically identical
specialisation. For sp, the residual program obtained after two specialisation phases was
used. However, the residual programs produced by sp cannot be called in renamed way,
thus leading to the higher run-time in Table 7.5.

7.5. DISCUSSION AND FUTURE WORK 165

Specialiser solve regexp

Off-line

logen 0.31 s 0.21 s
logimix - 0.24 s

Semi On-line

leupel 0.16 s 0.21 s

On-line

ecce-x 0.16 s -
mixtus 0.28 s 0.24 s
paddy 0.30 s 0.27 s
paddy 0.48 s -

Table 7.5: Speed of the residual programs (for a large number of queries)

at least 7.9 hours (11.8 hours with garbage collection). The speedups by
using the generating extension instead of the partial evaluator range from
2.7 to 3.6 but the execution times for the system (including pre- and post-
processing) still range from 113s to 447s.

7.5 Discussion and future work

In comparison to other partial deduction methods the cogen approach may,
at least from the examples given in this chapter, seem to do quite well with
respect to speedup and quality of residual code, and outperform any other
system with respect to transformation speed. But this efficiency has a price.
Firstly, since our approach is off-line it will of course suffer from the same
deficiencies than other off-line systems when compared to on-line systems.
For instance, an off-line system has to resort to a much simpler control
strategy during specialisation, and incorporating refined control methods,
like the ones developed in Part II of the thesis, is usually not possible. This
means e.g. that off-line systems are not able to perform unfolding at the
object level, as discussed in Sections 7.4.2 and 7.4.3). Secondly, no partially
static structures were needed in the above examples and our system cannot
handle these, so it will probably have difficulties with something like the
transpose program (see [97] or Appendix C) or with a non-ground meta-
interpreter. However, our notion of BTA and BTC is quite a coarse one
and corresponds roughly to that used in early work on self-applicability of
partial evaluators for functional programs, so one might expect that this
could be refined considerably.

166 CHAPTER 7. GENERATING GENERATING EXTENSIONS

Although our approach is closely related to the one for functional pro-
gramming languages there are still some important differences. Since com-
putation in our cogen is based on unification, a variable is not forced to
have a fixed binding-time assigned to it — the binding-time analysis is just
required to be safe. Consider, for example, the following program:

g(X) :- p(X),q(X)
p(a).
q(a).

If the initial division ∆0 states that the argument to g is dynamic, then
∆0 is safe for the program and the unfolding rule that unfolds predicates
p and q. The residual program that one gets by running the generating
extensions is:

g__0(a).

In contrast to this any cogen for a functional language known to us will
classify the variable X in the following analogue functional program (here
exemplified in Scheme) as dynamic:

(define (g X) (and (equal? X a) (equal? X a)))

and the residual program would be identical to the original program.
One could say that our system allows divisions that are not uniformly

congruent in the sense of Launchbury [162] and essentially, our system
performs specialisation that a partial evaluation system for a functional
language would need some form of driving to be able to do.

Whether application of the cogen approach is feasible for specialisation
of other logical programming languages than Prolog is hard to say, but
it seems essential that such languages have some meta-level built-in pred-
icates, like Prolog’s findall and call predicates, for the method to be
efficient. This means that it is probably very difficult, or even impossi-
ble, to use the approach (efficiently) for Gödel. On the other hand, in a
language like XSB [243, 50], the cogen might actually become simpler be-
cause one might be able to use the underlying tabling mechanism for the
memoisation, which currently has to be done explicitly by the generating
extensions. Further work will be needed to establish these conjectures.

7.5.1 BTA based on groundness analysis

We now present some remarks on the relation between groundness analysis
and BTA.

7.5. DISCUSSION AND FUTURE WORK 167

Since we imposed that a static term must be ground, one might think
that the BTA corresponds exactly to groundness analysis (via abstract
interpretation [57] for instance). This is however not entirely true because
a standard groundness analysis gives information about the arguments at
the point where a call is selected (and often imposing left-to-right selection).
In other words, it gives groundness information at the local level when using
some standard execution. A BTA however requires groundness information
about the arguments of calls in the leaves, i.e. at the point where these
atoms are lifted to the global control level.

So what we actually need is a groundness analysis adapted for unfolding
rules and not for standard execution of logic programs. However, we will
see that, by re-using and running a standard groundness analysis on a
transformed version of the program to be specialised, we can come up with
a reasonable BTA.

The groundness analysis which we will re-use is based on the PLAI
system (implemented in SICStus Prolog) which is a domain independent
framework for developing global analysers based on abstract interpretation.
It was originally developed in [120], was subsequently enhanced with a more
efficient fix-point algorithm [209, 210, 211]. In our experiments we will use
the set sharing domain [131] provided with PLAI (sharing allows to infer
groundness in a straightforward way — basically if a variable does not share
with any other variable nor with itself then it is ground).

Let us now examine the Example 7.2.16 again and perform some mod-
ifications to the program PLu we produced earlier:

nont_u(X,T,R) :- t_u(a,T,V),nont_g(X,V,R).
nont_u(X,T,R) :- t_u(X,T,R).
t_u(X,[X|R],R).
nont_g(X,V,R).

All we have done is to remove the extra argument collecting the atoms
in the leaves and we have also replaced the literal true (which corresponds
to stopping the unfolding process and lifting nont(X,V,R) to the global
level) by a special call to a new predicate nont g(X,V,R). In this way the
call patterns of nont g correspond almost exactly to the atoms which are
lifted to the global level in Algorithm 7.2.14.

If we now run the groundness analysis on this program, stating that the
entry point is nont(X,T,R), with X being ground, we will obtain as a result
that all calls to nont g have their first argument ground. Also for the solve
example of Section 7.4 this approach (by removing negative goals so that
the results of the abstract interpretation remain a safe approximation) we
obtain a correct BTC telling us that calls to solve g will have the first
argument ground!

168 CHAPTER 7. GENERATING GENERATING EXTENSIONS

However, note that the groundness analysis supposes a left-to-right se-
lection rule. This results in an analysis which supposes that the non-
reducible atoms are lifted to the global level as soon as they become leftmost
(and not after the whole unfolding as been done). This might result in the
groundness analysis being too conservative wrt the actual partial deduc-
tion. We can remedy this to some extent by moving all g-calls to the end of
the clause. The optimal solution would be, for the groundness analysis to
delay calls to g-calls functions as long as possible. It will have to be studied
whether this can be obtained via some adaptation of the PLAI algorithm.
Another promising direction might be based on using the techniques for
the “prop” domain developed in [54].

Also note that the above process still needs a set L of reducible predi-
cates. The big question is, how do we come up with such a set. One might
use a “standard” strategy from functional programming (see [24]): every
predicate p that is not deterministic will be added to the set of residual
predicates L (and then groundness analysis will have to be run again,...,
until a fixpoint is reached). Further work will be required to work out the
exact theoretical and practical details of this approach. It will also have
to be studied, whether in the new logic programming language Mercury
a BTA becomes much easier, due to the presence of the type and mode
declarations.15

7.5.2 Related work in partial evaluation and abstract
interpretation

The first hand-written cogen based on partial evaluation principles was,
in all probability, the system RedCompile for a dialect of Lisp [16]. Since
then successful compiler generators have been written for many different
languages and language paradigms [241, 125, 127, 20, 5, 25, 109].

In the context of definite clause grammars and parsers based on them,
the idea of hand writing the compiler generator has also been used in [214,
215].16 However, it is not based on (off-line) partial deduction. The exact
relationship to our work is currently being investigated.

Also the construction of our program PLu (Definition 7.3.1) seems to be
related to the idea of abstract compilation, as defined for instance in [120].
In abstract compilation a program P is first transformed and abstracted.
Running this transformed program then performs the actual abstract in-
terpretation analysis of P . In our case concrete execution of PLu performs

15Note however that the type and mode declarations are specified for fully known
input and not for partially known input.

16Thanks to Ulrich Neumerkel for pointing this out.

7.5. DISCUSSION AND FUTURE WORK 169

(part of) the partial deduction process. Another similar idea has also been
used in [271] to calculate abstract answers.

Note that in [54], a different kind of abstract compilation is presented, in
which a transformed program is analysed (and does not perform the analysis
itself). This seems to be related to the idea outlined in Section 7.5.1 for
obtaining a BTA from an existing groundness analysis.

7.5.3 Future work

The most obvious goal of the near future is to see if a complete and pre-
cise binding-time analysis can be developed, e.g. by extending or modifying
an existing groundness/sharing analysis, as outlined above. On a slightly
longer term one might try to extend the cogen and the binding-time ana-
lysis to handle partially static structures as well as allowing more than
two binding-times, thus leading to a multi-level cogen (see [109]). It also
seems natural to investigate to what extent more powerful control and spe-
cialisation techniques (like the unfold/fold transformations, [222]) can be
incorporated into the cogen in the context of conjunctive partial deduction
(which will be presented later in Chapter 10).

170 CHAPTER 7. GENERATING GENERATING EXTENSIONS

Part IV

Optimising Integrity
Checking by Program

Specialisation

171

Chapter 8

Integrity Checking and
Meta-Programming

8.1 Introduction and motivation

Integrity constraints play a crucial role in (among others) deductive data-
bases, abductive and inductive logic programs.1 They ensure that no con-
tradictory data can be introduced and monitor the coherence of the program
or database. From a practical viewpoint, however, it can be quite expen-
sive to check the integrity after each update. To alleviate this problem,
special purpose integrity simplification methods have been proposed (e.g.
[39, 73, 188, 186, 242, 59]), taking advantage of the fact that the database
was consistent prior to the update, and only verifying constraints possi-
bly affected by the new information. However, even these refined methods
often turn out to be not efficient enough. We will show how program spe-
cialisation can be used to get rid of some of these inefficiencies. The basic
idea will be to write the integrity checking procedure as a meta-interpreter,
which will then be optimised for certain transaction patterns.

There have been two lines of motivation for this part of the thesis. A first
motivation came from participation in the ESPRIT-project COMPULOG.
This project brought together leading European research groups, both from
the areas of deductive databases and logic programming. One idea, that
was a frequent issue of discussion among the partners, was the potential
of deriving highly specialised integrity checks for deductive databases, by

1In the remainder of this part of the thesis we will concentrate on deductive databases,
but the results are also valid for inductive or abductive logic programs with integrity
constraints.

173

174 CHAPTER 8. INTEGRITY CHECKING

partially evaluating integrity checking procedures, implemented as meta-
interpreters, with respect to particular update patterns and with respect
to the more static parts of the database.

A second line of motivation is to promote partial deduction toward a
broader community in software development research and industry, as a
(mature) technology for automatic optimisation of software. Although par-
tial deduction is by now a well-accepted and frequently applied optimisation
technique within the logic programming community, very few reports on
successfully optimised applications have appeared in the literature. This is
quite in contrast with work on partial evaluation for functional - and even
imperative - languages, where several “success stories”, e.g in the areas
of ray tracing [6, 205], scientific computing [112], simulation and modelling
[284], [3, 4] have been published. As such, a second motivation for this work
has been to report on a very successful application of partial deduction: our
experiments illustrating how specialisation can significantly improve on the
best general purpose integrity checking techniques known in the literature.

First though, we present some essential background in deductive data-
bases and integrity checking. We also present a new method for specialised
integrity checking, which we will turn out to be well suited for program
specialisation.

8.2 Deductive databases and specialised in-
tegrity checking

Definition 8.2.1 (deductive database) A deductive database is a set of
clauses.

A fact is a clause with an empty body, while an integrity constraint
is a clause of the form false ← Body. A rule is a clause which is neither
a fact nor an integrity constraint. As is well-known, more general rules
and constraints can be reduced to this format through the transformations
proposed in [187]. Constraints in this format are referred to as inconsistency
indicators in [251].

For the purposes of this and the following chapter, it is convenient to
consider a database to be inconsistent, or violating the integrity constraints,
iff false is derivable in the database via SLDNF-resolution. Other views of
inconsistency exist and some discussions can for instance be found in [41].
Note that we do not require a deductive database to be range-restricted.
This is because our notion of integrity is based on SLDNF-resolution, which
always gives the same answer irrespective of the underlying language (see

8.2. DEDUCTIVE DATABASES AND INTEGRITY CHECKING 175

e.g. [252]). However, range-restriction is still useful as it ensures that no
SLDNF-refutation will flounder.

As pointed out above, integrity constraints play a crucial role in several
logic programming based research areas. It is however probably fair to say
that they received most attention in the context of (relational and) deduc-
tive databases. Addressed topics are, among others, constraint satisfiabil-
ity, semantic query optimisation, system supported or even fully automatic
recovery after integrity violation and efficient constraint checking upon up-
dates. It is the latter topic that we focus on in this and the following
chapter.

Two seminal contributions, providing first treatments of efficient con-
straint checking upon updates in a deductive database setting, based upon
the original work by Nicolas for relational databases [217], are [73] and
[188, 186]. In essence, what is proposed is reasoning forwards from an ex-
plicit addition or deletion, computing indirectly caused implicit potential
updates. Consider the following clause:

p(X, Y)← q(X), r(Y)
The addition of q(a) might cause implicit additions of p(a, Y)-like facts.
Which instances of p(a, Y) will actually be derivable depends of course
on r. Moreover, some or all such instances might already be provable in
some other way. Propagating such potential updates through the program
clauses, we might hit upon the possible addition of false. Each time this
happens, a way in which the update might endanger integrity has been
uncovered. It is then necessary to evaluate the (properly instantiated)
body of the affected integrity constraint to check whether false is actually
provable in this way.

Propagation of potential updates, along the lines proposed in [186], can
be formalised as follows.

Definition 8.2.2 (database update) A database update, U , is a triple
〈Db+, Db=, Db−〉 such that Db+, Db=, Db− are mutually disjoint deductive
databases.
We say that δ is an SLDNF-derivation after U for a goal G iff δ is an
SLDNF-derivation for Db+ ∪Db= ∪ {G}.
Similarly δ is an SLDNF-derivation before U for G if δ is an SLDNF-
derivation for Db− ∪Db= ∪ {G}.

Db− are the clauses removed by the update and Db+ are the clauses
which are added by the update. Thus, Db− ∪Db= represents the database
state before the update and Db+ ∪Db= represents the database state after
the update.

176 CHAPTER 8. INTEGRITY CHECKING

Below, mgu∗(A,B) represents a particular idempotent and relevant mgu
of {A,B′}, where B′ is obtained from B by renaming apart (wrt A). If no
such unifier exists then mgu∗(A,B) = fail . The operation mgu∗ has the
following interesting property:

Proposition 8.2.3 Let A,B be two expressions. Then mgu∗(A,B) = fail
iff A and B have no common instance.

Proof ⇐: Suppose mgu∗(A,B) = θ 6= fail . This means that Aθ = Bγθ for
some γ and A and B have a common instance and we have a contradiction.
⇒: Suppose that A and B have the common instance Aθ = Bσ and let γ be
the renaming substitution for B used by mgu∗. This means that for some
γ−1 we have Bγγ−1 = B and Bγγ−1σ = Aθ. Now as the variables of Bγ
and A are disjoint the set of bindings θ∗ = θ |vars(A) ∪ (γ−1σ) |vars(Bγ) is a
well defined substitution and a unifier of A and Bγ, i.e. mgu∗(A,B) 6= fail
and we have a contradiction. 2

Definition 8.2.4 (potential updates) Given a database update U =
〈Db+, Db=, Db−〉, we define the set of positive potential updates pos(U)
and the set of negative potential updates neg(U) inductively as follows:

pos0(U) = {A | A← Body ∈ Db+}
neg0(U) = {A | A← Body ∈ Db−}

posi+1(U) = {Aθ | A← Body ∈ Db=, Body = . . . , B, . . . ,

C ∈ posi(U) and mgu∗(B ,C) = θ}
∪ {Aθ | A← Body ∈ Db=, Body = . . . ,¬B, . . . ,

C ∈ negi(U) and mgu∗(B ,C) = θ}
negi+1(U) = {Aθ | A← Body ∈ Db=, Body = . . . , B, . . . ,

C ∈ negi(U) and mgu∗(B ,C) = θ}
∪ {Aθ | A← Body ∈ Db=, Body = . . . ,¬B, . . . ,

C ∈ posi(U) and mgu∗(B ,C) = θ}

pos(U) =
⋃

i≥0 posi(U)
neg(U) =

⋃
i≥0 negi(U)

These sets can be computed through a bottom-up fixpoint iteration.

Example 8.2.5 Let Db+ = {man(a) ←}, Db− = ∅ and let the following
clauses be the rules of Db=:

mother(X ,Y)← parent(X ,Y),woman(X)

8.2. DEDUCTIVE DATABASES AND INTEGRITY CHECKING 177

father(X ,Y)← parent(X ,Y),man(X)
false ← man(X),woman(X)
false ← parent(X ,Y), parent(Y ,X)

For the update U = 〈Db+, Db=, Db−〉, we then obtain, independently of the
facts in Db=, that pos(U) = {man(a), father(a,), false} and neg(U)=∅.

Simplified integrity checking, along the lines of the Lloyd, Topor and
Sonenberg (LST) method [188, 186], then essentially boils down to evalu-
ating the corresponding (instantiated through θ) Body every time a false
fact gets inserted into some posi(U). In Example 8.2.5, one would thus only
have to check ← man(a),woman(a). In practice, these tests can be col-
lected, those that are instances of others removed, and the remaining ones
evaluated in a separate constraint checking phase. The main difference with
the exposition in [188, 186] is that we calculate pos(U) and neg(U) in one
step instead of in two.2

Note that in the above definition we do not test whether an atom A ∈
pos(U) is a “real” update, i.e. whether A is actually derivable after the
update (this is what is called the phantomness test) and whether A was
indeed not derivable before the update (this is called the idleness test). A
similar remark can be made about the atoms in neg(U). Other proposals for
simplified integrity checking often feature more precise (but more laborious)
update propagation. The method by Decker [73], for example, performs the
phantomness test and computes induced updates rather than just potential
updates. Many other solutions are possible, all with their own weak as well
as strong points. An overview of the work during the 80s is offered in [41].
A clear exposition of the main issues in update propagation, emerging after
a decade of research on this topic, can be found in [156]. [47] compares the
efficiency of some major strategies on a range of examples. Finally, recent
contributions can be found in, among others, [46, 75, 164, 251, 165].

Concentrating on potential updates has the advantage that one does
not have to access the entire database for the update propagation. In fact,
Definition 8.2.4 does not reference the facts in Db= at all (only clauses
with at least one literal in the body are used). For a lot of examples, like
databases with a large number of facts, this leads to very good efficiency
(see e.g. the experiments in [47, 251]). It, however, also somewhat restricts
the usefulness of a method based solely on Definition 8.2.4 when the rules
and integrity constraints change more often than the facts.

Based upon Definition 8.2.4 we now formalise a particular simplification
method in more detail. The following definition uses the sets pos(U) and

2This approach should be more efficient, while yielding the same result, because in
each iteration step the influence of an atom C is independent of the other atoms currently
in posi and negi.

178 CHAPTER 8. INTEGRITY CHECKING

neg(U) to obtain more specific instances of goals and detect whether the
proof tree of a goal is potentially affected by an update.

Definition 8.2.6 (Θ+
U , Θ−U) Given a database update U and a goal G =←

L1, . . . , Ln, we define:

Θ+
U (G) = {θ | C ∈ pos(U), mgu∗(Li ,C) = θ,

Li is a positive literal and 1 ≤ i ≤ n }
∪ {θ | C ∈ neg(U), mgu∗(Ai ,C) = θ,

Li = ¬Ai and 1 ≤ i ≤ n}
Θ−U (G) = {θ | C ∈ neg(U), mgu∗(Li ,C) = θ,

Li is a positive literal and 1 ≤ i ≤ n }
∪ {θ | C ∈ pos(U), mgu∗(Ai ,C) = θ,

Li = ¬Ai and 1 ≤ i ≤ n}

We say that G is potentially added by U iff Θ+
U (G) 6= ∅. Also, G is potentially

deleted by U iff Θ−U (G) 6= ∅.

Note that trivially Θ+
U (G) 6= ∅ iff Θ+

U (← Li) 6= ∅ for some literal Li

of G. The method by Lloyd, Sonenberg and Topor in [186] can roughly
be seen as calculating Θ+

U (← Body) for each body Body of an integrity
constraint and then evaluating the simplified constraint false ← Bodyθ for
every θ ∈ Θ+

U (← Body).
For the Example 8.2.5 above we obtain:

Θ+
U (← man(X),woman(X)) = {{X/a}} and

Θ+
U (← parent(X ,Y), parent(Y ,X)) = ∅

and thus obtain the following set of simplified integrity constraints:

{false ← man(a),woman(a)}

Checking this simplified constraint is of course much more efficient than
entirely re-checking the unsimplified integrity constraints of Example 8.2.5.

In the method presented in the remainder of this section, we will use the
substitutions Θ+

U slightly differently. First though, we characterise deriva-
tions in a database after an update, which were not present before the
update.

Definition 8.2.7 (incremental SLDNF-derivation)
Let U = 〈Db+, Db=, Db−〉 be a database update and let δ be an SLDNF-
derivation after U for a goal G. A derivation step of δ will be called incre-
mental iff it resolves a positive literal with a clause from Db+ or if it selects

8.2. DEDUCTIVE DATABASES AND INTEGRITY CHECKING 179

a ground negative literal ¬A such that ← A is potentially deleted by U .
We say that δ is incremental iff it contains at least one incremental deriva-
tion step.

The treatment of negative literals in the above definition is not optimal.
In fact “← A is potentially deleted by U” does not guarantee that the same
derivation does not exist in the database state prior to an update. However
an optimal criterion, due to its complexity, has not been implemented in
the current approach.

Lemma 8.2.8 Let G be a goal and U a database update. If there exists an
incremental SLDNF-derivation after U for G, then G is potentially added
by U .

Proof Let U = 〈Db+, Db=, Db−〉 and let δ be the incremental SLDNF-
derivation after U for G. We define δ′ to be the incremental SLDNF-
derivation for G after U obtained by stopping at the first incremental
derivation step of δ. Let G0 = G, G1, . . . , Gk, with k > 0, be the se-
quence of goals of δ′. We will now prove by induction on the length k of δ′

that G0 is potentially added by U .
Induction Hypothesis: For 1 ≤ k ≤ n we have that G0 is potentially
added by U .
Base Case: (k = 1). This means that only one derivation step has been
performed, which must therefore be incremental. There are two possibil-
ities: either a positive literal Li = Ai or a negative literal Li = ¬Ai has
been selected inside G0. In the first case the goal G0 has been resolved
with a standardised apart3 clause A ← Body∈ Db+ with mgu(Ai ,A)=θ.
Thus by Definition 8.2.4 we have A ∈ pos0(U) and by Definition 8.2.6 we
obtain θ ∈ Θ+

U (G0). In the second case we must have Θ−U (← Ai) 6= ∅ and
by Definition 8.2.6 there exists a C ∈ neg(U) such that mgu∗(Ai ,C) = θ.
Hence we know that θ ∈ Θ+

U (← G0). So, in both cases Θ+
U (← G0) 6= ∅, i.e.

G = G0 is potentially added by U .
Induction Step: (k = n+1). We can first apply the induction hypothesis
on the incremental SLDNF-derivation for G1 after U consisting of the last
n steps of δ (i.e. whose sequence of goals is G1, . . . , Gn+1) to deduce that
G1 is potentially added by U .
Let G1 =← L1, . . . , Ln. We know that for at least one literal Li we have
that Θ+

U (← Li) 6= ∅.
If a negative literal has been selected in the derivation step from G0 to

3So far we have not provided a formal definition of the notion of “standardising
apart”. Several ones, correct and incorrect, exist in the literature (see e.g. the discussion
in [149] or [84]). Just suppose for the remainder of this proof that fresh variables, not
occurring “anywhere else”, are used.

180 CHAPTER 8. INTEGRITY CHECKING

G1 then G0 is also potentially added, because all the literals Li also occur
unchanged in G0.
If a positive literal L′j has been selected in the derivation step from G0 to
G1 and resolved with the (standardised apart) clause A ← B1, . . . , Bq ∈
Db=, with mgu(L′j ,A) = θ, we have: G0 = ← L′1, . . . , L

′
j , . . . , L

′
r, G1 =

← (L′1, . . . , L
′
j−1, B1, . . . , Bq, L

′
j+1, . . . , L

′
r)θ.

There are again two cases. Either there exists a L′p, with 1 ≤ p ≤ r∧p 6= j,
such that Θ+

U (← L′pθ) 6= ∅. In that case we have for the more general goal
← L′p that Θ+

U (← L′p) 6= ∅4 and therefore G0 is potentially added.
In the other case there must exist a Bp, with 1 ≤ p ≤ q, such that Θ+

U (←
Bpθ) 6= ∅. If Bp is a positive literal, we have by Definition 8.2.6 for some
C ∈ pos(U) that mgu∗(Bpθ,C) = σ. Therefore, by Definition 8.2.4, we
know that there is an element A′ ∈ pos(U) which is more general than
Aθσ. As Aθ is an instance of L′j , L′j and A′ have the common instance Aθσ
and thus mgu∗(L′j ,A

′) must exist (by Proposition 8.2.3) and we can thus
conclude that Θ+

U (← L′j) 6= ∅ and that G = G0 is potentially added.
The proof is almost identical for the case that Bp is a negative literal. 2

Definition 8.2.9 (relevant SLDNF-derivation) Let δ be a (possibly
incomplete) SLDNF-derivation after U = 〈Db+, Db=, Db−〉 for G0 and let
G0, G1, . . . be the sequence of goals of δ. We say that δ is a relevant SLDNF-
derivation after U for G0 iff for each Gi we either have that Gi is potentially
added by U or δi is incremental after U , where δi is the sub-derivation
leading from G0 to Gi.

A refutation being a particular derivation we can specialise the concept
and define relevant SLNDF-refutations. The following theorem will form
the basis of our method for performing specialised integrity checking.

Theorem 8.2.10 (incremental integrity checking)
Let U = 〈Db+, Db=, Db−〉 be a database update such that there is no
SLDNF-refutation before U for the goal ← false.
Then ← false has an SLDNF-refutation after U iff ← false has a relevant
refutation after U .

Proof ⇐: If ← false has a relevant refutation then it trivially has a
refutation, namely the relevant one.
⇒: The refutation must be incremental, because otherwise the derivation

4Note that this is not the case if we use just the mgu without standardising apart
inside Definition 8.2.6. This technical detail has been overlooked in [188, 186]. Take for
instance L′p = p(X) and θ = {X/f(Y)}. Then L′pθ unifies with p(f(X)) ∈ pos(U) and

the more general L′p does not!

8.2. DEDUCTIVE DATABASES AND INTEGRITY CHECKING 181

is also valid for Db= ∪ Db− and we have a contradiction. Let G0 =←
false,G1 , . . . ,Gk = 2 be the incremental refutation. For each Gi, we either
have that Gi occurs after the first incremental derivation step and hence
the sub-derivation δi, leading from G0 to Gi, is incremental. If on the other
hand Gi is situated before the first incremental derivation step, we can use
Lemma 8.2.8 to infer that Gi is potentially added. Thus the derivation
conforms to Definition 8.2.9 and is relevant. 2

In other words, if we know that the integrity constraints of a deductive
database were not violated before an update, then we only have to search for
a relevant refutation of ← false in order to check the integrity constraints
after the update. Observe that, by definition, once a derivation is not
relevant, it cannot be extended into a relevant one.

The method can be illustrated by re-examining Example 8.2.5. The
goals in the SLD-tree in Figure 8.1 are annotated with their corresponding
sets of substitutions Θ+

U . The SLD-derivation leading to ← parent(X ,Y),
parent(Y ,X) is not relevant and can therefore be pruned. Similarly all
derivations descending from the goal ← man(X), woman(X) which do not
use Db+ = {man(a) ←} are not relevant either and can also be pruned.
However, the derivation leading to ← woman(a) is incremental and is rel-
evant even though ← woman(a) is not potentially added.

�
�

��	

@
@

@@R

?

@
@

@@R

�
�

��	

← parent(X, Y), parent(Y, X) ∅← man(X), woman(X) {X/a}

← false {∅}

← woman(a) ∅
.
.
.

Figure 8.1: SLDNF-tree for Example 8.2.5

Note that the above method can be seen as an extension of the LST
method in [186], because Θ+

U is not only used to simplify the integrity
constraints at the topmost level (i.e. affecting the bodies of integrity con-
straints), but is used throughout the testing of the integrity constraints to
prune non-relevant branches. An example where this aspect is important
will be presented in Section 9.3. However, the LST method in [186] not

182 CHAPTER 8. INTEGRITY CHECKING

only removes integrity constraints but also instantiates them, possibly gen-
erating several specialised integrity constraints for a single unspecialised
one. This instantiation often considerably reduces the number of match-
ing facts and is therefore often vital for improving the efficiency of the
integrity checks. The Definition 8.2.9 of relevant derivations does not use
Θ+

U to instantiate intermediate goals. The reasons for this are purely prac-
tical, namely, to keep the method as simple as possible for effective partial
evaluation. Definition 8.2.9 could actually be easily adapted to use Θ+

U for
instantiating goals and Theorem 8.2.10 would still be valid. But, surpris-
ingly, the instantiations will often be performed by the partial evaluation
method itself and the results in Section 9.3 illustrate this. We will further
elaborate on these aspects in Section 9.1.2.

8.3 Meta-interpreters and pre-compilation

A meta-program is a program which takes another program, the object pro-
gram, as input, manipulating it in some way. Usually the object and meta-
program are supposed to be written in (almost) the same language. Meta-
programming can be used for (see e.g. [122, 14]) extending the programming
language, modifying the control [60], debugging, program analysis, program
transformation and, as we will see, specialised integrity checking.

Indeed, update propagation, constraint simplification and verification
can be implemented through a meta-interpreter5, manipulating updates
and databases as object level expressions. A major benefit of such a
meta-programming approach lies in the flexibility it offers: Any particu-
lar propagation and simplification strategy can be incorporated into the
meta-program.

Furthermore, by partial evaluation of this meta-interpreter, we may (in
principle) be able to pre-compile the integrity checking for certain update
patterns. Let us re-examine Example 8.2.5. For the concrete update of
Example 8.2.5, with Db+ = {man(a)←}, a meta-interpreter implementing
the method of the previous section would try to find a refutation for← false
in the manner outlined in Figure 8.1. By specialising this meta-interpreter
for an update pattern Db+ = {man(A) ←}, Db− = ∅, where A is not yet
known, one might (hopefully) obtain a specialised update procedure, effi-
ciently checking integrity, essentially as follows:

inconsistent(add(man(A)))← evaluate(woman(A))
Given the concrete value for A, this procedure will basically check consis-

5We sometimes also refer to a meta-program as a meta-interpreter if we want to
emphasise the fact that the object program is executed rather than analysed.

8.3. META-INTERPRETERS AND PRE-COMPILATION 183

tency in a similar manner to the unspecialised meta-interpreter, but will
do this much more efficiently, because the propagation, simplification and
evaluation process is already pre-compiled. For instance, the derivation
in Figure 8.1 leading to ← parent(X ,Y), parent(Y ,X) has already been
pruned at specialisation time. Similarly all derivations descending from
the goal ← man(X), woman(X), which do not use Db+, have also already
been pruned at specialisation time. Finally, the specialised update proce-
dure no longer has to calculate pos(U) and neg(U) for the concrete update
U . All of this can lead to very high efficiency gains. Furthermore, for the
integrity checking method we have presented in the previous section, the
same specialised update procedure can be used as long as the rules and
integrity constraints do not change (i.e. Db+ and Db− only contain facts).
For example, after any concrete update which is an instance of the update
pattern above, the specialised update procedure remains valid and does not
have to be re-generated.

Both [282] and [251] explicitly address this compilation aspect. Their
approaches are, however, more limited in some important respects and both
use ad-hoc techniques and terminology instead of well-established and gen-
eral apparatus provided by meta-interpreters and partial evaluation (the
main concern of [251] is to show why using inconsistency indicators instead
of integrity constraints is relevant for efficiency and a good idea in general).

In our approach we can consider any kind of update pattern, any kind
of partial knowledge and any simplification method, simply by changing
the meta-interpreter and the partial evaluation query — it is not fixed
beforehand which part of the database is static and which part is subject
to change.6

In the next chapter we will present a meta-interpreter for specialised
integrity checking which is based on Theorem 8.2.10. This meta-interpreter
will act on object level expressions which represent the deductive database
under consideration. So, before presenting the meta-interpreter in more
detail, it is advisable to discuss the issue of representing these object level
expressions at the meta-level, i.e. inside the meta-interpreter.

6This can be very useful in practice. For instance, in [40], Bry and Manthey argue
that for some applications facts change more often than rules and rules are updated more
often than integrity constraints. As such, specialisation could be done with respect to
dynamic EDBs, as well as with respect to dynamic IDBs, if so required by the application.

184 CHAPTER 8. INTEGRITY CHECKING

8.4 Some issues in meta-programming

8.4.1 The ground vs. the non-ground representation

In logic programming, there are basically two (fundamentally) different ap-
proaches to representing an object level expression, say the atom p(X, a),
at the meta-level. In the first approach one uses the term p(X, a) as
the meta-level representation. This is called a non-ground representa-
tion, because it represents an object level variable by a meta-level vari-
able. In the second approach one would use something like the term
struct(p, [var(1), struct(a, [])]) to represent the object level atom p(X, a).
This is called a ground representation, as it represents an object level vari-
able by a ground term. Figure 8.2 contains some further examples of the
particular ground representation which we will use throughout this thesis.
From now on, we use “T ” to denote the ground representation of a term
T . Also, to simplify notations, we will sometimes use “p”(t1, . . . , tn) as a
shorthand for struct(p, [t1 , . . . , tn]).

Object level Ground representation

X var(1)
c struct(c, [])

f(X, a) struct(f , [var(1), struct(a, [])])
p← q struct(clause, [struct(p, []), struct(q , [])])

Figure 8.2: A ground representation

The ground representation has the advantage that it can be treated
in a purely declaratively manner, while for many applications the non-
ground representation requires the use of extra-logical built-ins (like var/1
or copy/2). The non-ground representation also has semantical problems
(although they were solved to some extent in [64, 197, 198]). The main
advantage of the non-ground representation is that the meta-program can
use the “underlying”7 unification mechanism, while for the ground rep-
resentation an explicit unification algorithm is required. This (currently)
induces a difference in speed reaching several orders of magnitude. The
current consensus in the logic programming community is that both repre-
sentations have their merits and the actual choice depends on the particular
application. In the following subsection we discuss the differences between

7The term “underlying” refers to the system in which the meta-interpreter itself is
written.

8.4. SOME ISSUES IN META-PROGRAMMING 185

the ground and the non-ground representation in more detail. For further
discussion we refer the reader to [122], [123, 34], the conclusion of [197].

Unification and collecting behaviour

As already mentioned, meta-interpreters for the non-ground representation
can simply use the underlying unification. For instance, to unify the object
level atoms p(X, a) and p(Y, Y) one simply calls p(X, a) = p(Y, Y). This is
very efficient, but after the call both atoms will have become instantiated
to p(a, a). This means that the original atoms p(X, a) and p(Y, Y) are no
longer “accessible” (in Prolog for instance, the only way to “undo” these
instantiations is via failing and backtracking), i.e. we cannot test in the
same derivation whether the atom p(X, a) unifies with another atom, say
p(b, a). This in turn means that it is impossible to write a breadth-first like
or a collecting (i.e. performing something like findall/38) meta-interpreter
declaratively for the non-ground representation (it is possible to do this non-
declaratively by using for instance Prolog’s extra-logical copy/2 built-in).

In the ground representation on the other hand, we cannot use the
underlying unification (for instance “p”(var(1),“a”) =“p”(var(2), var(2))
will fail). The only declarative solution is to use an explicit unification
algorithm. Such an algorithm, taken from [67], is included in Appendix H.1.
(For the non-ground representation such an algorithm cannot be written
declaratively; non-declarative features, like var/1 and = ../2, have to be
used.) For instance, unify(“p”(var(1),“a”),“p”(var(2), var(2)), Sub) yields
an explicit representation of the unifier in Sub, which can then be applied
to other expressions. In contrast to the non-ground representation, the
original atoms “p”(var(1),“a”) and “p”(var(2), var(2)) remain accessible
in their original form and can thus be used again to unify with other atoms.
Writing a declarative breadth-first like or a collecting meta-interpreter poses
no problems.

Standardising apart and dynamic meta-programming

To standardise apart object program clauses in the non-ground represen-
tation, we can again use the underlying mechanism. For this we simply
have to store the object program explicitly in meta-program clauses. For
instance, if we represent the object level clause

8Note that the findall/3 built-in is non-declarative, in the sense that the meaning
of programs using it may depend on the selection rule. For example, given a program
containing just the fact p(a) ←, we have that ← findall(X , p(X), [A]),X = b succeeds
(with the answer {A/p(a), X/b}) when executed left-to-right but fails when executed
right-to-left.

186 CHAPTER 8. INTEGRITY CHECKING

anc(X ,Y)← parent(X ,Y)
by the meta-level fact

clause(1 , anc(X ,Y), [parent(X ,Y)])←
we can obtain a standardised apart version of the clause simply by calling
← clause(1 ,Hd ,Bdy). Similarly, we can resolve this clause with the atom
anc(a,B) by calling ← clause(C , anc(a,B),Bdy).9

The disadvantage of this method, however, is that the object program
is fixed, making it impossible to do “dynamic meta-programming” (i.e.
dynamically change the object program, see [122]); this can be remedied
by using a mixed meta-interpreter, as we will explain in Subsection 8.4.2
below). So, unless we resort to such extra-logical built-ins as assert and
retract, the object program has to be represented by a term in order
to do dynamic meta-programming. This in turn means that non-logical
built-ins like copy/2 have to be used to perform the standardising apart.
Figure 8.3 illustrates these two possibilities. Note that without the copy in
Figure 8.3, the second meta-interpreter would incorrectly fail for the given
query. For our application this means that, on the one hand, using the non-
logical copying approach unduly complicates the specialisation task while
at the same time leading to a serious efficiency bottleneck. On the other
hand, using the clause representation, implies that representing updates
to a database becomes much more cumbersome. Basically, we also have
to encode the updates explicitly as meta-program clauses, thereby making
dynamic meta-programming impossible.

1. Using a Clause Representation 2. Using a Term Representation
solve([])← solve(P , [])←
solve([H |T])← solve(P , [H |T])←

clause(H ,B) member(Cl ,P), copy(Cl , cl(H ,B))
solve(B), solve(T) solve(P ,B), solve(P ,T)

clause(p(X), [])←
← solve([p(a), p(b)]) ← solve([cl(p(X), [])], [p(a), p(b)])

Figure 8.3: Two non-ground meta-interpreters with {p(X) ←} as object
program

For the ground representation, it is again easy to write an explicit stan-
dardising apart operator in a fully declarative manner. For instance, in
the programming language Gödel [123] the predicate RenameFormulas/3
serves this purpose.

9However, we cannot generate a renamed apart version of anc(a,B). The copy/2
built-in has to be used for that purpose.

8.4. SOME ISSUES IN META-PROGRAMMING 187

Testing for variants or instances

In the non-ground representation we cannot test in a declarative man-
ner whether two atoms are variants or instances of each other, and non-
declarative built-ins, like var/1 and =../2, have to be used to that end.
Indeed, suppose that we have implemented a predicate variant/2 which
succeeds if its two arguments represent two atoms which are variants of
each other and fails otherwise. Then ← variant(p(X), p(a)) must fail and
← variant(p(a), p(a)) must succeed. This, however, means that the query
← variant(p(X), p(a)), X = a fails when using a left to right computa-
tion rule and succeeds when using a right to left computation rule. Hence
variant/2 cannot be declarative (the exact same reasoning holds for the
predicate instance/2). Thus it is not possible to write declarative meta-
interpreters which perform e.g. tabling, loop checks or subsumption checks.

Again, for the ground representation there is no problem whatsoever to
write declarative predicates which perform variant or instance checks.

Specifying partial knowledge

One additional disadvantage of the non-ground representation is that it is
more difficult to specify partial knowledge for partial evaluation. Suppose,
for instance, that we know that a given atom (for instance the head of a fact
that will be added to a deductive database) will be of the form man(T),
where T is a constant, but we don’t know yet at partial evaluation time
which particular constant T stands for. In the ground representation this
knowledge can be expressed as struct(man, [struct(C , [])]). However, in
the non-ground representation we have to write this as man(X), which is
unfortunately less precise, as the variable X now no longer represents only
constants but stands for any term.10

Unfolding

Automatically unfolding a meta-interpreter in a satisfactory way is a non-
trivial issue and has been the topic of a lot of contributions [158, 261,
220, 215, 21, 115, 196, 195] (see also [137] for an account about the spe-
cialisation of interpreters in functional programming languages). For the
fully general case, this problem has not been solved yet. However, using a
non-ground representation for goals in the meta-interpreter simplifies the

10A possible solution is to use the = ../2 built-in to constrain X and represent the above
atom by the conjunction man(X),X = ..[C]. This requires that the partial evaluator
provides non-trivial support for the built-in = ../2 and is able to specialise conjunctions
instead of simply atoms, see Chapter 10.

188 CHAPTER 8. INTEGRITY CHECKING

control of unfolding. In fact, a simple variant test11 inside the partial eval-
uator can sometimes be sufficient to guarantee termination when unfolding
such a meta-interpreter. This is illustrated in Figure 8.4, where interme-
diate goals have been removed for clarity and where Prog represents an
object program inside of which the predicate p/1 is recursive via q/1. The
meta-interpreter unfolded in the left column uses a ground representation
for resolution and a variant test of the partial evaluator will not detect a
loop. The partial evaluator will have to abstract away the constants 1 and 3
in order to terminate and generate specialised code. However, if we unfold
a meta-interpreter in which the goals are in non-ground form, the variant
test is sufficient to detect the loop and no abstraction is needed to generate
efficient specialised code. This point is completely independent of the in-
ternal representation the partial evaluator uses, i.e. of the fact whether the
partial evaluator itself uses a ground or a non-ground representation — it
might even be written in another programming language.

A ground solve Non-ground solve
solve(Prog, [struct(p, [var(1)])]) solve(Prog, [p(1)])

↓ ↓
solve(Prog, [struct(q, [var(3)])]) solve(Prog, [q(3)])

↓ ↓
solve(Prog, [struct(p, [var(3)])]) solve(Prog, [p(3)])

Figure 8.4: Unfolding meta-interpreters

8.4.2 The mixed representation

Sometimes it is possible to combine the ground and the non-ground ap-
proaches. This was first exemplified by Gallagher in [97, 98], where a
(declarative) meta-interpreter for the ground representation is presented.
From an operational point of view, this meta-interpreter lifts the ground
representation to the non-ground one for resolution. We will call this ap-
proach the mixed representation, as object level goals are in non-ground
form while the object programs are in ground form. A similar technique
was used in the self-applicable partial evaluator logimix [207, 138]. Hill
and Gallagher [122] provide a recent account of this style of writing meta-
interpreters. With that technique we can use the versatility of the ground
representation for representing object level programs (but not goals), while

11Meaning that the partial evaluator does not unfold atoms which are variants of some
covering ancestor.

8.4. SOME ISSUES IN META-PROGRAMMING 189

still remaining reasonably efficient. Furthermore, as demonstrated by Gal-
lagher in [97], and by the experiments in the next chapter, partial eval-
uation can in this way sometimes completely remove the overhead of the
meta-interpretation. Performing a similar feat on a meta-interpreter using
the full ground representation with explicit unification is much harder and
has, to the best of our knowledge, not been accomplished yet (for some
promising attempts see the partial evaluator sage [116, 115, 35], or the
new scheme for the ground representation in [177]).

make non ground(GrTerm,NgTerm)←
mng(GrTerm,NgTerm, [], Sub)

mng(var(N),X , [], [sub(N ,X)])←
mng(var(N),X , [sub(M ,Y)|T], [sub(M ,Y)|T1])←

(N = M → (T1 = T, X = Y) ; mng(var(N),X ,T ,T1))

mng(struct(F ,GrArgs), struct(F ,NgArgs), InSub,OutSub)←
l mng(GrArgs,NgArgs, InSub,OutSub)

l mng([], [],Sub,Sub)←
l mng([GrH |GrT], [NgH |NgT], InSub,OutSub)←

mng(GrH ,NgH , InSub, InSub1),

l mng(GrT ,NgT , InSub1 ,OutSub)

Figure 8.5: Lifting the ground representation

A meta-interpreter using the mixed representation contains a predicate
make non ground/2 , which lifts a ground term to a non-ground one. For
instance, the query

← make non ground(struct(f , [var(1), var(2), var(1)]),X)
succeeds with a computed answer similar to

{X/struct(f , [49 , 57 , 49])}.
The variables 49 and 57 are fresh variables (whose actual names may
vary and are not important). The code for this predicate is presented in
Figure 8.5 and a simple meta-interpreter based on it can be found in Fig-
ure 8.6. This code is a variation of the Instance-Demo meta-interpreter
in [122], where the predicate make non ground/2 is called InstanceOf/2.
Indeed, although operationally make non ground/2 lifts a ground term to
a non-ground term, declaratively (when typing the predicates) the second
argument of make non ground/2 can be seen as representing all ground
terms which are instances of the first argument; hence the names In-

190 CHAPTER 8. INTEGRITY CHECKING

solve(Prog , [])←
solve(Prog , [H |T]) ←

non ground member(struct(clause, [H |Body]),Prog),

solve(Prog ,Body), solve(Prog ,T)

non ground member(NonGrTerm, [GrH|GrT])←
make non ground(GrH ,NonGrTerm)

non ground member(NonGrTerm, [GrH|GrT])←
non ground member(NonGrTerm, GrT)

Figure 8.6: An interpreter for the ground representation

stanceOf/2 and Instance-Demo. Also note that, in contrast to the original
meta-interpreter presented in [97], these meta-interpreters can be executed
without specialisation. One can even execute

← make non ground(struct(man, [struct(C , [])]),X)
and obtain the computed answer {X/struct(man, [struct(C , [])])}. (How-
ever, the goal ← make non ground(struct(man, [C]),X) has an infinite
number of computed answers.) Observe that in Figure 8.5 we use an
if-then-else construct, written as (if -> then ; else), which for the time
being we assume to be declarative (the Prolog if-then-else will, however,
also behave properly because the first argument to make non ground will
always be ground).

Behaviour of Meta-interpreter Non-Ground Mixed Ground
Breadth-First/Findall No No Yes
Dynamic Meta-Programming No Yes Yes
Loop Checking/Tabling No No Yes
Underlying Unification Yes Yes No

Figure 8.7: Comparing the ground, non-ground and mixed representations

So, because the object program is in ground form, dynamic meta-
programming is possible. Because the goals of the mixed representation are
in non-ground form, features such as tabling, subsumption or loop checking
cannot be added declaratively to a meta-interpreter for the mixed repre-

8.4. SOME ISSUES IN META-PROGRAMMING 191

sentation. On the positive side, however, as discussed for the non-ground
representation above, this also means that unfolding becomes simpler and
sometimes a variant test can suffice.

So, for applications which do not require such features as tabling, the
mixed representation is the most promising option.

Figure 8.7 summarises the possibilities and limitations of the different
styles of writing meta-interpreters.

192 CHAPTER 8. INTEGRITY CHECKING

Chapter 9

Pre-Compiling Integrity
Checks via Partial
Evaluation of
Meta-Interpreters

In this chapter we pursue our goal of pre-compiling the integrity checking
procedure by writing it as a meta-interpreter which we then specialise for
certain update patterns. As we have elaborated in the previous chapter, the
mixed representation is the most promising option for the meta-interpreter,
if we can avoid such features as subsumption or loop checking. It is clear
that in the general setting of recursive databases this cannot be accom-
plished. However, for hierarchical databases, a loop or subsumption check
is not needed to ensure termination of the integrity checking procedure. So,
in a first approach we will restrict ourselves to hierarchical databases with
negation and try to write the integrity checking procedure using the mixed
representation. We will return to the issue of recursion in Section 9.4.

9.1 A meta-interpreter for integrity checking
in hierarchical databases

9.1.1 General layout

We will now extend the meta-interpreter for the mixed representation of
Figure 8.6 to perform specialised integrity checking, based upon Theo-

193

194 CHAPTER 9. CREATING INTEGRITY CHECKS

rem 8.2.10 presented earlier. This theorem tells us that we can stop resolv-
ing a goal G when it is not potentially added, unless we have performed an
incremental resolution step earlier in the derivation. The program skeleton
in Figure 9.1 implements this idea (the full Prolog code can be found in
Appendix G.1).

The argument Updt contains the ground representation of the update
〈Db+, Db=, Db−〉. The predicate resolve incrementally/3 performs incre-
mental resolution steps (according to Definition 8.2.7). Non-incremental
resolution steps are performed by resolve unincrementally/3 . The predicate
potentially added/2 tests whether a goal is potentially added by an update
based Definition 8.2.6. The implementations of resolve incrementally and
resolve unincrementally are rather straightforward (see Appendix G.1).
However, the implementation of potentially added poses some subtle diffi-
culties, as we will see in Subsection 9.1.2 below.

Specialised integrity checking now consists in calling

← incremental solve (“〈Db+, Db=, Db−〉”, ← false)

The query will succeed if the integrity of the database has been violated by
the update.

incremental solve(Updt ,Goal) ←
potentially added(Updt ,Goal),
resolve(Updt ,Goal)

resolve(Updt ,Goal) ←
resolve unincrementally(Updt ,Goal ,NewGoal),
incremental solve(Updt ,NewGoal)

resolve(Updt ,Goal) ←
resolve incrementally(Updt ,Goal ,NewGoal),
Updt =“〈Db+, Db=, Db−〉”,
solve(“Db= ∪Db+”, NewGoal)

Figure 9.1: Skeleton of the integrity checker

9.1.2 Implementing potentially added

The rules of Definition 8.2.4, can be directly transformed into a simple logic
program which detects in a naive top-down way whether a goal is potentially
added or not. Making abstraction of the particular representation of clauses
and programs, we might write potentially added like this:

9.1. A META-INTERPRETER FOR INTEGRITY CHECKING 195

potentially added(〈DB+,DB=,DB−〉,A)←
A← . . . ∈ DB+

potentially added(〈DB+,DB=,DB−〉,A)←
A← . . . , A′, . . . ∈ DB=,

potentially added(〈DB+,DB=,DB−〉,A′)

Such an approach terminates for hierarchical databases and is very easy
to partially evaluate. It will, however, lead to a predicate which has mul-
tiple, possibly identical and/or subsumed1 solutions. Also, in the context
of the non-ground or the mixed representation, this predicate will instanti-
ate the (non-ground) goal under consideration. This means that, to ensure
completeness, we would either have to backtrack and try out a lot of useless
instantiations2, or collect all solutions and perform expensive subsumption
tests to keep only the most general ones. The latter approach would have
to make use of a findall primitive as well as an instance test, both of
which are non-declarative (see Chapter 8) and very hard to partially evalu-
ate satisfactorily; e.g. effective partial evaluation of findall has to the best
of our knowledge not been accomplished yet. Let us illustrate this problem
through an example.

Example 9.1.1 Let the following clauses be the rules of Db=:
mother(X ,Y)← parent(X ,Y),woman(X)
father(X ,Y)← parent(X ,Y),man(X)
false ← mother(X ,Y), father(X ,Z)

Let Db− = ∅ and Db+ = {parent(a, b) ←,man(a) ←} and as usual U =
〈Db+, Db=, Db−〉. A naive top-down implementation will succeed 3 times
for the query

← potentially added(“U”, false)
and twice for the query

← potentially added(“U”, father(X ,Y))
with computed answers {X/a} and {X/a, Y/b}. Note that the solution
{X/a, Y/b} is “subsumed” by {X/a} (which means that, if floundering is
not possible, it is useless to instantiate the query by applying {X/a, Y/b}).

The above example shows that using a naive top-down implementation
of potentially added inside the integrity checker of Figure 9.1 is highly in-
efficient, as it will result in a lot of redundant checking. A solution to
this problem is to wrap calls to potentially added into a verify(.) primitive,

1A computed answer θ of a goal G is called subsumed if there exists another computed
answer θ′ of G such that Gθ is an instance of Gθ′.

2It would also mean that we would have to extend Theorem 8.2.10 to allow for in-
stantiation, but this is not a major problem.

196 CHAPTER 9. CREATING INTEGRITY CHECKS

where verify(G) succeeds once with the empty computed answer if the goal
G succeeds in any way and fails otherwise. This solves the problem of
duplicate and subsumed solutions. For instance, for Example 9.1.1 above,
both

← verify(potentially added(“U”, false))
← verify(potentially added(“U”, father(X ,Y)))

will succeed just once with the empty computed answer and no backtracking
is required, as no instantiations are made.

The disadvantage of using verify is of course that no instantiations are
performed (which in general cut down the search space dramatically). How-
ever, as will see later, these instantiations can often be performed by pro-
gram specialisation.

Unfortunately, the verify(.) primitive is not declarative. It can, however,
be implemented with the Prolog if-then-else construct, whose semantics is
still reasonably simple. Indeed, verify(Goal) can be translated into

((Goal->fail;true)->fail;true).

Also, as we will see in the next section, specialisation of the if-then-else
poses much less problems than for instance the full blown cut. This was
already suggested by O’Keefe in [219] and carried out by Takeuchi and Fu-
rukawa in [268]. So, given the current speed penalty of the ground represen-
tation [35], employing the if-then-else seems like a reasonable choice. In the
next section we will first present a subset of full Prolog, called If-Then-Else-
Prolog or just ITE-Prolog, and discuss how ITE-Prolog-programs can be
specialised. ITE-Prolog of course contains the if-then-else, but includes sev-
eral built-ins as well. Indeed, once the if-then-else is added, there are no ad-
ditional difficulties in handling some simple built-ins like var/1, nonvar/1
and =../2 (but not built-ins like call/1 or assert/1 which manipulate
clauses and goals).

9.2 Partial evaluation of ITE-Prolog

9.2.1 Definition of ITE-Prolog

To define the syntax of ITE-Prolog-programs we partition the predicate
symbols into two disjoint sets Πbi (the predicate symbols to be used for
built-ins) and Πcl (the predicate symbols for user-defined predicates). A
normal atom is then an atom which is constructed using a predicate symbol
∈ Πcl. Similarly a built-in atom is constructed using a predicate symbol
∈ Πbi. A ITE-Prolog-atom is either a normal atom, a built-in atom or it
is an expression of the form (if → then; else) where if, then and else are

9.2. PARTIAL EVALUATION OF ITE-PROLOG 197

conjunctions of ITE-Prolog-atoms. A ITE-Prolog-clause is an expression
of the form Head ← Body where Head is a normal atom and Body is a
conjunction of ITE-Prolog-atoms.

Operationally, the if-then-else of ITE-Prolog behaves like the corre-
sponding construct in Prolog [262, 218]. The following informal Prolog
clauses can be used to define the if-then-else [235]:

(If->Then;Else) :- If,!,Then.
(If->Then;Else) :- Else.

In other words, when the test If succeeds (for the first time) a local cut is
executed and execution proceeds with the then part. Most uses of the cut
can actually be mapped to if-then-else constructs [219] and the if-then-else
can also be used to implement the negation.

Because the if-then-else contains a local cut, its behaviour is sensitive
to the sequence of computed answers of the test-part. This means that
the computation rule and the search rule have to be fixed in order to give
a clear meaning to the if-then-else. From now on we will presuppose the
Prolog left-to-right computation rule and the lexical search rule.

The two ITE-Prolog-programs hereafter illustrate this point.

Program P1 Program P2

q(X)← (p(X)→ X = c; fail) q(X)← (p(X)→ X = c; fail)

p(a)← p(c)←
p(c)← p(a)←

Using the Prolog computation and search rules, the query ← q(X) will fail
for program P1, whereas it will succeed for P2. All we have done is change
the order of the computed answers for the predicate p/1. This implies
that a partial evaluator for ITE-Prolog has to ensure the preservation of
the sequence of computed answers. This for instance is not guaranteed by
any partial deduction method presented so far, all of which preserve the
computed answers but not their sequence.

However, the semantics of the if-then-else remains reasonably simple
and a straightforward denotational semantics [139], in the style of [15] and
[230], can be given to ITE-Prolog. For example, suppose that we associate
to each ITE-Prolog-literal L a denotation [|L]|P in the program P , which
is a possibly infinite sequence of computed answer substitutions with an
optional element ⊥ at the end of (a finite sequence) to denote looping. Some
examples are then [|true]|P = 〈∅〉, [|X = a]|P = 〈{X/a}〉 and [|fail]|P = 〈〉.

In such a setting the denotation of an if-then-else construct can simply

198 CHAPTER 9. CREATING INTEGRITY CHECKS

be defined by:

[|(A→ B; C)]|P =

 [|Bθ1]|P if [|A]|P = 〈θ1, . . .〉
[|C]|P if [|A]|P = 〈〉
〈⊥〉 if [|A]|P = 〈⊥〉

9.2.2 Specialising ITE-Prolog

In order to preserve the sequence of computed answers, we have to address a
problem related to the left-propagation of bindings. For instance, unfolding
a non-leftmost atom in a clause might instantiate the atoms to the left of
it or the head of the clause . In the context of extra-logical built-ins this
can change the program’s behaviour. But even without built-ins, this left-
propagation of bindings can change the order of solutions which, as we have
seen above, can lead to incorrect transformations for programs containing
the if-then-else. In the example below, P4 is obtained from P3 by unfolding
the non-leftmost atom q(Y), thereby changing the sequence of computed
answers.

Program P3 Program P4

p(X, Y)← q(X), q(Y) p(X, a)← q(X)

q(a)← p(X, b)← q(X)

q(b)← q(a)←
q(b)←

Sequence of computed answers for ← p(X, Y)

〈p(a, a), p(a, b), p(b, a), p(b, b)〉 〈p(a, a), p(b, a), p(a, b), p(b, b)〉

This problem of left-propagation of bindings has been solved in vari-
ous ways in the partial evaluation literature [228, 227, 245, 244], as well as
overlooked in some contributions (e.g. [95]). In the context of unfold/fold
transformations of pure logic programs, preservation of the order of solu-
tions, as well as left-termination, is handled e.g. in [230, 30].

In the remainder, we will use the techniques we described in [167] to
specialise ITE-Prolog-programs. The method of [167] tries to strictly en-
force the Prolog left-to-right selection rule. However, sometimes one does
not want to select the leftmost atom, for instance because it is a built-in
which is not sufficiently instantiated, or simply to ensure termination of the
partial evaluation process. To cope with this problem, [167] extends the
concept of LD-derivations and LD-trees to LDR-derivations and LDR-trees,
which in addition to left-most resolution steps also contain residualisation
steps. The latter remove the left-most atom from the goal and hide it

9.2. PARTIAL EVALUATION OF ITE-PROLOG 199

from the left-propagations of bindings. Generating the residual code from
LDR-trees is discussed in [167].

Unfolding inside the if-then-else is also handled in a rather straightfor-
ward manner. This is in big contrast to programs which contain the full
blown cut. The reason is that the full cut can have an effect on all subse-
quent clauses defining the predicate under consideration. By unfolding, the
scope of a cut can be changed, thereby altering its effect. The treatment of
cuts therefore requires some rather involved techniques (see [42], [245, 244]
or [228, 227]). The cut inside the if-then-else, however, is local and does
not affect the reachability and meaning of other clauses. It is therefore
much easier to handle by a partial evaluator. The following example illus-
trates this. Unfolding q(X) in the program P5 with the if-then-else poses
no problems and leads to a correct specialisation. However, unfolding the
same atom in the program P6 written with the cut leads to an incorrect
specialised program in which e.g. p(a) is no longer a consequence.

Program P5 Program P6

p(X)← (q(X)→ fail; true) p(X)← q(X), !, fail

p(X)←
q(X)← (X = a→ fail; true) q(X)← X = a, !, fail

q(X)←
Unfolded Programs

p(X)← ((X = a→ fail; true) p(X)← X = a, !, fail, !, fail

→ fail p(X)←!, fail

; true) p(X)←

The exact details on how to unfold the if-then-else can be found in [167],
where a freeness and sharing analysis is used to produce more efficient spe-
cialised programs by removing useless bindings as well as useless if-then-else
tests. The latter often occur when predicates with output arguments are
used inside the test-part of an if-then-else. A further improvement lies in
generating multiple specialisations of a predicate call according to varying
freeness information of the arguments.

In summary, partial evaluation of ITE-Prolog, can be situated some-
where between partial deduction of pure logic programs and partial eval-
uation of full Prolog (e.g. mixtus [245, 244] or paddy [228, 229, 227] but
also [279, 280]).

9.2.3 Some aspects of leupel

The partial evaluation system leupel, we have already encountered in
Chapter 7, includes all the techniques sketched so far in this section. The

200 CHAPTER 9. CREATING INTEGRITY CHECKS

implementation originally grew out of [166]. In Section 9.3 we will apply
this system to obtain specialised update procedures. Below we present two
more aspects of that system, relevant for our application.

Safe left-propagation of bindings

At the end of Section 9.1.2 we pointed out that a disadvantage of using
verify is that no instantiations are performed. Fortunately these instanti-
ations can often be performed by the partial evaluation method, through
pruning and safe left-propagation of bindings. Take for instance a look at
the specialised update procedure in Figure 9.4 (to be presented later in Sec-
tion 9.3) and generated for the update Db+ = {man(a)←}, Db− = ∅. This
update procedure tests directly whether woman(A) is a fact, whereas the
original meta-interpreter of Figure 9.1 would test whether there are facts
matching woman(X) and only afterwards prune all irrelevant branches.
This instantiation performed by the partial evaluator is in fact the rea-
son for the extremely high speedup figures presented in the results of Sec-
tion 9.3. In a sense, part of the specialised integrity checking is performed
by the meta-interpreter and part is performed by the partial evaluator.

The above optimisation was obtained by unfolding and pruning all irrel-
evant branches. In some cases we can also improve the specialised update
procedures by performing a safe left-propagation of bindings. As we have
seen in the previous subsection, left-propagation of bindings is in general
unsafe in the context of ITE-Prolog (left-propagation is of course safe for
purely declarative programs and is performed by ordinary partial deduc-
tion). There are, however, some circumstances where bindings can be left-
propagated without affecting the correctness of the specialised program.
The following example illustrates such a safe left-propagation, as well as its
benefits for efficiency.

Example 9.2.1 Take the following clause, which might be part of a
specialised update procedure.

incremental solve 1(A)← parent(X ,Y),
(a test→ X = A, Y = b; X = A, Y = c)

Suppose that the computed answers of parent/2 are always grounding
substitutions. This is always guaranteed for range restricted (see e.g. [41])
database predicates. In that case the binding X = A can be left-propagated
in the following way:

incremental solve 1(A)← X = A, parent(X ,Y),
(a test→ Y = b; Y = c)

This clause will generate the same sequence of computed answers than
the original clause, but will do so much more efficiently. Usually, there

9.2. PARTIAL EVALUATION OF ITE-PROLOG 201

will be lots of parent/2 facts and incremental solve 1 will be called with
A instantiated. Therefore, the second clause will be much more efficient
— the call to parent will just succeed once for every child of A instead of
succeeding for the entire parent relation.

The leupel partial evaluator contains a post-processing phase which
performs conservative but safe left-propagation of bindings, common to all
alternatives (like X = A above). This guarantees that no additional choice
points are generated but in the context of large databases this is usually
not optimal. For instance, for the Example 9.2.1 above, we might also left-
propagate the non-common bindings concerning X, thereby producing the
following clauses:

incremental solve 1(A) ← X = A, Y = b, parent(X ,Y),
(a test→ true; fail)

incremental solve 1(A) ← X = A, Y = c, parent(X ,Y),
(a test→ fail; true)

In general this specialised update procedure will be even more efficient.
This indicates that the results in Section 9.3 can be even further improved.

Control of unfolding

The partial evaluator leupel is decomposed into three phases:
• the annotation phase, which annotates the program to be specialised
• the specialisation phase, which performs the unfolding guided by the

annotations of the first phase,
• the post-processing phase, which performs optimisation on the gener-

ated partial deductions (i.e. removes useless bindings, performs safe
left-propagation of bindings, simplifies the residual code) and gener-
ates the residual program.

Such a decomposition has already proven to be useful for self-application
in the world of functional programming (see e.g. [138]) as well as for logic
programming ([207],[115]).

Unfortunately, the annotation phase of leupel is not yet fully auto-
matic and must usually be performed by hand. On the positive side, this
gives the knowledgeable user very precise control over the unfolding, espe-
cially since some quite refined annotations are provided for. For instance,
the user can specify that the atom var(X) should be fully evaluated only
if its argument is ground or if its argument is guaranteed to be free (at
evaluation time) and that it should be residualised otherwise. Our partial
evaluation method can thus be seen as being “semi on-line” in the sense
that some unfolding decisions are made off-line while others are still made

202 CHAPTER 9. CREATING INTEGRITY CHECKS

on-line. This idea has recently been taken up for functional programming
in [260] (see also the filters in [55]).

In our case, the approach of hand annotating the meta-interpreter is
very sensible. Indeed, given proper care, the same annotated meta-program
can be used for any kind of update pattern. Therefore, investing time in
annotating the meta-interpreter of Appendix G.1 — which only has to be
done once — gives high benefits for all consecutive applications and the
second and third phases of leupel will then be able to derive specialised
update procedures fully automatically, as exemplified by the prototype
[169].

9.3 Experiments and results

9.3.1 An example

Before showing the results of our method, let us first illustrate in what
sense it improves upon the method of Lloyd, Sonenberg and Topor (LST)
in [186].

Example 9.3.1 Let the rules in Figure 9.2 form the intensional part of
Db= and let Db+ = {man(a) ←}, Db− = ∅. Then, independently of the
facts in Db=, we have:

pos(U) ={man(a), father(a,), married to(a,), married man(a),

married woman(), unmarried(a), false}
neg(U) ={unmarried(a), false}

The LST method of [186] will then generate the following simplified in-
tegrity constraints:

false ← man(a),woman(a)
false ← parent(a,Y), unmarried(a)

Given the available information, this simplification of the integrity con-
straints is not optimal. Suppose that some fact matching parent(a,Y) ex-
ists in the database. Evaluating the second simplified integrity constraints
above, then leads to the incomplete SLDNF-tree depicted in Figure 9.3 and
subsequently to the evaluation of the goal:

← woman(a),¬married woman(a)
This goal is not potentially added and the derivation leading to the goal
is not incremental. Hence, by Theorem 8.2.10, this derivation can be
pruned and will never lead to a successful refutation, given the fact that
the database was consistent before the update. The incremental solve

9.3. EXPERIMENTS AND RESULTS 203

meta-interpreter of Appendix G.1 improves upon this and does not try to
evaluate ← woman(a),¬married woman(a).

mother(X ,Y)← parent(X ,Y),woman(X)
father(X ,Y)← parent(X ,Y),man(X)
grandparent(X ,Z)← parent(X ,Y), parent(Y ,Z),
married to(X ,Y)←

parent(X ,Z), parent(Y ,Z),
man(X),woman(Y)

married man(X)← married to(X ,Y)
married woman(X)← married to(Y ,X)
unmarried(X)← man(X),¬married man(X)
unmarried(X)← woman(X),¬married woman(X)

false ← man(X),woman(X)
false ← parent(X ,Y), parent(Y ,X)
false ← parent(X ,Y), unmarried(X)

Figure 9.2: Intensional part of Db=

Actually, through partial evaluation of the incremental solve meta-
interpreter, this useless branch is already pruned at specialisation time.
For instance, when generating a specialised update procedure for the update
pattern Db+ = {man(A) ←}, Db− = ∅, we obtain the update procedure
presented in Figure 9.4.3 This update procedure is very satisfactory and is
in a certain sense optimal. The only way to improve it, would be to add
the information that the predicates in the intensional and the extensional
database are disjoint. For most applications this is the case, but it is not
required by the current method. This explains the seemingly redundant test
in Figure 9.4, checking whether there is a fact married to in the database.
Benchmarks concerning this example will be presented in Section 9.3.2.

Finally, we show that, although the LST method of [186] can also handle
update patterns, the simplified integrity constraints that one obtains in that
way are neither very interesting nor very efficient. Indeed, one might think
that it is possible to obtain specialised update procedures immediately from

3The figure actually contains a slightly sugared and simplified version of the resulting
update procedure. There is no problem whatsoever, apart from finding the time for
coding, to directly produce the sugared and simplified version. Also, all the benchmarks
were executed on un-sugared and un-simplified versions.

204 CHAPTER 9. CREATING INTEGRITY CHECKS

�
�

�
�	

@
@

@
@R

← man(a),¬married man(a) ← woman(a),¬married woman(a)

?

{Y/?}

← unmarried(a)

← parent(a, Y), unmarried(a)

Figure 9.3: SLDNF-tree for Example 9.3.1

the LST method of [186], by running it on a generic update instead of a
fully specified concrete update. Let us re-examine Example 9.3.1. For the
generic update (pattern) Db+ = {man(X) ←},4 Db− = ∅, we obtain,
independently of the facts in Db=, the sets:

pos(U) ={man(), father(,), married to(,), married man(),

married woman(), unmarried(), false}
neg(U) ={unmarried(), false}

The LST method of [186] will thus generate the following simplified integrity
constraints:

false ← man(X),woman(X)
false ← parent(X ,Y), unmarried(X)

So, by running LST on a generic update we were just able to deduce that
the second integrity constraint cannot be violated by the update — the
other integrity constraints remain unchanged. This means that the spe-
cialised update procedures we obtain by this technique will in general only
be slightly faster than fully re-checking the integrity constraints after each
update. For instance, the above procedure will run (cf. Table 9.1 in the
next subsection) up to 3 orders of magnitude slower than the specialised
update procedure in Figure 9.4 obtained by leupel. So, although the pre-
compilation process for such an approach will be very fast, the obtained

4The LST method of [186] (as well as any other specialised integrity checking method
we know of) cannot (on its own) handle patterns of the form man(A), where A stands
for an as of yet unknown constant. We thus have to use the variable X to represent the
update pattern for LST (replacing A by a constant would, in all but the simplest cases,
lead to incorrect results).

9.3. EXPERIMENTS AND RESULTS 205

incremental solve 1(X1) :-

fact(woman,[struct(X1,[])]).

incremental solve 1(X1) :-

fact(parent,[struct(X1,[]),X2]),

(fact(married to,[struct(X1,[]),X3])

-> fail

;

((fact(parent,[struct(X1,[]),X4]),

fact(parent,[X3,X4]),

fact(woman,[X3]))

-> fail

; true

)

).

Figure 9.4: Specialised update procedure for adding man(A)

update procedures usually have little practical value. In order for this ap-
proach to be more efficient, the LST method should be adapted so that it
can distinguish between variables and unknown input stemming from the
update pattern. But this is exactly what our approach based on partial
evaluation of meta-interpreters achieves!

9.3.2 Comparison with other partial evaluators

In this subsection, we perform some experiments with the database of Ex-
ample 9.3.1. The goal of these experiments is to compare the annotation
based partial evaluation technique presented in Section 9.2 with some exist-
ing automatic partial evaluators for full Prolog and give a first impression
of the potential of our approach. In Subsection 9.3.3, we will do a more
extensive study on a more complicated database, with more elaborate trans-
actions, and show the benefits compared to the LST method [186].

The times for the benchmark are expressed in seconds and were obtained
by calling the time/2 predicate of Prolog by BIM, which incorporates the
time needed for garbage collection, see [235]. We used sets of 400 updates
and a fact database consisting of 108 facts and 216 facts respectively. The
rule part of the database is presented in Figure 9.2. Also note that, in
trying to be as realistic as possible, the fact part of the database has been
simulated by Prolog facts (which are, however, still extracted a tuple at a
time by the Prolog engine). The tests were executed on a Sun Sparc Classic
running under Solaris 2.3.

The following different integrity checking methods were benchmarked:

206 CHAPTER 9. CREATING INTEGRITY CHECKS

1. solve: This is the naive meta-interpreter of Figure 8.6. It does not
use the fact that the database was consistent before the update and
simply tries to find a refutation for ← false.

2. ic-solve: This is the incremental solve meta-interpreter performing
specialised integrity checking, as described in Section 9.1. The skele-
ton of the meta-interpreter can be found in Figure 9.1, the full code
is in Appendix G.1.

3. ic-leupel: These are the specialised update procedures obtained by
specialising ic-solve with the partial evaluation system leupel de-
scribed in Section 9.2. A prototype, based on leupel, performing
these specialisations fully automatically, is publicly available in [169].
This prototype can also be used to get the timings for solve and ic-
solve above as well as ic-leupel− below.

4. ic-leupel−: These are also specialised update procedures obtained
by leupel, but this time with the safe left-propagation of bindings
(see Section 9.2.3) disabled.

5. ic-mixtus: These specialised update procedures were obtained by
specialising ic-solve using the automatic partial evaluator mixtus
described in [244, 245]. Version 0.3.3 of mixtus, with the default
parameter settings, was used in the experiments.

6. ic-paddy: These specialised update procedures were obtained by
specialising ic-solve using the automatic partial evaluator paddy pre-
sented in [227, 228, 229]. The resulting specialised procedures had to
be slightly converted for Prolog by BIM: get cut/1 had to be trans-
formed into mark/1 and cut to/1 into cut/1. We also had to increase
the “term depth” parameter of paddy from its default value. With
the default value, paddy actually slowed down the ic-solve meta-
interpreter by about 30 %.

The first experiment we present consists in generating an update pro-
cedure for the update pattern:

Db+ = {man(A)←}, Db− = ∅,

where A is unknown at partial evaluation time. The result of the partial
evaluation obtained by leupel can be seen in Figure 9.4 and the timings
are summarised in Table 9.1. The first row of figures contains the absolute
and relative times required to check the integrity for a database with 108
facts. The second row contains the corresponding figures for a database
with 216 facts.

9.3. EXPERIMENTS AND RESULTS 207

solve ic-solve ic-leupel ic-leupel− ic-mixtus ic-paddy

108 facts

42.93 s 6.81 s 0.075 s 0.18 s 0.34 s 0.27 s
572.4 90.8 1 2.40 4.53 3.60

216 facts

267.9 s 18.5 s 0.155 s 0.425 s 0.77 s 0.62 s
1728.3 119.3 1 2.74 4.96 4.00

Table 9.1: Results for Db+ = {man(A)←}, Db− = ∅

The times in Table 9.1 (as well as in Table 9.2) include the time to
specialise the integrity constrains as well as the time to run them. Note
that solve performs no specialisation, while all the other methods inter-
leave execution and specialisation, as explained in Section 9.1. The times
required to generate the specialised update procedures (ic-leupel, ic-leupel−,
ic-mixtus and ic-paddy) for the above update pattern are not included. In
fact these update procedures only have to be regenerated when the rules or
the integrity constraints change. The time needed to obtain the ic-leupel
specialised update procedure was 78.19 s. The current implementation of
leupel has a very slow post-processor, displays tracing information and
uses the ground representation. Therefore, it is certainly possible to reduce
the time needed for partial evaluation by at least one order of magnitude.
Still, even using the current implementation, the time invested into partial
evaluation should pay off rather quickly for larger databases.

In another experiment we generated a specialised update procedure for
the following update pattern:

Db+ = {parent(A,B)←}, Db− = ∅,

where A and B are unknown at partial evaluation time. This update pat-
tern offers less opportunities for specialisation than the previous one. The
speedup figures are still satisfactory but less spectacular. The results are
summarised in Table 9.2.

In summary, the speedups obtained with the leupel system are very
encouraging. The specialised update procedures execute up to 2 orders of
magnitude faster than the intelligent incremental integrity checker ic-solve
and up to 3 orders of magnitude faster than the non-incremental solve.
The latter speedup can of course be made to grow to almost any figure by
using larger databases. Note that, according to our experience, specialising
the solve meta-interpreter of Figure 8.6 usually yields speedups reaching at
most 1 order of magnitude.

208 CHAPTER 9. CREATING INTEGRITY CHECKS

solve ic-solve ic-leupel ic-leupel− ic-mixtus ic-paddy

108 facts

43.95 s 7.75 s 0.24 s 0.355 s 0.53 s 0.45 s
183.1 32.3 1 1.48 2.21 1.88

216 facts

273.1 s 21.9 s 0.915 s 1.16 s 1.67 s 1.435 s
298 23.9 1 1.26 1.82 1.57

Table 9.2: Results for Db+ = {parent(A,B)←}, Db− = ∅

Also, the specialised update procedures obtained by using the leupel
system performed between 1.6 and 5 times faster than the ones obtained by
the fully automatic systems mixtus and paddy. This shows that using an-
notations, combined with restricting the attention to ITE-Prolog instead of
full Prolog, pays off in better specialisation. Finally, note that the safe left-
propagation of bindings described in Section 9.2.3 has a definite, beneficial
effect on the efficiency of the specialised update procedures.

9.3.3 A more comprehensive study

In this subsection, we perform a more elaborate study of the specialised
update procedures generated by leupel and compare their efficiency with
the one of the LST technique [186], which often performs very well in prac-
tice, even for relational or hierarchical databases [74]. To that end we will
use a more sophisticated database and more complicated transactions. The
rules and integrity constraints Db= of the database are taken from in [251]
and can be found in Appendix G.3.

For the benchmarks of this subsection, solve, ic-solve and ic-leupel are
the same as in the Subsection 9.3.2. In addition we also have the integrity
checking method ic-lst , which is an implementation of the LST method
[186] and whose code can be found in Appendix G.2.5

For the more elaborate benchmarks, we used 5 different update patterns.
The results are summarised in the Tables 9.3, 9.4, 9.5, 9.6 and 9.7. The
particular update pattern, for which the specialised update procedures were
generated, can be found in the table description. Different concrete updates,
all instances of the given update pattern, were used to measure the efficiency
of the methods. The second column of each table contains the integrity

5We also tried a “dirty” implementation using assert and retracts to store the potential
updates. But, somewhat surprisingly, this solution ran slower than the one shown in
Appendix G.2, which stores the potential updates in a list.

9.3. EXPERIMENTS AND RESULTS 209

constraints violated by each concrete update. For each particular concrete
update, the first row contains the absolute times for 100 updates and the
second row contains the relative time wrt to leupel. Each table is divided
into sub-tables for databases of different sizes (and in case of ic-leupel the
same specialised update procedure was used for the different databases).
As in the previous experiments, the times to simplify and run the integrity
constraints, given the concrete update, were included. The time to generate
the specialised updated procedures (ic-leupel) is not included. As justified
in Section 9.3.1, ic-lst is run on the concrete update and not on the update
pattern.

As can be seen from the benchmark tables, the update procedures gen-
erated by leupel perform extremely well. In Table 9.6, leupel detected
that there is no way this update can violate the integrity constraints —
hence the “infinite” speedup. For 238 facts, the speedups in the other ta-
bles range from 99 to 918 over solve, from 89 to 324 over ic-solve and from
18 to 157 over ic-lst. These speedups are very encouraging and lead us to
conjecture that the approach presented in this paper can be very useful in
practice and lead to big efficiency improvements.

Of course, the larger the database becomes, the more time will be needed
on the actual evaluation of the simplified constraints and not on the sim-
plification. That is why the relative difference between ic-lst and ic-leupel
diminishes with a growing database. However, even for 838 facts in Ta-
ble 9.7, ic-leupel still runs 25 times faster than ic-lst . So for all examples
tested so far, using an evaluation mechanism which is slower than in “real”
database systems and therefore exaggerates the effect of the size of the data-
base on the benchmark figures (but is still tuple-oriented — future work
will have to examine how the current technique and experiments carry over
to a set-oriented environment), the difference remains significant.

We also measured heap consumption of ic-leupel , which used from 43
to 318 times less heap space than ic-solve. Finally, in a small experiment
we also tried to specialise ic-lst for the update patterns using mixtus, but
without much success. Speedups were of the order of 10%.

210 CHAPTER 9. CREATING INTEGRITY CHECKS

Update ICs viol solve ic-solve ic-leupel ic-lst

138 facts

1 {2,2} 33.20 s 18.72 s 0.07 s 6.62 s
474 267 1 95

2 {8} 32.60 s 18.35 s 0.04 s 6.51 s
815 262 1 163

3 {} 33.10 s 18.54 s 0.07 s 6.51 s
473 265 1 93

238 facts

1 {2,2} 69.60 s 32.56 s 0.13 s 6.75 s
535 250 1 52

2 {8} 68.30 s 32.40 s 0.10 s 6.51 s
683 324 1 65

3 {} 67.90 s 31.90 s 0.13 s 6.51 s
522 245 1 50

Table 9.3: Results for Db+ = {father(X ,Y)←}, Db− = ∅

Update ICs viol solve ic-solve ic-leupel ic-lst

128 facts

1 {5, 6} 28.80 s 35.40 s 0.17 s 13.12 s
169 208 1 77

2 {a1, a1, 5, 10} 29.70 s 37.21 s 0.34 s 12.58 s
87 109 1 37

3 {} 28.70 s 36.50 s 0.26 s 11.69 s
110 140 1 45

238 facts

1 {5, 6} 67.50 s 77.61 s 0.30 s 12.88 s
225 259 1 43

2 {a1, a1, 5, 10} 68.00 s 80.20 s 0.69 s 12.66 s
99 116 1 18

3 {} 67.30 s 80.49 s 0.55 s 11.76 s
122 145 1 21

Table 9.4: Results for Db+ = {civil status(X ,Y,Z, T)←}, Db− = ∅

9.3. EXPERIMENTS AND RESULTS 211

Update ICs viol solve ic-solve ic-leupel ic-lst

138 facts

1 {} 36.30 s 47.80 s 0.21 s 19.68 s
173 228 1 94

238 facts

2 {} 78.10 s 95.30 s 0.41 s 20.32 s
190 232 1 50

Table 9.5: Results for Db+ = {father(F ,X), civil status(X ,Y,Z, T) ←},
Db− = ∅

Update ICs viol solve ic-solve ic-leupel ic-lst

138 facts

1 {} 59.60 s 3.50 s 0.00 s 6.50 s
“∞” “∞” 1 “∞”

2 {} 59.40 s 3.50 s 0.00 s 6.54 s
“∞” “∞” 1 “∞”

238 facts

1 {} 59.70 s 3.50 s 0.00 s 6.55 s
“∞” “∞” 1 “∞”

2 {} 59.10 s 3.60 s 0.00 s 6.53 s
“∞” “∞” 1 “∞”

Table 9.6: Results for Db+ = ∅, Db− = {father(X ,Y)←}

212 CHAPTER 9. CREATING INTEGRITY CHECKS

Update ICs viol solve ic-solve ic-leupel ic-lst

138 facts

1 {8,8,9a} 59.90 s 13.45 s 0.18 s 16.60 s
333 75 1 92

2 {8,8,9a} 59.75 s 11.25 s 0.15 s 12.08 s
398 75 1 81

3 {} 60.70 s 11.00 s 0.08 s 11.96 s
759 69 1 150

4 {} 59.90 s 13.50 s 0.11 s 16.47 s
545 123 1 150

238 facts

1 {8,8,9a} 74.10 s 17.50 s 0.19 s 17.38 s
390 92 1 91

2 {8,8,9a} 73.10 s 14.30 s 0.16 s 12.64 s
457 89 1 67

3 {} 73.50 s 14.00 s 0.08 s 12.56 s
918 175 1 157

4 {} 72.60 s 17.20 s 0.11 s 17.25 s
660 156 1 157

338 facts

1 {8,8,9a} 114.20 s 22.30 s 0.28 s 17.09 s
407 80 1 61

438 facts

1 {8,8,9a} 161.60 s 27.30 s 0.36 s 17.06 s
448 76 1 47

838 facts

1 {8,8,9a} 391.50 s 48.10 s 0.68 s 17.26 s
576 71 1 25

Table 9.7: Results for Db+ = ∅, Db− = {civil status(X ,Y,Z, T)←}

9.4. MOVING TO RECURSIVE DATABASES 213

9.4 Moving to recursive databases

The ITE-Prolog approach

As we have seen in the previous section, we were able to produce highly ef-
ficient update procedures for hierarchical databases by partial evaluation of
meta-interpreters. The question is whether these results can be extended in
a straightforward way to recursive, stratified databases, maybe by (slightly)
adapting the meta-interpreter.

In theory the answer should be yes. The “only” added complication
is that, in a top-down method, a loop check has to be incorporated into
potentially added to ensure termination. This loop check must act on the
non-ground representation of the goal and can, for Datalog programs, be
based on keeping a history of goals and using the instance or variant check
to detect loops. As we have already seen in Section 8.4.1 such a loop check
will be non-declarative for the mixed representation, but can be expressed
within ITE-Prolog.

Unfortunately, we found out, through initial experiments, that such a
loop check is very difficult to partially evaluate satisfactorily: often partial
evaluation leads to an explosion of alternatives in the residual code, many
of which are actually unreachable. Indeed, the partial evaluator should
e.g. be able to detect that, if X is guaranteed to be free, then p(a) is
always an instance of p(X). This requires intricate specialisation of built-
ins using freeness information (something that might still be feasible with
the leupel system). Furthermore, the partial evaluator should be capable
to detect that something like p(f(A)) is always an instance of p(A), no
matter what A stands for. However, such reasoning requires analysing
infinitely many different computations, something which standard partial
evaluation cannot do.

In order to overcome this problem, stronger partial evaluation methods
are needed. In Chapter 13 we will present such a technique, which combines
partial deduction with a bottom-up abstract interpretation. Combining le-
upel and its freeness analysis with the approach of Chapter 13 might result
in a system which can obtain specialised update procedures for recursive,
stratified databases. Further work will be needed to establish this.

The declarative approach

Another approach has been pursued in [176, 177]. There it was attempted
to use pure logic programs and partial deduction in the hope of overcoming
the above mentioned problems.

However, as we already mentioned in Section 8.4.1, any loop check for
the non-ground representation or the mixed representation is non-declar-

214 CHAPTER 9. CREATING INTEGRITY CHECKS

ative by nature. But when using the ground representation, contrary to
what one might expect, partial deduction is unable to specialise this meta-
interpreter in an interesting way and no specialised update procedures can
be obtained. To solve this problem, again an infinite number of different
computations have to be analysed. We will return to this issue in Chap-
ter 13 and show how a combination of partial deduction and abstract inter-
pretation offers a solution. Another approach was presented in [176, 177],
based on a new implementation of the ground representation combined
with a custom specialisation technique. Some promising results were ob-
tained, but the results are still far away from the good results obtained for
hierarchical databases in this chapter. One reason was that the problems
mentioned above for the instance check using the non-ground representation
also persist to some extent with the ground representation.

The tabling approach

Finally, a third solution might lie with writing the integrity checking in a
logic programming language with tabling (such as XSB [243, 50]) or within
the deductive database itself (just like the meta-interpreters for magic-sets
or abduction in [38, 263, 124]). In such a setting, the loop check does not
have to be written within the meta-interpreter but can be (partly) dele-
gated to the underlying system. This approach would enable the use of the
non-ground or mixed representation and might even get rid of the need of
the non-declarative verify primitive for the hierarchical case. However, spe-
cialisation of tabled logic programs is a largely unexplored area and poses
some subtle difficulties. Determinate unfolding for instance, is no longer
guaranteed to be beneficial and might even transform a terminating pro-
gram into a non-terminating one (see [180, 76]). So, although this approach
seems promising, it will require further research to gauge its potential.

9.5 Conclusion and future directions

Conclusion and discussion

We presented the idea of obtaining specialised update procedures for deduc-
tive databases in a principled way: namely by writing a meta-interpreter
for specialised integrity checking and then partially evaluating this meta-
interpreter for certain update patterns. The goal was to obtain specialised
update procedures which perform the integrity checking much more effi-
ciently than the generic integrity checking methods.

In Chapter 8 we have first described this approach in general and then
presented a new integrity checking method well suited for partial evalu-

9.5. CONCLUSION AND FUTURE DIRECTIONS 215

ation. We then discussed several implementation details of this integrity
checking method and gained insights into issues concerning the ground ver-
sus the non-ground representation. We notably argued for the use of a
“mixed” representation, in which the object program is represented using
the ground representation, but where the goals are lifted to the non-ground
representation for resolution. This approach has the advantage of using the
flexibility of the ground representation for representing knowledge about
the object program (in our case the deductive database along with the
updates), while using the efficiency of the non-ground representation for
resolution. The mixed representation is also much better suited for partial
evaluation than the full ground representation.

In a first approach, we have restricted ourselves to normal, hierarchical
databases in this Chapter. Also, for efficiency reasons, the meta-interpreter
for specialised integrity checking had to make use of a non-declarative verify
construct. This verify primitive can be implemented via the if-then-else
construct. We have then presented an extension of pure Prolog, called
ITE-Prolog, which incorporates the if-then-else and we have presented how
this language can be specialised. We have drawn upon the techniques in
[167] and presented the partial evaluator leupel and a prototype [169]
based upon it, which can generate specialised update procedure fully auto-
matically.

This prototype has been used to conduct extensive experiments, the
results of which were very encouraging. Speedups reached and exceeded 2
orders of magnitude when specialising the integrity checker for a given set
of integrity constraints and a given set of rules. These high speedups are
also due to the fact that the partial evaluator performs part of the integrity
checking. We also compared the specialised update procedures with the well
known approach by Lloyd, Sonenberg and Topor in [186], and the results
show that big performance improvements, also reaching and exceeding 2
orders of magnitude, can be obtained.

Within this chapter, we have restricted our attention to hierarchical
databases, which provided a conceptually simpler presentation, highlight-
ing the basic issues in a clearer way. Still, one could argue that our exper-
imental results should therefore not have been compared with alternative
approaches for integrity checking in deductive databases, but compared to
those for relational databases instead. However, even for relational data-
bases — with complex views — the deductive database approaches, such
as the LST method [186], seem to be the most competitive ones available.
The simpler alternative of mapping down intensional database relations to
extensional ones (through full unfolding of the views) and performing re-
lational integrity checking on the extensional database predicates, tends to
create extensive redundant multiplication of checks.

216 CHAPTER 9. CREATING INTEGRITY CHECKS

Example 9.5.1 Let us try to fully unfold the integrity constraints of the
simple database in Figure 9.2. Note that in general, unfolding inside nega-
tion is tricky. Here however, we are lucky as all negated rules are just
defined by 1 clause, and full unfolding will give:

false ← man(X),woman(X)
false ← parent(X ,Y), parent(Y ,X)
false ← parent(X ,Y),man(X),¬parent(X ,)
false ← parent(X ,Y),man(X),¬parent(Z ,)
false ← parent(X ,Y),man(X),¬man(X)
false ← parent(X ,Y),man(X),¬woman(Z)
false ← parent(X ,Y),woman(X),¬parent(Z ,)
false ← parent(X ,Y),woman(X),¬parent(X ,)
false ← parent(X ,Y),woman(X),¬man(Z)
false ← parent(X ,Y),woman(X),¬woman(X)

So even for this rather simple example, the fully unfolded integrity con-
straints become quite numerous.

For the update Db+ = {man(a)}, Db− = ∅ we then get, by unifying
the update literals with the body atoms, the following specialised integrity
constraints:

false ← woman(a)
false ← parent(a,Y),¬parent(a,)
false ← parent(a,Y),¬parent(Z ,)
false ← parent(a,Y),¬man(a)
false ← parent(a,Y),¬woman(Z)

Note that the parent(a,Y) has been duplicated 4 times! The resulting
simplified integrity checks are thus not nearly as efficient as our specialised
update procedure in Figure 9.4 (especially if a has a lot of children), which
executes this parent(a,Y) only once. For more complicated examples, en-
tire conjunctions will get duplicated, making the situation worse. This is
the price one has to pay for getting rid of the rules: rules capture common
computations and avoid that they get repeated (memoisation will only solve
this problem for atomic queries).

As such, even in the context of hierarchical databases, our comparisons
are with respect to the best alternative approaches [74].

To summarise, it seems that partial evaluation is capable of automati-
cally generating highly specialised update procedures for hierarchical data-
bases with negation.

9.5. CONCLUSION AND FUTURE DIRECTIONS 217

Future directions

In the current chapter we have already discussed how one might extend
the current techniques and results to recursive, stratified databases. One
might also apply the techniques of this chapter to other meta-interpreters,
which have a more flexible way of specifying static and dynamic parts of
the database and are less entrenched in the concept that facts change more
often than rules and integrity constraints.

Another important point is the efficiency of generating the specialised
update procedures, as opposed to running them. For the examples pre-
sented in this chapter, the update procedures have to be re-generated when
the rules or the integrity constraints change (but not when the facts change).
A technique, based on work by Benkerimi and Shepherdson [19], could be
used to incrementally adapt the specialised update procedure whenever the
rules or integrity constraints change. Another approach might be based on
using a self-applicable partial evaluation system in order to obtain efficient
update procedure compilers by self-application.

On the level of practical applications, one might try to apply the meth-
ods of this chapter to abductive and inductive logic programs. For instance,
we conjecture that solvers for abduction, like the SLDNFA procedure [79],
can greatly benefit in terms of efficiency, by generating specialised integrity
checking procedures for each abducible predicate.

Finally, it might also be investigated whether partial evaluation alone
is able to derive specialised integrity checks. In other words, is it possible
to obtain specialised integrity checks by specialising a simple solve meta-
interpreter, like the one of Figure 8.6. In that case, the assumption that the
integrity constraints were satisfied before the update has to be handed to
the specialiser, for instance in the form of a constraint. The framework of
constrained partial deduction [172], which we mentioned in Section 5.4.2,
could be used to that effect. In such a setting, self-applicable constrained
partial deduction could be used to obtain specialised update procedures by
performing the second Futamura projection [96, 91] and update procedure
compilers by performing the third Futamura projection.

218 CHAPTER 9. CREATING INTEGRITY CHECKS

Part V

Conjunctive Partial
Deduction

219

Chapter 10

Foundations of
Conjunctive Partial
Deduction

10.1 Partial deduction vs. unfold/fold

The partial evaluation and partial deduction approach, sometimes also re-
ferred to — in slightly different contexts — as program specialisation, has
been our center of attention from Chapter 3 onwards. It falls within the
more general area of program transformation techniques. Another approach
to program transformation, which has (also) received considerable atten-
tion over the last few decades, is the unfold/fold approach (see e.g. [43],[93],
[269], [249, 250], [222, 223, 232, 161, 233, 234, 231, 230]).

The relation between these two streams of work has been a matter of
research, discussion and controversy. Some illuminating discussions, in the
context of logic programming, can be found in [220], [278], [157], [232, 222],
[250] and [29].

At first sight, their relation seems clear: partial deduction is a strict
subset of the unfold/fold transformation. In essence, partial deduction
refers to the class of unfold/fold transformations in which “unfolding” is
the only basic transformation rule. Other basic unfold/fold rules, such as
“folding”, “definition”, “lemma application” or “goal replacement”, or —
in more general unfold/fold contexts — “clause replacement” and others,
are not supported.

This is however only a rough representation of the relationship between

221

222 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

the two approaches. To refine it, first, it should be noted that any partial
deduction algorithm imposing the Lloyd-Shepherdson closedness condition
([185], cf. Definition 3.2.8), or a similar coveredness condition (cf. Defini-
tion 3.2.11 or Definition 5.2.1), implicitly achieves the effect of a folding
transformation. If the condition holds, each atom in a body of a trans-
formed clause refers back to one of the heads of the transformed clauses,
and a limited form of implicit folding is obtained.

Moreover, most partial deduction methods make use of renaming trans-
formations (cf. Section 3.3.2 and Definition 5.1.12) to ensure the Lloyd-
Shepherdson independence condition (cf. Definition 3.2.8) while avoiding
precision losses. Again, renaming is closely related to unfold/fold. Roughly
stated, it can be formalised as a two-step basic transformation involving a
“definition” step (the new predicate is defined to have the truth-value of
the old one), immediately followed by a number of folding steps (appropri-
ate occurrences of the old predicate are replaced by the corresponding new
one).

In spite of these additional connections, there are still important dif-
ferences between the unfold/fold and partial deduction methods. One is
that there is a large class of transformations which are achievable through
unfold/fold, but not through partial deduction. Typical instances of this
class are transformations that eliminate “redundant variables” (see [222,
231, 233]). Two types of redundant variables are often distinguished in the
literature. The first refer to those cases in which the same input datastruc-
ture is consumed twice. As an example, consider the predicate

max length(X ,M ,L)← max (X ,M), length(X ,L)

which is true if M is the maximum of the list of numbers X, and if L
is the length of the list. By unfold/fold, the definitions for max/2 and
length/2 can be merged, producing a definition for max length/3 , which
only traverses X once. In the functional community, such a transformation
is referred to as tupling.

A second type of redundant variables turns up in cases where a data-
structure is first constructed by some procedure, and, in a next part of the
computation, decomposed again. As an example, consider the predicate

double app(X, Y, Z,R)← app(X, Y, I), app(I, Z,R)

which holds if the list R can be obtained by concatenating the lists X, Y
and Z. Again, unfold/fold allows to merge the two calls to app/3 and to
eliminate the construction of the intermediate datastructure I. In this case,
in the functional community, the transformation is referred to as deforesta-
tion [281]. Neither of these transformations are achievable through partial
deduction alone.

10.1. PARTIAL DEDUCTION VS. UNFOLD/FOLD 223

On the other hand, partial deduction has some advantages over un-
fold/fold as well. First, it should be noted that, in order to achieve effective
specialisation, unfold/fold has to be augmented with some form of “dead
code elimination”. More importantly, however, due to its more limited
applicability, and its resulting lower complexity, partial deduction can be
more effectively and easily controlled. These control issues have obtained
considerable attention in partial deduction research, and, in the current
state-of-the-art, have obtained a level of refinement which goes beyond
mere heuristic strategies, as we find in unfold/fold. Formal frameworks
have been developed, analysing issues of termination, code- and search-
explosion and obtained efficiency gains ([37, 199], [100, 98], [168, 178]).
Several fully automated systems have been developed (sp [97, 98], sage
[115, 116], paddy [227, 228, 229], mixtus [245, 244], ecce in Chapter 6
) as well as semi-automated ones (logimix [207], leupel [167, 173], see
also Chapter 9, logen in Chapter 7) have been developed and successfully
applied to at least medium-size applications ([68], [158] and Chapter 9).
As a result, partial deduction has reached a degree of maturity that brings
it to the edge of wide-scale applicability, which is beyond what any other
transformation technology for logic programs has achieved today.

The aim of this chapter is to provide a basic starting point to bring
the advantages of these two transformation methods together. In order to
do so, we only rely and build on two well-understood concepts, which have
been at the basis of this thesis so far: the Lloyd-Shepherdson framework (cf.
Chapter 3) and renaming transformations (cf. Chapters 3 and 5). (We will
leave the more sophisticated control issues, related e.g. to characteristic
trees and their preservation, as discussed in Chapters 4–6, aside for the
time being.) No explicit new basic transformation rules, such as folding or
definition, are introduced. Nevertheless, we provide a framework in which
most tupling and deforestation transformations, in addition to the current
partial deduction transformations, can be achieved.

More precisely, we propose two minimal extensions to partial deduction
methods, prove their correctness and illustrate how they achieve removal of
unnecessary variables within a framework of conjunctive partial deduction.

One of these minimal extensions is on the level of the Lloyd-Shepherdson
framework itself: we will consider sets Q of conjunctions of atoms instead
of the usual sets of atoms. A second extension is on the level of the renam-
ing transformations, where we will use renamings of conjunctions of atoms,
instead of renamings of single atoms. Together with a post-processing to
be presented in Chapter 11, they provide for a setting of conjunctive par-
tial deduction that — based on our current empirical evaluation — seems
powerful enough to achieve the results of most unfold/fold transformations
involving unfolding, folding and definition only.

224 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

We already pointed out that, at least on the technical level, most of these
ideas have already been raised in the context of unfold/fold (e.g. [232, 222],
[250]). In these papers, the step from partial deduction to (certain strate-
gies in) unfold/fold has also been characterised as essentially moving from
sets of atoms to sets of conjunctions. Therefore, technically, the current
chapter is strongly related to these works, and for a number of our proofs
we actually apply the results of [222]. The objectives, however, differ.
Where [232, 222] aim to clarify the relation between the two approaches, by
characterising partial deduction within the unfold/fold framework, we will
provide minimal extensions to partial deduction with the aim of including
a large part of the unfold/fold power. We show how correctness results for
partial deduction can be reformulated in the extended context. We thus
provide a generalised framework that allows to easily extend current re-
sults on control of partial deduction and current partial deduction systems.
Particular instances of this framework, reusing the automatic methods for
on-line control presented in Chapters 4–6 will be presented in Chapter 12.
The so obtained method approaches more closely techniques for the spe-
cialisation and transformation of functional programs, such as deforestation
[281], and supercompilation [273, 274, 258, 114]. Especially the latter con-
stituted, together with unfold/fold transformations, a source of inspiration
for the conception and design of conjunctive partial deduction.

Another related work is extended OLDT [33], which, in the context of
abstract interpretation, extends OLDT [270, 145] to handle conjunctions.
We will return to the relation of [33] to our work in Chapter 13.

10.2 Conjunctive partial deduction

In this section we provide extensions of the basic definitions in the Lloyd-
Shepherdson framework [185] with renaming as presented in Chapter 3. We
also illustrate how these extensions are sufficient to support the transforma-
tions referred to in the introduction. Throughout the chapter, we generally
restrict our attention to definite programs and goals. In Section 10.4.1 we
discuss extensions to the normal case.

10.2.1 Resultants

A crucial concept for partial deduction is the one of a resultant , which
we defined in Definitions 3.2.3 and 3.2.4 of Chapter 3 for finite SLDNF-
derivations and trees respectively. This allowed us to construct a specialised
program by extracting clauses from finite, but possibly incomplete SLDNF-
trees.

10.2. CONJUNCTIVE PARTIAL DEDUCTION 225

Let us briefly recall that the resultant of derivation for P ∪ {← Q}
leading to← B via the computed answer θ was defined to be Qθ ← B. Note
that in general such a resultant Qθ ← B is not a clause: the left-hand side Q
may consist of a conjunction of atoms. In the presentation so far, based on
the Lloyd-Shepherdson framework, the SLDNF-trees and derivations were
restricted to having only atomic top-level goals. This restriction ensured
that the resultants are indeed clauses. But as we will see later on, this
also severely restricts the specialisation potential of partial deduction. We
therefore omit this restriction here.

We first define partial deduction of a single conjunction.

Definition 10.2.1 (conjunctive partial deduction of Q) Let P be a
program and Q a conjunction. Let τ be a finite, non-trivial and possibly in-
complete SLD-tree for P ∪{← Q}. Then the set of resultants resultants(τ)
is called a conjunctive partial deduction of Q in P .

Let us immediately illustrate this notion with a simple example we al-
ready referred to at the beginning of the chapter. The example, as well
as the double app Example 10.2.7, is fairly trivial. This does not relate
to any limitations of the proposed framework, but to a deliberate choice
of selecting minimally complex examples for illustrating the proposed con-
cepts and method. Also, in the following, we will use the connective ∧ to
avoid confusion between conjunction and the set punctuation symbol “,”.
We implicitly assume associativity of the connective ∧, i.e. Q1 ∧ Q2 ∧ Q3,
(Q1 ∧ Q2) ∧ Q3 and Q1 ∧ (Q2 ∧ Q3) all denote the same conjunction and
we will usually use the first notation.

Example 10.2.2(max length) Let P be the following program.

(C1) max length(X ,M ,L)← max (X ,M) ∧ length(X ,L)
(C2) max (X ,M)← max 1 (X , 0 ,M)
(C3) max1 ([],M ,M)←
(C4) max1 ([H |T],N ,M)← H ≤ N ∧max1 (T ,N ,M)
(C5) max1 ([H |T],N ,M)← H > N ∧max1 (T ,H ,M)
(C6) length([], 0)←
(C7) length([H |T],L)← length(T ,K) ∧ L is K + 1

Let Q = {max length(X ,M ,L), max1 (X ,N ,M) ∧ length(X ,L)}. As-
sume that we construct the finite SLD-trees τ1, τ2 — depicted in Figure 10.1
— for the elements of Q. The associated conjunctive partial deductions are
then resultants(τ1) = {R1,1} and resultants(τ2) = {R2,1, R2,2, R2,3} re-
spectively, where the individual resultants are as follows:

(R1,1) max length(X ,M ,L)← max1 (X , 0 ,M) ∧ length(X ,L)

226 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

(R2,1) max1 ([],N ,N) ∧ length([], 0)←
(R2,2) max1 ([H |T],N ,M) ∧ length([H |T],L)←

H ≤ N ∧max1 (T ,N ,M) ∧ length(T ,K) ∧ L is K + 1
(R2,3) max1 ([H |T],N ,M) ∧ length([H |T],L)←

H > N ∧max1 (T ,H ,M) ∧ length(T ,K) ∧ L is K + 1
If we take the union of the conjunctive partial deductions of the elements

of Q we obtain the set of resultants PQ = {R1,1, R2,1, R2,2, R2,3}. Clearly
PQ is not a Horn clause program. Apart from that, with the exception that
the redundant variable still has multiple occurrences, PQ has the desired
tupling structure. The two functionalities (max/3 and length/2) in the
original program have been merged into single traversals.

?

?

?

HH
HHHj

��
����

?

? ?

← max(X ,M) ∧ length(X ,L)

C2

← max1 (X , 0 ,M) ∧ length(X ,L)

← max length(X ,M ,L)

C4C1
C3 C5

2

← length([])

C6

← H > N∧← H ≤ N∧

← H ≤ N∧ ← H > N∧

← max1 (X ,N ,M) ∧ length(X ,L)

C7 C7

length([H |T],L)
max1 (T ,N ,M)∧

length([H |T],L)
max1 (T , h,M)∧

L is K + 1
length(T ,K)∧

max1 (T ,N ,M)∧

L is K + 1
length(T ,K)∧

max1 (T ,H ,M)∧

Figure 10.1: SLD-trees τ1 and τ2 for Example 10.2.2

10.2.2 Partitioning and renaming

In order to convert resultants into a standard logic program, we will re-
name conjunctions of atoms by new atoms. Such renamings require some
care. For one thing, given a set of resultants PQ, obtained by taking the
conjunctive partial deduction of the elements of a set Q, there may be ambi-
guity concerning which conjunctions in the bodies to rename. For instance,
if PQ contains the clause p(X, Y) ← r(X) ∧ q(Y) ∧ r(Z) and Q contains
r(U)∧ q(V), then either the first two, or the last two atoms in the body of
this clause are candidates for renaming. To formally fix such choices, we
introduce the notion of a partitioning function.

BelowM(A) denotes all multisets composed of elements of a set A and
=r denotes identity of conjunctions, up to reordering. If M is a multiset

10.2. CONJUNCTIVE PARTIAL DEDUCTION 227

then we also use notations like ∧Q∈MQ to denote a particular conjunction
constructed from the elements in M , taking their multiplicity into account.
For instance, for the multiset M = {p, p}, ∧Q∈MQ refers to the conjunction
p ∧ p.

Definition 10.2.3 (partitioning function) Let C denote the set of all
conjunctions of atoms over the given alphabet. A partitioning function is a
mapping p : C →M(C), such that for any C ∈ C: C =r ∧Q∈p(C)Q.

For the max length example, let p be the partitioning function which
maps any conjunction C =r max1 (X ,N ,M) ∧ length(X ,L) ∧B1 ∧ . . . ∧
Bn to {max1 (X ,N ,M) ∧ length(X ,L),B1 , . . . ,Bn}, where B1, . . . , Bn are
n ≥ 0 atoms with predicates different from max1 and length. We leave p
undefined on other conjunctions.

Note that the multiplicity of literals is relevant for the c.a.s. semantics1

and we therefore have to use multisets — instead of just simple sets — for
full generality in Definition 10.2.3 above.

Even with a fixed partitioning function, a range of different renaming
functions could be introduced, all fulfilling the purpose of converting con-
junctions into atoms (and therefore, resultants into Horn clauses). The
differences are related to potentially added functionalities of these renam-
ings, such as:
• elimination of multiply occurring variables (e.g. p(X, X) 7→ p′(X)),
• elimination of redundant data structures (e.g. q(a, f(Y)) 7→ q′(Y)),
• elimination of existential or unused variables.
Below we introduce a class of generalised renaming functions, supporting

the first two functionalities stated above, but making abstraction of whether
and how they are performed. We will also present a post-processing, sup-
porting the third functionality, in Chapter 11.

The following is inspired from Definition 5.1.12 in Chapter 5.

Definition 10.2.4 (atomic renaming) An atomic renaming α for a given
set of conjunctions Q is a mapping from Q to atoms such that
• for each Q ∈ Q: vars(α(Q)) = vars(Q) and
• for Q,Q′ ∈ Q such that Q 6= Q′: the predicate symbols of α(Q) and
α(Q′) are distinct (but not necessarily fresh).

Note that with this definition, we are actually also renaming the atomic
elements of Q. This is not really essential for converting generalised pro-
grams into standard ones, but, as already discussed in Chapter 3, proves
useful for various other aspects (e.g. dealing with independence).

1Take for example P = {p(a, X)←, p(X, b)←}. Then P ∪ {← p(X, Y), p(X, Y)} has
an SLD-refutation with c.a.s. {X/a, Y/b} while P ∪ {← p(X, Y)} has not.

228 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

Definition 10.2.5 (renaming function) Let α be an atomic renaming
for Q and p a partitioning function. A renaming function ρα,p for Q (based
on α and p) is a mapping from conjunctions to conjunctions such that:

ρα,p(B) =r

∧
Ci∈p(B) α(Qi)θi where each Ci = Qiθi for some Qi ∈ Q.

If some Ci ∈ p(B) is not an instance of an element in Q then ρα,p(B) is
undefined. Also, for a goal ← Q, we define ρα,p(← Q) =← ρα,p(Q).

Observe that we do not necessarily have that α(Q) = ρα,p(Q). Indeed,
there are two degrees of non-determinism for defining ρα,p once α and p
are fixed. First, if Q contains elements Q and Q′ which share common
instances, then there are several possible ways to rename these common
instances and a multitude of renaming functions based on the same atomic
renaming α and partitioning p exist. Secondly, the order in which the atoms
α(Qi)θi occur in ρα,p(B) is not fixed beforehand and may therefore vary
from one renaming function to another. Usually one would like to preserve
the order in which the unrenamed atoms occurred in the original conjunc-
tion B. This is however not always possible, namely when the partitioning
function assembles non-contiguous chunks from B. Take for instance the
conjunction B = q1∧ q2∧ q3, a partitioning p such that p(B) = {q1∧ q3, q2}
and an atomic renaming α such that α(q1 ∧ q3) = qq and α(q2) = q. Then
ρα,p(B) = qq ∧ q and ρ′α,p(B) = q ∧ qq are the only possible renamings
and in both of them q2 has changed position. Fortunately the order of
the atoms is of no importance for the usual declarative semantics, i.e. it
does neither influence the least Herbrand model, the computed answers ob-
tainable by SLD-resolution nor the set of finitely failed queries. The order
might however matter if we restrict ourselves to some specific selection rule
(like LD-resolution). We will return to this issue in Chapter 12.

Definition 10.2.6 (conjunctive partial deduction wrt Q) Let P be
a program, Q = {Q1, . . . , Qn} be a finite set of conjunctions and let ρα,p

be a renaming function for Q based on the atomic renaming α and the
partitioning function p. For each i ∈ {1, . . . , n}, let PQi

be a conjunctive
partial deduction of Qi in P and let PQ =

⋃
i∈{1,...,n} PQi

.2

Then the program {α(Qi)θ ← ρα,p(B) | Qiθ ← B ∈ PQi ∧ 1 ≤ i ≤ n ∧
ρα,p(B) is defined } is called the conjunctive partial deduction of P wrt Q,
PQ and ρα,p.

Returning to Example 10.2.2, we introduce a different predicate for each
of the two elements in Q via the atomic renaming α:

2We also implicitly assume that we know for which Qi ∈ Q a particular resultant in
PQ was produced. Also, the same resultant might occur in different PQi

, and thus PQ
actually has to be a multiset of resultants (which poses no difficulties, however).

10.2. CONJUNCTIVE PARTIAL DEDUCTION 229

• α(max length(X ,M ,L)) = max length(X ,M ,L) and
• α(max1 (X ,N ,M) ∧ length(X ,L)) = ml(X ,N ,M ,L).

Q does not contain elements with common instances and for the resultants
at hand there exists only one renaming function ρα,p for Q based on α and
p. The conjunctive partial deduction wrt Q is now obtained as follows. The
head max length(X ,M ,L) in the resultant R1,1 is replaced by itself. The
head-occurrences max1 ([],N ,N)∧ length([], 0) and max1 ([H |T],N ,M)∧
length([H |T],L) are replaced by ml([], N, N, 0) and ml([H|T], N, M, L).
The body occurrences max1 (X , 0 ,M) ∧ length(X ,L), max1 (T ,N ,M) ∧
length(T ,K) as well as max1 (T ,H ,M) ∧ length(T ,K) are replaced by
the atoms ml(X, 0,M,L), ml(T,N,M,K) and ml(T,H,M,K) respectively.
The resulting program is:

max length(X ,M ,L)← ml(X , 0 ,M ,L)
ml([], N, N, 0)←
ml([H|T], N, M, L)← H ≤ N ∧ ml(T,N,M,K) ∧ L is K + 1
ml([H|T], N, M, L)← H > N ∧ ml(T,H,M,K) ∧ L is K + 1

Example 10.2.7(double append) Let P = {C1, C2} be the by now well
known append program.

(C1) app([], L, L)←
(C2) app([H|X], Y, [H|Z])← app(X, Y, Z)

Let us employ this program to concatenate three lists, by using the goal
G =← app(X, Y, I)∧app(I, Z,R), which concatenates the three lists X, Y, Z
yielding as result R. This is achieved via two calls to app and the local
variable I. The first call to app constructs from the lists X and Y an
intermediate list I, which is then traversed when appending Z. While
the use of the goal G is simple and elegant, it is rather inefficient since
construction and traversal of such intermediate data structures is expensive.

Partial deduction within the framework of Lloyd and Shepherdson [185]
cannot substantially improve the program since the atoms app(X, Y, I),
app(I, Z, R) are transformed independently. We will now show, that con-
junctive partial deduction can indeed remove the unnecessary variable I
and get rid of the associated inefficiencies.

Let Q = {app(X, Y, I)∧app(I, Z, R), app(X, Y, Z)} and assume that we
construct the finite SLD-tree τ1 depicted in Figure 10.2 for the query ←
app(X, Y, I)∧app(I, Z,R) as well as a simple tree τ2 with a single unfolding
step for ← app(X, Y, Z). Let PQ consist of the clauses resultants(τ2) =
{C1, C2} as well as the resultants resultants(τ1):

(R1) app([], Y, Y) ∧ app(Y,Z,R)← app(Y, Z, R)
(R2) app([H|X ′], Y, [H|I ′])∧ app([H|I ′], Z, [H|R′])←

app(X ′, Y, I ′) ∧ app(I ′, Z,R′)

230 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

���
���

HH
HHHj

?

C1 C2

← app(Y, Z, R) ← app(X ′, Y, I ′) ∧ app([H|I ′], Z, R)

← app(X ′, Y, I ′) ∧ app(I ′, Z, R′)

C2

← app(X, Y, I) ∧ app(I, Z, R)

Figure 10.2: SLD-tree for Example 10.2.7

Suppose that we use a partitioning function p such that p(B) = {B} for
all conjunctions B. If we now take an atomic renaming α for Q such that
α(app(X, Y, I) ∧ app(I, Z,R)) = da(X, Y, I, Z, R) and α(app(X, Y, Z)) =
app(X, Y, Z) (i.e. the distinct variables have been collected and have been
ordered according to their first appearance), the conjunctive partial deduc-
tion P ′ of P wrt Q, PQ and ρα,p will contain the clauses C1, C2 as well
as:

(C ′3) da([], Y, Y, Z,R)← app(Y, Z, R)
(C ′4) da([H|X ′], Y, [H|I ′], Z, [H|R′]) ← da(X ′, Y, I ′, Z,R′)

Executing G =← app(X, Y, I) ∧ app(I, Z,R) in the original program
leads to the construction of an intermediate list I by app(X, Y, I), which
is then traversed again (consumed) by app(I, Z,R). In the conjunctive
partial deduction, the inefficiency caused by the unnecessary traversal of I
is avoided as the elements encountered while traversing X and Y are stored
directly in R. However, the intermediate list I is still constructed, and if
we are not interested in its value, then this is an unnecessary overhead. We
can remedy this by a rather straightforward post-processing phase, which
we will present later in Chapter 11. The resulting specialised program then
contains the clauses C1, C2 as well as:

(C3) da([], Y, Z,R)← app(Y, Z, R)
(C4) da([H|X ′], Y, Z, [H|R′])← da(X ′, Y, Z,R′)

The unnecessary variable I, as well as the inefficiencies caused by it, have
now been completely removed.

10.3. CORRECTNESS RESULTS 231

10.3 Correctness results

In this section we will state and prove correctness results for conjunctive
partial deduction.

10.3.1 Mapping to transformation sequences

As already mentioned in the introduction, standard partial deduction is a
strict subset of the (full) unfold/fold transformation technique as defined
for instance in the survey paper [222] by Pettorossi and Proietti. It is
therefore not surprising that correctness can be established by showing that
a conjunctive partial deduction can (almost) be obtained by a corresponding
unfold/fold transformation sequence and then re-using correctness results
from [222].

Note that, in contrast to [222], we treat programs as sets of clauses and
not as sequences of clauses. The order (and multiplicity) of clauses makes
no difference for the semantics we are interested in. In the remainder of
this chapter we will use the notations hd(C), bd(C) of [222] to refer to the
head and the body of a clause C respectively.

As stated in [222], a program transformation process starting from an
initial program P0 is a sequence of programs P0, . . . , Pn, called a transfor-
mation sequence, such that program Pk+1, with 0 ≤ k < n, is obtained
from Pk by the application of a transformation rule, which may depend on
P0, . . . , Pk. We need the following four transformation rules from [222].

We start out by defining the unfolding rule [222, (R1)].

Definition 10.3.1 (Unfolding rule) Let Pk contain the clause C = H ←
F ∧ A ∧ G, where A is a positive literal and where F and G are (possibly
empty) conjunctions. Suppose that:

1. {D1, . . . , Dn}, with n ≥ 0,3 are all the clauses in a program Pj , with
0 ≤ j ≤ k, such that A is unifiable with hd(D1), . . . , hd(Dn), with
most general unifiers θ1, . . . , θn, and

2. Ci is the clause (H ← F ∧ bd(Di) ∧G)θi, for i = 1, . . . , n.

If we unfold C wrt A (using D1, . . . , Dn) in Pj , we derive the clauses
C1, . . . , Cn and we get the new program Pk+1 = (Pk \ {C})∪{C1, . . . , Cn}.

3[222, (R1)] actually stipulates that n > 0 and thus does not allow the selection of an
atom which unifies with no clause — a situation which naturally arises when performing
partial deduction. However, the “deletion of clauses with finitely failed body” rule [222,
(R12)] can be used in those circumstances instead. Furthermore, all the correctness
results that we will use from [222] allow both these rules to be applied, and we can thus
effectively allow the case n = 0 as well.

232 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

For example, given P0 = {p← q∧r, q ← r}, we can unfold p← q∧r wrt
q using P0, deriving the clause p← r∧r and we get P1 = {p← r∧r, q ← r}.

The following is a simplified form of the folding rule [222, (R2)], suffi-
cient for our needs.

Definition 10.3.2 (Folding rule) Let Pk contain the clause C and let D
be a clause in a program Pj , with 0 ≤ j ≤ k. Suppose that there exists a
substitution θ such that:

1. C is the clause H ← Bdy, where Bdy =r bd(D)θ ∧ F and where F is
a (possibly empty) conjunction, and

2. for any clause D′ 6= D in Pj , hd(D′) is not unifiable with hd(D)θ.

If we fold C (wrt bd(D)θ) using D in Pj , we derive a clause C ′ = H ←
Bdy′, with Bdy′ =r hd(D)θ ∧ F , and we get the new program Pk+1 =
(Pk \ {C}) ∪ {C ′}.

For example, we can fold p← q∧r wrt r using q ← r in P0 above, giving
as result the clause p← q ∧ q and the program P1 = {p← q ∧ q, q ← r}.

The following defines the Tamaki&Sato-folding (or T&S-folding) rule
[222, (R3)], which is a restricted form of the folding rule above (the T&S-
folding and -definition rules are initially from the paper [269] by Tamaki
and Sato).

Definition 10.3.3 (T&S-folding rule) An application of the folding rule
of Definition 10.3.2 is an application of T&S-folding rule if the following
additional requirements are verified:

1. θ restricted to vars(bd(D)) \ vars(hd(D)) is a variable renaming4

whose image (i.e. ran(θ ↓vars(bd(D))\vars(hd(D)))) has an empty inter-
section with the set vars(H) ∪ vars(F) ∪ vars(hd(D)θ), and

2. the predicate symbol of hd(D) occurs in Pj only once, that is, in the
head of the clause D (thus, D is not recursive).

In that case we say that Pk+1 is obtained by T&S-folding C (wrt bd(D)θ)
using D in Pj .

We now present the T&S-definition rule [222, (R15)] which, under cer-
tain conditions, allows to introduce new definitions. For this we assume that
all predicate symbols occurring in a transformation sequence P0, . . . , Pk are

4I.e. a variable pure substitution which is a one-to-one and onto mapping from its
domain to itself.

10.3. CORRECTNESS RESULTS 233

partitioned into the set of new predicates and the set of old predicates. New
predicates are the ones which occur either in the head of exactly one clause
in P0, and nowhere else in P0, or they occur in the head of a clause intro-
duced by the T&S-definition rule below. Note that this definition of old
and new predicates from [222] differs slightly from the one in [269].

Definition 10.3.4 (T&S-definition rule) Given a transformation se-
quence P0, . . . , Pk, we may get a new program Pk+1 by adding to program
Pk a clause H ← Bdy such that:

1. the predicate of H does not occur in P0, . . . , Pk, and

2. Bdy is made out of literals with old predicates occurring in P0, . . . , Pk.

We say that Pk+1 is obtained from Pk by the T&S-definition rule. If point
2, but not necessarily point 1, is verified we will say that Pk+1 is obtained
from Pk by the definition rule.

In Definition 10.3.5 below, we map a conjunctive partial deduction to
a transformation sequence. Basically the conjunctive partial deduction P ′

of P wrt Q, PQ and ρα,p can be obtained from P using 4 transformation
phases. In the first phase, one introduces definitions for every conjunction
in Q, using the same predicate symbol as in α. In the second phase, these
new definitions get unfolded according to the SLD-trees for the elements
in Q: exactly one unfolding step for each corresponding resolution step in
the SLD-trees. In the third phase, conjunctions in the bodies of clauses are
folded using the definitions introduced in phase 1. Finally, in the fourth
phase, the original definitions in P are removed. The first three phases
can be mapped to the unfold/fold transformation framework of [222] in a
straightforward manner. Phase 4 will have to be treated separately (because
the clause removals do not meet the requirements of definition elimination
transformations as defined in [222]).

In Definition 10.2.4 of an atomic renaming, we did not require that the
predicate symbols of the renamings were fresh, i.e. it is possible to reuse
predicate symbols that occur in the original program P . This is of no
consequence, because the original program is “thrown away”. However, in
unfold/fold, the original program is not systematically thrown away and in
definition steps one can usually only define fresh predicates. To simplify
the presentation, we restrict ourselves in a first phase to atomic renamings
which only map to fresh predicate symbols, not occurring in the origi-
nal program P . Those atomic renamings will be called fresh. At a later
stage, we will extend the result to any atomic renaming satisfying Defini-
tion 10.2.4.

234 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

Definition 10.3.5 (transformation sequence) Let P ′ be the conjunc-
tive partial deduction of P wrt Q, PQ and ρα,p. A transformation se-
quence for P ′ (given P , Q, PQ and ρα,p) is a transformation sequence
P0, . . . , Pd, . . . , Pu, . . . , Pf , such that P0 = P , and

1. P0, . . . , Pd is obtained by performing (only) definition introductions,
namely exactly one for every element Q ∈ Q: Pi = Pi−1 ∪ {α(Q) ←
Q}.

2. Pd, . . . , Pu is obtained by performing (only) unfolding steps using
clauses of P0, namely exactly one for every resolution step in the
SLD-trees constructed (in order to obtain PQ) for the elements of Q:
i.e. if this resolution step in a tree for Q ∈ Q resolves a selected literal
A with clauses D1, . . . , Dn, we perform an unfolding step of a clause
α(Q)θ ← F,A, G in some Pi wrt A, using D1, . . . , Dn in P0.

3. Pu, . . . , Pf is obtained by performing (only) folding steps, namely
exactly one for every renamed conjunction C in the body of a clause of
PQ: i.e. for C = Qθ, such that Q ∈ Q ∧ C ∈ p(B) ∧ ρα,p(C) = α(Q)θ,
where H ← B ∈ PQ, we fold a corresponding clause H ← B′ wrt Qθ,
(where B′ =r Qθ ∧R) using the definition α(Q)← Q in Pd, yielding
the new clause H ← B′′ (with B′′ =r α(Q)θ ∧R).

The following example illustrates the above definition.

Example 10.3.6 (double append, revisited) Let P = P0 = {C1, C2}
be the append program of Example 10.2.7 and let Q, ρα,p, PQ and P ′

be defined as in that example except that we adapt α slightly such that
α(app(X, Y, Z)) = app′(X, Y, Z) (to make α fresh). Then the transforma-
tion sequence P0, P1, P2, P3, P4, P5, P6, P7, Pf , shown below, is a transfor-
mation sequence for P ′. P1 = P0 ∪ {Def1} and P2 = P1 ∪ {Def2} are
obtained by a definition introduction, where

(Def1) da(X, Y, I, Z, R)← app(X, Y, I) ∧ app(I, Z, R)
(Def2) app′(X, Y, Z)← app(X, Y, Z)

P3 = P0 ∪ {U1, U2, Def2} is obtained by unfolding the clause Def1 above
wrt app(X, Y, I), using P0, where

(U1) da([], Y, Y, Z, R)← app(Y, Z, R)
(U2) da([H|X ′], Y, [H|I ′], Z,R)← app(X ′, Y, I ′)∧ app([H|I ′], Z,R)

P4 = P0 ∪ {U1, U3, Def2} is obtained by unfolding the clause U2 above
wrt app([H|I ′], Z,R), using P0, where

(U3) da([H|X ′], Y, [H|I ′], Z, [H|R′])← app(X ′, Y, I ′)∧app(I ′, Z,R′)
P5 = P0 ∪ {U1, U3, U4, U5} is now obtained by unfolding clause Def2

wrt app(X, Y, Z) using P0, where

10.3. CORRECTNESS RESULTS 235

(U4) app′([], L, L)←
(U5) app′([H|X], Y, [H|Z])← app(X, Y, Z)

P6 = P0 ∪ {U1, U
′
3, U4, U5} is obtained by folding the clause U3 wrt

(app(X, Y, I)∧ app(I, Z,R))θ, using the clause Def1 from P1 above, where
θ = {X/X ′, I/I ′, R/R′} and

(U ′3) da([H|X ′], Y, [H|I ′], Z, [H|R′])← da(X ′, Y, I ′, Z,R′)
Finally, after two more folding steps using Def2 from P1 we obtain the

final program Pf = P0 ∪ {U ′1, U ′3, U4, U
′
5}:

(C1) app([], L, L)←
(C2) app([H|X], Y, [H|Z])← app(X, Y, Z)
(U ′1) da([], Y, Y, Z,R)← app′(Y, Z, R)
(U ′3) da([H|X ′], Y, [H|I ′], Z, [H|R′])← da(X ′, Y, I ′, Z,R′)
(U4) app′([], L, L)←
(U ′5) app′([H|X], Y, [H|Z])← app′(X, Y, Z)

Note that the steps from P0 to P1 and P1 to P2 are applications of
the T&S definition introduction rule. Note that the last 3 steps are T&S-
folding steps (see Definition 10.3.3). However, e.g. the folding step from P5

to P6 is not an instance of the reversible folding rule (R13) of [222] (which
would require app(X ′, Y, I ′)∧app(I ′, Z,R′) to be folded with a clause in P5

and different from U3). Also note that Pf \ P = P ′.

In Lemma 10.3.7 we establish a necessary condition in order to apply
some of the theorems from [222], namely that the definition steps in Defi-
nition 10.3.5 are T&S-definition steps.

Lemma 10.3.7 Let P0, . . . , Pf be a transformation sequence for P ′ con-
structed using a fresh atomic renaming. All the definition introduction
steps of P0, . . . , Pf are T&S definition steps.

Proof All definition steps are of the form: Pk = Pk−1∪{α(Q)← Q}. The
conditions imposed on α guarantee that the predicate of α(Q) does not oc-
cur in P0, . . . , Pk (point 1 of Definition 10.3.4). Point 2 of Definition 10.3.4
requires that all the predicates in the body of the introduced clause are only
old predicates. According to the definitions in [269], all predicates in P0 are
old and hence this condition is trivially satisfied. However, for the slightly
modified definitions used in [222], this is not always the case, but we can use
the following simple construction to make every predicate in P an old pred-
icate. Let the predicates occurring in P be p1, . . . , pj , and let fresh and
fail be distinct propositions not occurring in P , nor in the image of α. We
simply define P0 = P∪ {Cf} where Cf = fresh ← fail, p1(t̄1), . . . , pj(t̄j)
and the ti are sequences of terms of correct length. By doing so, we do not
modify any of the semantics we are interested in, but ensure that all the

236 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

predicates in P are old according to the definition in [222]. We implicitly
assume the presence of such a Cf in the following lemmas and propositions
as well (in case we want to apply the modified definitions used in [222]). 2

10.3.2 Fair and weakly fair partial deductions

In Definition 10.2.1 (as well as in standard partial deduction, cf. Chapter 3),
we required the SLD-trees to be non-trivial. In the context of standard par-
tial deduction of atoms, this condition avoids problematic resultants of the
form A ← A and is fully sufficient for total correctness (given indepen-
dence and coveredness). In the context of conjunctive partial deductions,
we need (for correctness wrt the finite failure semantics) an extension of
this condition:

Definition 10.3.8 (inherited, fair) Let the goal G′ =← (A1 ∧ . . . Ai−1∧
B1 ∧ . . . Bk ∧ Ai+1 ∧ . . . An)θ be derived via an SLD-resolution step from
the goal G =← A1 ∧ . . . Ai ∧ . . . An, and the clause H ← B1 ∧ . . . Bk, with
selected atom Ai. We say that the atoms A1θ, . . . , Ai−1θ, Ai+1θ, . . . , Anθ
in G are inherited from G in G′. We extend this notion to derivations by
taking the transitive and reflexive closure.

A finite SLD-tree τ for P∪{G} is said to be fair iff no atom in a dangling
leaf goal L of τ is inherited from G in L.

The conjunctive partial deduction P ′ of P wrt Q, PQ and ρα,p is fair
iff all the SLD-trees used to construct PQ are fair.

The above means that every atom occurring in the top-level goal of an
SLD-tree has to be selected at some point in every non-failing branch. For
SLD-trees for atomic goals this notion coincides with the one of non-trivial
trees. Also, for the folding steps that we will perform (in the transformation
sequence associated with a conjunctive partial deduction), this corresponds
to conditions of fold-allowing in [222, Definition 7] or inherited in [249]. All
these conditions ensure that we do not encode an unfair selection rule in
the transformation process, which is vital when trying to preserve the finite
failure semantics (for a more detailed discussion see e.g. [249]).

Sometimes however, this definition, as well as the one of fold-allowing in
[222] or the one of inherited in [249], imposes more unfolding than strictly
necessary. In some cases this even forces one to perform non-leftmost,
non-determinate unfolding. As already discussed in Chapter 3, notably
in Example 3.3.3, this can have disastrous effects on the efficiency of the
specialised program. Also, the tree τ1 of Example 10.2.7 depicted in Fig-
ure 10.2 does not satisfy Definition 10.3.8, although the resulting program is
actually totally correct. In order to make τ1 fair one would have to perform
one more unfolding step on ← app(Y, Z, R).

10.3. CORRECTNESS RESULTS 237

The following, weaker notion of fairness remedies this problem.

Definition 10.3.9 (weakly fair) Let P ′ be the conjunctive partial de-
duction of P wrt Q, PQ and ρα,p. For Q ∈ Q let LeavesQ denote the
dangling leaf goals of the SLD-tree for P ∪ {← Q} used to construct the
corresponding resultants in PQ.
We first define the following (increasing) series of subsets of Q:

• Q ∈ WF0 iff Q ∈ Q and for each L ∈ LeavesQ no atom is inherited
from ← Q in L.

• Q ∈ WFk+1 iff Q ∈ Q and for each L ∈ LeavesQ and each C ∈ p(L)
which contains an atom inherited from ← Q in L and which gets
renamed into α(Q′)θ (with C = Q′θ and Q′ ∈ Q) inside ρα,p(L) we
have that Q′ ∈ WFk.

Then P ′ is weakly fair iff there exists a number 0 ≤ k < ∞ such that
Q =WFk.

Note that if every SLD-tree τQ is fair (i.e. P ′ is fair) then P ′ is weakly
fair, independently of the renaming function ρα,p (because no atom in a
leaf is inherited from the root goal and thus WF0 = Q). Intuitively, the
above definition ensures that every atom in a conjunction Q in Q is either
unfolded directly in the tree τ(Q) or it is folded on a conjunction Q′ in
which the corresponding atom is guaranteed to be unfolded (again either
directly or indirectly by folding and so on in a well-founded manner).5

Example 10.3.10 Let PQ be the resultants for the set of conjunctions Q =
{app(X, Y, I) ∧ app(I, Z,R), app(X, Y, Z)} of Example 10.2.7. The simple
tree for P ∪ {← app(X, Y, Z)} is fair. Therefore app(X, Y, Z) ∈ WF0

independently of ρα,p.
Let τ1 be the SLD-tree of Figure 10.2 for P ∪ {G}, with G = ←

app(X, Y, I)∧app(I, Z,R). The conjunctions in the dangling leaves of τ are
{L1, L2}, with L1 = app(Y, Z, R) and L2 = app(X ′, Y, I ′) ∧ app(I ′, Z,R′).
The SLD-tree τ1 is not fair, but for ρα,p of Example 10.2.7, we have that
app(X, Y, I) ∧ app(I, Z,R) ∈ WF1:
• app(X ′, Y, I ′) and app(I ′, Z,R′) are not inherited from G in ← L2.
• app(Y, Z, R) is inherited from G in ← L1, but we have ρα,p(L1) =
α(app(X, Y, Z))θ and, as we have seen above, app(X, Y, Z) ∈ WF0.

So for k = 1 we have that Q =WFk and P ′ is thus weakly fair.

5It would be possible to further refine Definition 10.3.9 by treating each atom in a
conjunction individually. However, this makes the correctness proofs much more intricate
and the need for this refinement has not (yet) arisen in practice.

238 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

The following shows that, due to our particular way of defining renam-
ings, the folding steps in a transformation sequence are T&S-folding steps.

Lemma 10.3.11 Let P0, . . . , Pf be a transformation sequence for the con-
junctive partial deduction P ′ of P0 wrt Q, PQ and ρα,p based on a fresh
atomic renaming. Then the folding steps in P0, . . . , Pf are T&S-folding
steps which satisfy the requirements of Theorems 8 and 10 in [222]. If in
addition P ′ is fair, then the T&S-folding steps also satisfy the requirements
of Theorem 12 in [222].

Proof In order to prove that the folding steps of Definition 10.3.5 are
T&S-folding steps, we have to show that points 1 and 2 of Definition 10.3.3
hold. Point 2 states that the predicate symbol of α(Q) should occur only
once in Pd (where Pd is the program of Definition 10.3.5 obtained after all
definitions have been introduced), which holds trivially by construction of
the definitions in Pd and because the atomic renaming α is fresh. Also,
point 1 of Definition 10.3.3 states that variables removed by the renaming
should be existential variables. Because we imposed vars(α(Q)) = vars(Q)
for atomic renamings, no variables are removed and the criterion is trivially
satisfied.
The fact that we have non-trivial SLD-trees ensures that at least one atom
in B is fold-allowing (see [222, Definition 7]) and hence, the requirements
of Theorem 8 and 10 hold. Furthermore, if P ′ is fair, then every atom in B
wrt which T&S-folding is performed (i.e. every atom in Q) is fold-allowing,
and the requirements of Theorem 12 are met. 2

If P ′ is only weakly fair then the requirements of Theorem 12 in [222]
are not met. We will have to deal with that special case separately later
on.

Proposition 10.3.12 Let P0, . . . , Pf be a transformation sequence for the
conjunctive partial deduction P ′ of P0 wrt Q, PQ and ρα,p based on a fresh
atomic renaming. Then, for every goal G, such that its predicates occur in
P0, we have that

• P0∪{G} has an SLD-refutation with computed answer θ iff Pf ∪{G}
has.

If in addition P ′ is weakly fair then

• P0 ∪ {G} has a finitely failed SLD-tree iff Pf ∪ {G} has.

Proof Lemmas 10.3.7 and 10.3.11 ensure that the prerequisites of Theorem
10 in [222] are met. Hence the computed answer semantics SemCA is

10.3. CORRECTNESS RESULTS 239

preserved under the above conditions and P0 ∪ {G} has an SLD-refutation
with computed answer θ iff Pf ∪ {G} has.6

If P ′ is fair we can use the same Lemmas 10.3.7 and 10.3.11 combined with
Theorem 12 of [222] to deduce that the finite failure semantics SemFF is
preserved, i.e. P0 ∪ {G} has a finitely failed SLD-tree iff Pf ∪ {G} has.
As already mentioned earlier, in case P ′ is only weakly fair we cannot
directly apply Theorem 12 of [222]. We therefore do a specific proof by
induction on the minimum number min such that Q =WFmin , where the
WF i are defined as in Definition 10.3.9.
Induction Hypothesis: The finite failure semantics is preserved far all
P ′ which are weakly fair and such that min ≤ k .
Base Case: If min = 0 then for every Q ∈ Q no leaf contains an atom
inherited from ← Q and thus P ′ is fair. Hence, by the above reasoning, we
can deduce the preservation of finite failure.
Induction Step: Let min = k + 1 and let W ⊂ Q be defined as W =
WFk+1 \ WFk. The idea of the proof is to unfold the clauses for the
elements ofW so that, according to Definition 10.3.9, they become elements
of WFk in the unfolded program P ′f . This will allow us to apply the
induction hypothesis on P ′f . The details are elaborated in the following.
As in Definition 10.3.9, we denote by LeavesQ (with Q ∈ Q) the dangling
leaf goals of the SLD-tree for P∪{← Q} used to construct the corresponding
resultants in PQ. Let P ′f be obtained from Pf by performing the following
unfolding steps for every element Q ∈ W:

for each L ∈ LeavesQ and each C ∈ p(L) which contains an atom
inherited from← Q in L and which gets renamed into α(Q′)θ, unfold
the clause corresponding to L wrt α(Q′)θ (i.e. the renamed version of
C inside ρα,p(L)) using the definition of α(Q′) in Pf .

Note that P ′f can be obtained by a transformation sequence for a partial
deduction P ′′ based on the same atomic renaming α and the same set Q
as P ′ but based on SLD-trees with a deeper unfolding for the elements of
W.7 Each element of Q \ W is still in WFk (as well as in WF i,i < k if
it was in WF i for Pf) because the associated trees and resultants remain
unchanged. We also know that every Q′ above must be in Q \W =WFk,
because the second rule of Definition 10.3.9 could be applied to deduce

6Note that Lemmas 10.3.7 and 10.3.11 also ensure that Theorem 8 of [222] can be
applied and thus, given a fixed first-order language LP , the least Herbrand model se-
mantics SemH is also preserved (restricted to the predicates occurring in the original
program P0). We will not use this property in the remainder of this chapter however.

7Possibly a slightly adapted renaming function is needed to ensure that the renamings
of the new leaves of these deeper SLD-trees coincide with the clause bodies obtained
by the unfolding performed on Pf . See the discussion about admissible renamings in
Section 5.2.2 of Chapter 5.

240 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

that Q ∈ WFk+1. Hence in P ′′ associated with P ′f , each element of W
is now in WFk, due to the unfolding. Hence we can apply the induction
hypothesis to deduce that finite failure is preserved in P ′f wrt P0. Now
because unfolding is totally correct wrt the finite failure semantics SemFF ,
we know that Pf and P ′f are equivalent under SemFF . Thus the induction
hypothesis holds for min = k + 1 . 2

We are now in position to state a correctness result similar to the ones
in Chapters 3 and 5. In contrast to these results however, we do not need
an independence condition (because of the renaming), but we still need an
adapted coveredness condition:

Definition 10.3.13(Q-covered wrt p) Let p be a partitioning function
and Q a set of conjunctions. We say that a conjunction Q is Q-covered
wrt p iff every conjunction Q′ ∈ p(Q) is an instance of an element in Q.
Furthermore a set of resultants R is Q-covered wrt p iff every body of every
resultant in R is Q-covered wrt p.

The above coveredness condition ensures that the renamings performed
in Definition 10.2.6 are always defined and that the original program P can
be thrown away from the end result of a transformation sequence for the
associated conjunctive partial deduction.

Example 10.3.14 Let Q = {q(x)∧ r, q(a)}, Q = q(a)∧ q(b)∧ r. Then, for
a partitioning function p such that p(Q) = {q(b) ∧ r, q(a)}, Q is Q-covered
wrt p. However, for p′ with p′(Q) = {q(a) ∧ r, q(b)}, Q is not Q-covered
wrt p′.

Proposition 10.3.15 establishes a correspondence between the result Pf

of the above transformation sequence and the corresponding conjunctive
partial deduction.

Proposition 10.3.15 Let P ′ be the conjunctive partial deduction of P wrt
Q, PQ and ρα,p such that PQ is Q-covered wrt p. Also let P0, . . . , Pf be a
transformation sequence for P ′. Then Pf \P = P ′, where P is the original
program.

Theorem 10.3.16 Let P ′ be the conjunctive partial deduction of P wrt
Q, PQ and ρα,p. If PQ ∪ {G} is Q-covered wrt p then
• P ∪ {G} has an SLD-refutation with c.a.s. θ iff P ′ ∪ {ρα,p(G)} has
an SLD refutation with c.a.s. θ.

If in addition P ′ is weakly fair then
• P ∪ {G} has a finitely failed SLD-tree iff P ′ ∪ {ρα,p(G)} has.

10.3. CORRECTNESS RESULTS 241

Proof Let us first prove the theorem for conjunctive partial deductions
constructed using a fresh atomic renaming α.
Let x1, . . . , xn be the variables of G ordered according to their first ap-
pearance and let query be a fresh predicate of arity n. We then define
P0 = P ∪ {query(x1, . . . , xn) ← QG} where G =← QG. The conjunc-
tive partial deduction of P0 will be identical to the one of P except for
the extra clause for query. We can now construct a transformation se-
quence P0, . . . , Pf for the conjunctive partial deduction of P0 and then
apply Proposition 10.3.12 to deduce that query(x1, . . . , xn) has the same
computed answer and finite failure behaviour in P0 and Pf . Note that
query is defined in Pf by the clause query(x1, . . . , xn)← ρα,p(QG). Hence
P ∪ {G} has the same behaviour wrt computed answers and finite failure
as Pf ∪ {ρα,p(G)}. Finally P ′ = Pf\ {P ∪ query(x1, . . . , xn) ← ρα,p(Q)}.
Hence, the theorem follows from the fact that, due to Q-coveredness wrt p,
the predicates defined in P , as well as the predicate query, are inaccessible
from ρα,p(Q) in the predicate dependency graph.
Let us now prove the result for unrestricted renaming.
For that we simply introduce a fresh intermediate renaming and prove the
result by two applications of the above theorem. More precisely, let α′ and
α′′ be such that α(Q) = α′′(α′(Q)) for every Q ∈ Q and such that α′ is
a fresh atomic renaming for PQ and also such that α′′ is a fresh atomic
renaming wrt the range of α′. Such renamings can always be constructed.
We can now apply the above result to deduce that the conjunctive par-
tial deduction P ′′, obtained from PQ under ρα′,p, is totally correct for the
query ρα′,p(G). The conjunctive partial deduction P ′ (as well as the query
ρα,p(G)) can be obtained from P ′′ by performing a (standard) partial de-
duction wrt the set A = {α′(Q) | Q ∈ Q} and by unfolding every atom in
A exactly once. Hence we can re-apply the above theorem and we obtain
total correctness of P ′ wrt P . 2

Let us briefly illustrate Theorem 10.3.16 on a small example.

Example 10.3.17 (double append, revisited) Let PQ, P and P ′ be
taken from Example 10.2.7. Let G =← app([1, 2], [3], I) ∧app(I, [4], R).
We have that ρα,p(G) = da([1, 2], [3], I, [4], R). It can be seen that PQ ∪
{G} is Q-covered wrt p and indeed, as predicted by Theorem 10.3.16,
P ∪ {G} and Pρα,p

∪ {ρα,p(G)} have the same set of computed answers:
{{I/[1, 2, 3], R/[1, 2, 3, 4]}}.
Note that P ′, as mentioned in Example 10.3.10 above, is weakly fair and
therefore finite failure is also preserved.

242 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

10.4 Discussion and conclusion

10.4.1 Negation and normal programs

When extending conjunctive partial deduction for negation two issues come
up: one is correctly handling normal logic programs instead of definite
programs and the second one is to allow the selection of ground negative
literals (i.e. moving from SLD+-trees to SLDNF-trees).

The former is not so difficult, as a lot of results from the literature can be
reused. For instance, we can recycle results from the unfold/fold literature
to prove preservation of the perfect model semantics for stratified programs
[249] and preservation of the well-founded semantics for normal programs
[250]. If in addition we have fair SLD+-trees, the conditions of modified
(T&S) folding of [249] hold, and we can use preservation of the SLDNF
success and finite failure set for stratified programs. Some further results
from [13] can also be applied. In [31], the correctness results of [249] are
adapted for Fitting’s semantics and the results might also be applicable in
our case. The results of [104] do not seem to be applicable because they use
a different folding rule (which requires the clauses involved in the folding
process to be all in the same program Pi).

Allowing SLDNF-trees instead of SLD+-trees is more difficult. Note
that [249, 250, 222, 13, 31] do not allow the unfolding of negative literals.
Selecting negative literals might be obtained by goal replacement or clause
replacement , but Theorems 15 and 16 from [222] cannot be applied because
different folding rules are used. [246] allows unfolding inside negation and
works with first order formulas, but it still has to be investigated whether its
results (for Kleene’s 3-valued logic) can be used. Also [144] has a negative
unfolding rule (under certain termination conditions), but this rule (along
with the correctness theorems) is situated in the context of deriving definite
logic programs from first order specifications. So, for the moment, there
seems to be no conjunctive equivalent to the correctness theorem of [185] for
normal logic programs and partial deduction based on constructing finite
SLDNF-trees. Further work will be needed to extend the correctness results
of the previous section.

10.4.2 Preliminary results and potential

Some preliminary and promising experiments with conjunctive partial de-
duction have been conducted in [175] (in Chapter 12 we will present more
elaborate and extensive benchmarks). They were based on a system for
standard partial deduction described in [168, 178]. The adaptation to con-
junctive partial deduction was pretty straightforward, further underlining

10.4. DISCUSSION AND CONCLUSION 243

our earlier claim that conjunctive partial deduction is just a simple, but
powerful, extension of the standard partial deduction concept.

The good results that were obtained in [175] (as well as the ones we will
obtain later in Chapter 12) seem to indicate that folding combined with a
rather simple unfolding rule can solve some of the traditional local control
problems for meta-interpreters. This is also related to the fact that the
local precision problem outlined in Chapter 3 disappears, at least to some
extent: there is no longer an automatic, unavoidable abstraction associated
with stopping the unfolding. In other words, given a good global control,
the local control no longer has to worry about precision: it can concentrate
on the efficiency of the resultants it generates.

Folding also solves a problem already raised in [220]. Take for example
a meta-interpreter containing the following clauses, where noloop(A,H) is
an expensive test which cannot be (fully) unfolded:

solve([],H)←
solve([A|T],H)←

noloop(A,H) ∧ clause(A,B)∧
solve(B, [A|H]) ∧ solve(T,H)

Here standard partial deduction faces a dilemma when specialising the atom
solve([d̄],H). After resolving with the second clause and performing one
determinate unfolding step (on solve([],H)) we obtain the following goal

← noloop(d̄, H) ∧ clause(d̄, B) ∧solve(B, [d̄|H])
Either we unfold clause(d̄, B), thereby propagating the partial input d̄
over to B in solve(B, [d̄|H]), but at the cost of duplicating noloop(d̄, H)
and most probably leading to a slowdown. Or standard partial deduc-
tion can stop the unfolding, but then the partial input d̄ can no longer
be propagated over to B inside solve(B, [d̄|H]). Using conjunctive partial
deduction however, we can be efficient and propagate information at the
same time, simply by stopping unfolding and specialising the conjunction
clause(d̄, B) ∧ solve(B, [d̄|H]).8

10.4.3 Conclusion

In conclusion, we have presented a simple but powerful extension of partial
deduction, showed that it can perform tupling and, when combined with
a suitable post-processing to be presented in the next Chapter, also defor-
estation. We proved correctness results with respect to computed answer

8The Paddy system [227] uses non-atomic, non-recursive folding to avoid backpropa-
gation of bindings (to preserve Prolog semantics). In general this is sufficient to solve the
above problem. Apart from that, Paddy only performs folding of atoms, i.e. the same
implicit folding used in standard partial deduction.

244 CHAPTER 10. CONJUNCTIVE PARTIAL DEDUCTION

semantics, least Herbrand model semantics and finite failure semantics. For
the latter we also presented improved conditions, which, in contrast to cur-
rent results for unfold/fold, allow the preservation of finite failure while not
imposing certain potentially disastrous (non-determinate) unfolding steps.

Chapter 11

Redundant Argument
Filtering

11.1 Introduction

Automatically generated programs often contain redundant parts. For in-
stance, programs produced by standard partial deduction [185] often have
useless clauses and redundant structures, see e.g. [98]. This has motivated
uses of regular approximations to detect useless clauses [101, 68, 66] and
renaming (or filtering) transformations [99, 17] which remove redundant
structures. We have already discussed the latter transformations in Chap-
ter 3, where they also proved useful to ensure the independence condition,
and we have then widely used such transformations, notably in Chapters 5
and 10.

In this chapter we are concerned with yet another notion of redundancy
which may remain even after these transformations have been applied, viz.
redundant arguments. These seem to appear particularly often in programs
produced by conjunctive partial deduction as presented in Chapter 10.

Consider the program P ′ we obtained in Example 10.2.7 by conjunctive
partial deduction of the append program for the goal G =← app(X, Y, I)∧
app(I, Z, R) (renamed to ← da(X, Y, I, Z, R) in P ′):

app([], L, L)←
app([H|X], Y, [H|Z])← app(X, Y, Z)
da([], Y, Y, Z,R)← app(Y, Z, R)
da([H|X ′], Y, [H|I ′], Z, [H|R′]) ← da(X ′, Y, I ′, Z,R′)

Here the concatenation of the lists Xs and Ys is still stored in T , but is
not used to compute the result in R. Instead the elements encountered

245

246 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

while traversing Xs and Ys are stored directly in R. Informally, the third
argument of da is redundant. Thus, although this program represents a step
in the right direction, we would rather prefer the following program:

app([], L, L)←
app([H|X], Y, [H|Z])← app(X, Y, Z)
da′([], Y, Z,R)← app(Y, Z, R)
da′([H|X ′], Y, Z, [H|R′])← da′(X ′, Y, Z,R′)

The step from da/5 to da′/4 was left open in Chapter 10. The step can-
not be obtained by the renaming operation in [99, 17] which only improves
programs where some atom in some body contains functors or multiple oc-
currences of the same variable. In fact, this operation has already been
employed by conjunctive partial deduction to arrive at the program with
da/5. The step also cannot be obtained by other transformation techniques,
such as partial deduction itself, or the more specific program construction
of [191, 192] (cf. Chapter 13). Indeed, any method which preserves the least
Herbrand model, or the computed answer semantics for all predicates, is
incapable of transforming da/5 to da′/4. The point is that although the list
I is redundant in some sense—which is made precise below—the change of
arity also changes the semantics.

Redundant arguments also appear in a variety of other situations. For
instance, they appear in programs generated by standard partial deduction
when conservative unfolding rules are used.

As another example, redundant arguments arise when one re-uses generic
predicates for more specific purposes. For instance, let us define a member/2
predicate by re-using a generic delete/3 predicate:

member(X ,L)← delete(X ,L,DL)
delete(X , [X |T],T)←
delete(X , [Y |T], [Y |DT])← delete(X ,T ,DT)

Here the third argument of delete is redundant but cannot be removed by
any of the techniques cited above.

In this chapter we rigorously define the notion of a redundant argu-
ment, and show that the problem of removing all redundant arguments is
undecidable. We then present an efficient algorithm which computes a safe
approximation of the redundant arguments and removes them. Correct-
ness of the technique is also established. On a range of programs produced
by conjunctive partial deduction (with renaming), an implementation of
our algorithm reduces code size and execution time by an average of ap-
proximately 20%. The algorithm never increases code size nor execution
time.

11.2. CORRECT ERASURES 247

11.2 Correct erasures

In the remainder, Pred(P) denotes the set of predicates occurring in a logic
program P , arity(p) denotes the arity of a predicate p, Clauses(P) denotes
the set of clauses in P and Def(p, P) denotes the definition of p in P . An
atom, conjunction, goal, or program, in which every predicate has arity 0
is called propositional.

In this section we formalise redundant arguments in terms of correct
erasures.

Definition 11.2.1 Let P be a program.

1. An erasure of P is a set of tuples (p, k) with p ∈ Pred(P), and
1 ≤ k ≤ arity(p).

2. The full erasure for P is >P = {(p, k) | p ∈ Pred(P) ∧ 1 ≤ k ≤
arity(p)}.

The effect of applying an erasure to a program is to erase a number of
arguments in every atom in the program. For simplicity of the presentation
we assume that, for every program P and goal G of interest, each predi-
cate symbol occurs only with one particular arity (this will later ensure
that there are no unintended name clashes after erasing certain argument
positions).

Definition 11.2.2 Let G be a goal, P a program, and E an erasure of P .

1. For an atom A = p(t1, . . . , tn) in P , let 1 ≤ j1 < . . . < jk ≤ n
be all the indexes such that (p, ji) 6∈ E. We then define A|E =
p(tj1 , . . . , tjk

).

2. P |E and G|E arise by replacing every atom A by A|E in P and G,
respectively.

How are the semantics of P and P |E of Definition 11.2.2 related? Since
the predicates in P may have more arguments than the corresponding predi-
cates in P |E, the two programs have incomparable semantics. Nevertheless,
the two programs may have the same semantics for some of their arguments.

Example 11.2.3 Consider the definite program P :
p(0, 0, 0)←
p(s(X), f(Y), g(Z))← p(X, Y, Z)

The goal G =← p(s(s(0)), B,C) has exactly one SLD-refutation, with com-
puted answer {B/f(f(0)), C/g(g(0))}. Let E = {(p, 3)}, and hence P |E
be:

248 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

p(0, 0)←
p(s(X), f(Y))← p(X, Y)

Here G|E =← p(s(s(0)), B) has exactly one SLD-refutation, with computed
answer {B/f(f(0))}. Thus, although we have erased the third argument of
p, the computed answer for the variables in the remaining two arguments is
not affected. Taking finite failures into account too, this suggests a notion
of equivalence captured in the following definition.

Definition 11.2.4 An erasure E is correct for a definite program P and a
definite goal G iff

1. P ∪ {G} has an SLD-refutation with computed answer θ with θ′ =
θ |vars(G|E) iff P |E ∪ {G|E} has an SLD-refutation with computed
answer θ′.

2. P ∪ {G} has a finitely failed SLD-tree iff P |E ∪ {G|E} has.

Given a definite goal G and a definite program P , we may now say
that the i’th argument of a predicate p is redundant if there is an erasure
E which is correct for P and G and which contains (p, i). However, we
will continue to use the terminology with correct erasures, rather than
redundant arguments.

Usually there is a certain set of argument positions I which we do not
want to erase. For instance, for G = app([a], [b], R) and the append pro-
gram, the erasure E = {(app, 3)} is correct, but applying the erasure will
also make the result of the computation invisible. In other words, we wish
to retain some arguments because we are interested in their values (see also
the examples in Section 11.4). Therefore we only consider subsets of >P \I
for some I. Not all erasures included in >P \ I are of course correct, but
among the correct ones we will prefer those that remove more arguments.
This motivates the following definition.

Definition 11.2.5 Let G be a goal, P a program, E a set of erasures of P ,
and E,E′ ∈ E .

1. E is better than E′ iff E ⊇ E′.

2. E is strictly better than E′ iff E is better than E′ and E 6= E′.

3. E is maximal iff no other E′ ∈ E is strictly better than E.

Proposition 11.2.6 Let G be a definite goal, P a definite program and E
a collection of erasures of P . Among the correct erasures for P and G in E
there is a maximal one.

11.2. CORRECT ERASURES 249

Proof There are only finitely many erasures in E that are correct for P
and G. Just choose one which is not contained in any other. 2

Maximal correct erasures are not always unique. For G =← p(1, 2) and
the following program P :

p(3, 4)← q
q ←

both {(p, 1)} and {(p, 2)} are maximal correct erasures, but {(p, 1), (p, 2)}
is incorrect.

The remainder of this section is devoted to proving that finding best
correct erasures is undecidable. The idea is as follows. It is decidable
whether P ∪{G} has an SLD-refutation for propositional P and G, but not
for general P and G. The full erasure of any P and G yields propositional
P |>P and G|>P . The erasure is correct iff both or none of P ∪ {G} and
P |>P ∪ {G|>P } have an SLD-refutation. Thus a test to decide correctness,
together with the test for SLD-refutability of propositional formulae, would
give a general SLD-refutability test.

Lemma 11.2.7 There is an effective procedure that decides, for a propo-
sitional definite program P and definite goal G, whether P ∪ {G} has an
SLD-refutation.

Proof By a well-known [184, Corollary7.2, Theorem 8.4] result, P ∪ {G}
has an SLD-refutation iff P ∪ {G} is unsatisfiable. The latter problem is
decidable, since P and G are propositional. 2

Lemma 11.2.8 Let G be a definite goal, P a definite program, and E an
erasure of P . If P ∪ {G} has an SLD-refutation, then so has P |E ∪ {G|E}.

Proof By induction on the length of the SLD-derivation of P ∪ {G}. 2

Lemma 11.2.9 Let P be a definite program and G a definite goal. If
P ∪ {G} has an SLD-refutation, then P ∪ {G} has no finitely failed SLD-
tree.

Proof By [184, Theorem 10.3]. 2

Proposition 11.2.10 There is no effective procedure that tests, for a def-
inite program P and definite goal G, whether >P is correct for P and G.

Proof Suppose such an effective procedure exists. Together with the ef-
fective procedure from Lemma 11.2.7 this would give an effective procedure

250 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

to decide whether P ∪ {G} has an SLD-refutation, which is known to be
an undecidable problem:1

1. If P |>P ∪ {G|>P } has no SLD-refutation, by Lemma 11.2.8 neither
has P ∪ {G}.

2. If P |>P ∪ {G|>P } has an SLD-refutation then:

(a) If >P is correct then P ∪ {G} has an SLD-refutation by Defini-
tion 11.2.4.

(b) If >P is incorrect then P ∪ {G} has no SLD-refutation. In-
deed, if P ∪ {G} had an SLD-refutation with computed an-
swer θ, then Definition 11.2.4 (1) would be satisfied with θ′ =
θ |vars(G|>P)= ∅. Moreover, by Lemma 11.2.9 none of P ∪ {G}
and P |>P ∪ {G|>P } would have a finitely failed SLD-tree, so
Definition 11.2.4(2) would also be satisfied. Thus >P would be
correct, a contradiction.

2

Corollary 11.2.11 There is no effective function that maps any definite
program P and definite goal G to a maximal, correct erasure for P and G.

Proof >P is the maximal among all erasures of P , so such a function f
would satisfy:

f(P,G) = >P ⇔ >P is correct for P and G

giving an effective procedure to test correctness of >P , contradicting Propo-
sition 11.2.10. 2

11.3 Computing correct erasures

In this section we present an algorithm which computes correct erasures.
Corollary 11.2.11 shows that we cannot hope for an algorithm that always
computes maximal correct erasures. We therefore derive an approximate
notion which captures some interesting cases. For this purpose, the follow-
ing examples illustrate some aspects of correctness.

The first example shows what may happen if we try to erase a variable
that occurs several times in the body of a clause.

1G|>P may contain variables, namely those occurring in atoms with predicate symbols
not occurring in P . However, such atoms are equivalent to propositional atoms not
occurring in P .

11.3. COMPUTING CORRECT ERASURES 251

Example 11.3.1 Consider the following program P :
p(X)← r(X, Y), q(Y)
r(X, 1)←
q(0)←

If E = {(r, 2)} then P |E is the program:
p(X)← r(X), q(Y)
r(X)←
q(0)←

In P the goal G =← p(X) fails finitely, while in P |E the goal G|E =← p(X)
succeeds. Thus E is not correct for P and G. The source of the problem
is that the existential variable Y links the calls to r and q with each other.
By erasing Y in ← r(X, Y), we also erase the synchronisation between r
and q. Also, if E = {(q, 1), (r, 2)} then P |E is the program:

p(X)← r(X), q
r(X)←
q ←

Again, G|E =← p(X) succeeds in P |E, so the problem arises independently
of whether the occurrence of Y in q(Y) is itself erased or not.

In a similar vein, erasing a variable that occurs several times within the
same call, but is not linked to other atoms, can also be problematic.

Example 11.3.2 If P is the program:
p(a, b)←
p(f(X), g(X))← p(Y, Y)

and E = {(p, 2)} then P |E is the program:
p(a)←
p(f(X))← p(Y)

Here G =← p(f(X), Z) fails finitely in P , while G|E =← p(f(X)) succeeds
(with the empty computed answer) in P |E.

Note that, for E = {(p, 1), (p, 2)}, P |E is the program:
p
p← p

Again G|E =← p succeeds in P |E and the problem arises independently of
whether the second occurrence of Y is erased or not.

Still another problem is illustrated in the next example.

Example 11.3.3 Consider the following program P :
p([], [])←
p([X|Xs], [X|Ys])← p(Xs, [0|Ys])

252 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

If E = {(p, 2)} then P |E is the program:
p([])←
p([X|Xs])← p(Xs)

In P , the goal G =← p([1, 1], Y) fails finitely, while in P |E the goal
G|E =← p([1, 1]) succeeds. This phenomenon can occur when erased argu-
ments of predicate calls contain non-variable terms.

Finally, problems may arise when erasing in the body of a clause a
variable which also occurs in a non-erased position of the head of a clause:

Example 11.3.4 Let P be the following program:
p(a, b)←
p(X, Y)← p(Y,X)

If E = {(p, 2)} then P |E is the program:
p(a)←
p(X)← p(Y)

Here G =← p(c, Y) fails (infinitely) in P while G|E =← p(c) succeeds in
P |E. The synchronisation of the alternating arguments X and Y is lost by
the erasure.

The above criteria lead to the following definition, in which (1) rules out
Example 4, (2) rules out Examples 2 and 3, and (3) rules out Example 5.

Definition 11.3.5 Let P be a definite program and E an erasure of P .
E is safe for P iff for all (p, k) ∈ E and all H ← C, p(t1, . . . , tn), C ′ ∈
Clauses(P), it holds that:

1. tk is a variable X.

2. X occurs only once in C, p(t1, . . . , tn), C ′.

3. X does not occur in H|E.

This in particular applies to goals:

Definition 11.3.6 Let P be a definite program and E an erasure of
P . E is safe for a definite goal G iff for all (p, k) ∈ E where G =←
C, p(t1, . . . , tn), C ′ it holds that:

1. tk is a variable X.

2. X occurs only once in in C, p(t1, . . . , tn), C ′.

11.3. COMPUTING CORRECT ERASURES 253

We will now show that the conditions in Definitions 11.3.5 and 11.3.6 are
actually sufficient to ensure correctness. We already mentioned on page 222
in Chapter 10 that renaming is closely related to unfold/fold and that it
can be formalised as a two-step basic transformation involving a definition
step, immediately followed by a number of folding steps. This observa-
tion also applies to erasures, whose application can be seen as an, albeit
powerful, renaming transformation. The conditions in Definitions 11.3.5
and 11.3.6 occur, in a less obvious formulation, within the formalisation
of T&S-folding (see Definition 10.3.3). This will allow us to reuse correct-
ness results from the unfold/fold literature in the proof below. Indeed, the
method of this chapter can be seen as a novel application of T&S-folding
using a particular control strategy.

Proposition 11.3.7 Let G be a definite goal, P a definite program, and
E an erasure of P . If E is safe for P and for G then E is correct for P and
G.

Proof We will show that P |E can be obtained from P by a sequence
of T&S-definition, unfolding and T&S-folding steps (see Section 10.3.1 in
Chapter 10). Let P0 = P ∪ query(X̄) ← Q be the initial program of our
transformation sequence, where G =← Q and X̄ is the sequence of distinct
variables occurring in G|E. First, for each predicate defined in P such
that A 6= A|E, where A = p(X1, . . . , Xn) is a maximally general atom, we
introduce the definition Defp = A|E ← A. The predicate of A occurs in P0,
and is therefore old according to the definitions in [269] (if one wants to use
the definitions in [222] one can use exactly the same “trick” explained in the
proof of Lemma 10.3.7). By the conditions we imposed earlier on P (namely
that each predicate symbol occurs with only 1 arity, see the discussions just
after Definition 11.2.1) we also know that the predicate of P |E does not
occur in P0. Thus these definition steps are T&S-definition introduction
steps. We now unfold every definition A|E ← A wrt A using the clauses
defining A in P0, giving us the program Pk (where k is the number of
definitions that have been unfolded). For every atom p(t1, . . . , tn) in the
body of a clause C of Pk, for which a definition Defp has been introduced
earlier, we perform a folding step of C wrt p(t1, . . . , tn) using Defp. Note
that every such atom p(t1, . . . , tn) is fold-allowing (because either it has
been obtained by unfolding a definition A|E ← A and is not inherited
from A or it stems from the original program). The result of the folding
step is that of replacing p(t1, . . . , tn) by p(t1, . . . , tn)|E. This means that
after having performed all the resolution steps we obtain a program P ′ =
P |E ∪ query(X̄)← Q|E ∪P ′′ where P ′′ are the original definitions of those
predicates for which we have introduce a definition Defp. Now, as already

254 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

mentioned earlier, the conditions in Definition 11.3.5 and Definition 11.3.6
are equivalent to the conditions of T&S-folding and therefore P ′ can be
obtained from Pk by a sequence of T&S-unfolding, unfolding and then
T&S-folding steps on fold-allowable atoms. Note that here it is vital to
define X̄ to be the variables of G|E in the clause query(X̄) ← Q of P0,
otherwise the folding steps performed on the atoms of Q would not be
T&S-folding steps. We can thus apply Theorems 10 and 12 in [222] to
deduce preservation of the computed answers and of finite failure. Finally,
as P ′′ is unreachable from ← query(X̄) we can remove P ′′ and because
G|E =← Q|E the conditions of Definition 11.2.4 are verified for P and G.
2

The following algorithm constructs a safe erasure for a given program.

Algorithm 11.3.8 (RAF)

Input: a definite program P , an initial erasure E0.

Output: an erasure E with E ⊆ E0.

Initialisation: i := 0;

while there exists a (p, k) ∈ Ei and

a H ← C, p(t1, . . . , tn), C′ ∈ Clauses(P) such that:

1. tk is not a variable; or

2. tk is a variable that occurs more than once in C, p(t1, . . . , tn), C′; or

3. tk is a variable that occurs in H|Ei do

Ei+1 := Ei \ {(p, k)};
i := i + 1;

end while

return Ei

The above algorithm starts out from an initial erasure E0, usually con-
tained in >P \ I, where I are positions of interest (i.e. we are interested in
the computed answers they yield). Furthermore E0 should be so as to be
safe for any goal of interest (see the example in the next section).

Proposition 11.3.9 With input E0, RAF terminates, and output E is a
unique erasure, which is the maximal safe erasure for P contained in E0.

Proof The proof consists of four parts: termination of RAF, safety of
E for P , uniqueness of E, and optimality of E. The two first parts are
obvious; termination follows from the fact that each iteration of the while
loop decreases the size of Ei, and safety is immediate from the definition.

11.4. APPLICATIONS AND BENCHMARKS 255

To prove uniqueness, note that the non-determinism in the algorithm is the
choice of which (p, k) to erase in the while loop. Given a logic program P ,
let the reduction F →(p,k) G denote the fact that F is not safe for P and
that an iteration of the while loop may chose to erase (p, k) from F yielding
G = F \ {(p, k)}.
Now suppose F →(p,k) G and F →(q,j) H, with (p, k) 6= (q, j). Then
by analysis of all the combinations of reasons that (p, k) and (q, j) could
be removed from F it follows that G →(q,j) I and G →(p,k) I with I =
F \{(p, k), (q, j)}. In other words the reduction relation is locally confluent
(see e.g. [82]). So, because the relation is also terminating, we can apply
the diamond lemma [216] (also in [82]) to deduce that it is confluent. Hence
the final output E is unique.
To see that E is the maximal one among the safe erasures contained in E0,
note that F →(p,k) G implies that no safe erasure contained in F contains
(p, k). 2

11.4 Applications and benchmarks

We first illustrate the usefulness of the RAF algorithm in the transformation
of double-append from Section 11.1. Recall that we want to retain the
semantics (and so all the arguments) of doubleapp, but want to erase as
many arguments in the auxiliary calls to app and da as possible. Therefore
we start RAF with

E0 = {(da, 1), (da, 2), (da, 3), (da, 4), (da, 5), (app, 1), (app, 2), (app, 3)}

Application of RAF to E0 yields E = {(da, 3)}, representing the informa-
tion that the third argument of da can be safely removed, as desired. By
construction of E0, we have that E ⊆ E0 is safe for any goal which is an
instance of ← doubleapp(Xs,Ys,Zs, R). Hence, as long as we consider only
such goals, we get the same answers from the program with da′/4 as we get
from the one with da/5.

Let us also treat the member-delete problem from Section 11.1. If we
start RAF with

E0 = {(delete, 1), (delete2), (delete, 3)}

indicating that we are only interested in computed answers to member/2 ,
then we obtain E = {(delete, 3)} and the following more efficient program
P |E:

member(X ,L) ← delete(X ,L)
delete(X , [X |T]) ←
delete(X , [Y |T]) ← delete(X ,T)

256 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

To investigate the effects of Algorithm 11.3.8 more generally, we have
incorporated it into the ecce partial deduction system [170], already used in
Chapter 6. The details about how the system was extended for conjunctive
partial deduction are presented in the next Chapter.

We ran the system with and without redundant argument filtering (but
always with renaming in the style of [99]) on a series of benchmarks of the
dppd library [170] (a brief description can also be found in Appendix C).
An unfolding rule allowing determinate unfolding and leftmost “indexed”
non-determinate unfolding (using the homeomorphic embedding relation
on covering ancestors to ensure finiteness) was used.2 As in Chapter 6, the
timings were obtained via the time/2 predicate of Prolog by BIM 4.0.12
(on a Sparc Classic under Solaris) using the “benchmarker” files generated
by ecce. The compiled code size was obtained via statistics/4 and is
expressed in units, were 1 unit corresponds to approximately 4.08 bytes (in
the current implementation of Prolog by BIM). The total speedups were
obtained by the same formula as in Section 6.4.

The results are summarised in Tables 11.2 and 11.1. As can be seen,
RAF reduced code size by an average of 21% while at the same time yielding
an average additional speedup of 18%. Note that 13 out of the 29 bench-
marks benefited from RAF, while the others remained unaffected (i.e. no
redundant arguments where detected). Also, none of the programs were
deteriorated by RAF. Except for extremely large residual programs, the
execution time of the RAF algorithm was insignificant compared to the
total partial deduction time. Note that the RAF algorithm was also useful
for examples which have nothing to do with deforestation and, when run-
ning the same benchmarks with standard partial deduction based on e.g.
determinate unfolding, RAF also turned out to be useful, albeit to a lesser
extent. In conclusion, RAF yields a practically significant reduction of code
size and a practically significant speedup (e.g. reaching a factor of 4.29 for
depth).

2The full system options were: Abs:j, InstCheck:a, Msv:s, NgSlv:g, Part:f, Prun:i,
Sel:l, Whistle:d, Poly:y, Dpu: yes, Dce:yes, MsvPost: no.

11.4. APPLICATIONS AND BENCHMARKS 257

Benchmark Code Size

without RAF with RAF

advisor 809 u 809 u
applast 188 u 145 u
contains.kmp 2326 u 1227 u
contains.lam 2326 u 1227 u
depth.lam 5307 u 1848 u
doubleapp 314 u 277 u
ex depth 874 u 659 u
flip 573 u 493 u
grammar.lam 218 u 218 u
groundunify.simple 368 u 368 u
liftsolve.app 1179 u 1179 u
liftsolve.db1 1326 u 1326 u
liftsolve.lmkng 2773 u 2228 u
map.reduce 348 u 348 u
match.kmp 543 u 543 u
match.lam 543 u 543 u
maxlength 1083 u 1023 u
model elim.app 444 u 444 u
regexp.r1 457 u 457 u
regexp.r2 831 u 799 u
regexp.r3 1229 u 1163 u
relative.lam 261 u 261 u
remove 2778 u 2339 u
rev acc type 242 u 242 u
rev acc type.inffail 1475 u 1475 u
rotateprune 4088 u 3454 u
ssuply.lam 262 u 262 u
transpose.lam 2312 u 2312 u

Average Size 1204.91 u 952.64 u
(79.06%)

Table 11.1: Code size (in units)

258 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

Benchmark Execution Time Extra
Original without RAF with RAF Speedup

advisor 0.68 0.21 0.21 1.00
applast 0.44 0.17 0.10 1.70
contains.kmp 1.03 0.28 0.10 2.80
contains.lam 0.53 0.15 0.11 1.36
depth.lam 0.47 0.30 0.07 4.29
doubleapp 0.44 0.42 0.35 1.20
ex depth 1.14 0.37 0.32 1.16
flip 0.61 0.66 0.58 1.14
grammar.lam 1.28 0.18 0.18 1.00
groundunify.simple 0.28 0.07 0.07 1.00
liftsolve.app 0.81 0.04 0.04 1.00
liftsolve.db1 1.00 0.01 0.01 1.00
liftsolve.lmkng 0.45 0.54 0.44 1.23
map.reduce 1.35 0.11 0.11 1.00
match.kmp 2.28 1.49 1.49 1.00
match.lam 1.60 0.95 0.95 1.00
maxlength 0.10 0.14 0.12 1.17
model elim.app 1.43 0.19 0.19 1.00
regexp.r1 1.67 0.33 0.33 1.00
regexp.r2 0.51 0.25 0.18 1.39
regexp.r3 1.03 0.45 0.30 1.50
relative.lam 3.56 0.01 0.01 1.00
remove 4.66 3.83 3.44 1.11
rev acc type 3.39 3.39 3.39 1.00
rev acc type.inffail 3.39 0.96 0.96 1.00
rotateprune 5.84 6.07 5.82 1.04
ssuply.lam 0.65 0.05 0.05 1.00
transpose.lam 1.04 0.18 0.18 1.00

Total Speedup 1 2.11 2.50 1.18

Table 11.2: Execution times (in s)

11.5. POLYVARIANCE AND NEGATION 259

11.5 Polyvariance and negation

In this section we discuss some natural extensions of our technique.

11.5.1 A polyvariant algorithm

The erasures computed by RAF are monovariant: an argument of some
predicate has to be erased in all calls to the predicate or not at all. It is
sometimes desirable that the technique be more precise and erase a certain
argument only in certain contexts (this might be especially interesting when
a predicate also occurs inside a negation, see the next subsection below).

Example 11.5.1 Consider the following program P :
p(a, b)←
p(b, c)←
p(X, Y)← p(X, Z), p(Z, Y)

For E0 = {(p, 2)} (i.e. we are only interested in the first argument to p),
RAF returns E = ∅ and hence P |E = P . The reason is that the variable
Z in the call p(X, Z) in the third clause of P cannot be erased. Therefore
no optimisation can occur at all. To remedy this, we need a polyvariant
algorithm which, in the process of computing a safe erasure, generates du-
plicate versions of some predicates, thereby allowing the erasure to behave
differently on different calls to the same predicate. Such an algorithm might
return the following erased program:

p(a)←
p(b)←
p(X)← p(X, Z), p(Z)
p(a, b)←
p(b, c)←
p(X, Y)← p(X, Z), p(Z, Y)

The rest of this subsection is devoted to the development of such a
polyvariant RAF algorithm.

First, the following, slightly adapted, definition of erasing is needed. The
reason is that several erasures might now be applied to the same predicate,
and we have to avoid clashes between the different specialised versions for
the same predicate.

Definition 11.5.2 Let E be an erasure of P . For an atom A = p(t1, . . . , tn),
we define A||E = pE(tj1 , . . . , tjk

) where 1 ≤ j1 < . . . < jk ≤ n are all the
indexes such that (p, ji) 6∈ E and where pE denotes a predicate symbol of
arity jk such that ∀p, q, E1, E2 (pE1 = qE2 iff (p = q ∧ E1 = E2)).

260 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

For example, we might have that p(X, Y)||{(p, 1)} = p′(X) together
with p(X, Y)||{(p, 2)} = p′′(Y), thereby avoiding the name clash that occurs
when using the old scheme of erasing.

Algorithm 11.5.3 (polyvariant RAF)
Input: a definite program P , an initial erasure Ep for some predicate p.

Output: a new program P ′ which can be called with ← p(t1, . . . , tn)||Ep and
which is correct3 if Ep is safe for ← p(t1, . . . , tn).

Initialisation: New := {(Ep, p)}, S := ∅, P ′ = ∅;
while not New ⊆ S do

let S := S ∪New, S′ := New \ S and New := ∅
for every element (Ep, p) of S′ do

for every clause H ← A1, . . . , An ∈ Def(p, P) do

let EAi = {(qi, k) | Ai = qi(t1, . . . , tm) and 1 ≤ k ≤ m and

(qi, k) satisfies

1. tk is a variable X; and

2. X occurs exactly once in A1, . . . , An; and

3. X does not occur in H||Ep }
let New := New∪ {(EAi , qi) | 1 ≤ i ≤ n}
let P ′ := P ′∪ {H||Ep ← A1||EA1 , . . . , An||EAn}

end for

end for

end while

return P ′

Note that, in contrast to monovariant RAF, in the polyvariant RAF
algorithm there is no operation that removes a tuple from the erasure Ep.
So one may wonder how the polyvariant algorithm is able to produce a
correct program. Indeed, if an erasure Ep contains the tuple (p, k) this
means that this particular version of p will only be called with the k-th
argument being an existential variable. So, it is always correct to erase the
position k in the head of a clause C for that particular version of p, because
no bindings for the body will be generated by the existential variable and
because we are not interested in the computed answer bindings for that
variable. However, the position k in a call to p somewhere else in the
program, e.g. in the body of C, might not be existential. But in contrast
to the monovariant RAF algorithm, we do not have to remove the tuple
(p, k): we simply generate another version for p where the k-th argument
is not existential.

3In the sense of Definition 11.2.4, by simply replacing P |E by P ′ and | by ||.

11.5. POLYVARIANCE AND NEGATION 261

Example 11.5.4 Let us trace Algorithm 11.5.3 by applying it to the pro-
gram P of Example 11.5.1 above and with the initial erasure Ep = {(p, 2)}
for the predicate p. For this example we can suppose that pEp

is the pred-
icate symbol p with arity 1 and p∅ is simply p with arity 2.

1. After the first iteration we obtain New = {(∅, p), ({(p, 2)}, p)}, as well
as S = {({(p, 2)}, p)} and P ′ =

p(a)←
p(b)←
p(X)← p(X, Z), p(Z)

2. After the second iteration we have that New = {(∅, p)} as well as
S = {({(p, 2)}, p), (∅, p)}, meaning that we have reached the fixpoint.
Furthermore P ′ is now the desired program of Example 11.5.1 above,
i.e. the following clauses have been added wrt the previous itera-
tion:

p(a, b)←
p(b, c)←
p(X, Y)← p(X, Z), p(Z, Y)

The erasure Ep is safe for e.g. the goal G =← p(a,X), and the specialised
program P ′ constructed for Ep is correct for G||Ep =← p(a) (in the sense of
Definition 11.2.4, by simply replacing P |E by P ′ and | by ||). For instance,
P ∪ {← p(a,X)} has the computed answer {X/b} with θ′ = {X/b}|∅ = ∅
and indeed P ′ ∪ {← p(a)} has the computed answer ∅.

Termination of the algorithm follows from the fact that there are only
finitely many erasures for every predicate. The result of Algorithm 11.5.3
is identical to the result of Algorithm 11.3.8 applied to a suitably dupli-
cated and renamed version of the original program. Hence correctness fol-
lows from correctness of Algorithm 11.3.8 and of the duplication/renaming
phase.

11.5.2 Handling normal programs

When treating normal logic programs an extra problem arises: erasing
an argument in a negative goal might modify the floundering behaviour
wrt SLDNF. In fact, the conditions of safety of Definition 11.3.5 or Defi-
nition 11.3.6 would ensure that the negative call will always flounder! So
it does not make sense to remove arguments to negative calls (under the
conditions of Definition 11.3.5, Definition 11.3.6) and in general it would
even be incorrect to do so. Take for example the goal ← ni and program
P :

262 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

int(0)←
int(s(X))← int(X)
ni← ¬int(Z)
p(a)←

By simply ignoring the negation and applying the RAF Algorithm 11.3.8
for E0 = {(int, 1)} we obtain E = E0 and the following program P |E which
behaves incorrectly for the query G =← ni (i.e. G|E fails and thereby falsely
asserts that everything is an integer)4:

int←
int← int
ni← ¬int
p(a)←

This problem can be solved by adopting the pragmatic but safe approach
of keeping all argument positions for predicates occurring inside negative
literals. Hence, for the program P above, we would obtain the correct era-
sure E = ∅. This technique was actually used for the benchmark programs
with negation of the previous section.

11.6 Reverse filtering (FAR)

In some cases, the conditions of Definition 11.3.6 can be relaxed. For in-
stance, the erasure {(p, 1), (q, 1)} is safe for the goal p(X) and program:

p(X)← q(f(X))
q(Z)←

The reason is that, although the erased argument of q(f(X)) is a non-
variable, the value is never used. So, whereas the RAF Algorithm 11.3.8
detects existential arguments (which might return a computed answer bind-
ing), the above is an argument which is non-existential and non-ground but
whose value is never used (and for which no computed answer binding will
be returned).

11.6.1 The FAR algorithm

Those kind of arguments can be detected by another post-processing phase,
executing in a similar fashion as RAF, but using reversed conditions. The

4For instance, in the programming language Gödel, the query ← ni flounders in P
while ← ni|E =← ni fails in P |E. Note however that in Prolog, with its unsound
negation, the query ← ni fails both in P and P |E. So this approach to erasing inside
negation is actually sound wrt unsound Prolog. Furthermore, in Mercury, the clause
defining ni actually stands for ni ← ¬∃Z(int(Z)). The approach is thus also sound for
Mercury (thanks to Filip Ghyselen for pointing this out).

11.6. REVERSE FILTERING (FAR) 263

algorithm is presented in the following.

Algorithm 11.6.1 (FAR)

Input: a definite program P .

Output: a correct erasure E for P (and any G).

Initialisation: i := 0; E0 = >P ;

while there exists a (p, k) ∈ Ei and a p(t1, . . . , tn)← B ∈ Clauses(P) such that

1. tk is not a variable; or

2. tk is a variable that occurs more than once in p(t1, . . . , tn); or

3. tk is a variable that occurs in B|Ei do

Ei+1 := Ei \ {(p, k)};
i := i + 1;

end while

return Ei

The justifications for the points 1–3 in the FAR algorithm are as follows:

1. If tk is a non-variable term this means that the value of the argument
will be unified with tk. This might lead to failure or to a computed
answer binding being returned. So the value of the argument is used
after all and might even be instantiated.

2. If tk is repeated variable in the head of a clause it will be unified with
another argument leading to the same problems as in point 1.

3. If tk is a variable which occurs in non-erased argument in the body
of a clause then it is passed as an argument to another call in which
the value might be used after all and even be instantiated.

These conditions guarantee that an erased argument is never inspected or
instantiated and is only passed as argument to other calls in positions in
which it is neither inspected nor instantiated.

Note that this algorithm looks very similar to the RAF Algorithm 11.3.8,
except that the roles of the head and body of the clauses have been reversed.
This has as consequence that, while RAF detects the arguments which are
existential (and in a sense propagates unsafe erasures top-down, i.e. from
the head to the body of a clause), FAR detects arguments which are never
used (and propagates unsafe erasures bottom-up, i.e. from the body to the
head of a clause). Also, because the erasures calculated by this algorithm
do not change the computed answers, we can safely start the algorithm

264 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

with the complete erasure E0 = >P . It can again be seen that the outcome
of the algorithm is unique.

Also note that the two algorithms RAF and FAR cannot be put into one
algorithm in a straightforward way, because erasures have different mean-
ings in the two algorithms. We can however get an optimal (monovariant)
result by running sequences of FAR and RAF alternately — until a fix-point
is reached (this process is well-founded as only finitely many additional ar-
gument positions can be erased). Unfortunately, as the following examples
show, one application each of RAF and FAR is not sufficient to get the
optimal result.

Example 11.6.2 Let P be the following program:
p← q(a, Z)
q(X, X)←

Applying FAR does not give any improvement because of the multiple oc-
currence of the variable X in the head of the second clause. After RAF we
obtain:

p← q(a)
q(X)←

Now applying FAR we get the optimally erased program:
p← q
q ←

So in this example the FAR algorithm benefited from erasure performed
by the RAF algorithm. The following example shows that the converse can
also hold.

Example 11.6.3 Take the following program:
p← q(X, X)
q(a, Z)←

Applying RAF does not give any improvement because of the multiple
occurrence of the variable X (but this time inside a call and not as in the
Example 11.6.2 above inside the head). However, applying FAR gives the
following:

p← q(X)
q(a)←

And now RAF can give an improvement, leading to the optimal program:
p← q
q ←

11.6. REVERSE FILTERING (FAR) 265

The reason that each of the algorithms can improve the result of the
other is that RAF cannot erase multiply occurring variables in the body
while FAR cannot erase multiply occurring variables in the head. So, one
can easily extend Examples 11.6.2 and 11.6.3 so that a sequence of applica-
tions of RAF and FAR is required for the optimal result. We have not yet
examined whether the RAF and FAR algorithm can be combined in a more
refined way, e.g. obtaining the optimal program in one pass and maybe also
weakening the respective safety conditions by using information provided
by the other algorithm.

11.6.2 Polyvariance for FAR

The RAF algorithm looks at every call to a predicate p to decide which ar-
guments can be erased. Therefore, the polyvariant extension was based on
producing specialised (but still safe) erasures for every distinct use of the
predicate p. The FAR algorithm however looks at every head of a clause
defining p to decide which arguments can be erased. This means that an
argument might be erasable wrt one clause while not wrt another. We
clearly cannot come up with a polyvariant extension of FAR by generating
different erasures for every clause. But one could imagine detecting for
every call the clauses that match this call and then derive different erased
versions of the same predicate. In the context of optimising residual pro-
grams produced by (conjunctive) partial deduction this does not seem to
be very interesting. Indeed, every call will usually match every clause of
the specialised predicate (especially for partial deduction methods which
preserve characteristic trees like the ones presented in Chapters 5 and 6).

11.6.3 Negation and FAR

In contrast to RAF, the erasures obtained by FAR can be applied inside
negative calls. The conditions of the algorithm ensure that any erased vari-
able never returns any interesting5 computed binding. Therefore removing
such arguments, in other words allowing the selection of negative goals even
for the case that this argument is non-ground, is correct wrt the completion
semantics by correctness of SLDNFE (see Section 2.3.2).

Take for example the following program P :
r(X)← ¬p(X)
p(X)← q(f(X))
q(Z)←

5An erased variable V might only return bindings of the form V/F where F is a fresh
existential variable.

266 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

By ignoring the negation and applying the FAR algorithm, we get the
erasure E = {(q, 1), (p, 1), (r, 1)} and thus P |E:

r ← ¬p
p← q
q ←

Using P |E ∪{G|E} instead of P ∪{G} is correct. In addition P |E ∪{G|E}
will never flounder when using standard SLDNF, while P will flounder
for any query G =← r(t) for which t is not ground. In other words, the
FAR algorithm not only improves the efficiency of a program, but also its
“floundering behaviour” under standard SLDNF.

11.6.4 Implementation of FAR

The FAR algorithm has also been implemented (by slightly re-writing the
RAF algorithm) and incorporated into the ecce system [170]. Preliminary
experiments indicate that, when executed once after RAF, it is able to
remove redundant arguments much less often than RAF, although in some
cases it can be highly beneficial (e.g. bringing execution time of the final
specialised program from 6.3 s down to 4.1 s for the memo-solve example of
the dppd library [170]). Also, it seems that an optimisation similar to FAR
has recently been added to the Mercury compiler, where it is e.g. useful to
get rid of arguments carrying unused type information.

11.7 Related work and conclusion

Our algorithm RAF for removal of redundant arguments, together with
conjunctive partial deduction of Chapter 10, is related to Proietti and Pet-
torossi’s Elimination Procedure (EP) for removal of unnecessary variables.
Both can be used to perform tupling and deforestation and the proofs in
this thesis show that conjunctive partial deduction and RAF can (partially)
be mapped to sequences of Tamaki-Sato definition steps and unfolding steps
followed by Tamaki-Sato folding steps. There are however some subtle dif-
ferences between control in conjunctive partial deduction and control in
the unfold/fold approach. Indeed, an unfold/fold transformation is usually
described as doing the definition steps first (and at that point one knows
which arguments are existential because existentiality can be propagated
top-down — but one does not yet have the whole specialised program avail-
able) while conjunctive partial deduction can be seen as doing the definition
introduction and the corresponding folding steps only at the very end (when
producing the residual code). Therefore the use of an algorithm like RAF

11.7. RELATED WORK AND CONCLUSION 267

is required for conjunctive partial deduction to detect the existential vari-
ables for the respective definitions. But on the other hand this also gives
conjunctive partial deduction the possibility to base its choice on the entire
residual program. For instance, one may use a monovariant algorithm (to
limit the code size) or an algorithm like FAR which, due to its bottom-up
nature, has to examine the entire residual program.

Another related work is [77], which provides some pragmatics for re-
moving unnecessary variables in the context of optimising binarised Prolog
programs.

Yet another related work is that on slicing [247], useful in the context
of debugging. RAF can also be used to perform a simple form of program
slicing; for instance, one can use RAF to find the sub-part of a program
which affects a certain argument. However, the slice so obtained is usu-
ally less precise than the one obtained by the specific slicing algorithm of
[247] which takes Prolog’s left-to-right execution strategy into account and
performs a data-dependency analysis.

Similar work has also been considered in other settings than logic pro-
gramming. Conventional compiler optimisations use data-flow analyses to
detect and remove dead code, i.e. commands that can never be reached
and assignments to variables whose values are not subsequently required,
see [1]. These two forms of redundancy are similar to useless clauses and
redundant variables.

Such techniques have also appeared in functional programming. For
instance, Chin [51] describes a technique to remove useless variables, us-
ing an abstract interpretation (forwards analysis). A concrete program is
translated into an abstract one working on a two-point domain. The least
fix-point of the abstract program is computed, and from this an approxi-
mation of the set of useless variables can be derived.

Hughes [130] describes a backwards analysis for strictness analysis. Such
analyses give for each parameter of a function the information either that
the parameter perhaps is not used, or that the parameter definitely is used.
The analysis in [130] can in addition give the information that a parameter
definitely is not used, in which case it can be erased from the program.

Another technique can be based on Seidl’s work [248]. He shows that the
corresponding question for higher-level grammars, parameter-reducedness,
is decidable. The idea then is to approximate a functional program by
means of a higher-level grammar, and decide parameter-reducedness on the
grammar.

Most work on program slicing has been done in the context of imper-
ative programs [272]. Reps [239] describes program slicing for functional
programs as a backwards transformation.

Compared to all these techniques our algorithm is strikingly simple,

268 CHAPTER 11. REDUNDANT ARGUMENT FILTERING

very efficient, and easy to prove correct. The obvious drawback of our
technique is that it is less precise. Nevertheless, the benchmarks show that
our algorithm performs well on a range of mechanically generated programs,
indicating a good trade-off between complexity and precision.

Chapter 12

Conjunctive Partial
Deduction in Practice

12.1 Controlling conjunctive partial deduc-
tion for pure Prolog

In conjunctive partial deduction, a conjunction can be abstracted by ei-
ther splitting it into subconjunctions, or generalising syntactic structure,
or through a combination of both. In classical partial deduction, on the
other hand, any conjunction is always split (i.e. abstracted) into its con-
stituent atoms before lifting the latter to the global level.

Apart from this aspect, the conventional control notions described in
Chapters 3–6 also apply in a conjunctive setting. Notably, the concept
of characteristic atoms can be generalised to characteristic conjunctions,
which are just pairs consisting of a conjunction and an associated charac-
teristic tree.

We will for the remainder of the chapter only be concerned with con-
junctive partial deduction for pure Prolog. This means, besides disallowing
non-pure features (see also Section 2.3.3), that we will restrict ourselves to
LD-derivations, i.e. using the static (unfair) left-to-right selection rule (see
Section 2.3.1). We will also demand preservation of termination under that
selection rule.

12.1.1 Splitting and abstraction

A termination problem specific to conjunctive partial deduction lies in the
possible appearance of ever growing conjunctions at the global level. To

269

270 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

cope with this, abstraction in the context of conjunctive partial deduction
must include the ability to split a conjunction into several parts, thus pro-
ducing subconjunctions of the original one. A method to deal with this
problem has been developed in [110, 62]. and we will present the essen-
tials below. See also e.g. [232] for a related generalisation operation in the
context of an unfold/fold transformation technique.

First, to detect potential non-termination, the homeomorphic embed-
ding, defined for expressions in Chapter 6, can be extended to conjunctions
[110, 62]. For this the following notations will prove useful. Given a con-
junction Q = A1 ∧ . . . ∧ Ak any conjunction Q′ = Ai1 ∧ . . . ∧ Aij such
that 1 ≤ i1 < . . . < ij ≤ k is called an ordered subconjunction of Q. If in
addition il+1 = il + 1 for 1 ≤ l < j then Q′ is called a contiguous ordered
subconjunction of Q.

Definition 12.1.1 (homeomorphic embedding) Let Q = A1∧ . . .∧An

and Q′ be conjunctions. We say that Q is embedded in Q′, denoted by
Q�∗Q′, iff Q′ 6≺ Q and there exists an ordered subconjunction A′1∧. . .∧A′n
of Q′ such that Ai �∗ A′i for all i ∈ {1, . . . , n}.

Proposition 12.1.2 The relation �∗ is a well-quasi order for the set of
conjunctions.

Proof Without the “strictly more general part” (Q′ 6≺ Q) this can be
proven using Higman-Kruskal’s theorem ([121, 155], see also [82]) by taking
the embedding extension ([82], see also Chapter 6) of �∗ for atoms (which
is a wqo according to Theorem 6.2.23) and by considering ∧ as a functor
of variable arity (i.e. an associative operator). This embedding extension
is then identical to �∗ for conjunctions, except for the test “Q′ 6≺ Q”. The
fact that with the test “Q′ 6≺ Q” �∗ is still a wqo can be proven exactly
like in Theorem 6.2.23, i.e. by using Lemma 6.2.24 to construct a wqo from
the well-founded order ≺ and then integrate it using Lemma 6.2.26. 2

Example 12.1.3 Let us present a simple example. Consider the two con-
junctions Q1 and Q2:

Q1 = p(X, Y) ∧ q(Y, Z)
Q2 = p(f(X), Y) ∧ r(Z,R) ∧ q(Y, Z)

If specialisation of Q1 leads to specialisation of Q2, there is a danger of
non-termination as we have Q1 �∗ Q2 (because p(X, Y) �∗ p(f(X), Y),
q(Y, Z) �∗ q(Y, Z) and Q2 is not strictly more general than Q1).

Once we have detected such potential non-termination we have to avoid

12.1. CONJUNCTIVE PARTIAL DEDUCTION FOR PROLOG 271

specialising Q2 directly and abstract it first.1 For this a generalisation of
syntactic structure based on the msg , as used in the context of “classical”
partial deduction, is not sufficient. Indeed, for two conjunctions Q = A1 ∧
. . . ∧An and Q′ = A′1 ∧ . . . ∧A′n a most specific generalisation msg(Q ,Q ′)
exists only (which is then unique modulo variable renaming) if Ai and A′i
have the same predicate symbols for all i. So, when Q1 and Q2 differ in the
number of atoms or in their respective predicate symbols the msg cannot be
taken. This is for instance the case in Example 12.1.3 and one then has to
split Q2 up into subconjunctions (possibly combined with a generalisation
of syntactic structure).

These observations lead to the following definition of abstraction in the
context of conjunctive partial deduction.

Definition 12.1.4 (abstraction) A multiset of conjunctions {Q1, . . . , Qk}
is an abstraction of a conjunction Q iff for some substitutions θ1, . . . , θk we
have that Q =r Q1θ1 ∧ . . . ∧Qkθk. An abstraction operator is an operator
which maps every conjunction to an abstraction of it.

A particular abstraction operator

One constituent of the abstraction operation of [110] is to always split a
conjunction into maximal connected subconjunctions first. This notion is
closely related to those of “variable-chained sequence” and “block” in [231,
232], and the definition is as follows. Recall that we assume associativity
of ∧ and that =r denotes identity up to reordering (cf. Section 10.2.2).

Definition 12.1.5 (maximal connected subconjunctions) Given a
conjunction Q = A1 ∧ . . .∧An, where A1, . . . , An are literals, we define the
binary relation ↓Q over the literals in Q as follows: Ai ↓Q Aj iff vars(Ai)∩
vars(Aj) 6= ∅. By ⇓Q we denote the reflexive and transitive closure of
↓Q. The maximal connected subconjunctions of Q, denoted by mcs(Q), are
defined to be the multiset of conjunctions {Q1, . . . , Qm} such that

1. Q =r Q1 ∧ . . . ∧Qm,

2. Ai ⇓Q Aj iff Ai and Aj occur in the same Qk and

3. for every Qk there exists a sequence of indices j1 < j2 < . . . < jl such
that Qk = Aj1 ∧ . . . ∧Ajl

.

1One could also try to generalise Q1 and then restart the specialisation with this
more general conjunction. Note however that this is not always possible, e.g. when Q1

is already maximally general (take for example Q1 = p(X) and Q2 = p(Z)∧ p(Z)). The
ecce system which we will use later for the benchmarks actually has a setting in which
it will try to generalise Q1 first and only if this is not possible generalise Q2.

272 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

Note that each Qi is also sometimes called a block [232]. Intuitively, no
precision (in the sense of e.g. detecting failed branches) is lost by splitting
into maximal connected subconjunctions and termination of the speciali-
sation process is improved. However, termination is not ensured. For in-
stance, in Example 12.1.3 we have that mcs(Q2) = p(f(X), Y)∧ r(Z,R)∧
q(Y, Z) = Q2 and the potential non-termination remains. So, we still have
to solve the following problem: how to split up a conjunction Q2, which em-
beds an earlier conjunction Q1, in a sensible manner. This can be achieved
as follows (taken from [110, 62] — we will show that this method actually
ensures termination of the specialisation process later in Subsection 12.2.1).

Definition 12.1.6 Let Q be a conjunction and Q be a set of conjunctions.
A best matching conjunction for Q in Q is a minimally general element of
the set {msg(Q ,Q ′) | Q ′ ∈ Q and msg(Q ,Q ′) exists }.

By bmc(Q,Q) we denote one particular best matching conjunction for
Q in Q. It might for example be chosen as follows. Consider graphs rep-
resenting conjunctions where nodes represent occurrences of variables and
there is an edge between two nodes iff they refer to occurrences of the same
variable. A best match is then a Q′ with a maximal number of edges in the
graph for msg(Q ,Q ′).

Definition 12.1.7 (splitting) Let Q = A1 ∧ . . .∧An, Q′ be conjunctions
such that Q �∗ Q′. Let Q be the set of all ordered subconjunctions Q′′ of
Q′ consisting of n atoms such that Q �∗ Q′′. Then splitQ(Q′) is the pair
(B,R) where B = bmc(Q,Q) and R is the ordered subconjunction of Q′

such that Q′ =r B ∧R.

So, for Example 12.1.3 the potential non-termination is resolved by first
splitting Q2 into Q = p(f(X), Y) ∧ q(Y,Z) and r(Z,R) and subsequently
taking the msg of Q1 and Q. As a result, only r(Z,R) will be considered
for further specialisation (because msg(Q1 ,Q) is a variant of Q1).

Note that Q �∗ Q′ in the above definition ensures that Q is not empty
and splitQ(Q′) is thus properly defined.

Preservation of termination

Now, given a left-to-right computation rule, the above operation alters the
sequence in which goals are executed. Indeed, the p- and q-subgoals will
henceforth be treated jointly and will probably be renamed to a single
atom. Consequently, there is no way an r-call can be interposed. A similar
thing can happen just by splitting a conjunction into maximal connected
subconjunctions.

12.1. CONJUNCTIVE PARTIAL DEDUCTION FOR PROLOG 273

From a purely declarative point of view, there is of course no reason why
goals should not be interchanged, but under a fixed unfair computation rule,
such non-contiguous splitting can worsen program performance (similar
to non-leftmost, non-determinate unfolding, cf. Example 3.3.3), and even
destroy termination. Consider for instance the following program:

flipallint(XT,TT) :- flip(XT,TT),allint(TT).
flip(leaf(X),leaf(X)).
flip(tree(XT,Info,YT),tree(FYT,Info,FXT)) :-

flip(XT,FXT), flip(YT,FYT).
allint(leaf(X)) :- int(X).
allint(tree(L,Info,R)) :- int(Info), allint(L), allint(R).
int(0).
int(s(X)) :- int(X).

The deforested version, obtained by conjunctive partial deduction using the
control of [110], would be:

flipallint(leaf(X),leaf(X)) :- int(X).
flipallint(tree(XT,Info,YT),tree(FYT,Info,FXT)) :-

int(Info), flipallint(XT,FXT), flipallint(YT,FYT).

where the transformed version of int is unchanged. Under a left-to-right
computation rule, the query

?-flipallint(tree(leaf(Z),0,leaf(a)),Res).

terminates with the original, but not with the deforested program.
In fact, the latter point has already been addressed in the context of

unfold/fold transformations (see e.g. [32, 27, 30, 28]). To the best of our
knowledge, however, no satisfactory solutions, suitable to be incorporated
in a fully automatic system, have yet been proposed.

12.1.2 Contiguous splitting

For this reason, in the benchmarks below, we have in all but two cases
limited splitting to be contiguous, that is, we split into contiguous subcon-
junctions only. (This can be compared with the outruling of goal switching
in [27].)

As a consequence, compared to the basic method in [110] based on
Definition 12.1.7, on the one hand, some opportunities for fruitful pro-
gram transformation are left unexploited, but, on the other hand, Prolog
programs are significantly less prone to actual deterioration rather than
optimisation.

274 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

First, instead of systematically splitting a conjunction into maximal
contiguous subconjunctions (mcs) we ensure contiguous splitting by split-
ting into contiguous connected subconjunctions (ccs), formalised in Defini-
tion 12.1.8 below. In addition, we replace the use of “ordered subconjunc-
tion” in Definition 12.1.7 by “contiguous ordered subconjunction”, resulting
in Definition 12.1.9 further below.

Definition 12.1.8 (contiguous connected subconjunctions) For a
conjunction Q = A1 ∧ . . . ∧ An, a sequence of contiguous connected sub-
conjunctions of Q is a sequence 〈Q1, . . . , Qm〉 of conjunctions such that:

1. Q = Q1 ∧ . . . ∧Qm and

2. mcs(Qi) = {Qi}

The conjunctions 〈p(X)∧p(Y)∧q(X, Y), r(Z, T), p(Y)〉 are (maximal) con-
tiguous connected subconjunctions of p(X)∧p(Y)∧q(X, Y)∧r(Z, T)∧p(Y).
In the particular implementation, contiguous connected subconjunctions
are obtained by scanning B from left-to-right and splitting when a literal
does not share variables with the current block to the left. Other defini-
tions of contiguous subconjunctions could disallow built-ins and/or nega-
tive literals in the subconjunctions or allow unconnected atoms inside the
subconjunctions, e.g. like p(S) in p(X) ∧ p(S) ∧ q(X, Y).

Definition 12.1.9 (contiguous splitting) Let Q = A1 ∧ . . . ∧An, Q′ be
conjunctions such that Q �∗Q′. Let Q be the set of all contiguous ordered
subconjunctions Q′′ of Q′ consisting of n atoms such that Q�∗Q′′. If Q 6= ∅
then csplitQ(Q′) is the triple (L,B,R) where B = bmc(Q,Q) and L and
R are the (possibly empty) contiguous ordered subconjunctions of Q′ such
that Q′ = L ∧B ∧R. If Q = ∅ then csplitQ(Q′) is undefined.

Note that, in contrast to Definition 12.1.7, Q �∗ Q′ no longer ensures
that Q 6= ∅. For example, for Q = p∧ q, Q′ = p∧ r∧ q we have Q�∗Q′ but
csplitQ(Q′) is undefined (even though splitQ(Q′) = (p∧q, r) is defined). In
the implementation to be used for the experiments, we simply split off the
first atom of Q′ if csplitQ(Q′) is undefined. This simple-minded approach
worked reasonably well, but there is definitely room for improvement.

12.1.3 Static conjunctions

Actually, the global control regime used in some of our experiments devi-
ates from the one described by [110] in one further aspect. Even though
abstraction by splitting ensures that the length of conjunctions (the number
of its atoms) remains finite, there are realistic examples where the length

12.1. CONJUNCTIVE PARTIAL DEDUCTION FOR PROLOG 275

gets very large. This, combined with the use of homeomorphic embeddings
(or lexicographical orderings for that matter), leads to very large global
trees, large residual programs and a bad transformation time complexity.

Take for example global trees just containing atomic goals with predi-
cates of arity k and having as argument just ground terms s(s(...s(0)...))
representing the natural numbers up to a limit n. Then we can con-
struct branches in the global tree having as length l = (n + 1)k. In-
deed for n = 1, k = 2 we can construct a branch of length 22 = 4:
〈p(s(0), s(0)), p(s(0), 0), p(0, s(0)), p(0, 0)〉 while respecting homeomorphic
embedding or lexicographical ordering.2

When going to conjunctive partial deduction the number of argument
positions k is no longer bounded, meaning that, even when the terms are
restricted to some natural depth, the size of the global tree can be ar-
bitrarily large. Such a kind of explosion can actually occur for realistic
examples, notably for meta-interpreters manipulating the ground represen-
tation and specialised for partially known queries (see the benchmarks, e.g.
groundunify.complex and liftsolve.db2).

One way to ensure that this does not happen is to limit the conjunctions
that may occur at the global level. For this we have introduced the notion
of static conjunctions. A static conjunction is any conjunction that can be
obtained by non-recursive unfolding of the goal to be partially evaluated
(or a generalisation thereof). The idea is then, by a static analysis, to com-
pute a set of static conjunctions S from the program and the goal. During
partial deduction we then only allow conjunctions at the global level that
are abstracted by one of the elements of S. This is ensured by possibly
further splitting of the disallowed conjunctions. (A related technique is
used in [232].) In our implementation, we use a simple-minded method of
approximating the set of static conjunctions, based on counting the maxi-
mum number of occurrences of each predicate symbol in a conjunction in
the program or in the goal to be partially deduced, and disallowing con-
junctions surpassing these numbers. In the example above, the maximum
for flip and allint is 2, while for the other predicates it is 1.

Another approach, investigated in the experiments, is to avoid using
homeomorphic embeddings on conjunctions, but go to a less explosive strat-
egy, e.g. requiring a decrease in the total term size.3 As we will see later
in the benchmarks (e.g. Csc-th-t in Table 12.4), the combination of these

2Of course, by not restricting oneself to natural numbers up to a limit n,
we can construct arbitrarily large branches starting from the same p(s(0), s(0)):
〈p(s(0), s(0)), p(s(s(....s(0)...))), 0), p(s(s(....0...))), 0), . . .〉.

3Note that this also implies that Definition 12.1.7 of splitQ(Q′) has to be adapted, i.e.
replacing Q �∗ Q′ by s(Q) ≤ s(Q′′) and Q �∗ Q′ by s(Q) ≤ s(Q′′), where s(.) measures
the term size of conjunctions.

276 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

two methods leads to reasonable transformation times and code size while
maintaining good specialisation.

12.2 The system and its methods

We use the same partial evaluation system ecce [170] as in Section 6.4.
The system contains a generic algorithm to which one may add one’s own
methods for unfolding, partitioning, abstraction, etc. In the following we
will give a short description of the different methods that we used in the
experiments.

12.2.1 The algorithm

The system implements an extension of Algorithm 6.2.36, extended for
conjunctive partial deduction and incorporating some ideas from [110, 62].
The algorithm uses a global tree γ with nodes labelled with (characteristic)
conjunctions. When a conjunction Q gets unfolded, then the conjunctions
in the bodies of the resultants of Q (maybe further split by the abstraction)
are added as child nodes (leaves) of Q in the global tree.

Algorithm 12.2.1

Input: a program P and a goal ← Q

Output: a set of conjunctions Q
Initialisation: i := 0; γ0 := the global tree with a single node, labelled Q

repeat

1. for all leaves L in γi labelled with conjunction QL and for all leaf
goals ← B of U(P,← QL) do

(a) Q = partition(B)

(b) while Q 6= ∅ do

select Qi ∈ Q
Q := Q \Qi

if Qi is not an instance (respectively variant) of a node in γi

then

if whistle(γi, L, Qi) then Q := Q ∪ abstract(γi, L, Qi)

else add a child L′ to L with label Qi

2. i := i + 1

until γi = γi−1

output the set of nodes in γi

12.2. THE SYSTEM AND ITS METHODS 277

The unfolding rule U performs the local control. It takes a program and
a conjunction and produces a finite, but possibly incomplete SLD(NF)-
tree. The function partition does the initial splitting of the bodies into
either plain atoms for standard partial deduction or into contiguous con-
nected subconjunctions (ccs) or maximal connected subconjunctions (mcs)
for conjunctive partial deduction. In addition for the latter, the size of
conjunctions can be limited by using static conjunctions (static vs. dyn.).

Then for each of the subconjunctions it is checked if there is a risk of non-
termination. This is done by the function whistle. The whistle will look
at the labels (conjunctions) on the branch in the global tree to which the
new conjunction Qi is going to be added as a leaf and if Qi is “larger” than
one of these, it returns true. Finally, if the “whistle blows” for some sub-
conjunction Qi, then Qi is abstracted by using the function abstract. For
the conjunctive methods this is achieved by calculating splitQγ

(Qi) (pos-
sibly adapted for contiguous ordered subconjunction, see Subsection 12.1.2
above), where Qγ is the conjunction “larger” than Qi (depending on the
actual whistle, e.g. Qγ �∗ Qi). This abstraction, combined with the �∗

whistle of Definition 12.1.1, ensures termination of the inner for loop of Al-
gorithm 12.2.1. Indeed, upon every iteration, a conjunction (Qi) is removed
from Q, and either replaced by finitely many strictly smaller conjunctions
(i.e. with fewer atoms) or is replaced by a conjunction which is strictly more
general. As there are no infinite chains of strictly more general expressions
(cf. Lemma 5.3.6), termination follows. The detailed proof can be found in
[62].

After the algorithm terminates the residual program is obtained from
the output by unfolding and renaming (cf. Chapters 10 and 11).

12.2.2 Concrete settings

We have concentrated on four local unfolding rules:
1. safe determinate (t-det): do determinate unfolding, (allowing one

left-most non-determinate step) using homeomorphic embedding with
covering ancestors of selected atoms to ensure finiteness.

2. safe indexed unfolding (l-idx). The difference with t-det is that more
than one left-most non-determinate unfolding step is allowed. How-
ever, only “indexed” unfolding is then allowed, i.e. it is ensured that
the unification work that might get duplicated (cf. Example 3.3.4) is
captured by the Prolog indexing (which may depend on the particu-
lar compiler). Again, homeomorphic embeddings are used to ensure
finiteness.

3. homeomorphic embedding and reduction of search space (h-rs): non-
left-most unfolding is allowed if the search space is reduced by the

278 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

unfolding. In other words, an atom p(t̄) can be selected if it does not
match all the clauses defining p. Again, homeomorphic embeddings
are used to ensure finiteness. Note that, in contrast to 2 and 3, this
method might worsen the backtracking behaviour.

4. “mixtus-like” unfolding (x): See [245] for further details (we used
max rec = 2, max depth = 2, maxfinite = 7, maxnondeterm = 10
and only allowed non-determinate unfolding when no user predicates
were to the left of the selected literal).

Let us now turn our attention to the global control. The measures that
we have used in whistles are the following:

1. homeomorphic embedding (�∗) on the conjunctions
2. termsize (s(.) as defined in Definition 5.3.5) on the conjunctions
3. homeomorphic embedding on the conjunctions and homeomorphic

embedding on the associated characteristic trees
4. termsize on the conjunctions and homeomorphic embedding on the

characteristic trees
Abstraction is always done by possibly splitting conjunctions further

and then taking the msg as explained in Subsection 12.1.1. One stan-
dard partial deduction method (SE-hh-x, called ecce-x in Chapter 6) also
uses the ecological partial deduction principle of Chapters 5 and 6 to en-
sure preservation of characteristic trees upon generalisation. The latter
becomes more tricky in the presence of splitting and we have therefore not
yet implemented it for the conjunctive methods.

The following extensions, already used in Chapter 6, were always en-
abled:
• simple more specific resolution steps in the style of sp [97] and
• the selection of ground negative literals for the local control;
• the removal of unnecessary polyvariance of Section 6.3,
• determinate post-unfolding, as well as the
• redundant argument filtering of Chapter 11 in the post-processing

phase.

12.3 Benchmarks and conclusion

The benchmarks were conducted in the same manner as in Chapter 6. The
benchmark programs are available in [170]; Short descriptions are given in
Appendix C. Note that we have added some specific deforestation and tu-
pling benchmarks over the experiments in Chapter 6. Tables 12.3 – 12.10
show the results of the experiments. The relative runtimes (RRT), trans-
formation times (TT, in seconds) and code size (in units of 4.08 bytes) are
exactly like for the Tables 6.2, 6.3 and 6.4 in Chapter 6. Runtimes (RRT)

12.3. BENCHMARKS AND CONCLUSION 279

are given relative to the runtimes of the original programs. In computing
averages and totals, time and size of the original program were taken in
case of non-termination or an error occurring during transformation. Just
like in Chapter 6, the total speedups are obtained by the formula

n∑n
i=1

speci

origi

where n = 36 is the number of benchmarks and speci and origi are the ab-
solute execution times of the specialised and original programs respectively.
The weighted total speedups are obtained by using the code size sizei of
the original program as a weight for computing the average:∑n

i=1 sizei∑n
i=1 sizei

speci

origi

Some additional details can be found in Section 6.4.2.
The results are summarised in Tables 12.1 and 12.2. An overview of

the speedups and average code sizes of some systems can be found in Fig-
ure 12.1. As in Chapter 6, we also compared to the existing systems mixtus
[245, 244], paddy [227, 228, 229] and sp [97, 98]. The same versions as in
Chapter 6 have been used and for these systems ∞ means abnormal ter-
mination (crash or heap overflow) occurred, as explained in Section 6.4.2.
As already mentioned in Chapter 6, the unfolding used by sp seems to
be based on a refined determinate unfolding (look e.g. at the results for
depth.lam), hence the “+” in Table 12.1. For the ecce based systems
the indication > 12h means that the specialisation was interrupted after
12 hours (though, theoretically, it should have terminated by itself when
granted sufficient time to do so). bi err means that an error occurred while
running the program due to a call of a built-in where the arguments were
not sufficiently instantiated.

Even more so than in Chapter 6, benchmarking Prolog (by BIM) pro-
grams on Sparc machines, turned out to be problematic at times. For
instance, for maxlength, deforestation does not seem to pay off. However,
with reordering of clauses we go from a relative time of 1.4 (i.e. a slowdown)
to a relative time of 0.9 (i.e. a speedup)! On Sicstus Prolog 3, we even get
a 20 % speedup for this example (without reordering)! The problem is
probably due to the caching behaviour of the Sparc processor.

12.3.1 Analysing the results

One conclusion of the experiments is that conjunctive partial deduction (us-
ing determinate unfolding and contiguous splitting) pays off while guaran-
teeing no (serious) slowdown. In fact, the cases where there is a slowdown

280 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

System Partition Whistle Unf Total
contig s/d conj chtree TT (min)

Conjunctive Partial Deduction
Cdc-hh-t ccs dyn. �∗ �∗ t-det 62.46
Cdc-th-t ccs dyn. termsize �∗ t-det 31.18
Csc-hh-t ccs static �∗ �∗ t-det 29.72
Csc-th-t ccs static termsize �∗ t-det 5.95
Csc-hn-t ccs static �∗ none t-det 35.49
Csc-tn-t ccs static termsize none t-det 2.67
Csc-th-li ccs static termsize �∗ l-idx > 12h+12.95
Cdm-hh-t mcs dyn. �∗ �∗ t-det > 12h+110.49
Csm-hh-h mcs static �∗ �∗ h-rs > 12h+73.55

Standard Partial Deduction
S-hh-t - - homeo homeo t-det 3.00
S-hh-li - - homeo homeo l-idx 14.95
SE-hh-x - - homeo homeo mixtus 2.96

Existing Systems
mixtus - - mixtus none mixtus ∞+2.71
paddy - - mixtus none mixtus ∞+0.31

sp - - pred = = det+ 3*∞+1.99

Table 12.1: Overview: systems and transformation times

System Total Weighted Fully Not Fully Average
Speedup Speedup Unfoldable Unfoldable Relative Size

Speedup Speedup (orig = 1)

Conjunctive Partial Deduction
Cdc-hh-t 1.93 2.44 5.90 1.66 2.39
Cdc-th-t 1.96 2.49 5.90 1.69 2.27
Csc-hh-t 1.89 2.38 5.90 1.62 2.02
Csc-th-t 1.92 2.44 5.90 1.65 1.68
Csc-hn-t 1.89 2.40 5.90 1.62 1.67
Csc-tn-t 1.76 2.18 4.48 1.54 1.53
Csc-th-li 1.89 2.38 7.07 1.61 1.79
Cdm-hh-t 2.00 2.39 5.90 1.72 3.17
Csm-hh-h 0.77 0.52 6.16 0.63 3.91

Standard Partial Deduction
S-hh-t 1.56 1.86 2.57 1.42 1.60
S-hh-li 1.65 2.09 4.88 1.42 1.61
SE-hh-x 1.76 2.24 8.36 1.48 1.46

Existing Systems
mixtus 1.65 2.11 8.13 1.38 1.67
paddy 1.65 2.00 8.12 1.38 2.49

sp 1.34 1.54 2.08 1.23 1.18

Table 12.2: Summary of benchmarks (higher speedup and lower code size
is better)

12.3. BENCHMARKS AND CONCLUSION 281

mixtus
b

sp
b

paddy
becce-x

bCsc-th-t
r

Cdc-th-t
rSpeedup

2

1 Size
21

-

6

Figure 12.1: Weighted speedups and average code size for some systems

are some of those that were designed to show the effect of deforestation
(flip, match-append, maxlength and upto.sum2). Two of these are han-
dled well by the methods using non-contiguous splitting. On the fully un-
foldable benchmarks, S-hh-t gave a speedup of 2.57 while Csc-hh-t achieved
a speedup of 5.90. A particularly interesting example is contains.kmp
benchmark, where Csc-hh-t is about 8 times faster than S-hh-t. contains
has long been a difficult benchmark, especially for determinate unfolding
rules. So, the results clearly illustrate that conjunctive partial deduction
diminishes the need for aggressive unfolding.

Notice that mixtus and paddy have very aggressive unfolding rules and
fare well on the fully unfoldable benchmarks. However, on the non-fully
unfoldable ones, even S-hh-t, based on determinate unfolding, is already
better. The best standard partial deduction method, for both runtime and
(apart from sp) code size, is SE-hh-x. Still, compared to any of the standard
partial deduction methods, our conjunctive methods (except for Csm-hh-h,
and also Csc-tn-t, which are not meant to be competitors anyway) have a
better average speedup.

Furthermore, the experiments also show that the process of performing
conjunctive partial deduction can be made efficient, especially if one uses
determinate unfolding combined with a termsize measure on conjunctions
(Csc-th-t and Csc-tn-t), in which case the average transformation time is
comparable with that of standard partial deduction. Of course only further

282 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

experiments may show how the transformation times grow with the size of
programs. In fact, the system itself was not written with efficiency as a
primary concern and there is a lot of room for improvement on this point.

Next, the experiments demonstrate that using the termsize measure in-
stead of homeomorphic embedding on conjunctions clearly improves the
average transformation time without loosing too much specialisation. But
they also show that if one uses the termsize measure, then the use of char-
acteristic trees becomes vital (compare Csc-th-t and Csc-tn-t). However,
methods with homeomorphic embedding on conjunctions (e.g. Csc-hn-t), do
not seem to benefit from adding homeomorphic embedding on character-
istic trees as well (e.g. Csc-hh-t). This, at first sight somewhat surprising
phenomenon, can be explained by the fact that, for the benchmarks at
hand, the homeomorphic embedding on conjunctions, in a global tree set-
ting, is already a very generous whistle, and, in the absence of negation
or e.g. the parsing problem (cf. the discussions in Section 6.4.4), a growing
of the conjunction will often result in a growing of the characteristic tree
as well, especially when the latter are based on determinate unfolding (see
also the discussion at the end of this section concerning the match-append
benchmark).

Comparing Csc-hh-t and Cdc-hh-t, one can see that using static con-
junctions also pays off in terms of faster transformation time without much
loss of specialisation. If one looks more closely at the results for both
methods, then the speedup and the transformation times are more or less
the same for the two methods except for the rather few cases where static
conjunctions were really needed: groundunify.complex, liftsolve.db2,
regexp.r2, regexp.r3, remove2 and imperative.power. For those cases,
the loss of speedup due to the use of static conjunctions was small or in-
significant while the improvement in transformation time was considerable.

Comparing Csc-th-li to Csc-th-t, one sees that indexed unfolding does
not seem to have a definite effect for conjunctive partial deduction. In some
case the speedup is better and in some cases worse. Only for relative.lam
is indexed unfolding much better than determinate, but this corresponds to
a case where the program can be completely unfolded. This is of course par-
tially due to the fact that conjunctive partial deduction diminishes the need
for aggressive unfolding. For standard partial deduction however, indexed
(as well as “mixtus-like”) unfolding leads to a substantial improvement
over determinate unfolding. Note that the “mixtus-like” unfolding used
by SE-hh-x does not seem to pay off for conjunctive partial deduction at
all. In a preliminary experiment, the method Csc-th-x only produced a total
speedup of 1.69, i.e. only slightly better than mixtus or paddy and worse
than SE-hh-x. Still, for some examples it would be highly beneficial to allow
more than “just” determinate unfolding (notably depth.lam, grammar.lam

12.3. BENCHMARKS AND CONCLUSION 283

and relative.lam — examples where SE-hh-x performs much better than
all the conjunctive methods based on determinate unfolding). In future
work, we will examine how more eager unfolding rules can be more success-
fully used for conjunctive partial deduction.

For some benchmarks, the best speedup is obtained by the non-safe
methods Cdm-hh-t or Csm-hh-h based on non-contiguous mcs splitting.
But in some cases, these methods, for reasons explained earlier, indeed
lead to a considerable slowdown (missionaries and remove) and some-
times even to errors (imperative.power and upto.sum1). This shows that
methods based on non-contiguous splitting can lead to better specialisation
due to tupling and deforestation, but that we need some method to con-
trol the splitting and unfolding to ensure that no slowdown, or change in
termination can occur.

Finally, a brief remark on the match-append benchmark. The bad fig-
ures of most systems seem to be due to a bad choice of the filtering, further
work will be needed the avoid this kind of effect. Also, none of the pre-
sented methods was able to deforest this particular example. However, if
we run for instance Csc-hh-t twice on match-append we get the desired
deforestation and a much improved performance (relative time of 0.03 !).
The same effect can be obtained by using the refinement described earlier in
Section 5.4.1 (and available within the ecce system), which consists in us-
ing a deeper characteristic tree for the control of polyvariance than the tree
used for constructing the resultants. For instance, adding such a feature to
Csc-hh-t solves the match-append problem and increases the total speedup
from 1.89 to 2.04, but unfortunately at the cost of a larger transformation
time (liftsolve.db2 no longer terminates in less than 12 hours).

12.3.2 Conclusion

It looks like conjunctive partial deduction can be performed with accept-
able efficiency and pays off with respect to standard partial deduction, but
there are still many unsolved problems. Indeed, the speedups compared to
standard partial deduction are significant on average, but less dramatic and
less systematic than we initially expected. Apparently, this is partly due to
the fact that non-contiguous conjunctive partial deduction on the one hand
often leads to substantial slowdowns and is not really practical for most
applications, while contiguous conjunctive partial deduction on the other
hand is in general too weak to deforest or tuple datastructures.

Therefore it is vital, if one wants to more heavily exploit the advan-
tages of conjunctive partial deduction, to add non-contiguous splitting (i.e.
reordering) in a safe way which guarantees no serious slowdown. A first
step towards a solution is presented in [30], but it remains quite restric-

284 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

tive and considers only ground queries. Another, more pragmatic approach
might be based on making use of some mode system to allow reordering
of literals as long as the resulting conjunction remains well-moded. This
would be very similar to the way in which the compiler for Mercury [257]
reorders literals to create different modes for the same predicate. For the
semantics of Mercury any well-moded re-ordering of the literals is allowed.
Although this approach does not ensure the preservation of termination,
it is then simply considered a programming error if one well-moded query
terminates while the other does not. So, conjunctive partial deduction, not
unlike program transformation in general, may be much more viable in a
truly declarative setting. Of course, also in that context, finding a good
way to prevent slowdowns remains a pressing open question. A promising
direction might be to incorporate more detailed efficiency and cost estima-
tion into the global and local control of conjunctive partial deduction, e.g.
based on [70, 71, 69]. Other topics for further work include implementation
improvements, research into more sophisticated local control, and meth-
ods for improved information passing between the local and global control
levels.

Finally, we perceive the extensive experimentation in itself and the set
of benchmark assembled to that end, as a noteworthy contribution of this
chapter. Indeed we feel that, if one wants to move towards more practical
or even industrial applications of program transformation, extensive and
realistic empirical experiments are called for. The benchmark suite used
in this chapter (and in Chapter 6), containing some difficult benchmarks
especially designed to put transformation methods at a stress, might form a
suitable basis to gauge progress along the difficult path towards full practi-
cal applicability. We invite the interested reader to consult [170] for further
details.

12.3. BENCHMARKS AND CONCLUSION 285

Cdc-hh-t Csc-hh-t

Benchmark RRT Size TT RRT Size TT

advisor 0.47 412 0.90 0.47 412 0.86
applast 0.36 202 0.92 0.36 202 0.80
contains.kmp 0.11 1039 5.61 0.11 1039 5.41
depth.lam 0.15 1837 4.11 0.15 1837 4.01
doubleapp 0.80 362 0.85 0.80 362 0.88
ex depth 0.26 508 3.30 0.29 407 1.62
flip 1.33 686 1.41 1.33 686 1.25
grammar.lam 0.16 309 1.94 0.16 309 1.84
groundunify.complex 0.40 6247 118.69 0.47 6277 19.47
groundunify.simple 0.25 368 0.78 0.25 368 0.80
imperative.power 0.40 36067 906.60 0.40 3132 71.37
liftsolve.app 0.05 1179 5.75 0.05 1179 5.98
liftsolve.db1 0.01 1280 22.39 0.01 1280 14.23
liftsolve.db2 0.16 17472 2599.03 0.21 21071 1594.90
liftsolve.lmkng 1.02 1591 3.09 1.02 1591 2.66
map.reduce 0.07 507 0.78 0.07 507 0.85
map.rev 0.11 427 0.83 0.11 427 0.82
match-append 1.21 406 1.29 1.21 406 1.14
match.kmp 0.73 639 1.16 0.73 639 1.15
maxlength 1.40 620 1.22 1.40 620 1.14
memo-solve 0.81 1095 5.88 0.81 1095 2.53
missionaries 0.69 2960 7.93 0.69 2960 7.59
model elim.app 0.12 451 2.65 0.12 451 2.66
regexp.r1 0.39 557 1.76 0.39 557 1.36
regexp.r2 0.41 833 3.57 0.53 692 1.52
regexp.r3 0.31 1197 6.85 0.44 873 1.82
relative.lam 0.07 1011 5.80 0.07 1011 5.39
remove 0.62 1774 5.34 0.62 1774 4.89
remove2 0.87 1056 3.42 0.92 831 2.08
rev acc type 1.00 242 1.01 1.00 242 0.91
rev acc type.inffail 0.63 864 3.21 0.63 864 3.01
rotateprune 0.71 1165 3.08 0.71 1165 2.80
ssuply.lam 0.06 262 1.31 0.06 262 1.17
transpose.lam 0.17 2312 2.87 0.17 2312 2.45
upto.sum1 1.20 848 4.00 1.20 848 3.64
upto.sum2 1.12 623 1.48 1.12 623 1.46

Average 0.52 2484 103.91 0.53 1648 49.35
Total 18.66 89408 3740.8 19.10 59311 1776.5
Total Speedup 1.93 1.89

Table 12.3: ecce Determinate conjunctive partial deduction (A)

286 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

Csc-th-t Cdc-th-t

Benchmark RRT Size TT RRT Size TT

advisor 0.47 412 0.87 0.47 412 0.82
applast 0.36 202 0.67 0.36 202 0.86
contains.kmp 0.11 1039 5.44 0.11 1039 5.22
depth.lam 0.15 1837 3.82 0.15 1837 3.53
doubleapp 0.80 362 0.84 0.80 362 0.86
ex depth 0.29 407 1.60 0.27 508 3.08
flip 1.33 686 1.02 1.33 686 1.41
grammar.lam 0.16 309 1.82 0.16 309 1.76
groundunify.complex 0.47 6277 19.08 0.40 6247 81.35
groundunify.simple 0.25 368 0.75 0.25 368 0.73
imperative.power 0.40 3293 42.85 0.40 37501 1039.48
liftsolve.app 0.05 1179 5.74 0.05 1179 5.43
liftsolve.db1 0.01 1280 13.33 0.01 1280 20.39
liftsolve.db2 0.17 5929 198.19 0.17 11152 628.47
liftsolve.lmkng 1.02 1591 2.63 1.02 1591 2.89
map.reduce 0.07 507 0.80 0.07 507 0.77
map.rev 0.11 427 0.80 0.11 427 0.80
match-append 1.21 406 1.17 1.21 406 1.18
match.kmp 0.73 639 1.15 0.73 639 1.22
maxlength 1.40 620 1.17 1.40 620 1.13
memo-solve 0.81 1095 4.54 0.81 1095 10.32
missionaries 0.69 2960 7.13 0.69 2960 7.86
model elim.app 0.12 451 2.58 0.12 451 2.60
regexp.r1 0.39 557 1.41 0.39 557 1.76
regexp.r2 0.53 692 1.55 0.43 833 3.55
regexp.r3 0.44 873 1.87 0.30 1197 6.01
relative.lam 0.07 1011 5.32 0.07 1011 5.74
remove 0.62 1774 4.92 0.62 1774 5.39
remove2 0.92 831 2.13 0.87 1056 3.45
rev acc type 1.00 242 0.96 1.00 242 1.04
rev acc type.inffail 0.63 864 3.09 0.63 864 3.24
rotateprune 0.71 1165 2.81 0.71 1165 3.10
ssuply.lam 0.06 262 1.19 0.06 262 1.32
transpose.lam 0.17 2312 2.53 0.17 2312 2.51
upto.sum1 0.88 734 3.03 0.88 734 3.40
upto.sum2 1.12 623 1.48 1.12 623 1.49

Average 0.52 1228 9.73 0.51 2345 51.78
Total 18.73 44216 350.3 18.35 84408 1864.16
Total Speedup 1.92 1.96

Table 12.4: ecce Determinate conjunctive partial deduction (B)

12.3. BENCHMARKS AND CONCLUSION 287

Csc-hn-t Csc-tn-t

Benchmark RRT Size TT RRT Size TT

advisor 0.47 412 0.88 0.47 412 1.20
applast 0.36 202 0.64 0.36 202 0.73
contains.kmp 0.11 1039 5.19 0.63 862 1.16
depth.lam 0.15 1837 3.95 0.15 1837 4.18
doubleapp 0.80 362 0.86 0.80 362 1.13
ex depth 0.29 407 1.60 0.29 407 1.75
flip 1.33 686 1.07 1.33 686 1.14
grammar.lam 0.16 309 1.77 0.16 309 1.98
groundunify.complex 0.40 4869 15.03 0.47 5095 18.67
groundunify.simple 0.25 368 0.76 0.25 368 0.94
imperative.power 0.37 2881 49.33 0.37 2881 32.88
liftsolve.app 0.05 1179 5.50 0.05 1179 5.65
liftsolve.db1 0.01 1280 13.60 0.01 1280 13.56
liftsolve.db2 0.17 10146 1974.50 0.33 3173 19.84
liftsolve.lmkng 1.09 1416 1.82 1.07 1416 2.09
map.reduce 0.07 507 0.83 0.07 507 1.09
map.rev 0.11 427 0.79 0.11 427 1.04
match-append 1.21 406 0.91 1.21 406 1.06
match.kmp 0.73 639 1.11 0.73 613 1.69
maxlength 1.40 620 1.20 1.40 620 1.31
memo-solve 0.81 1095 4.28 1.38 1709 6.73
missionaries 0.69 2960 7.06 0.71 3083 6.03
model elim.app 0.12 451 2.63 0.12 451 2.75
regexp.r1 0.39 557 1.38 0.39 557 1.84
regexp.r2 0.53 692 1.55 0.53 692 1.66
regexp.r3 0.44 873 1.81 0.44 873 2.00
relative.lam 0.07 1011 5.34 0.45 1252 6.78
remove 0.65 1191 2.42 0.65 1191 2.19
remove2 0.92 831 2.04 0.92 831 1.89
rev acc type 1.00 242 0.67 1.00 242 0.84
rev acc type.inffail 0.63 598 0.87 0.63 598 0.98
rotateprune 0.71 1165 2.79 0.71 1165 2.55
ssuply.lam 0.06 262 1.15 0.06 262 1.32
transpose.lam 0.17 2312 2.46 0.17 2312 2.62
upto.sum1 1.20 848 3.77 0.88 734 2.83
upto.sum2 1.12 623 1.45 1.12 623 1.39

Average 0.53 1270 58.97 0.57 1100 4.37
Total 19.04 45703 2123.01 20.40 39617 157.49
Total Speedup 1.89 1.76

Table 12.5: ecce Determinate conjunctive partial deduction (C)

288 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

Cdm-hh-t Csm-hh-h

Benchmark RRT Size TT RRT Size TT

advisor 0.47 412 0.80 0.46 647 1.00
applast 0.36 202 0.97 0.36 145 0.85
contains.kmp 0.11 1039 5.16 0.10 814 5.77
depth.lam 0.15 1837 3.99 0.15 1848 5.91
doubleapp 0.80 362 0.84 0.82 277 0.83
ex depth 0.26 508 3.15 0.34 1240 6.18
flip 0.75 441 1.11 0.69 267 0.81
grammar.lam 0.16 309 1.74 0.16 309 2.21
groundunify.complex 0.40 6247 137.68 0.47 8113 77.21
groundunify.simple 0.25 368 0.75 0.25 399 1.27
imperative.power 0.37 103855 4548.51 bi err 85460 1617.93
liftsolve.app 0.05 1179 5.44 0.06 1210 6.26
liftsolve.db1 0.01 1280 20.85 0.02 1311 18.10
liftsolve.db2 0.17 17206 1813.49 - - > 12h
liftsolve.lmkng 1.02 1591 2.85 1.24 1951 8.89
map.reduce 0.07 507 0.85 0.08 348 0.84
map.rev 0.11 427 0.88 0.13 285 0.75
match-append 1.21 406 1.20 1.36 362 0.98
match.kmp 0.73 639 1.18 0.65 543 0.94
maxlength 1.40 620 1.18 1.10 314 1.19
memo-solve 1.12 1294 22.69 1.50 3777 34.84
missionaries - - > 12h 21.17 43268 2537.39
model elim.app 0.12 451 2.77 0.12 451 3.20
regexp.r1 0.39 557 1.91 0.20 457 1.21
regexp.r2 0.41 833 3.65 0.57 1954 6.43
regexp.r3 0.31 1197 6.84 1.89 9124 31.07
relative.lam 0.07 1011 5.84 0.01 954 7.31
remove 0.62 1774 5.51 6.40 4116 7.69
remove2 0.87 1056 3.65 0.94 862 2.34
rev acc type 1.00 242 1.08 1.00 242 1.73
rev acc type.inffail 0.63 864 3.26 0.61 786 1.94
rotateprune 0.71 1165 4.01 0.17 691 2.33
ssuply.lam 0.06 262 1.36 0.06 262 1.69
transpose.lam 0.17 2312 2.77 0.19 2436 4.34
upto.sum1 bi err 448 3.43 bi err 479 3.79
upto.sum2 0.65 394 1.50 0.58 242 1.11

Average 0.50 4380 189.23 1.30 5027 125.90
Total 18.01 153295 6622.90 46.84 175944 4406.33
Total Speedup 2.00 0.77

Table 12.6: ecce Non-contiguous conjunctive partial deduction

12.3. BENCHMARKS AND CONCLUSION 289

Csc-th-li S-hh-li

Benchmark RRT Size TT RRT Size TT

advisor 0.32 809 0.85 0.31 809 0.85
applast 0.34 145 0.67 1.48 314 0.75
contains.kmp 0.10 1227 15.73 0.55 1294 5.97
depth.lam 0.15 1848 12.65 0.62 1853 3.76
doubleapp 0.82 277 0.98 0.95 216 0.58
ex depth 0.27 659 6.31 0.44 1649 4.26
flip 0.95 493 1.26 1.03 313 0.65
grammar.lam 0.14 218 2.15 0.14 218 2.43
groundunify.complex 0.47 19640 117.12 0.47 8356 50.63
groundunify.simple 0.25 368 0.76 0.25 368 0.77
imperative.power 0.69 3605 155.55 0.58 2254 62.97
liftsolve.app 0.05 1179 6.04 0.06 1179 6.40
liftsolve.db1 0.02 1326 19.94 0.02 1326 20.82
liftsolve.db2 - - > 12h 0.76 3751 242.86
liftsolve.lmkng 1.00 1591 4.22 1.07 1730 2.12
map.reduce 0.08 348 0.78 0.08 348 0.82
map.rev 0.13 285 0.79 0.13 285 0.88
match-append 1.36 362 1.02 1.36 362 0.75
match.kmp 0.65 543 1.65 0.65 543 1.77
maxlength 1.30 620 1.22 1.10 715 1.16
memo-solve 0.95 1015 3.69 1.20 2238 4.96
missionaries 0.54 15652 348.68 0.66 13168 430.99
model elim.app 0.13 444 3.11 0.13 444 3.18
regexp.r1 0.20 457 1.04 0.20 457 1.03
regexp.r2 0.41 831 4.98 0.61 737 4.67
regexp.r3 0.31 1041 14.70 0.38 961 14.00
relative.lam 0.00 261 6.19 0.00 261 5.88
remove 0.87 1369 7.31 0.68 659 1.02
remove2 0.93 862 3.51 0.75 453 1.30
rev acc type 1.00 242 1.21 1.00 242 0.92
rev acc type.inffail 0.66 700 2.24 0.80 850 1.25
rotateprune 0.80 1470 4.62 1.02 779 1.10
ssuply.lam 0.06 262 1.41 0.06 262 1.51
transpose.lam 0.18 2312 2.99 0.17 2312 2.99
upto.sum1 0.88 734 2.81 1.07 581 1.80
upto.sum2 1.00 654 1.48 1.05 485 1.38

Average 0.53 1824 21.70 0.61 1466 24.70
Total 19.03 63849 759.66 21.86 52772 889.18
Total Speedup 1.89 1.65

Table 12.7: ecce Partial deduction based on indexed unfolding

290 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

S-hh-t SE-hh-x

Benchmark RRT Size TT RRT Size TT

advisor 0.47 412 0.87 0.31 809 0.78
applast 1.05 343 0.71 1.48 314 0.70
contains.kmp 0.85 1290 2.69 0.09 685 4.48
depth.lam 0.94 1955 1.47 0.02 2085 1.91
doubleapp 0.95 277 0.65 0.95 216 0.53
ex depth 0.76 1614 2.54 0.32 350 1.58
flip 1.05 476 0.77 1.03 313 0.53
grammar.lam 0.16 309 1.91 0.14 218 1.90
groundunify.complex 0.40 5753 13.47 0.53 4800 0.75
groundunify.simple 0.25 368 0.78 0.25 368 22.03
imperative.power 0.42 2435 75.10 0.54 1578 27.42
liftsolve.app 0.05 1179 6.05 0.06 1179 6.57
liftsolve.db1 0.01 1280 13.27 0.02 1326 7.33
liftsolve.db2 0.18 3574 16.86 0.61 4786 34.25
liftsolve.lmkng 1.07 1730 1.80 1.02 2385 2.75
map.reduce 0.07 507 0.91 0.08 348 0.86
map.rev 0.11 427 0.83 0.11 427 0.89
match-append 1.21 406 0.64 1.36 362 0.68
match.kmp 0.73 639 1.16 0.70 669 1.23
maxlength 1.20 715 1.07 1.10 421 0.95
memo-solve 1.17 2318 4.74 1.09 2241 4.31
missionaries 0.81 2294 5.11 0.72 2226 9.21
model elim.app 0.63 2100 2.82 0.13 532 3.56
regexp.r1 0.50 594 1.28 0.29 435 0.98
regexp.r2 0.57 629 1.28 0.51 1159 4.87
regexp.r3 0.50 828 1.74 0.42 1684 14.92
relative.lam 0.82 1074 1.89 0.00 261 4.06
remove 0.71 955 1.46 0.68 659 0.90
remove2 0.74 508 1.15 0.80 440 1.00
rev acc type 1.00 242 0.70 1.00 242 0.83
rev acc type.inffail 0.63 864 1.48 0.60 527 0.80
rotateprune 0.71 1165 1.77 1.02 779 0.88
ssuply.lam 0.06 262 1.15 0.06 262 1.18
transpose.lam 0.17 2312 2.49 0.17 2312 1.98
upto.sum1 1.06 581 2.18 1.20 664 3.11
upto.sum2 1.10 623 1.50 1.05 485 0.94

Average 0.64 1196 4.90 0.57 1071 4.77
Total 23.12 43038 176.29 20.47 38614 171.65
Total Speedup 1.56 1.76

Table 12.8: ecce Standard partial deduction methods

12.3. BENCHMARKS AND CONCLUSION 291

mixtus paddy

Benchmark RRT Size TT RRT Size TT

advisor 0.31 809 0.85 0.31 809 0.10
applast 1.27 309 0.28 1.30 309 0.08
contains.kmp 0.16 533 2.48 0.11 651 0.55
depth.lam 0.04 1881 4.15 0.02 2085 0.32
doubleapp 1.00 295 0.30 0.98 191 0.08
ex depth 0.40 643 2.40 0.29 1872 0.53
flip 1.03 495 0.37 1.02 290 0.12
grammar.lam 0.17 841 2.73 0.43 636 0.22
groundunify.complex 0.67 5227 11.68 0.60 4420 1.53
groundunify.simple 0.25 368 0.45 0.25 368 0.13
imperative.power 0.56 2842 5.35 0.58 3161 2.18
liftsolve.app 0.06 1179 4.78 0.06 1454 0.80
liftsolve.db1 0.01 1280 5.36 0.02 1280 1.20
liftsolve.db2 0.31 8149 58.19 0.32 4543 1.60
liftsolve.lmkng 1.16 2169 4.89 0.98 1967 0.32
map.reduce 0.68 897 0.17 0.08 498 0.20
map.rev 0.11 897 0.16 0.26 2026 0.37
match-append 0.47 389 0.27 0.98 422 0.12
match.kmp 1.55 467 4.89 0.69 675 0.28
maxlength 1.20 594 0.72 0.90 398 0.17
memo-solve 0.60 1493 12.72 1.48 3716 1.70
missionaries - - ∞ - - ∞
model elim.app 0.13 624 5.73 0.10 931 0.90
regexp.r1 0.20 457 0.73 0.29 417 0.13
regexp.r2 0.82 1916 2.85 0.67 3605 0.63
regexp.r3 0.60 2393 4.49 1.26 10399 1.35
relative.lam 0.01 517 7.76 0.00 517 0.42
remove 0.81 715 0.49 0.71 437 0.12
remove2 1.01 715 0.84 0.84 756 0.12
rev acc type 1.00 497 0.99 0.99 974 0.33
rev acc type.inffail 0.97 276 0.77 0.94 480 0.28
rotateprune 1.02 756 0.49 1.01 571 0.12
ssuply.lam 0.06 262 0.93 0.08 262 0.08
transpose.lam 0.18 1302 3.89 0.18 1302 0.43
upto.sum1 0.96 556 1.80 1.08 734 0.30
upto.sum2 1.06 462 0.44 1.06 462 0.13

Average 0.61 1234 4.44 0.61 1532 0.51
Total 21.83 43205 155.37 21.87 53618 17.95
Total Speedup 1.65 1.65

Table 12.9: Some existing systems (A)

292 CHAPTER 12. CONJ. PARTIAL DEDUCTION IN PRACTICE

sp

Benchmark RRT Size TT

advisor 0.40 463 0.29
applast 0.84 255 0.15
contains.kmp 0.75 985 1.13
depth.lam 0.53 928 0.99
doubleapp 1.02 160 0.11
ex depth 0.27 786 1.35
flip 1.02 259 0.13
grammar.lam 0.15 280 0.71
groundunify.complex 0.73 4050 2.46
groundunify.simple 0.61 407 0.20
imperative.power 1.16 1706 6.97
liftsolve.app 0.23 1577 2.46
liftsolve.db1 0.82 4022 3.95
liftsolve.db2 0.82 3586 3.71
liftsolve.lmkng 1.16 1106 0.37
map.reduce 0.09 437 0.23
map.rev 0.13 351 0.20
match-append 0.99 265 0.18
match.kmp 1.08 527 0.49
maxlength 0.90 367 0.31
memo-solve 1.15 1688 3.65
missionaries 0.73 16864 82.59
model elim.app - - ∞
regexp.r1 0.54 466 0.37
regexp.r2 1.08 1233 0.67
regexp.r3 1.03 1646 1.20
relative.lam 0.69 917 0.35
remove 0.75 561 0.29
remove2 0.82 386 0.25
rev acc type - - ∞
rev acc type.inffail - - ∞
rotateprune 1.00 725 0.31
ssuply.lam 0.06 231 0.52
transpose.lam 0.26 1267 0.52
upto.sum1 1.05 467 0.48
upto.sum2 1.01 431 0.21

Average 0.75 1497 3.57
Total 26.86 49399 117.80
Total Speedup 1.34

Table 12.10: Some existing systems (B)

Part VI

Combining Abstract
Interpretation and Partial

Deduction

293

Chapter 13

Logic Program
Specialisation: How to Be
More Specific

13.1 Partial deduction vs. abstract interpre-
tation

The heart of any technique for logic program specialisation, is a program
analysis phase. Given a program P and a goal ← Q, one aims to analyse
the computation-flow of P for all instances ← Qθ of ← Q. Based on the
results of this analysis, new program clauses are synthesised.

As we have seen on many occasions in this thesis, in partial deduc-
tion, such an analysis is based on the construction of finite but possibly
incomplete SLD(NF)-trees. More specifically, following the foundations for
standard partial deduction we have presented in Chapter 3, one constructs
• a finite set of atoms A = {A1, . . . , An}, and
• a finite (possibly incomplete) SLD(NF)-tree τi for each P ∪ {← Ai},

such that:
1) each atom in the initial goal ← Q is an instance of some Ai ∈ A, and
2) for each goal ← B1, . . . , Bk labelling a leaf of some SLD(NF)-tree τl,

each Bi is an instance of some Aj ∈ A.
The conditions 1) and 2) (of A-coveredness, cf. Definition 3.2.11) ensure
that together the SLD(NF)-trees τ1, . . . , τn form a complete description of
all possible computations that can occur for all concrete instances← Qθ of
the goal of interest. At the same time, the point is to propagate the available

295

296 CHAPTER 13. HOW TO BE MORE SPECIFIC

input data in ← Q as much as possible through these trees, in order to
obtain sufficient accuracy. The outcome of the analysis is precisely the
set of SLD(NF)-trees {τ1, . . . , τn}: a complete, and as precise as possible,
description of the computation-flow.

Finally, a code generation phase produces a resultant clause for each
non-failing branch of each tree, which synthesises the computation in that
branch.

Algorithm 3.3.11, presented in Chapter 3, describes the basic layout of
practically all proposed algorithms for computing A and {τ1, . . . , τn}. An
analysis following this scheme focusses exclusively on a top-down propaga-
tion of call-information. In the separate SLD-trees τi, this propagation is
performed through repeated unfolding steps. The propagation over differ-
ent trees is achieved by the fact that for each atom in a leaf of a tree there
exists another tree with (a generalisation of) this atom as its root. The
decision to create a set of different SLD-trees — instead of just creating
one single tree, which would include both unfolding steps and generalisa-
tion steps — is motivated by the fact that these individual trees determine
how to generate the new clauses.

The starting point for this chapter is that the described analysis scheme
suffers from some clear imprecision problems. It has some obvious draw-
backs compared to top-down abstract interpretation schemes, such as for
instance the one in [36]. These drawbacks are related to two issues:
• the lack of success-propagation, both upwards and side-ways,
• the lack of inferring global success-information.
We discuss these issues in more detail. In the remainder of this chapter

we will restrict our attention to definite logic programs (possibly with some
declarative built-ins like \==, cf. Section 2.3.3).

13.1.1 Lack of success-propagation

Consider the following tiny program:

Example 13.1.1
p(X)← q(X), r(X)
q(a)←
r(a)←
r(b)←

For a given query ← p(X), one possible (although very unoptimal)
outcome of the Algorithm 3.3.11 is the set A = {p(X), q(X), r(X)} and the
SLD-trees τ1, τ2 and τ3 presented in Figure 13.1.

With this result of the analysis, the transformed program would be
identical to the original one. Note that in τ2 we have derived that the

13.5. PARTIAL DEDUCTION / ABSTRACT INTERPRETATION 297

�
��	

@
@@R? ?

2

← r(X)

2

← p(X)

← q(X), r(X)

← q(X)

2

τ2: τ3:τ1:

X/a X/bX/a
�

��	
@

@@R
2

X/a

← q(X)

← q(X)

τ ′2:

Figure 13.1: A possible outcome of Algorithm 3.3.11 for Examples 13.1.1
and 13.1.2

only answer for ← q(X) is X/a. An abstract interpretation algorithm such
as the one in [36] would propagate this success-information to the leaf of
τ1, yielding that (under the left-to-right selection rule) the call ← r(X)
becomes more specific, namely ← r(a). This information would then be
used in the analysis of the r/1 predicate, allowing to remove the redundant
branch. Finally, the success-information, X/a, would be propagated up to
the ← p(X) call, yielding a specialised program:

p(a)←
q(a)←
r(a)←

which is correct for all instances of the considered query ← p(X).
Note that this particular example could be solved by the techniques in

[97]. There, a limited success-propagation, restricted to only one resolu-
tion step, is introduced and referred to as a more specific resolution step.
The particular example can of course also be solved by standard partial
deduction and a sufficiently refined unfolding rule. More difficult and re-
alistic examples, which can be solved by neither [97] nor standard partial
deduction alone, will be presented later on in the chapter.

13.1.2 Lack of inference of global success-information

Example 13.1.2 Assume that we add the clause q(X) ← q(X) to the
program in Example 13.1.1. A possible outcome of Algorithm 3.3.11 for
the query ← p(X) now is A = {p(X), q(X), r(X)} along with the SLD-
trees τ1, τ

′
2, τ3, depicted in Figure 13.1.

Again, standard partial deduction produces a resulting program which is
identical to the input program. In this case, simple bottom-up propagation
of successes is insufficient to produce a better result. An additional fix-point
computation is needed to detect that X/a is the only answer substitution.
Methods as the one in [36] integrate such fix-point computations in the

298 CHAPTER 13. HOW TO BE MORE SPECIFIC

top-down analysis. As a result, the same more specialised program as for
Example 13.1.1 can be obtained.

In addition to pointing out further imprecision problems of the usual
analysis scheme, in this chapter:

1. We propose a more refined analysis scheme, building on the notions
of conjunctive partial deduction (cf. Chapters 10, 11 and 12) and more
specific programs (see [191, 192]),1 that solves the above mentioned
problems.

2. We illustrate the applicability of the new scheme and to describe a
class of applications in which they are vital for successful specialisa-
tion.

One class of problems is related to the specialisation of meta-programs
that use the ground-representation for representing object programs (cf.
Chapter 8). In Section 9.4 of Chapter 9 we already pointed out (in the
context of pre-compiling integrity checking) that specialising such program
satisfactorily often requires the analysis of an infinite number of different
computations (like e.g. in Example 13.1.2), something which partial de-
duction techniques alone cannot do. In this chapter we provide a general
solution for this problem.

The remainder of the chapter is organised as follows. In Section 13.2 we
present the intuitions behind the proposed solution and illustrate the exten-
sions on a few simple examples. In Section 13.3 we present more realistic,
practical examples and and we justify the need for a more refined algo-
rithm. This more refined Algorithm is then presented in Section 13.4 and
used to specialise the ground representation in Section 13.5. We conclude
with some discussions in Section 13.6.

13.2 Introducing more specific programs

There are different ways in which one could enhance the analysis to cope
with the problems mentioned in the introduction. A solution that seems
most promising is to just apply the abstract interpretation scheme of [36]
to replace Algorithm 3.3.11. Unfortunately, this analysis is based on an
AND-OR-tree representation of the computation, instead of an SLD-tree
representation. As a result, applying the analysis for partial deduction
causes considerable problems for the code-generation phase. It becomes
very complicated to extract the specialised clauses from the tree. The
alternative of adapting the analysis of [36] in the context of an SLD-tree

1The method of [191, 192] is the most straightforward to integrate with partial de-
duction because both these methods use the same abstract domain: a set of concrete
atoms (or goals) is represented by all the instances of a given atom (or goal).

13.2. INTRODUCING MORE SPECIFIC PROGRAMS 299

representation causes considerable complications as well. The analysis very
heavily exploits the AND-OR-tree representation to enforce termination.

As mentioned above, the solution we propose here is based on the com-
bination of two existing analysis schemes, each of which is underlying to
a specific specialisation technique: the one of conjunctive partial deduction
introduced in Chapter 10 and the one of more specific programs [191, 192].

Let us first present an abstract interpretation method based on [191,
192] which calculates more specific versions of programs.

We first recall the two following notations. Pred(P) denotes the set of
predicates occurring in a set of logic formulas P . By mgu∗(A,B) we denote
a particular idempotent and relevant most general unifier of A and some B′,
obtained from B by renaming apart wrt A. We also define the predicate-
wise application msg∗ of the msg : msg∗(S) = {msg(Sp) | p ∈ Pred(P)},
where Sp are all the atoms of S having p as predicate.

In the following we define the well-known non-ground TP operator (cf.
Definition 2.2.7 for the ground TP operator) along with an abstraction UP

of it.

Definition 13.2.1 (TP ,UP) For a definite logic program P and a set of
atoms A we define:
TP (A) = {Hθ1 . . . θn | H ← B1, . . . , Bn ∈ P ∧ θi = mgu∗(Biθ1 . . . θi−1 ,Ai)
with Ai ∈ A}.
We also define UP (A) = msg∗(TP (A)).

One of the abstract interpretation methods of [191, 192] can be seen
(for maximally general, atomic goal tuples, see Section 13.6) as calculating
lfp(UP) = UP ↑∞ (∅).2 In [191, 192] more specific versions of clauses and
programs are obtained in the following way:

Definition 13.2.2 (more specific version) Let C = H ← B1, . . . , Bn

be a definite clause and A a set of atoms. We define

msvA(C) = {Cθ1 . . . θn | θi = mgu∗(Biθ1 . . . θi−1 ,Ai) with Ai ∈ A}.

The more specific version msv(P) of a program P is then obtained by
replacing every clause C ∈ P by msvlfp(UP)(C) (note that msvlfp(UP)(C)
contains at most 1 clause).

In the light of the stated problems, an integration of partial deduction
with the more specific program transformation seems a quite natural solu-
tion. In [191, 192] such an integration was already suggested as a promising
future direction. Take for instance the following program.

2This in turn can be seen as an abstract interpretation method which infers top level
functors for every predicate.

300 CHAPTER 13. HOW TO BE MORE SPECIFIC

Example 13.2.3 (eqlist)
eqlist(X, Z)← append(X , [],Z)
append([],L,L)←
append([H |X],Y , [H |Z])← append(X ,Y ,Z)

Partial deduction for the goal ← eqlist(X, Z) results in the following spe-
cialised program P ′:

eqlist(X, Z)← app[](X ,Z)
app[]([], [])←
app[]([H |X], [H |Z])← app[](X ,Z)

The least fixpoint of UP ′ is obtained as follows:
UP ′ ↑1 (∅) = {app[]([], [])}
UP ′ ↑2 (∅) = msg∗({app[]([], []), app[]([H], [H]), eqlist([], [])}) =

= {app[](X ,X), eqlist([], [])}
UP ′ ↑3 (∅) = UP ′ ↑4 (∅) = {app[](X ,X), eqlist(X ,X)}

The more specific version msv(P ′) of P ′ is thus:
eqlist(X, X)← app[](X ,X)
app[]([], [])←
app[]([H |X], [H |X])← app[](X ,X)

So, by combining partial deduction with the more specific program trans-
formation, we are able to deduce that ← eqlist(X, X) is a more specific
version of ← eqlist(X, Z), something which msv(.) alone is incapable of
doing.

The following example reveals that, in general, this combination is still
too weak to deal with side-ways information propagation.

Example 13.2.4 (append-last)
app last(L,X)← append(L, [a],R), last(R,X)
append([],L,L)←
append([H |X],Y , [H |Z])← append(X ,Y ,Z)
last([X],X)←
last([H |T],X)← last(T ,X)

The hope is that the specialisation techniques are sufficiently strong to
infer that a query ← app last(L,X) produces the answer X = a. Partial
deduction on its own is incapable of producing this result. An SLD-tree for
the query ← app last(L,X) takes the form of τ1 in Figure 13.2. Although
the success-branch of the tree produces X = a, there are infinitely many
possibilities for L and, without a bottom-up fixed-point computation, X =
a cannot be derived for the entire computation. At some point the unfolding

13.2. INTRODUCING MORE SPECIFIC PROGRAMS 301

needs to terminate, and additional trees for append and last , for instance
τ2 and τ3 in Figure 13.2, need to be constructed. The resulting program is:

app last([], a)←
app last([H |L′],X)← appa(L′, [a],R′), last(R′,X)
appa([], [a], [a])←
appa([H |X], [a], [H |Z])← appa(X , [a],Z)

in addition to the original clauses for last/2 .

? ?

?

��
����

HH
HHHj

← append(L′, [a],R′), last(R′,X)2

X/a

← app last(L,X)

← append(L, [a],R), last(R,X)

← last([a],X) ← append(L′, [a],R′), last([H |R′],X)

L/[H|L′], R/[H|R′]L/[], R/[a]

τ1:

�
��	

@
@@R

�
��	

@
@@R

← append(L, [a],R)

← append(L′, [a],R′)2

L/[], R/[a] L/[H|L′], R/[H|R′]

← last(R,X)

2 ← last(T ,X)

R/[H|T]R/[X]

τ2:

τ3:

Figure 13.2: SLD-trees for Example 13.2.4

Unfortunately, in this case, even the combination with the more specific
program transformation is insufficient to obtain the desired result. We get:

302 CHAPTER 13. HOW TO BE MORE SPECIFIC

TP ↑ 1 = UP ↑ 1 =
{ app last([], a), appa([], [a], [a]), last([X],X) }

TP (UP ↑ 1) = TP ↑ 2 =
{ app last([], a), app last([H], a)

appa([], [a], [a]), appa([H], [a], [H , a]),
last([X],X),last([H ,X],X) }

after which most specific generalisation yields
UP ↑ 2 = { app last(L, a), appa(X , [a], [Y |Z]), last([X |Y],Z) }

At this stage, all information concerning the last elements of the lists is lost
and we reach the fix-point in the next iteration:

UP ↑ 3 = { app last(L,Z), appa(X , [a], [Y |Z]), last([X |Y],Z) }
One could argue that the failure is not due to the more specific programs

transformation itself, but to a weakness of the most specific generalisation
operator: it’s inability to retain information at the end of a data-structure.
Note however that even if we use other abstractions and their corresponding
abstract operation proposed in the literature, such as type-graphs [134],
regular types [102] or refined types for compile-time garbage collection of
[208], the information still gets lost.

The heart of the problem is that in all these methods the abstract op-
erator is applied to atoms of each predicate symbol separately. In this
program (as well as in many, much more relevant others, as we will dis-
cuss later in this chapter), we are interested in analysing the conjunction
append(L, [a],R),last(R,X) with a linking intermediate variable (whose
structure is too complex for the particular abstract domain). If we could
consider this conjunction as a basic unit in the analysis, and therefore not
perform abstraction on the separate atoms, but only on conjunctions of the
involved atoms, we would retain a precise side-ways information passing
analysis.

In Chapter 10 we have developed foundations for conjunctive partial de-
duction, which extends the standard partial deduction approach by consid-
ering a set of conjunctions of atoms instead of individual atoms. Although
this extension of standard partial deduction was motivated by totally dif-
ferent concerns than the ones in the current chapter (the aim was to achieve
a large class of unfold/fold transformations [222] within a simple extension
of the partial deduction framework), experiments with conjunctive partial
deduction on standard partial deduction examples (cf. Chapter 12) also
showed significant improvements. These somewhat surprising optimisa-
tions are actually due to a considerably improved side-ways information-
propagation.

Let us illustrate how conjunctive partial deduction combined with the
more specific program transformation does solve Example 13.2.4. Starting

13.3. SOME MOTIVATING EXAMPLES 303

from the goal app last(X) and using an analysis scheme similar to Algo-
rithm 3.3.11, but with the role of atoms replaced by conjunctions of atoms,
we can obtain A = { app last(X), append(L, [a],R) ∧ last(R,X) } and the
corresponding SLD-trees, which are sub-trees of τ1 of Figure 13.2. Here,
”∧” is used to denote conjunction in those cases where ”,” is ambiguous.

The main difference with the standard partial deduction analysis above
is that the goal append(L′, [a],R′),last(R′,X) in the leaf of τ1 is now consid-
ered as an undecomposed conjunction. This conjunction is already an in-
stance of an element inA, so that no separate analysis for append(L′, [a],R′)
and last(R′,X) are required.

Based on an atomic renaming α (cf. Chapter 10) such that
α(append(x , y , z) ∧ last(z , u)) = al(x , y , z , u)

the resulting transformed program is:

app last(L,X)← al(L, [a],R,X)
al([], [a], [a], a)←
al([H |L′], [a], [H |R′],X)← al(L′, [a],R′,X)

Applying the non-ground TP -operator and more specific generalisation ab-
stractions produces the sets:

UP ↑ 1 = { al([], [a], [a], a)}
UP ↑ 2 = { al(X , [a],Y , a), app last(X , a)}

which is a fix-point. Unifying the success-information with the body-atoms
in the above program and performing (ordinary) filtering (cf. Chapter 3)
and then redundant argument filtering (cf. Chapter 11) produces the desired
more specific program:

app last(L, a)← al(L)
al([])←
al([H |L′])← al(L′)

The abstract interpretation framework of [33] extends OLDT [270, 145]
by performing tabling operations not on atoms but on conjunctions. This
makes [33] powerful enough, given a proper way to construct the set of
conjunctions (one of the things that conjunctive partial deduction can do),
to also solve Example 13.2.4. The exact relationship between [33] and the
combination of conjunctive partial deduction and more specific program
construction is a subject for further study.

13.3 Some motivating examples

In this section we illustrate the relevance of the introduced techniques by
more realistic, practical examples.

304 CHAPTER 13. HOW TO BE MORE SPECIFIC

13.3.1 Storing values in an environment

The following piece of code P stores values of variables in an association
list and is taken from a interpreter for imperative languages (see the im-
perative.power benchmark in Appendix C). Note that we use typewriter
font for those programs containing built-ins.

store([],Key,Value,[Key/Value]).
store([Key/Value2|T],Key,Value,[Key/Value|T]).
store([K2/V2|T],Key,Value,[K2/V2|BT]) :-

Key \= K2,store(T,Key,Value,BT).
lookup(Key,[Key/Value|T],Value).
lookup(Key,[K2/V2|T],Value) :-

Key \= K2,lookup(Key,T,Value).

During specialisation it may happen that a known (static) value is stored
in an unknown environment.3 When we later on retrieve this value from
the environment it is vital for good specialisation to be able to recover
this static value. This is a problem quite similar to the append -last prob-
lem of Example 13.2.4. So again, calculating msv(P) (even if we perform
a magic-set transformation on P) does not give us any new information
for a query like ← store(E,k,2,E1),lookup(E1,k,Val). To be able to
solve this problem one needs again to combine abstract interpretation with
conjunctive partial deduction (the latter will “deforest” [281] the inter-
mediate environment E1). The specialised program P ′ for the query ←
store(E,k,2,E1),lookup(E1,k,Val) using the ecce (cf. Chapters 6 and
12) system with determinate unfolding is the following (a duplicate k\=X1
has been removed in the third clause; the associated incomplete SLDNF-
tree can be found in Figure 13.3):

store_lookup__1([],[k/2],2).
store_lookup__1([k/X1|X2],[key/2|X2],2).
store_lookup__1([X1/X2|X3],[X1/X2|X4],X5) :-

k \= X1,store_lookup__1(X3,X4,X5).

If we now calculate msv(P ′), we are able to derive that Val must have the
value 2:

store_lookup__1([],[k/2],2).
store_lookup__1([k/X1|X2],[k/2|X2],2).
store_lookup__1([X1/X2|X3],[X1/X2,X4/X5|X6],2) :-

k \= X1,store_lookup__1(X3,[X4/X5|X6],2).

13.3. SOME MOTIVATING EXAMPLES 305

?

��������9

R

.
�

�	

?
.
.

XXXXXXXXz

	

.....
@

@RR

.
�

�	

?
.
.

?
.
.

�
st(E,k,2,E1),lup(k,E1,Val)

lup(k,[k/2],Val)

2

fail

lup(k,[k/2],Val)

Val=2 Val=2

k\=k,lup(k,[],Val) 2

fail

k\=k,lup(k,[],Val) k\=K,
st(T,k,2,T’),
lup(k,T’,Val)

k\=k,...

fail

k\=K,st(T,k,2,T’),
lup(k,[K/V|T1],Val)

Figure 13.3: Unfolding part of an interpreter for an imperative language

Such information is of course even more relevant when one can continue
specialisation with it. For instance, in an interpreter for an imperative
language there might be multiple static values which are stored and then
examined again. These values might control tests or loops, and for good
specialisation to take place, the above information is crucial.

13.3.2 Proving functionality

The following is a generalisation of the standard definition of functionality
(see e.g. [231] or [72]).

Definition 13.3.1 We say that a predicate p defined in a program P is
functional wrt the terms t1, . . . , th iff for every pair of atoms
A = p(t1, . . . , th, a1, . . . , ak) and B = p(t1, . . . , th, b1, . . . , bk) we have:
• ← A,B has a correct answer θ iff ← A,A = B has
• ← A,B finitely fails iff ← A,A = B finitely fails

Note that in the above definition we allow A,B to be used as atoms as
well as terms (as arguments to the predicate = /2). Also note that, for
simplicity of the presentation, we restrict ourselves to correct answers (see
Definition 2.3.3). Therefore it can be easily seen that,4 if the goal← A′, A′

is a more specific version of ← A,B then p is functional wrt t1, . . . , th
(because msv(.) preserves computed answers and removing syntactically
identical calls preserves the correct answers for definite logic programs).

Functionality is useful for many transformations, and is often vital to
get super-linear speedups. For instance, it is needed to transform the naive

3The environment might be unknown for many reasons, e.g. due to abstraction or
because part of the imperative program is unknown.

4The reasoning for computed answers is not so obvious.

306 CHAPTER 13. HOW TO BE MORE SPECIFIC

(exponential) Fibonacci program into a linear one (see e.g. [231]). It can
also be used to produce more efficient code (see e.g. [72]). Another exam-
ple arises naturally from the store-lookup code of the previous section.
For instance, often specialisation can be greatly improved if functionality
of lookup(Key,Env,Val) wrt a given key Key and a given environment Env
can be proven (in other words if we lookup the same variable in the same en-
vironment we get the same value). For instance, this would allow to replace,
during specialisation, lookup(Key,Env,V1),lookup(Key,Env,V2),p(V2)
by lookup(Key,Env,V1),p(V1).

To prove functionality of lookup(Key,Env,Val) we simply add the fol-
lowing definition:5

ll(K,E,V1,V2) :- lookup(K,E,V1),lookup(K,E,V2).

By specialising the query ll(Key,Env,V1,V2) using the ecce system with
determinate unfolding and then calculating msv(.) for the resulting pro-
gram, we are able to derive that V1 must be equal to V2:

ll(K,E,V,V) :- lookup_lookup__1(K,E,V,V).
lookup_lookup__1(X1,[X1/X2|X3],X2,X2).
lookup_lookup__1(X1,[X2/X3,X4/X5|X6],X7,X7) :-

X1 \= X2, lookup_lookup__1(X1,[X4/X5|X6],X7,X7).

In addition to obtaining a more efficient program the above implies (be-
cause conjunctive partial deduction preserves the computed answers) that
the conjunction lookup(K,E,V),lookup(K,E,V) is a more specific version
of lookup(K,E,V1),lookup(K,E,V2), and we have proven functionality of
lookup wrt the first two arguments Key,Env.

In the same vein we can for example prove functionality of plus/3 wrt
the first two arguments X and Y . Starting out from the initial program

pp(X, Y, Z1, Z2)← plus(X ,Y ,Z1), plus(X ,Y ,Z2)
plus(0 ,Z ,Z)←
plus(s(X),Y , s(Z))← plus(X ,Y ,Z)

we obtain after specialising the following program:
pp(X, Y, V, V)← plus plus(X ,Y ,V ,V)
plus plus(0 ,X1 ,X1 ,X1)←
plus plus(s(X1),X2 , s(X3), s(X3))← plus plus(X1 ,X2 ,X3 ,X3)

13.3.3 The need for a more refined integration

So far we have always completely separated the conjunctive partial deduc-
tion phase and the bottom-up abstract interpretation phase. The following
example shows that this is not always sufficient.

5This is not strictly necessary but it simplifies spotting functionality.

13.3. SOME MOTIVATING EXAMPLES 307

Take a look at the following excerpt from a unification algorithm for the
ground representation, which takes care of extracting variable bindings out
of (uncomposed) substitutions. The full code can be found in Appendix H.2.
Notice that the algorithm does not not use accumulating parameters and
delays composition as well as application of substitutions as long as possible.
Also for simplicity we have not added an occurs check (adding an occur
check will only increase the precision of our analysis).

get_binding(V,empty,var(V)).
get_binding(V,sub(V,S),S).
get_binding(V,sub(W,S),var(V)) :- V \= W.
get_binding(V,comp(L,R),S) :-

get_binding(V,L,VL), apply(VL,R,S).

apply(var(V),Sub,VS) :- get_binding(V,Sub,VS).
apply(struct(F,A),Sub,struct(F,AA)) :- l_apply(A,Sub,AA).

l_apply([],Sub,[]).
l_apply([H|T],Sub,[AH|AT]) :-

apply(H,Sub,AH),l_apply(T,Sub,AT).

At first sight this piece of code looks very similar to the example of the
previous section and one would think that we could easily prove function-
ality of get binding(VarIdx,Sub,Bind) wrt a particular variable index
VarIdx and a particular substitution Sub. Exactly this kind of informa-
tion is required for the applications in Section 13.5 (related to the pre-
compilation of integrity checking for recursive databases).

Unfortunately this kind of information cannot be obtained by fully sep-
arated out phases, even if we systematically apply the msv(.) once a new
SLD-tree has been constructed. For simplicity we assume that the variable
index VarIdx is known to be 1. As in the previous section, we add the
definition:

gg(Sub,V1,V2) :- get_binding(1,Sub,V1),get_binding(1,Sub,V2).

If we construct one SLD-tree for the conjunction get binding(1,Sub,V1),
get binding(1,Sub,V2) and then apply renaming followed by msv(.), we
obtain:

gg(Sub,V1,V2) :- get_binding_get_binding__1(Sub,V1,V2).
get_binding_get_binding__1(empty,var(1),var(1)).
get_binding_get_binding__1(sub(1,X1),X1,X1).
get_binding_get_binding__1(sub(X1,X2),var(1),var(1)) :- 1\=X1.

308 CHAPTER 13. HOW TO BE MORE SPECIFIC

get_binding_get_binding__1(comp(X1,X2),X3,X4) :-
get_binding_get_binding__1(1,X1,X5,X6),
apply(X5,X2,X3),apply(X6,X2,X4).

Observe that we have not yet established the desired functionality; the
problem lies with the fourth clause for get binding get binding 1 (for
the other three clauses the second and third arguments are already identi-
cal). Unfortunately, by applying conjunctive partial deduction to the body
apply(X5,X2,X3),apply(X6,X2,X4) of this clause we cannot derive that
X3 must be equal to X4. Indeed, the variables indexes X5 and X6 are dif-
ferent and applying the same substitution on different terms can of course
lead to differing results. It would only be possible to prove that X3=X4 if
we assume that X5=X6. So, we seem to be trapped in a dilemma: to be able
to prove functionality we must assume that it holds.

However, the problem simply stems from the fact that we apply con-
junctive partial deduction too late, namely only after the fixpoint of UP

has been reached. Indeed, after the first application of UP we obtain A =
UP (∅) = {get binding get binding 1(S,V,V)}, So A actually contains
the assumption that functionality holds, and we have that msvA(.) of the
problematic clause looks like:

get_binding_get_binding__1(comp(X1,X2),X3,X4) :-
get_binding_get_binding__1(1,X1,V,V),
apply(V,X2,X3),apply(V,X2,X4).

If we now re-apply conjunctive partial deduction to apply(V,X2,X3),
apply(V,X2,X4) and then similarly in a next iteration to the conjunc-
tion l apply(V,X2,X3),l apply(V,X2,X4) we can derive functionality of
get binding. In summary, it is vital to provide for a finer integration of
conjunctive partial deduction and more specific program transformation,
which re-applies conjunctive partial deduction before the fixpoint of UP has
been reached. The details of this more refined integration are elaborated
in the next section.

13.4 A more refined algorithm

We now present an algorithm which interleaves the least fixpoint construc-
tion of msv(.) with conjunctive partial deduction unfolding steps. For that
we have to adapt the more specific program transformation to work on
possibly incomplete SLD-trees obtained by conjunctive partial deduction
instead of for completely constructed programs.6

6This has the advantage that we do not actually have to apply a renaming transfor-
mation (and we might get more precision because several conjunctions might match).

13.4. A MORE REFINED ALGORITHM 309

We first introduce a special conjunction ⊥ which is an instance of every
conjunction, as well as the only instance of itself, and extend the msg
such that msg(S ∪ {⊥}) = msg(S) and msg({⊥}) = ⊥. We also use the
convention that if unification fails it returns a special substitution fail.
Applying fail to any conjunction in turn yields ⊥. Finally, by] we denote
the concatenation of tuples (e.g. 〈a〉] 〈b, c〉 = 〈a, b, c〉).

In the following definition we associate conjunctions with resultants:

Definition 13.4.1 (resultant tuple) Let Q = {Q1, . . . , Qs} be a set of
conjunctions of atoms, and T = {τ1, . . . , τs} a set of finite, non-trivial SLD-
trees for P ∪ {← Q1}, . . . , P ∪ {← Qs}, with associated sets of resultants
R1, . . . , Rs, respectively.
Then the tuple of pairs RS = 〈(Q1, R1), . . . , (Qs, Rs)〉 is called a resultant
tuple for P . An interpretation of RS is a tuple 〈Q′1, . . . , Q′s〉 of conjunctions
such that each Q′i is an instance of Qi.

The following defines how interpretations of resultant tuples can be used
to create more specific resultants:

Definition 13.4.2 (refinement) Let R = H ← Body be a resultant
and I = 〈Q′1, . . . , Q′s〉 be an interpretation of a resultant tuple RS =
〈(Q1, R1), . . . , (Qs, Rs)〉. Let Q be a sub-conjunction of Body such that
Q is an instance of Qi and such that mgu∗(Q ,Q ′i) = θ. Then Rθ is called
a refinement of R under RS and I. R itself, as well as any refinement of
Rθ, is also called a refinement of R under RS and I.

Below we denote by ref RS ,I (R), a particular refinement (e.g. the least
one) of R under RS and I.

Note that a least refinement always exists.7 Indeed, once we have unified
a particular sub-conjunction Q of a resultant R with a particular Qi, thus
obtaining the refinement Rθ, it is of no use to unify Qθ (or an instance of it)
again with Qi (as it will result in no further refinement of Rθ). So, as there
are only finitely many sub-conjunction and only finitely many conjunctions
Qi, the least refinement must exist.

Note that in [191, 192], it is not allowed to further refine refinements.
As we found out through several examples however, (notably the ones of
Section 13.3.3 and Section 13.5) this approach turns out to be too restrictive
in general. In a lot of cases, applying a first refinement might instantiate
R in such a way that a previously inapplicable element of RS can now be
used for further instantiation.

We can now extend the UP operator of Definition 13.2.1 to work on
interpretations of resultant tuples:

7In [181] it is wrongly claimed that this is not the case.

310 CHAPTER 13. HOW TO BE MORE SPECIFIC

Definition 13.4.3 (UP,RS) Let I = 〈Q′1, . . . , Q′s〉 be an interpretation of
a resultant tuple RS = 〈(Q1, R1), . . . , (Qs, Rs)〉. Then UP,RS is defined by
UP,RS(I) = 〈M1, . . . ,Ms〉, where Mi = msg({H | C ∈ Ri ∧ ref RS ,I (C) =
H ← B}).

We refer the reader to Example 13.4.6 and Table 13.1 below for illus-
trations of the above concepts.

We can now present a generic algorithm which fully integrates the ab-
stract interpretation msv(.) with conjunctive partial deduction. Recall that
=r denotes identity, up to reordering. We also suppose that we have an
abstraction operator (see Definition 12.1.4) abstract at our disposal (cf.
Section 12.1.1).

We also need the following definition:

Definition 13.4.4 (covered) Let RS = 〈(Q1, R1), . . . , (Qs, Rs)〉 be a re-
sultant tuple. We say that a conjunction Q is covered by RS iff there exists
an abstraction {Q′1, . . . , Q′k} of Q such that each Q′i is an instance of some
conjunction Qj .

We can now present the promised algorithm.

Algorithm 13.4.5 (Conjunctive Msv)
Input: a program P , an initial query Q, an unfolding rule Unf for P
mapping conjunctions to resultants.

Output: A specialised and more specific program P ′ for Q.
Initialisation: i := 0; I0 = 〈⊥〉; RS0 = 〈(Q,Unf (Q))〉;
repeat

for every resultant R in RSi such that the body B of ref RSi ,Ii (R)
is not covered:

/* perform conjunctive partial deduction: */

calculate abstract(B) = B1 ∧ . . . ∧Bq

let {C1, . . . , Ck} be the Bj ’s which are not instances8

of conjunctions in RSi;
RSi+1 = RSi] 〈(C1,Unf (C1)), . . . (Ck ,Unf (Ck))〉;
Ii+1 = Ii] 〈⊥ . . .⊥︸ ︷︷ ︸

k

〉; i := i + 1;

/* perform one bottom-up propagation step: */

Ii+1 = UP,RSi(Ii); RSi+1 = RSi; i := i + 1;
until Ii = Ii−1

return a renaming of {ref RSi ,Ii (C) | (Q ,R) ∈ RSi ∧ C ∈ R}

8Or variants to make the algorithm more precise.

13.4. A MORE REFINED ALGORITHM 311

Note that the above algorithm ensures coveredness. Also note that the
above algorithm performs abstraction only when adding new conjunctions,
the existing conjunctions are not abstracted (it is of course trivial to adapt
this). This is like in Algorithm 6.2.36 of Chapter 6 but unlike e.g. Algo-
rithm 3.3.11.

Example 13.4.6 We now illustrate Algorithm 13.4.5 by proving functional-
ity of mul(X ,Y ,Z1), mul(X ,Y ,Z2) for the following program. Note that
the general picture is very similar to showing functionality of get binding,
but leading to a shorter and simpler presentation.

mul(0 ,X , 0)←
mul(s(X),Y ,Z)← mul(X ,Y ,XY), plus(XY ,Y ,Z)
plus(0 ,X ,X)←
plus(s(X),Y , s(Z))← plus(X ,Y ,Z)

R1 mul(0 ,Y , 0),mul(0 ,Y , 0).

R2 mul(s(X),Y ,Z1),mul(s(X),Y ,Z2)←
mul(X ,Y ,XY1), plus(XY1 ,Y ,Z1),
mul(X ,Y ,XY2), plus(XY2 ,Y ,Z2)

R′
2 mul(s(0),Y ,Z1),mul(s(0),Y ,Z2)←

mul(0 ,Y , 0), plus(0 ,Y ,Z1),mul(0 ,Y , 0), plus(0 ,Y ,Z2)
R′′

2 mul(s(0),Y ,Y),mul(s(0),Y ,Y)←
mul(0 ,Y , 0), plus(0 ,Y ,Y),mul(0 ,Y , 0), plus(0 ,Y ,Y)

R′′′
2 mul(s(X),Y ,Z1),mul(s(X),Y ,Z2)←

mul(X ,Y ,Z), plus(Z ,Y ,Z1),mul(X ,Y ,Z), plus(Z ,Y ,Z2)
R′′′′

2 mul(s(X),Y ,V),mul(s(X),Y ,V)←
mul(X ,Y ,Z), plus(Z ,Y ,V),mul(X ,Y ,Z), plus(Z ,Y ,V)

R3 plus(0 ,Y ,Y), plus(0 ,Y ,Y).

R4 plus(s(X),Y ,Z1), plus(s(X),Y ,Z2)←
plus(X ,Y ,Z1), plus(X ,Y ,Z2)

Table 13.1: Resultants and refinements

The resultants R1, R2, R3, R4 and their refinements for this example
can be found in Table 13.1. Using an abstraction based on [110] and a
determinate unfolding rule (see e.g. [100, 97, 172]) we obtain the following
behaviour of Algorithm 13.4.5.

1. Initialisation:
I0 = 〈⊥〉, RS0 = 〈(mul(X ,Y ,Z1)∧mul(X ,Y ,Z2), {R1, R2})〉

2. ref RS0 ,I0 (R2) = ⊥ and therefore all bodies are covered
3. We perform a bottom-up propagation step:

RS1 = RS0, I1 = UP,RS0(I0) = 〈mul(0 ,Y , 0)∧mul(0 ,Y , 0)〉 6= I0

312 CHAPTER 13. HOW TO BE MORE SPECIFIC

4. Now ref RS1 ,I1 (R2) = R′2 and abstract of the body of R′2 yields:
{mul(0 ,Y , 0)∧mul(0 ,Y , 0), plus(0 ,Y ,Z1)∧plus(0 ,Y ,Z2)}
and we obtain:
I2 = I1]〈⊥〉, RS2 = RS1]〈 (plus(0 ,Y ,Z1)∧plus(0 ,Y ,Z2), {R3})〉

5. We now go on with the bottom-up propagation:
RS3 = RS2, I3 = UP,RS2(I2) =
〈mul(0 ,Y , 0)∧mul(0 ,Y , 0), plus(0 ,Y ,Y)∧plus(0 ,Y ,Y)〉

6. The body of ref RS3 ,I3 (R2) = R′′2 is covered and we go on with the
bottom-up propagation: RS4 = RS3, I4 = UP,RS3(I3) =
〈mul(X ,Y ,Z)∧mul(X ,Y ,Z), plus(0 ,Y ,Y)∧plus(0 ,Y ,Y)〉

7. Now ref RS4 ,I4 (R2) = R′′′2 is no longer covered.
Applying abstract to the body of R′′′2 yields:
{mul(X ,Y ,Z)∧mul(X ,Y ,Z), plus(Z ,Y ,Z1)∧plus(Z ,Y ,Z2)}
and I5 = I4] 〈⊥〉,
RS5 = RS4] 〈 (plus(Z ,Y ,Z1)∧plus(Z ,Y ,Z2), {R3, R4})〉

8. We do a bottom-up propagation step:
RS6 = RS5, I6 = UP,RS5(I5) =

〈mul(X ,Y ,Z)∧mul(X ,Y ,Z), plus(0 ,Y ,Y)∧plus(0 ,Y ,Y),
plus(Z ,Y ,V)∧plus(Z ,Y ,V)〉

9. The bodies of ref RS6 ,I6 (R2) = R′′′′2 and ref RS6 ,I6 (R4) are covered
and we have reached the fixpoint: I7 = UP,RS6(I6) = I6.

The final specialised program is as follows (one unreachable conjunc-
tion has been removed, mul(X ,Y ,Z1), mul(X ,Y ,Z2) has been renamed
to mul mul(X ,Y ,Z1 ,Z2) and plus(X ,Y ,Z1), plus(X ,Y ,Z2) has been re-
named to plus plus(X ,Y ,Z1 ,Z2); the program could be further improved
by a better renaming) and functionality is obvious:

mul mul(0 ,Y , 0 , 0)←
mul mul(s(X),Y ,Z ,Z)←

mul mul(X ,Y ,XY ,XY), plus plus(XY ,Y ,Z ,Z)
plus plus(0 ,X ,X ,X)←
plus plus(s(X),Y , s(Z), s(Z))← plus plus(X ,Y ,Z ,Z)

Note that when using the definitions of [191, 192] the least refinement
of R2 wrt RS6 and I6 is not R′′′2 (because plus(Z ,Y ,Z ′)∧plus(Z ,Y ,Z ′)
cannot be applied) but R′′2 . Hence the fixpoint is not reached and in the
next iteration the vital functionality information would be lost!

Correctness of Algorithm 13.4.5 for preserving the least Herbrand model
or even the computed answers, follows from correctness of conjunctive par-
tial deduction (Theorem 10.3.16) and of the more specific program versions
for suitably chosen conjunctions (because [191, 192] only allows one unfold-
ing step, a lot of intermediate conjunctions have to be introduced) and ex-
tended for the more powerful refinements of Definition 13.4.2. Termination,

13.5. SPECIALISING THE GROUND REPRESENTATION 313

for a suitable abstraction operator (see [110]), follows from termination of
conjunctive partial deduction (for the for loop) and termination of msv(.)
(for the repeat loop).

Note that in contrast to conjunctive partial deduction, msv(.) can re-
place infinite failure by finite failure, and hence Algorithm 13.4.5 does not
preserve finite failure. However, if the specialised program fails infinitely,
then so does the original one (see [191, 192]).

The above algorithm can be extended to work for normal logic programs.
But, because finite failure is not preserved, neither are the SLDNF com-
puted answers. One may have to look at SLS [236] for a suitable procedural
semantics which is preserved.

13.5 Specialising the ground representation

Weil Etwas für uns durchsichtig geworden ist, meinen wir, es
könne uns nunmehr keinen Widerstand leisten — und sind dann
erstaunt, dass wir hindurchsehen und doch nicht hindurch kön-
nen! Es ist diess die selbe Thorheit und das selbe Erstaunen, in
welches die Fliege vor jedem Glasfenster geräth.

Friedrich Nietzsche in Morgenröthe, Nr. 444;3,270

In this section we pursue the idea of pre-compiling integrity checking
for deductive databases (as well as abductive or inductive logic programs)
in a principled and non ad-hoc way, by writing the integrity checking as a
meta-interpreter and then specialising it for given update patterns.

In Chapter 9 we developed this idea for hierarchical databases and ob-
tained very promising results. However, when going to recursive databases,
this meta-interpreter must contain a loop check (or one has to delegate the
loop check to the underlying system, see the discussions in Section 9.4). As
we pointed out in Chapter 8, this can only be done declaratively within the
ground representation. But in [177] it was shown that, contrary to what
one might expect, partial deduction is then unable to perform interesting
specialisation and no pre-compilation of integrity checks can be obtained.9

Similar problems related to specialising the ground representation were also
reported in [67]. This lack of specialisation of the ground representation is
precisely due to the limitations of partial deduction we have pointed out in
this chapter.

9So, to paraphrase the above quote by Nietzsche, it is not because we have formalised
something in a purely declarative manner that it no longer gives any resistance.

314 CHAPTER 13. HOW TO BE MORE SPECIFIC

The crucial problem identified in [177] boils down to a lack of infor-
mation propagation and specialisation at the object level. As already
mentioned in Chapter 8, the ground representation has to make use of
an explicit unification algorithm (see e.g. Appendix H.1 or Appendix H.2).
Now, the incapability of partial deduction techniques to e.g. prove func-
tionality of parts of such an explicit unification algorithm translates to a
serious lack of specialisation. Take a meta-interpreter which implements
specialised integrity checking as outlined in Section 8.2. To calculate the
set of positive potential updates pos(U) =

⋃
i≥0 posi(U) for an update

U = 〈Db+, Db=, Db−〉, the meta-interpreter will (among others) select
an atom C ∈ posi(U), unify it with an atom B in the body of a clause
A ← . . . , B, . . . ∈ Db= and then apply the unifier to the head A to obtain
an induced, potential update of posi+1(U). At partial deduction time, the
atoms A,B and C are in general not fully known. If we want to obtain
effective specialisation, it is vital that the information we do possess about
C (and B) is propagated “through” unification towards A. If this know-
ledge is not carried along no substantial compilation will occur and it will
be impossible to obtain efficient specialised update procedures.

In other words, we are interested in deriving properties of the result
Res of calculating unify(A,B,S),apply(H,S,Res). In a concrete example
we might have A = status(X,student,Age), B = status(ID,E,A), H =
category(ID,E) and we would like to derive that the resulting term Res
must be an instance of category(ID’,student). It turns out that, when
using an explicit unification algorithm, the substitutions have a much more
complex structure than e.g. the intermediate list of the append -last Exam-
ple 13.2.4. Therefore current abstract interpretation systems, as well as
current partial deduction methods alone, fail to derive the desired informa-
tion.

This problem was solved in [177] via a new implementation of the ground
representation combined with a custom specialisation technique. Fortu-
nately Algorithm 13.4.5 can solve this information propagation problem
in a more general and sometimes more precise manner and therefore con-
tribute to improved specialisation of the ground representation as well as
to produce highly specialised and efficient pre-compiled integrity checks.

Some experiments, conducted with a prototype implementation of Al-
gorithm 13.4.5 based on the ecce system (cf. Chapters 6 and 12), are sum-
marised in Table 13.2. The unification algorithm of Appendix H.2 has been
used, which encodes variables as var(VarIndex) and predicates/functors
as struct(p,Args). Notice that all the examples were successfully solved
by the prototype.10 The main ingredient of the success lay with proving

10Notice that for the fourth example it would be incorrect to derive Res =

13.6. DISCUSSION 315

functionality of get binding.
Also note that the information propagations of Table 13.2 could neither

be solved by regular approximations [102], nor by the abstract interpreta-
tion method of [191, 192] alone, nor by set-based analysis [118] nor even
by current implementations of the type graphs of [134]. In summary, Algo-
rithm 13.4.5 also provides for a powerful abstract interpretation scheme as
well as a full replacement of the custom specialisation technique in [177].11

unify(A,B,S),apply(H,S,Res)

A B H Res

struct(p,[var(1),X]) struct(p,[struct(a,[]),Y]) var(1) struct(a,[])

struct(p,[X,var(1)]) struct(p,[Y,struct(a,[])]) var(1) struct(a,[])

struct(p,[X,X]) struct(p,[struct(a,[]),Y]) X struct(a,[])

struct(F,[var(I)]) X X struct(F,[A])

struct(p,[X,var(1),X’]) struct(p,[Y,struct(a,[]),Y’]) var(1) struct(a,[])

Table 13.2: Specialising the ground representation

We conclude this section by briefly mentioning another potential bene-
fit of the improved specialisation of the ground representation, namely to
perform the first specialiser projection as defined in [108]. Indeed, whereas
the first Futamura projection specialises a meta-interpreter for a known
meta-program but unknown object level parameters, the first specialiser
projection specialises a meta-interpreter for a known meta-program and
partially known object level parameters. Therefore, propagating the par-
tial knowledge one possesses at the object level seems to be vital for this
projection and Algorithm 13.4.5 might thus contribute to make the first
specialiser projection feasible for meta-interpreters written in the ground
representation.

13.6 Discussion

The approach presented in this chapter can be seen as a practical realisation
of a combined backwards and forwards analysis as outlined in [57], but using
the sophisticated control techniques of (conjunctive) partial deduction to
guide the analysis. Of course, in addition to analysis, our approach also
constructs a specialised, more efficient program.

struct(F,[var(I)]). For example, if we have that B = X = struct(f,struct(a,[])) then
Res = X = struct(f,struct(a,[])).

11It is sometimes even able to provide better results because it can handle structures
with unknown functors or unknown number of arguments with no loss of precision.

316 CHAPTER 13. HOW TO BE MORE SPECIFIC

The method of [191, 192] is not directly based on the TP operator, but
uses an operator on goal tuples which can handle conjunctions and which
is sufficiently precise if deforestation can be obtained by 1-step unfolding
without abstraction. For a lot of practical examples this will of course not
be the case. Also, apart from a simple pragmatic approach, no way to ob-
tain these conjunctions is provided (this is exactly one of the things which
conjunctive partial deduction can do). We also already mentioned a draw-
back in the calculation of refinements, which makes [191, 192] unsuitable
to e.g. derive functionality of get binding or mul .

In Algorithm 13.4.5 a conflict between efficiency and precision might
arise. Indeed, as we have seen in Chapter 12, some deforestation can only
be obtained at the cost of possible slowdowns. But Algorithm 13.4.5 can
be easily extended to allow different trees for the same conjunction (e.g.
use determinate unfolding for efficient code and a more liberal unfolding
for a precise analysis). A similar point was raised in Section 5.4.1 for the
ecological partial deduction algorithm.

When using the unification algorithm from Appendix H.1, instead of the
one in Appendix H.2, Algorithm 13.4.5 cannot yet handle all the examples
of Table 13.2. The reason is that the substitutions in Appendix H.1 are
actually accumulating parameters which are first fully generated before they
can be consumed! Deforestation of accumulators is still an open research
problem (for functional languages, first, not yet automatic, approaches can
be found in [275], see also [163] for a discussion of accumulators in the
context of partial evaluation). Let us adapt Example 13.2.4 into the reverse-
last example:

Example 13.6.1 (reverse-last)
rev last(L,X)← reverse(L, [a],R), last(R,X)
reverse([],L,L)←
reverse([H |T],Acc,Res)← reverse(T , [H |Acc],Res)
last([X],X)←
last([H |T],X)← last(T ,X)

In the above program reverse is written using an accumulating pa-
rameter, and in that case neither conjunctive partial deduction nor any
unfold/fold method we know of can deforest the intermediate variable R.
Unfolding the goal reverse(L, [a],R), last(R,X) is depicted in Figure 13.4.
Notice that no matter how we unfold we cannot obtain a recursive def-
inition. Conjunctive partial deduction would detect the growing of the
accumulator and produce the abstraction reverse(L,A,R), last(R,X). Un-
folding can now produce a recursive definition, as can be seen in Figure 13.5.
However, the partial input a has been abstracted away, and we are not able
to deduce that X = a.

13.6. DISCUSSION 317

��
����

HH
HHHj

?

.

.

.

.

← reverse(L, [a], R), last(R, X)

← last([a], X) ← reverse(L′, [H , a], R), last(R, X)

{L/[H|L′]}

2

{X/a}

Figure 13.4: Unfolding of Example 13.6.1

���
���

HHH
HHj

�← reverse(L, A, R), last(R, X)

← last(A, X) ← reverse(L′, [H |A], R), last(R, X)

{L/[H|L′]}

Figure 13.5: Unfolding of a generalisation of Example 13.6.1

On the other hand, if we use the naive reverse predicate without an
accumulator, defined by:

nrev([], [])←
nrev([H |T],Res)← nrev(T ,TR), append(TR, [H],Res)

then, after unfolding nrev([a|L],R), last(R,X) once, we obtain the con-
junction nrev(L,TR), append(TR, [a],R), last(R,X). We are now in the
situation of the append -last Example 13.2.4 and X = a can be easily ob-
tained via Algorithm 13.4.5.

In future work we want to explore solutions to the reverse-last prob-
lem, based on adding constraints to Algorithm 13.4.5 (in the similar way
to constrained partial deduction [172], briefly discussed in Section 5.4.2).
These constraints might provide an accurate description of the growth of
the accumulator and allow generalisation without loosing the information
that X = a. Similar refinments of extended OLDT [33] might also yield
satisfactory solutions.

318 CHAPTER 13. HOW TO BE MORE SPECIFIC

In conclusion, in this chapter we have illustrated limitations of both par-
tial deduction and abstract interpretation on their own. We have argued
for a tighter integration of these methods and presented a refined algo-
rithm, interleaving a least fixpoint construction with conjunctive partial
deduction. The practical relevance of this approach has been illustrated by
several examples and we have shown its usefulness in proving functionality.
Finally, a prototype implementation of the algorithm was able to achieve
sophisticated specialisation and analysis for meta-interpreters written in
the ground representation, outside the reach of current specialisation or
abstract interpretation techniques.

Chapter 14

Conclusion and Outlook

The overall motivation of this thesis has been to promote (logic) program
specialisation as a viable, automatic tool for software development and
optimisation. The pursuit of this goal has taken on different forms, reflected
in the division of the thesis into several parts.

• Part II investigated the problematic question of when is it sensible to
generate different specialised versions for a particular predicate and
when is it sensible to perform abstraction instead. For this recur-
ring, difficult problem, termed the control of polyvariance problem,
we presented the advantages of characteristic trees over a purely syn-
tactic approach. We thereafter illustrated and solved the problems
with existing approaches in terms of precision and termination. A
framework, called ecological partial deduction, was developed whose
correctness was formally proven. Termination was established as well,
albeit at the expense of a depth bound on characteristic trees. Chap-
ter 6 attended to the intricate problem of getting rid of this ad-hoc
depth bound while keeping the termination and precision properties.
A concrete algorithm has been developed, whose correctness and ter-
mination have been proven. An implementation was used to con-
duct extensive experiments and validate the practical usefulness of
the method.

Outlook: The control of polyvariance problem occurs in different
disguises in many areas of program analysis, manipulation and op-
timisation. Similarly, depth bounds have to be imposed on a lot of
these techniques to ensure termination. This is for instance the case
for neighbourhoods in supercompilation. It is therefore our hope that
our techniques can be adapted for other (declarative) programming

319

320 CHAPTER 14. CONCLUSION AND OUTLOOK

paradigms and that they might prove equally useful in the context of
e.g. abstract interpretation systems or optimising compilers.

• Self-application is a very elegant concept with many applications. It
allows e.g. to automatically build compilers and compiler generators
from interpreters. In theory all one needs is a specialiser which is
able to optimise itself. Despite its promises however, self-application
has up to now not been very successful for logic programming lan-
guages. In Part III we overcame that situation, using the so called
“cogen approach”: instead of writing a self-applicable specialiser we
simply wrote the compiler generator directly. In that way one gets the
benefits of self-application without having to devise a self-applicable
specialiser. In the context of logic programming this has, for instance,
the advantage that the non-ground representation can be used. This
resulted in a very efficient compiler generator which in turn produced
very efficient compilers which, for some applications at least, perform
very good optimisation.

Outlook: The methods developed in Part III should be valuable
whenever the speed of specialisation is of primary concern, for in-
stance when the program to be specialised is frequently adapted.
Also, run-time specialisation has recently attracted a lot of atten-
tion, and our approach might prove to be very useful and efficient in
that context too.

• Part IV described a “success story” of program specialisation, of
which there are not yet many in the context of logic programming.
The central idea was to optimise integrity checking upon updates
in deductive databases by program specialisation. To that end the
integrity checking procedure was written as a meta-program which
was then specialised for certain transaction patterns. We were able
to automatically obtain very efficient specialised update procedures,
executing up to 2 orders of magnitude faster than the unspecialised
checker as well as substantially faster than other integrity checking
procedures proposed in the literature.

Outlook: Apart from being an example of the systematic use of a
partial evaluator as a programming tool, the approach in this part of
the thesis opens other possibilities by itself. Indeed, integrity check-
ing is important for abductive and inductive logic programs as well.
Using the described techniques one might thus automatically generate
specialised update procedures for abducible (or inducible) predicates,
hopefully leading to similar improvements in performance.

321

• In Part V we succeeded in augmenting the power of partial deduction.
Indeed, partial deduction was heretofore incapable of performing cer-
tain useful unfold/fold transformations, like tupling or deforestation.
We developed the framework of conjunctive partial deduction which,
by specialising conjunctions instead of individual atoms, is able to
accommodate these optimisations. We have presented concrete algo-
rithms and showed that a lot of the techniques developed for “classi-
cal” partial deduction carry over to the context of conjunctive partial
deduction. An implementation was used to perform extensive exper-
iments on a large and challenging set of benchmarks. Although some
control problems remain, we were able to demonstrate the practical
viability and potential of conjunctive partial deduction.

So we were able to consolidate partial deduction with unfold/fold
program transformation, incorporating the power of the latter while
keeping the automatic control and efficiency considerations of the
former.

Outlook: Deforestation and tupling like transformation are useful
even in the absence of partial input. This warrants the integration of
our techniques into a compiler, as their systematic use might prove
to be highly beneficial and allow users to more easily decompose and
combine procedures and programs without having to worry about the
ensuing inefficiencies of intermediate data structures.

• Partial deduction, as well as conjunctive partial deduction, concen-
trate on a top-down propagation of information. Almost no infor-
mation is propagated upwards. Abstract interpretation, on the other
hand, only has (if at all) top-down propagation of information which
is limited in several important aspects, and usually propagates infor-
mation in a bottom-up manner. In Part VI we illustrate that this
unnecessarily limits the power of both these program manipulation
methods and that a combination of these techniques might therefore
be extremely useful in practice. We instantiate that claim by develop-
ing a fine-grained algorithm, which interleaves top-down (conjunctive)
partial deduction steps with bottom-up abstract interpretation steps,
and by showing that the algorithm is able to obtain specialisation and
analysis outside the reach of either method alone.

To put this thesis in a larger perspective, I feel that the time has come
to lift program specialisation towards more widespread practical use and re-
alise its potential as a tool for systematic program development. I hope that
this thesis has contributed in that direction, by providing sound theoretical
underpinnings for a wide variety of specialisation tasks, complemented with

322 CHAPTER 14. CONCLUSION AND OUTLOOK

concrete algorithms and methods whose practical significance was gauged
by empirical evaluations.

This endeavour goes hand in hand with making the promises of declar-
ative programming languages come true in practice. Indeed, most program
specialisation and analysis methods flourish in the context of declarative
programming languages and they can in turn help declarative programming
languages to become a platform for the development of reliable, correct and
efficient programs. The fulfilment of these goals will require practical work,
e.g. in the form of programming environments which allow the user to take
advantage of the analysis and specialisation methods, as well as theoreti-
cal work, e.g. providing a clear methodology for constructing correct and
reliable programs.

Appendix A

Notations for Some Basic
Mathematical Constructs

In this appendix we present some notations and definitions which we do
not explicitly recall in the thesis.

Following standard conventions we use iff to denote “if and only if” and
wrt to denote “ with respect to”. In this section we present notations for
elementary mathematics that will be used throughout the thesis.

A.1 Sets and relations

Sets can be represented by enumeration, like e.g. {a, b, c}, or by a descrip-
tion like {i | i ∈ IN ∧ i > 2}. The latter set can also be denoted by the
infinite enumeration {2, 3, . . .}.

We denote by #(S) the cardinality of a set. The difference of two
sets S1 and S2 will be denoted by S1 \ S2. The cartesian product of two
sets A and B will be denoted by A × B. For instance, {1, 2} × {3, 4}
= {(1, 3), (1, 4), (2, 3), (2, 4)}. The powerset over some domain D will be
denoted by 2D.

The following class of mappings from sets to sets often arises:

Definition A.1.1 A mapping h : 2A 7→ 2B is a homomorphism iff h(∅) = ∅
and h(S ∪ S′) = h(S) ∪ h(S′).

Definition A.1.2 Given a function f : A 7→ B the natural extension of f
to sets, f∗ : 2A 7→ 2B , is defined by f∗(S) = {f(s) | s ∈ S}.
Similarly, given a function f : A 7→ 2B we also define the function f∪ :
2A 7→ 2B , by f∪(S) = ∪s∈Sf(s).

323

324 APPENDIX A. NOTATIONS

It can be easily seen that both f∗ and f∪ are homomorphisms.
Given some domain/set D, we denote by Dn the following cartesian

product: D × . . .×D︸ ︷︷ ︸
n

. We will denote elements of Dn by (d1, . . . , dn) in-

stead of the more cumbersome (d1, (d2, . . . , dn) . . .).
An n-ary tuple over some domain D is an element of Dn while an n-ary

relation is a subset of Dn.
M(A) denotes all multisets composed of elements of a set A.

A.2 Sequences

We allow two notations for sequences of elements and their concatenation.
One is the standard notation used in formal language theory [1, 128]:

abc stands for the sequence of the 3 elements a, b and c. The concatenation
of two sequences α and β is represented by αβ.

However, as this notation can be inconvenient and confusing in places,
we will usually prefer the notation 〈a, b, c〉 for sequences. On some occasions
we also use α] β for the concatenation of sequences.

The empty sequence will be denoted by either ε or 〈〉.

A.3 Graphs and trees

Definition A.3.1 A graph is a couple G = (N,A) consisting of a set of
nodes N and a set of arcs A ∈ N×N . If (a, b) ∈ A we denote this by a→ b
and say that a is a predecessor of b (in G) and b is a successor of a (in G).

Definition A.3.2 A tree T is a graph such that

• there is one node without predecessor, called the root of T , and

• every node except the root has exactly one predecessor.

A node without successor will be called a leaf. A successor node s of
a node n in a tree is called a child of n while n is called the parent of s.
Trees and graphs can be labelled, i.e. we have a labelling function l which
maps nodes and/or arcs to a domain of labels L. Sometimes the children
of nodes are also ordered, and we then talk about ordered trees and graphs.

Appendix B

Counterexample

In this appendix we present a counterexample to Lemma 4.11 on page 326
of [100]. Note that the definitions and notations differ from the ones in
[97] and from the ones adopted in our thesis (for instance what is called a
chpath in [100] corresponds more closely to the concept of a characteristic
tree than to the notion of a characteristic path).

We take the following program P (similar to Example 4.3.3, the actual
definitions of r(X) and s(X) are of no importance):

(c1) p(X)← q(X)
(c2) p(c)←
(c3) q(X)← r(X)
(c4) q(X)← s(X)
(c5) r(X)← . . .
(c6) s(X)← . . .

Now let the atom A be p(b). Then according to Definition 4.5 of [100]
we have that chpath(A) = (〈c1〉, {c3, c4}). According to definition 4.10 of
[100] we obtain: chpaths(A) = {〈c1, c3〉, 〈c1, c4〉}.

The most general resultants (Definition 4.6 of [100]) of the paths in
chpaths(A) are {p(Z)← r(Z), p(Z)← s(Z)}.

By Definition 4.10 of [100] we obtain the characteristic call of A:

chcall(A) = msg{p(Z), p(Z)} = p(Z)

In Lemma 4.11 of [100] it is claimed that chpath(chcall(A)) = chpath(A)
and that chpath(msg{A, chcall(A)}) = chpath(A). As msg{A, chcall(A)}
is more general than A this corresponds to asserting that msg{A, chcall(A)}
abstracts A while preserving the characteristic path structure. However in
our example we have that:

325

326 APPENDIX B. COUNTEREXAMPLE

chpath(chcall(A)) = chpath(msg{A, chcall(A)}) = chpath(p(Z)) =
(〈〉, {c1, c2}) 6= chpath(A) and thus Lemma 4.11 is false.

Appendix C

Benchmark Programs

The benchmark programs were carefully selected and/or designed in such
a way that they cover a wide range of different application areas, in-
cluding: pattern matching, databases, expert systems, meta-interpreters
(non-ground vanilla, mixed, ground), and more involved particular ones:
a model-elimination theorem prover, the missionaries-cannibals problem, a
meta-interpreter for a simple imperative language. The benchmarks marked
with a star (∗) can be fully unfolded. The size of the compiled code (under
Prolog by BIM 4.0.12) is given in parentheses. Full descriptions can be
found in [170].

advisor∗ (6810 bytes)
A very simple expert system which can be fully unfolded. A bench-
mark by Thomas Horváth [129].

applast (1077 bytes)
The append − last program of Chapter 13. In order to obtain an
optimal solution deforestation has to be combined with a bottom-up
inference of success-information.

contains.kmp (2570 bytes)
A benchmark based on the “contains” Lam & Kusalik benchmark
[159], but with improved run-time queries. The program is a rather
involved, but still inefficient (because highly non-deterministic), pat-
tern matcher.

depth.lam∗ (4415 bytes)
A simple meta-interpreter which keeps track of the maximum length
of refutations. It has to be specialised for a simple, fully unfoldable
object program. A Lam & Kusalik benchmark [159].

327

328 APPENDIX C. BENCHMARK PROGRAMS

doubleapp (653 bytes)
The double append example (see Chapters 10 and 11) in which three
lists are appended by reusing the ordinary append program. Tests
whether deforestation can be done.

ex depth (4741 bytes)
A variation of depth.lam with a more sophisticated object program
(which cannot be fully unfolded).

flip (1057 bytes)
A simple deforestation example from Wadler [281] in which a tree is
flipped twice. The goal is to obtain a program which just copies the
tree.

grammar.lam (9490 bytes)
A DCG (Definite Clause Grammar) parser which has to be specialised
for a particular grammar. It is one of the Lam & Kusalik benchmarks
[159].

groundunify.complex (10106 bytes)
The task consists in specialising an explicit unification algorithm
for the ground representation. The full code can be found in Ap-
pendix H.1, where it is adapted from [67].

groundunify.simple∗ (10106 bytes)
The same unification algorithm as for groundunify.complex, but with
a simpler specialisation query.

imperative.power (9368 bytes)
An interpreter for a simple imperative language which stores values
of variables in an environment (see Section 13.3.1). It has to be spe-
cialised for a power sub-procedure, calculating BaseExp, for a known
exponent Exp and base Base but an unknown environment.

liftsolve.app (5194 bytes)
A meta-interpreter for the ground representation which “lifts” the
program to the non-ground representation for resolution. In Chap-
ter 8 this is called the mixed representation. A description along with
the code can be found in Section 8.4.2. The goal is to specialise this
meta-interpreter for append as the object program.

liftsolve.db1∗ (5194 bytes)
The same meta-interpreter as liftsolve.app with a simple, fully un-
foldable object program.

329

liftsolve.db2 (5194 bytes)
Again the same meta-interpreter as liftsolve.app, but this time with
a partially specified object program.

liftsolve.lmkng (5194 bytes)
The goal here consists in specialising part of the above “lifting” meta-
interpreter. The specialisation task is such that it may give rise to an
∞ number of characteristic trees.

map.reduce (2868 bytes)
Specialising the higher-order map/3 (using the built-ins call/1 and
=../2, see Section 2.3.3) for the higher-order reduce/4 in turn applied
to add/3.

map.rev (2868 bytes)
Specialising the higher-order map for the reverse program.

match-append (669 bytes)
A very naive pattern matcher, written using 2 appends. Same queries
as match.kmp. A similar matcher has recently been used in [224, 225].

match.kmp (975 bytes)
A semi-naive pattern matcher; the goal is to obtain a Knuth-Morris-
Pratt (KMP) [148] pattern matcher by specialisation for the pattern
“aab”. The benchmark is based on the “match” Lam & Kusalik
benchmark [159], but uses improved run-time queries (in order to
detect whether a KMP-like matcher has been obtained).

maxlength (1632 bytes)
A program which calculates the maximum element and the length of a
list by calling two separate predicates max and length (and thereby
traversing the list twice). The goal is to obtain a program which
traverses this list only once (i.e. the benchmark tests whether tupling
can be done).

memo-solve (5251 bytes)
A variation of ex depth with a simple loop prevention mechanism
based on keeping a call stack.

missionaries (9221 bytes)
A program for the missionaries and cannibals problem.

model elim.app (7948 bytes)
Specialise the Poole & Goebel [226] model elimination prover (also
used by de Waal & Gallagher [68]) for the append program as the
object level theory.

330 APPENDIX C. BENCHMARK PROGRAMS

regexp.r1 (1489 bytes)
A naive regular expression matcher which has to be specialised for
the regular expression (a+b)*aab.

regexp.r2 (1489 bytes)
Same program as regexp.r1 for ((a+b)(c+d)(e+f)(g+h))*.

regexp.r3 (1489 bytes)
Same program as regexp.r1 and regexp.r2 for the regular expression
((a+b)(a+b)(a+b)(a+b)(a+b)(a+b))*.

relative.lam∗ (3056 bytes)
A Lam & Kusalik benchmark [159] consisting of a fully unfoldable
family database.

remove (1506 bytes)
A sophisticated deforestation example.

remove2 (1644 bytes)
An even more sophisticated deforestation example. Adapted from
Turchin [274].

rev acc type (828 bytes)
The benchmark program consists of the “reverse with accumulating
parameter” program to which type checking on the accumulator has
been added. Without abstraction, the benchmark will give rise to an
∞ number of different characteristic trees. See Chapter 6 for details
(and the code).

rev acc type.inffail (828 bytes)
The same benchmark program as rev acc type, but this time the spe-
cialisation task will give rise to infinite determinate failure at partial
deduction time.

rotateprune (2958 bytes)
A more sophisticated deforestation example from [231]. The program
rotates and prunes a binary tree by calling two distinct predicates
rotate(Tree,RTree) and prune(RTree,PRTree). The goal is to defor-
est the unnecessary intermediate tree RTree.

ssuply.lam∗ (8335 bytes)
A Lam & Kusalik benchmark [159].

transpose.lam∗ (1599 bytes)
A Lam & Kusalik benchmark program [159] for transposing matrices.
Also in [97].

331

upto.sum1 (3966 bytes)
Calculates the squares for 1 up to n and then sums them up. The
specialisation goal is to get rid (i.e. deforest) of the intermediate list
of squares. Adapted from Wadler [281].

upto.sum2 (3966 bytes)
Calculates the square of integers in nodes of a tree and sums these
up. The goal is again to deforest the intermediate list of squares.
Adapted from Wadler [281].

332 APPENDIX C. BENCHMARK PROGRAMS

Appendix D

Extending the Cogen

It is straightforward to extend the cogen to handle primitives, i.e. built-ins
(=/2, not/1, =../2, call/1,...) or externally defined user predicates. The
code of these predicates will not be available and therefore no predicates to
unfold them can be generated. The generating extension can either contain
code that completely evaluates calls to primitives, in which case the call
will then be marked reducible, or code that produces residual calls to such
predicates, in which case the call is marked non-reducible. So we extend
the transformation of Definition 7.3.1 with the following two rules:

3. Si = Ai and Ri = [] if Ai is a reducible built-in

4. Si = true and Ri = Ai if Ai is a non-reducible built-in

As a last example of how to extend the method we will show how to
handle the Prolog version of the conditional: Aif → Athen; Aelse. For
this we will introduce the notation GR where G = A1, ..., Ak to mean the
following:

GR = S1, ...,Sk

where Si,Ri are defined as in Definition 7.3.1 and R = [R1, ...,Rk] (i.e. this
allows us perform the transformations recursively on the sub-components
of a conditional).

If the test of a conditional is marked as reducible then the generating
extension will simply contain a conditional with the test unchanged and
where the two “branches” contain code for unfolding the two branches
(similar to the body of a function indexed by “u”), i.e. Definition 7.3.1 is
extended with the following rule:

333

334 APPENDIX D. EXTENDING THE COGEN

5. Si = (G1 → (GR2 , eq(Ri,R)) ; (GR
′

3 , eq(Ri,R′))) and Ri is a fresh
variable, if Ai = (G1 → G2 ; G3) is reducible.

If the test goal of the conditional is non-reducible then we assume that
the three subgoals are either a call to a non-reducible predicate, a call to
a non-reducible (dynamic) primitive or another dynamic conditional. This
restriction is not severe, since if a program contains conditionals that get
classified as dynamic by the BTA and these contain arbitrary subgoals then
the program may by a simple source language transformation be trans-
formed into a program which satisfies the restriction. Definition 7.3.1 is
extended with the following rule:

6. Si = (A′1, A
′
2, A

′
3)[R,R′,R′′] and Ri = (R → R′;R′′), if Ai = (A′1 →

A′2; A′3) is non-reducible.

where A′1, A′2 and A′3 are goals that satisfy the restriction above. This
restriction ensures that the three goals {A′i | i = 1, 2, 3} compute their
residual code independently of each other and the residual code for the
conditional is then a conditional composed from this code.

Appendix E

A Prolog Cogen: Source
Code

This appendix contains the listing of the main part of the Prolog cogen
presented in Chapter 7 (and called logen) .

/* ----------- */

/* C O G E N */

/* ----------- */

/* the file .ann contains:

ann_clause(Head,Body),

delta(Call,StaticVars,DynamicVars),

residual(P) */

cogen :-

findall(C,predicate(C),Clauses1),

findall(C,clause(C),Clauses2),

pp(Clauses1),

pp(Clauses2).

flush_cogen :-

print_header,

flush_pp.

predicate(clause(Head,[if([find_pattern(Call,V)],

[true],

[insert_pattern(GCall,H),

findall(NClause,

(RCall,treat_clause(H,Body,NClause)),

335

336 APPENDIX E. A PROLOG COGEN: SOURCE CODE

NClauses),

pp(NClauses),

find_pattern(Call,V)])])) :-

generalise(Call,GCall),

add_extra_argument("_u",GCall,Body,RCall),

add_extra_argument("_m",Call,V,Head).

clause(clause(ResCall,ResBody)) :-

ann_clause(Call,Body),

add_extra_argument("_u",Call,Vars,ResCall),

bodys(Body,ResBody,Vars).

bodys([],[],[]).

bodys([G|GS],GRes,VRes) :-

body(G,G1,V),

filter_cons(G1,GS1,GRes,true),

filter_cons(V,VS,VRes,[]),

bodys(GS,GS1,VS).

filter_cons(H,T,HT,FVal) :-

((nonvar(H),H = FVal) -> (HT = T) ; (HT = [H|T])).

body(unfold(Call),ResCall,V) :-

add_extra_argument("_u",Call,V,ResCall).

body(memo(Call),true,memo(Call)).

body(call(Call),Call,[]).

body(rescall(Call),true,rescall(Call)).

body(if(G1,G2,G3), /* Static if: */

if(RG1,[RG2,(V=VS2)],[RG3,(V=VS3)]),V) :-

bodys(G1,RG1,VS1),

bodys(G2,RG2,VS2),

bodys(G3,RG3,VS3).

body(resif(G1,G2,G3), /* Dynamic if: */

[RG1,RG2,RG3],if(VS1,VS2,VS3)) :-

body(G1,RG1,VS1),

body(G2,RG2,VS2),

body(G3,RG3,VS3).

generalise(Call,GCall) :-

delta(Call,STerms,_),

Call =.. [Pred|_],

delta(GCall,STerms,_),

GCall =.. [Pred|_].

337

add_extra_argument(T,Call,V,ResCall) :-

Call =.. [Pred|Args],res_name(T,Pred,ResPred),

append(Args,[V],NewArgs),ResCall =.. [ResPred|NewArgs].

res_name(T,Pred,ResPred) :-

name(PE_Sep,T),string_concatenate(Pred,PE_Sep,ResPred).

print_header :-

print(’/’),print(’* -------------------- *’),print(’/’),nl,

print(’/’),print(’* GENERATING EXTENSION *’),print(’/’),nl,

print(’/’),print(’* -------------------- *’),print(’/’),nl,

print(’:’),print(’- reconsult(memo).’),nl,

print(’:’),print(’- reconsult(pp).’),nl,

(static_consult(List) -> pp_consults(List) ; true),nl.

338 APPENDIX E. A PROLOG COGEN: SOURCE CODE

Appendix F

A Prolog Cogen: Some
Examples

F.1 The parser example

The original program is as follows:

/* file: parser.pro */

nont(X,T,R) :- t(a,T,V),nont(X,V,R1).

nont(X,T,R) :- t(X,T,R).

t(X,[X|Es],Es).

The annotated program looks like:

/* file: parser.ann */

delta(nont(X,T,R),[X],[T,R]).

residual(nont(_,_,_)).

ann_clause(nont(X,T,R),[unfold(t(a,T,V)),memo(nont(X,V,R))]).

ann_clause(nont(X,T,R),[unfold(t(X,T,R))]).

ann_clause(t(X,[X|Es],Es),[]).

This supplies logen with all the necessary information about the parser
program, this is, the code of the program (with annotations) and the result

339

340 APPENDIX F. A PROLOG COGEN: SOME EXAMPLES

of the binding-time analysis. The predicate delta implements the division
for the program and the predicate residual represents the set L in the
following way. If residual(A) succeeds for a call A then the predicate
symbol p of A is in Pred(P)\L and p is therefore one of the predicates for
which a m-predicate is going to be generated. The annotations unfold and
memo is used by logen to determine whether or not to unfold a call.
The generating extension produced by the logen system for the annotation
nont(s, d, d) is:

/* file: parser.gx */

/* -------------------- */

/* GENERATING EXTENSION */

/* -------------------- */

:- reconsult(memo).

:- reconsult(pp).

nont_m(B,C,D,E) :-

((

find_pattern(nont(B,C,D),E)

) -> (

true

) ; (

insert_pattern(nont(B,F,G),H),

findall(I, (

’,’(nont_u(B,F,G,J),treat_clause(H,J,I))),K),

pp(K),

find_pattern(nont(B,C,D),E)

)).

ta_m(L,M,N,O) :-

((

find_pattern(ta(L,M,N),O)

) -> (

true

) ; (

insert_pattern(ta(L,P,Q),R),

findall(S, (

’,’(ta_u(L,P,Q,T),treat_clause(R,T,S))),U),

pp(U),

find_pattern(ta(L,M,N),O)

)).

nont_u(B,C,D,[E,memo(nont(B,F,D))]) :- t_u(a,C,F,E).

nont_u(G,H,I,[J]) :- t_u(G,H,I,J).

t_u(K,[K|L],L,[]).

Running the generating extension for

F.2. THE SOLVE EXAMPLE 341

nont(c,T,R)

yields the following residual program:

nont__0([a|B],C) :-

nont__0(B,C).

nont__0([c|D],D).

F.2 The solve example

The original program is as follows:

/* file: solve.pro */

go(Prog,Atom) :- solve(Prog,[Atom]).

solve(Prog,[]).

solve(Prog,[H|T]) :-

non_ground_member(struct(clause,[H|Body]),Prog),

solve(Prog,Body),

solve(Prog,T).

non_ground_member(NgX,[GrH|GrT]) :-

make_non_ground(GrH,NgX).

non_ground_member(NgX,[GrH|GrT]) :-

non_ground_member(NgX,GrT).

make_non_ground(G,NG) :- mng(G,NG,[],Sub).

mng(var(N),X,[],[sub(N,X)]).

mng(var(N),X,[sub(N,X)|T],[sub(N,X)|T]).

mng(var(N),X,[sub(M,Y)|T],[sub(M,Y)|T1]) :-

not(N=M),

mng(var(N),X,T,T1).

mng(struct(F,Args),struct(F,IArgs),InSub,OutSub) :-

l_mng(Args,IArgs,InSub,OutSub).

l_mng([],[],Sub,Sub).

l_mng([H|T],[IH|IT],InSub,OutSub) :-

mng(H,IH,InSub,IntSub),

l_mng(T,IT,IntSub,OutSub).

The annotated program looks like:

/* file: solve.ann */

342 APPENDIX F. A PROLOG COGEN: SOME EXAMPLES

delta(go(P,A),[P],[A]).

delta(solve(P,Q),[P],[Q]).

residual(go(_,_)).

residual(solve(_,_)).

ann_clause(go(Prog,A),[memo(solve(Prog,[A]))]).

ann_clause(solve(Prog,[]),[]).

ann_clause(solve(Prog,[H|T]),

[unfold(non_ground_member(struct(clause,[H|Body]),Prog)),

memo(solve(Prog,Body)),

memo(solve(Prog,T))]).

ann_clause(non_ground_member(NgX,[GrH|GrT]),

[unfold(make_non_ground(GrH,NgX))]).

ann_clause(non_ground_member(NgX,[GrH|GrT]),

[unfold(non_ground_member(NgX,GrT))]).

ann_clause(make_non_ground(G,NG),

[unfold(mng(G,NG,[],Sub))]).

ann_clause(mng(var(N),X,[],[sub(N,X)]),[]).

ann_clause(mng(var(N),X,[sub(N,X)|T],[sub(N,X)|T]),[]).

ann_clause(mng(var(N),X,[sub(M,Y)|T],[sub(M,Y)|T1]),

[call(not(N=M)),

unfold(mng(var(N),X,T,T1))]).

ann_clause(mng(struct(F,Args),struct(F,IArgs),InSub,OutSub),

[unfold(l_mng(Args,IArgs,InSub,OutSub))]).

ann_clause(l_mng([],[],Sub,Sub),[]).

ann_clause(l_mng([H|T],[IH|IT],InSub,OutSub),

[unfold(mng(H,IH,InSub,IntSub)),

unfold(l_mng(T,IT,IntSub,OutSub))]).

The generating extension produced by logen for the annotation go(s, d)
is:

/* file: solve.gx */

/* -------------------- */

/* GENERATING EXTENSION */

/* -------------------- */

:- reconsult(memo).

:- reconsult(pp).

F.2. THE SOLVE EXAMPLE 343

go_m(B,C,D) :-

((

find_pattern(go(B,C),D)

) -> (

true

) ; (

insert_pattern(go(B,E),F),

findall(G, (

’,’(go_u(B,E,H),treat_clause(F,H,G))),I),

pp(I),

find_pattern(go(B,C),D)

)).

solve_m(J,K,L) :-

((

find_pattern(solve(J,K),L)

) -> (

true

) ; (

insert_pattern(solve(J,M),N),

findall(O, (

’,’(solve_u(J,M,P),treat_clause(N,P,O))),Q),

pp(Q),

find_pattern(solve(J,K),L)

)).

go_u(B,C,[memo(solve(B,[C]))]).

solve_u(D,[],[]).

solve_u(E,[F|G],[H,memo(solve(E,I)),memo(solve(E,G))]) :-

non_ground_member_u(struct(clause,[F|I]),E,H).

non_ground_member_u(J,[K|L],[M]) :-

make_non_ground_u(K,J,M).

non_ground_member_u(N,[O|P],[Q]) :-

non_ground_member_u(N,P,Q).

make_non_ground_u(R,S,[T]) :-

mng_u(R,S,[],U,T).

mng_u(var(V),W,[],[sub(V,W)],[]).

mng_u(var(X),Y,[sub(X,Y)|Z],[sub(X,Y)|Z],[]).

mng_u(var(A_1),B_1,[sub(C_1,D_1)|E_1],[sub(C_1,D_1)|F_1],[G_1]) :-

not((A_1) = (C_1)),

mng_u(var(A_1),B_1,E_1,F_1,G_1).

mng_u(struct(H_1,I_1),struct(H_1,J_1),K_1,L_1,[M_1]) :-

l_mng_u(I_1,J_1,K_1,L_1,M_1).

l_mng_u([],[],N_1,N_1,[]).

l_mng_u([O_1|P_1],[Q_1|R_1],S_1,T_1,[U_1,V_1]) :-

mng_u(O_1,Q_1,S_1,W_1,U_1), l_mng_u(P_1,R_1,W_1,T_1,V_1).

344 APPENDIX F. A PROLOG COGEN: SOME EXAMPLES

Running the generating extension for

go([struct(clause,[struct(q,[var(1)]), struct(p,[var(1)])]),

struct(clause,[struct(p,[struct(a,[])])])],G)

yields the following residual program:

solve__1([]).

solve__1([struct(q,[B])|C]) :-

solve__1([struct(p,[B])]),

solve__1(C).

solve__1([struct(p,[struct(a,[])])|D]) :-

solve__1([]),

solve__1(D).

go__0(B) :-

solve__1([B]).

F.3 The regular expression example

/* file: regexp.pro */

:- ensure_consulted(’regexp.calls’).

dgenerate(RegExp,[]) :-

nullable(RegExp).

dgenerate(RegExp,[C|T]) :-

first(RegExp,C2),

dnext(RegExp,C2,NextRegExp),

C2=C,

dgenerate(NextRegExp,T).

The annotated program looks like:

static_consult([’regexp.calls’]).

delta(dgenerate(RX,S),[RX],[S]).

residual(dgenerate(_,_)).

ann_clause(dgenerate(RegExp,[]),

[call(nullable(RegExp))]).

ann_clause(dgenerate(RegExp,[C|T]),

[call(first(RegExp,C2)),

call(dnext(RegExp,C2,NextRegExp)),

call(C2=C),

memo(dgenerate(NextRegExp,T))]).

F.3. THE REGULAR EXPRESSION EXAMPLE 345

The static consult primitive tells logen that some auxiliary predicates
are defined in the file regexp.calls. This will translate to a consult being
inserted into the generating extension. The file regexp.calls contains the
definitions of first, dnext and nullable.
For the annotation dgenerate(s, d) logen produces the following generat-
ing extension:

/* file: regexp.gx */

/* -------------------- */

/* GENERATING EXTENSION */

/* -------------------- */

:- reconsult(memo).

:- reconsult(pp).

:- consult(’regexp.calls’).

dgenerate_m(B,C,D) :-

((

find_pattern(dgenerate(B,C),D)

) -> (

true

) ; (

insert_pattern(dgenerate(B,E),F),

findall(G, (

’,’(dgenerate_u(B,E,H),treat_clause(F,H,G))),I),

pp(I),

find_pattern(dgenerate(B,C),D)

)).

dgenerate_u(B,[],[]) :- nullable(B).

dgenerate_u(C,[D|E],[memo(dgenerate(F,E))]) :-

first(C,G),

dnext(C,G,F),

(G) = (D).

Running the generating extension for

dgenerate(cat(star(or(a,b)),cat(a,cat(a,b))),String)

yields the following program corresponding to a deterministic automaton
for the regular expression (a + b)∗aab:

dgenerate__3([]).

dgenerate__3([a|B]) :-

dgenerate__1(B).

dgenerate__3([b|C]) :-

dgenerate__0(C).

346 APPENDIX F. A PROLOG COGEN: SOME EXAMPLES

dgenerate__2([a|B]) :-

dgenerate__2(B).

dgenerate__2([b|C]) :-

dgenerate__3(C).

dgenerate__1([a|B]) :-

dgenerate__2(B).

dgenerate__1([b|C]) :-

dgenerate__0(C).

dgenerate__0([a|B]) :-

dgenerate__1(B).

dgenerate__0([b|C]) :-

dgenerate__0(C).

Appendix G

Meta-Interpreters and
Databases for Integrity
Checking

G.1 The ic-solve meta-interpreter

This appendix contains the full Prolog code of a meta-interpreter perform-
ing incremental integrity checking based upon Theorem 8.2.10. It is used
for the experiments in Chapter 9.

In order to make the experiments more realistic, the facts of the data-
base are stored, via the fact/2 relation, in the Prolog clausal database.
Updating the facts — which is of no relevance to the integrity checking
phases — occurs via the assert, retract or reconsult primitives.

/* --- */

/* normal_solve(GrXtraFacts,GrDelFacts,GrRules,NgGoal) */

/* --- */

/* This normal_solve makes no assumptions about the Facts and the Rules.

For instance the predicates defined in Rules can also be present

in Facts and vice versa */

normal_solve(GrXtraFacts,GrDelFacts,GrRules,[]).

normal_solve(GrXtraFacts,GrDelFacts,GrRules,[neg(NgG)|NgT]) :-

(normal_solve(GrXtraFacts,GrDelFacts,GrRules,[pos(NgG)])

-> fail

; (normal_solve(GrXtraFacts,GrDelFacts,GrRules,NgT))

).

347

348 APPENDIX G. META-INTERPRETERS AND DATABASES

normal_solve(GrXtraFacts,GrDelFacts,GrRules,[pos(NgH)|NgT]) :-

db_fact_lookup(NgH),

not(non_ground_member(NgH,GrDelFacts)),

normal_solve(GrXtraFacts,GrDelFacts,GrRules,NgT).

normal_solve(GrXtraFacts,GrDelFacts,GrRules,[pos(NgH)|NgT]) :-

non_ground_member(NgH,GrXtraFacts),

normal_solve(GrXtraFacts,GrDelFacts,GrRules,NgT).

normal_solve(GrXtraFacts,GrDelFacts,GrRules,[pos(NgH)|NgT]) :-

non_ground_member(term(clause,[pos(NgH)|NgBody]),GrRules),

normal_solve(GrXtraFacts,GrDelFacts,GrRules,NgBody),

normal_solve(GrXtraFacts,GrDelFacts,GrRules,NgT).

/* ----------------------------- */

/* INCREMENTAL IC CHECKER */

/* ----------------------------- */

incremental_solve(GoalList,DB) :-

verify_one_potentially_added(GoalList,DB),

inc_resolve(GoalList,DB).

inc_resolve([pos(NgH)|NgT],DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

db_fact_lookup(NgH),

not(non_ground_member(NgH,DeletedFacts)),

incremental_solve(NgT,DB).

inc_resolve([pos(NgH)|NgT],DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

non_ground_member(NgH,AddedFacts),

/* print(found_added_fact(NgH)),nl, */

append(AddedRules,ValidOldRules,NewRules),

normal_solve(AddedFacts,DeletedFacts,NewRules,NgT).

inc_resolve([pos(NgH)|NgT],DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

non_ground_member(term(clause,[pos(NgH)|NgBody]),ValidOldRules),

append(NgBody,NgT,NewGoal),

incremental_solve(NewGoal,DB).

inc_resolve([pos(NgH)|NgT],DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

non_ground_member(term(clause,[pos(NgH)|NgBody]),AddedRules),

append(AddedRules,ValidOldRules,NewRules),

normal_solve(AddedFacts,DeletedFacts,NewRules,NgBody),

normal_solve(AddedFacts,DeletedFacts,NewRules,NgT).

inc_resolve([neg(NgH)|NgT],DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

append(AddedRules,ValidOldRules,NewRules),

(normal_solve(AddedFacts,DeletedFacts,NewRules,[pos(NgH)])

-> (fail)

G.1. META-INTERPRETER FOR IC CHECKING 349

; (verify_potentially_added(neg(NgH),DB)

-> (normal_solve(AddedFacts,DeletedFacts,NewRules,NgT))

; (incremental_solve(NgT,DB))

)

).

verify_one_potentially_added(GoalList,DB) :-

((one_potentially_added(GoalList,DB) -> fail ; true)

-> fail

; true

).

one_potentially_added(GoalList,DB) :-

member(Literal,GoalList),

potentially_added(Literal,DB).

/* --- */

/* Determining the literals that are potentially added */

/* --- */

/* verify if a literal is potentially added -

without making any bindings and succeeding only once */

verify_potentially_added(Literal,DB) :-

((potentially_added(Literal,DB) -> fail ; true)

-> fail

; true

).

potentially_added(neg(Atom),DB) :-

potentially_deleted(pos(Atom),DB).

potentially_added(pos(Atom),DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

non_ground_member(Atom,AddedFacts).

potentially_added(pos(Atom),DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

non_ground_member(term(clause,[pos(Atom)|NgBody]),AddedRules).

potentially_added(pos(Atom),DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

non_ground_member(term(clause,[pos(Atom)|NgBody]),ValidOldRules),

member(BodyLiteral,NgBody),

potentially_added(BodyLiteral,DB).

potentially_deleted(neg(Atom),DB) :-

potentially_added(pos(Atom),DB).

potentially_deleted(pos(Atom),DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

non_ground_member(Atom,DeletedFacts).

potentially_deleted(pos(Atom),DB) :-

DB = db(AddedFacts,DeletedFacts,

350 APPENDIX G. META-INTERPRETERS AND DATABASES

ValidOldRules,AddedRules,DeletedRules),

non_ground_member(term(clause,[pos(Atom)|NgBody]),DeletedRules).

potentially_deleted(pos(Atom),DB) :-

DB = db(AddedFacts,DeletedFacts,

ValidOldRules,AddedRules,DeletedRules),

non_ground_member(term(clause,[pos(Atom)|NgBody]),ValidOldRules),

member(BodyLiteral,NgBody),

potentially_deleted(BodyLiteral,DB).

/* -------------------------------------- */

/* non_ground_member(NgExpr,GrListOfExpr) */

/* -------------------------------------- */

non_ground_member(NgX,[GrH|GrT]) :-

make_non_ground(GrH,NgX).

non_ground_member(NgX,[GrH|GrT]) :-

non_ground_member(NgX,GrT).

/* --- */

/* make_non_ground(GroundRepOfExpr,NonGroundRepOfExpr) */

/* --- */

/* ex. ?-make_non_ground(pos(term(f,[var(1),var(2),var(1)])),X). */

make_non_ground(G,NG) :-

mng(G,NG,[],Sub).

mng(var(N),X,[],[sub(N,X)]).

mng(var(N),X,[sub(M,Y)|T],[sub(M,Y)|T1]) :-

((N=M)

-> (T1=T, X=Y)

; (mng(var(N),X,T,T1))

).

mng(term(F,Args),term(F,IArgs),InSub,OutSub) :-

l_mng(Args,IArgs,InSub,OutSub).

mng(neg(G),neg(NG),InSub,OutSub) :-

mng(G,NG,InSub,OutSub).

mng(pos(G),pos(NG),InSub,OutSub) :-

mng(G,NG,InSub,OutSub).

l_mng([],[],Sub,Sub).

l_mng([H|T],[IH|IT],InSub,OutSub) :-

mng(H,IH,InSub,IntSub),

l_mng(T,IT,IntSub,OutSub).

/* --- */

/* SIMULATING THE DEDUCTIVE DATABASE FACT LOOKUP */

/* --- */

db_fact_lookup(term(Pred,Args)) :-

fact(Pred,Args).

fact(female,[term(mary,[])]).

G.2. THE IC-LST META-INTERPRETER 351

fact(male,[term(peter,[])]).

fact(male,[term(paul,[])]).

...

G.2 The ic-lst meta-interpreter

This appendix contains the code of an implementation of the method by
Lloyd, Sonenberg and Topor [186] for specialised integrity checking in de-
ductive databases. It is used for the experiments in Chapter 9.

/* == */

/* Bottom-Up Propagation of updates according to Lloyd et al’s Method */

/* == */

:- dynamic lts_rules/1.

construct_lts_rules :-

retract(lts_rules(R)),fail.

construct_lts_rules :-

findall(clause(Head,Body),rule(Head,Body),Rules),

assert(lts_rules(Rules)).

lts_check(Nr,Update) :-

lts_rules(Rules),

check_ic(Nr,Update,Rules).

check_ic(Nr,Update,Rules) :-

bup(Rules,Update,AllPos),!,

member(false(Nr),AllPos),

member(clause(false(Nr),Body),Rules),

member(Atom,Body),

member(Atom,AllPos),

normal_solve(Body,Update).

/* This is the main Predicate */

/* Rules is the intensional part of the database */

/* Update are the added facts to the extensional database */

/* Pos is the set of (most general) atoms potentially */

/* affected by the update */

bup(Rules,Update,Pos) :-

bup(Rules,Update,Update,Pos).

bup(Rules,Update,InPos,OutPos) :-

bup_step(Rules,Update,[],NewPos,InPos,IntPos),

((NewPos=[])

-> (OutPos=IntPos)

; (bup(Rules,NewPos,IntPos,OutPos))

).

bup_step([],_Pos,NewPos,NewPos,AllPos,AllPos).

352 APPENDIX G. META-INTERPRETERS AND DATABASES

bup_step([Clause1|Rest],Pos,InNewPos,ResNewPos,InAllPos,ResAllPos) :-

Clause1 = clause(Head,Body),

bup_treat_clause(Head,Body,Pos,InNewPos,InNewPos1,InAllPos,InAllPos1),

bup_step(Rest,Pos,InNewPos1,ResNewPos,InAllPos1,ResAllPos).

bup_treat_clause(Head,[],Pos,NewPos,NewPos,AllPos,AllPos).

bup_treat_clause(Head,[BodyAtom|Rest],Pos,InNewPos,OutNewPos,

InAllPos,OutAllPos) :-

bup_treat_body_atom(Head,BodyAtom,Pos,InNewPos,InNewPos1,

InAllPos,InAllPos1),

bup_treat_clause(Head,Rest,Pos,InNewPos1,OutNewPos,InAllPos1,OutAllPos).

bup_treat_body_atom(Head,BodyAtom,[],NewPos,NewPos,AllPos,AllPos).

bup_treat_body_atom(Head,BodyAtom,[Pos1|Rest],InNewPos,OutNewPos,

InAllPos,OutAllPos) :-

copy(Pos1,Pos1C),

copy(g(Head,BodyAtom),g(CHead,CBodyAtom)),

(propagate_atom(CHead,CBodyAtom,Pos1C,NewHead)

-> (add_atom(NewHead,InAllPos,InAllPos1,Answer),

((Answer=dont_add)

-> (InNewPos2=InNewPos,InAllPos2=InAllPos1)

; (add_atom(NewHead,InNewPos,InNewPos1,Answer2),

((Answer2=dont_add)

-> (InNewPos2=InNewPos1,InAllPos2=InAllPos1)

; (InNewPos2=[NewHead|InNewPos1],

InAllPos2=[NewHead|InAllPos1]

)

)

)

)

)

; (InNewPos2=InNewPos,InAllPos2=InAllPos)

),

bup_treat_body_atom(Head,BodyAtom,Rest,InNewPos2,OutNewPos,

InAllPos2,OutAllPos).

propagate_atom(Head,BodyAtom,Pos,NewAtom) :-

BodyAtom = Pos, !,

NewAtom = Head.

propagate_atom(Head,BodyAtom,neg(Pos),NewAtom) :- !,

BodyAtom = Pos,

NewAtom = neg(Head).

propagate_atom(Head,neg(BodyAtom),Pos,NewAtom) :- !,

BodyAtom = Pos,

NewAtom = neg(Head).

add_atom(NewAtom,[],[],add).

add_atom(NewAtom,[Pos1|Rest],OutPos,Answer) :-

(covered(NewAtom,Pos1)

-> (OutPos = [Pos1|Rest],

Answer=dont_add

)

G.3. A MORE SOPHISTICATED DATABASE 353

; (covered(Pos1,NewAtom)

-> (OutPos=OutRest,

add_atom(NewAtom,Rest,OutRest,Answer)

)

; (OutPos=[Pos1|OutRest],

add_atom(NewAtom,Rest,OutRest,Answer)

)

)

).

G.3 A more sophisticated database

The following is the intensional part of a database adapted from [251]
(where it is the most complicated database) and transformed into rule for-
mat (using Lloyd-Topor transformations [187] done by hand) required by
[169].

parent(B,C) <- father(B,C)

parent(B,C) <- mother(B,C)

mother(B,C) <- father(D,C) & husband(D,B)

age(Id,Age) <- civil_status(Id,Age,D,E)

sex(Id,C) <- civil_status(Id,Age,C,E)

dependent(B,C) <- parent(C,B) & occupation(C,service)

& occupation(B,student)

occupation(Id,C) <- civil_status(Id,D,E,C)

eq(B,B) <-

aux_male_female(male) <-

aux_male_female(female) <-

aux_status(student) <-

aux_status(retired) <-

aux_status(business) <-

aux_status(service) <-

aux_limit(Id,Age) <- greater_than(Id,0) & less_than(Id,100000) &

greater_than(Age,0) & less_than(Age,125)

false(a1) <- civil_status(Id,Age,D,E) &

civil_status(Id,F,G,H) & ~eq(Age,F)

false(a2) <- civil_status(Id,Age,D,E) &

354 APPENDIX G. META-INTERPRETERS AND DATABASES

civil_status(Id,F,G,H) & ~eq(D,G)

false(a3) <- civil_status(Id,Age,D,E) &

civil_status(Id,F,G,H) & ~eq(E,H)

false(2) <- father(B,C) & father(D,C) & ~eq(B,D)

false(3) <- husband(B,C) & husband(D,C) & ~eq(B,D)

false(4) <- husband(B,C) & husband(B,D) & ~eq(C,D)

false(5) <- civil_status(Id,Age,D,E) & aux_male_female(D) &

aux_status(E) & ~aux_limit(Id,Age)

false(6) <- civil_status(Id,Age,D,student) & ~less_than(Age,25)

false(7) <- civil_status(Id,Age,D,retired) & ~greater_than(Age,60)

false(8) <- father(B,C) & ~sex(B,male)

false(9a) <- husband(B,C) & ~sex(B,male)

false(9b) <- husband(B,C) & ~sex(C,female)

false(10a) <- husband(B,C) & age(B,D) & ~greater_than(D,19)

false(10b) <- husband(B,C) & age(C,D) & ~greater_than(D,19)

false(11) <- civil_status(Id,Age,D,E) &

less_than(Age,20) & ~eq(E,student)

false(12) <- dependent(X,Y) & ~tax(Y,X)

Appendix H

Explicit Unification
Algorithms

H.1 A unification algorithm with accumula-
tors

Below, we include an explicit, ground representation unify slightly adapted
from [67] (which uses \ == instead of not(eq(.))).

Note that unifiers are not calculated in idempotent form, meaning that
new bindings do not have to be explicitly composed with the incoming
substitution inside the unification algorithm. Partial deduction would be
even more complicated if this was the case.

unify(X,Y,S) :-

unify(X,Y,[],S).

unify(var(N),T,S,S1) :-

bound(var(N),S,B,V),

unify(var(N),T,S,S1,B,V).

unify(struct(F,Args),var(N),S,S1) :-

unify(var(N),struct(F,Args),S,S1).

unify(struct(F,Args1),struct(F,Args2),S,S2) :-

unifyargs(Args1,Args2,S,S2).

unify(var(_),T,S,S1,B,true) :-

unify(B,T,S,S1).

unify(var(N),T,S,S1,_,false) :-

unify1(T,var(N),S,S1).

355

356 APPENDIX H. EXPLICIT UNIFICATION ALGORITHMS

unifyargs([],[],S,S).

unifyargs([T|Ts],[R|Rs],S,S2) :-

unify(T,R,S,S1),

unifyargs(Ts,Rs,S1,S2).

unify1(struct(F,Args),var(N),S,[var(N)/struct(F,Args)|S]) :-

not(occur_args(var(N),Args,S)).

unify1(var(N),var(N),S,S).

unify1(var(M),var(N),S,S1) :-

diff(M,N),

bound(var(M),S,B,V),

unify1(var(M),var(N),S,S1,B,V).

unify1(var(_),var(N),S,S1,B,true) :-

unify1(B,var(N),S,S1).

unify1(var(M),var(N),S,[var(N)/var(M)|S],_,false).

bound(var(N),[var(N)/T|_],T,true) :-

diff(T,var(N)).

bound(var(N),[B/_|S],T,F) :-

diff(B,var(N)),

bound(var(N),S,T,F).

bound(var(_),[],_,false).

dereference(var(N),[var(N)/T|_],T) :-

diff(T,var(N)).

dereference(var(N),[B/_|S],T) :-

diff(B,var(N)),

dereference(var(N),S,T).

occur(var(N),var(M),S) :-

dereference(var(M),S,T),

occur(var(N),T,S).

occur(var(N),var(N),_).

occur(var(N),struct(_,Args),S) :-

occur_args(var(N),Args,S).

occur_args(var(N),[A|_],S) :-

occur(var(N),A,S).

occur_args(var(N),[_|As],S) :-

occur_args(var(N),As,S).

diff(X,Y) :-

not(eq(X,Y)).

eq(X,X).

H.2. A UNIFICATION ALGORITHM WITHOUT ACCUMULATORS357

H.2 A unification algorithm without accumu-
lators

Below, we present an explicit unification algorithm for the ground represen-
tation which does not use accumulating parameters (and does not perform
the occurs check to avoid using negation).

unify(T1,T2,MGU) :- unify(T1,empty,T2,empty,MGU).

unify(struct(F,A1),S1,struct(F,A2),S2,MGU) :-

l_unify(A1,S1,A2,S2,MGU).

unify(var(V),S1,struct(F,A2),S2,MGU) :-

get_binding(V,S1,VS),

unify2(VS,S1,struct(F,A2),S2,MGU).

unify(struct(F,A1),S1,var(V),S2,MGU) :-

get_binding(V,S2,VS),

unify2(struct(F,A1),S1,VS,S2,MGU).

unify(var(V),S1,var(W),S2,MGU) :-

get_binding(V,S1,VS),

get_binding(W,S2,WS),

unify2(VS,S1,WS,S2,MGU).

unify2(struct(F,A1),S1,struct(F,A2),S2,MGU) :-

l_unify(A1,S1,A2,S2,MGU).

unify2(var(V),S1,struct(F,A2),S2,sub(V,struct(F,A2))).

unify2(struct(F,A1),S1,var(V),S2,sub(V,struct(F,A1))).

unify2(var(V),S1,var(V),S2,empty).

unify2(var(V),S1,var(W),S2,sub(V,var(W))) :- V\=W.

l_unify([],S1,[],S2,[]).

l_unify([H|T],S1,[H2|T2],S2,comp(HMGU,TMGU)) :-

unify(H,S1,H2,S2,HMGU),

l_unify(T,comp(S1,HMGU),T2,comp(S2,HMGU),TMGU).

apply(var(V),Sub,VS) :-

get_binding(V,Sub,VS).

apply(struct(F,A),Sub,struct(F,AA)) :-

l_apply(A,Sub,AA).

l_apply([],Sub,[]).

l_apply([H|T],Sub,[AH|AT]) :-

apply(H,Sub,AH),l_apply(T,Sub,AT).

get_binding(V,empty,var(V)).

get_binding(V,sub(V,S),S).

358 APPENDIX H. EXPLICIT UNIFICATION ALGORITHMS

get_binding(V,sub(W,S),var(V)) :- V \= W.

get_binding(V,comp(L,R),S) :-

get_binding(V,L,VL),apply(VL,R,S).

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles,
Techniques and Tools. Addison-Wesley, 1986.

[2] M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven partial
evaluation of functional logic programs. In H. Riis Nielson, edi-
tor, Proceedings of the 6th European Symposium on Programming,
ESOP’96, LNCS 1058, pages 45–61. Springer-Verlag, 1996.

[3] L. O. Andersen. Partial evaluation of C and automatic compiler
generation. In U. Kastens and P. Pfahler, editors, 4th International
Conference on Compiler Construction, LNCS 641, pages 251–257,
Paderborn, Germany, 1992. Springer-Verlag.

[4] L. O. Andersen. Binding-time analysis and the taming of c point-
ers. In Proceedings of the Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 47–58, Copenhagen,
Denmark, 1993. ACM Press.

[5] L. O. Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen,
May 1994. (DIKU report 94/19).

[6] P. H. Andersen. Partial evaluation applied to ray tracing. In W. Mack-
ens and S. Rump, editors, Software Engineering im Scientific Com-
puting, pages 78–85. Vieweg, 1996.

[7] K. R. Apt. Introduction to logic programming. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, chapter 10, pages
495–574. North-Holland Amsterdam, 1990.

[8] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[9] K. R. Apt and R. N. Bol. Logic programming and negation: A survey.
The Journal of Logic Programming, 19 & 20:9–72, May 1994.

359

360 BIBLIOGRAPHY

[10] K. R. Apt and H. Doets. A new definition of SLDNF-resolution. The
Journal of Logic Programming, 8:177–190, 1994.

[11] K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from
modes through types to assertions. Formal Aspects of Computing,
6(6A):743–765, 1994.

[12] K. R. Apt and M. H. van Emden. Contributions to the theory of logic
programming. Journal of the ACM, 29(3):841–862, 1982.

[13] C. Aravindan and P. M. Dung. On the correctness of unfold/fold
transformation of normal and extended logic programs. The Journal
of Logic Programming, 24(3):201–217, 1995.

[14] J. Barklund. Metaprogramming in logic. In A. Kent and J. Williams,
editors, Encyclopedia of Computer Science and Technology. Marcell
Dekker, Inc., New York. To Appear.

[15] M. Baudinet. Proving termination of Prolog programs: A semantic
approach. The Journal of Logic Programming, 14(1 & 2):1–29, 1992.

[16] L. Beckman, A. Haraldson, Ö. Oskarsson, and E. Sandewall. A partial
evaluator and its use as a programming tool. Artificial Intelligence,
7:319–357, 1976.

[17] K. Benkerimi and P. M. Hill. Supporting transformations for the par-
tial evaluation of logic programs. Journal of Logic and Computation,
3(5):469–486, October 1993.

[18] K. Benkerimi and J. W. Lloyd. A partial evaluation procedure for
logic programs. In S. Debray and M. Hermenegildo, editors, Proceed-
ings of the North American Conference on Logic Programming, pages
343–358. MIT Press, 1990.

[19] K. Benkerimi and J. C. Shepherdson. Partial deduction of updateable
definite logic programs. The Journal of Logic Programming, 18(1):1–
27, January 1994.

[20] L. Birkedal and M. Welinder. Hand-writing program generator gener-
ators. In M. Hermenegildo and J. Penjam, editors, Programming Lan-
guage Implementation and Logic Programming. Proceedings, Proceed-
ings of PLILP’91, LNCS 844, pages 198–214, Madrid, Spain, 1994.
Springer-Verlag.

[21] R. Bol. Loop checking in partial deduction. The Journal of Logic
Programming, 16(1&2):25–46, 1993.

BIBLIOGRAPHY 361

[22] A. Bondorf. Towards a self-applicable partial evaluator for term
rewriting systems. In D. Bjørner, A. P. Ershov, and N. D. Jones, edi-
tors, Partial Evaluation and Mixed Computation, pages 27–50. North-
Holland, 1988.

[23] A. Bondorf. A self-applicable partial evaluator for term rewriting sys-
tems. In J. Diaz and F. Orejas, editors, TAPSOFT’89, Proceedings of
the International Joint Conference on Theory and Practice of Soft-
ware Development, LNCS 352, pages 81–96, Barcelona, Spain, March
1989. Springer-Verlag.

[24] A. Bondorf and O. Danvy. Automatic autoprojection of recursive
equations with global variables and abstract data types. Science of
Computer Programming, 16:151–195, 1991.

[25] A. Bondorf and D. Dussart. Improving cps-based partial evaluation:
writing cogen by hand. In ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation, pages 1–9,
Orlando, Florida, 1994.

[26] A. Bondorf, F. Frauendorf, and M. Richter. An experiment in auto-
matic self-applicable partial evaluation of Prolog. Technical Report
335, Lehrstuhl Informatik V, University of Dortmund, 1990.

[27] A. Bossi and N. Cocco. Preserving universal termination through un-
fold/fold. In G. Levi and M. Rodriguez-Artalejo, editors, Proceedings
of the Fourth International Conference on Algebraic and Logic Pro-
gramming, LNCS 850, pages 269–286, Madrid, Spain, 1994. Springer-
Verlag.

[28] A. Bossi and N. Cocco. Replacement can preserve termination.
In J. Gallagher, editor, Pre-Proceedings of the International Work-
shop on Logic Program Synthesis and Transformation (LOPSTR’96),
pages 78–91, Stockholm, Sweden, August 1996.

[29] A. Bossi, N. Cocco, and S. Dulli. A method for specialising logic pro-
grams. ACM Transactions on Programming Languages and Systems,
12(2):253–302, 1990.

[30] A. Bossi, N. Cocco, and S. Etalle. Transformation of left terminating
programs: The reordering problem. In M. Proietti, editor, Logic
Program Synthesis and Transformation. Proceedings of LOPSTR’95,
LNCS 1048, pages 33–45, Utrecht, The Netherlands, September 1995.
Springer-Verlag.

362 BIBLIOGRAPHY

[31] A. Bossi and S. Etalle. More on unfold/fold transformations of nor-
mal programs: Preservation of fitting’s semantics. In L. Fribourg
and F. Turini, editors, Logic Program Synthesis and Transforma-
tion — Meta-Programming in Logic. Proceedings of LOPSTR’94
and META’94, LNCS 883, pages 311–331, Pisa, Italy, June 1994.
Springer-Verlag.

[32] A. Bossi and S. Etalle. Transforming acyclic programs. ACM Trans-
actions on Programming Languages and Systems, 16(4):1081–1096,
1994.

[33] D. Boulanger and M. Bruynooghe. Deriving fold/unfold transforma-
tions of logic programs using extended OLDT-based abstract inter-
pretation. Journal of Symbolic Computation, 15(5&6):495–521, 1993.

[34] A. F. Bowers. Representing Gödel object programs in Gödel. Tech-
nical Report CSTR-92-31, University of Bristol, November 1992.

[35] A. F. Bowers and C. A. Gurr. Towards fast and declarative meta-
programming. In K. R. Apt and F. Turini, editors, Meta-logics and
Logic Programming, pages 137–166. MIT Press, 1995.

[36] M. Bruynooghe. A practical framework for the abstract interpretation
of logic programs. The Journal of Logic Programming, 10:91–124,
1991.

[37] M. Bruynooghe, D. De Schreye, and B. Martens. A general crite-
rion for avoiding infinite unfolding during partial deduction. New
Generation Computing, 11(1):47–79, 1992.

[38] F. Bry. Query evaluation in recursive databases: bottom-up and top-
down reconciled. Data and Knowledge Engineering, 5:289–312, 1990.

[39] F. Bry, H. Decker, and R. Manthey. A uniform approach to constraint
satisfaction and constraint satisfiability in deductive databases. In
J. Schmidt, S. Ceri, and M. Missikoff, editors, Proceedings of the
International Conference on Extending Database Technology, LNCS,
pages 488–505, Venice, Italy, 1988. Springer-Verlag.

[40] F. Bry and R. Manthey. Tutorial on deductive databases. In Logic
Programming Summer School, 1990.

[41] F. Bry, R. Manthey, and B. Martens. Integrity verification in know-
ledge bases. In A. Voronkov, editor, Logic Programming. Proceedings
of the First and Second Russian Conference on Logic Programming,
LNCS 592, pages 114–139. Springer-Verlag, 1991.

BIBLIOGRAPHY 363

[42] M. Bugliesi and F. Russo. Partial evaluation in Prolog: Some im-
provements about cut. In E. L. Lusk and R. A. Overbeek, editors,
Logic Programming: Proceedings of the North American Conference,
pages 645–660. MIT Press, 1989.

[43] R. M. Burstall and J. Darlington. A transformation system for de-
veloping recursive programs. Journal of the ACM, 24(1):44–67, 1977.

[44] L. Cavedon. Acyclic logic programs and the completeness of SLDNF-
resolution. Theoretical Computer Science, 86:81–92, 1991.

[45] L. Cavedon and J. W. Lloyd. A completeness theorem for SLDNF res-
olution. The Journal of Logic Programming, 7(3):177–192, November
1989.

[46] M. Celma and H. Decker. Integrity checking in deductive databases
— the ultimate method ? In Proceedings of the 5th Australasian
Database Conference, January 1994.

[47] M. Celma, C. Garćı, L. Mota, and H. Decker. Comparing and syn-
thesizing integrity checking methods for deductive databases. In Pro-
ceedings of the 10th IEEE Conference on Data Engineering, 1994.

[48] D. Chan. Constructive negation based on the completed database. In
Proceedings of the Joint International Conference and Symposium on
Logic Programming, pages 111–125, Seattle, 1988. IEEE, MIT Press.

[49] D. Chan and M. Wallace. A treatment of negation during partial eval-
uation. In H. Abramson and M. Rogers, editors, Meta-Programming
in Logic Programming, Proceedings of the Meta88 Workshop, June
1988, pages 299–318. MIT Press, 1989.

[50] W. Chen and D. S. Warren. Tabled evaluation with delaying for
general logic programs. Journal of the ACM, 43(1):20–74, January
1996.

[51] W.-N. Chin. Automatic Methods for Program Transformation. PhD
thesis, Imperial College, University of London, 1990.

[52] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, pages 293–322. Plenum Press, 1978.

[53] W. Clocksin and C. Mellish. Programming in Prolog (Third Edition).
Springer-Verlag, 1987.

364 BIBLIOGRAPHY

[54] M. Codish and B. Demoen. Analyzing logic programs using “prop”-
ositional logic programs and a magic wand. The Journal of Logic
Programming, 25(3):249–274, December 1995.

[55] C. Consel. A tour of Schism: A partial evaluation system for higher-
order applicative languages. In Proceedings of PEPM’93, the ACM
Sigplan Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, pages 145–154. ACM Press, 1993.

[56] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In
Proceedings of ACM Symposium on Principles of Programming Lan-
guages (POPL’93), Charleston, South Carolina, January 1993. ACM
Press.

[57] P. Cousot and R. Cousot. Abstract interpretation and application to
logic programs. The Journal of Logic Programming, 13(2 & 3):103–
179, 1992.

[58] H. B. Curry. Foundations of Mathematical Logic. Dover Publications,
1976.

[59] S. Das and M. Williams. A path finding method for constraint check-
ing in deductive databases. Data & Knowledge Engineering, 4:223–
244, 1989.

[60] D. De Schreye and M. Bruynooghe. The compilation of forward
checking regimes through meta-interpretation and transformation. In
H. Abramson and M. Rogers, editors, Meta-Programming in Logic
Programming, Proceedings of the Meta88 Workshop, June 1988, pages
217–232. MIT Press, 1989.

[61] D. De Schreye and S. Decorte. Termination of logic programs: The
never ending story. The Journal of Logic Programming, 19 & 20:199–
260, May 1994.

[62] D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and
M. H. Sørensen. Conjunctive partial deduction: Foundations, con-
trol, algorithms and experiments. Submitted for Publication, January
1997.

[63] D. De Schreye, M. Leuschel, and B. Martens. Tutorial on pro-
gram specialisation (abstract). In J. W. Lloyd, editor, Proceedings
of ILPS’95, the International Logic Programming Symposium, Port-
land, USA, December 1995. MIT Press.

BIBLIOGRAPHY 365

[64] D. De Schreye and B. Martens. A sensible least Herbrand semantics
for untyped vanilla meta-programming. In A. Pettorossi, editor, Pro-
ceedings Meta’92, LNCS 649, pages 192–204. Springer-Verlag, 1992.

[65] D. De Schreye, B. Martens, G. Sablon, and M. Bruynooghe. Compil-
ing bottom-up and mixed derivations into top-down executable logic
programs. Journal of Automated Reasoning, 7(3):337–358, 1991.

[66] D. A. de Waal. Analysis and Transformation of Proof Procedures.
PhD thesis, University of Bristol, October 1994.

[67] D. A. de Waal and J. Gallagher. Specialisation of a unification algo-
rithm. In T. Clement and K.-K. Lau, editors, Logic Program Synthe-
sis and Transformation. Proceedings of LOPSTR’91, pages 205–220,
Manchester, UK, 1991.

[68] D. A. de Waal and J. Gallagher. The applicability of logic program
analysis and transformation to theorem proving. In A. Bundy, editor,
Automated Deduction—CADE-12, pages 207–221. Springer-Verlag,
1994.

[69] S. Debray. Resource-bounded partial evaluation. In Proceedings of
PEPM’97, the ACM Sigplan Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, 1997. To appear.

[70] S. Debray and N.-W. Lin. Cost analysis of logic programs. ACM
Transactions on Programming Languages and Systems, 15(5):826–
875, November 1993.

[71] S. Debray, P. López Garćıa, M. Hermenegildo, and N.-W. Lin. Esti-
mating the computational cost of logic programs. In B. Le Charlier,
editor, Proceedings of SAS’94, LNCS 864, pages 255–265, Namur,
Belgium, September 1994. Springer-Verlag.

[72] S. Debray and D. S. Warren. Functional computations in logic pro-
grams. ACM Transactions on Programming Languages and Systems,
11(3):451–481, 1989.

[73] H. Decker. Integrity enforcement on deductive databases. In L. Ker-
schberg, editor, Proceedings of the 1st International Conference on
Expert Database Systems, pages 381–395, Charleston, South Carolina,
1986. The Benjamin/Cummings Publishing Company, Inc.

[74] H. Decker. Personal communication. January 1997.

366 BIBLIOGRAPHY

[75] H. Decker and M. Celma. A slick procedure for integrity checking
in deductive databases. In P. Van Hentenryck, editor, Proceedings of
ICLP’94, pages 456–469. MIT Press, June 1994.

[76] S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K. Sago-
nas. Termination analysis for tabled logic programming. April 1997.
Accepted for the Pre-Proceedings of LOPSTR’97.

[77] B. Demoen. On the transformation of a prolog program to a more
efficient binary program. In K.-K. Lau and T. Clement, editors, Logic
Program Synthesis and Transformation. Proceedings of LOPSTR’92,
pages 242–252, Manchester, UK, 1992.

[78] M. Denecker. Knowledge Representation and Reasoning in Incomplete
Logic Programming. PhD thesis, Department of Computer Science,
K.U.Leuven, 1993.

[79] M. Denecker and D. De Schreye. SLDNFA; an abductive procedure
for normal abductive programs. In K. Apt, editor, Proceedings of the
International Joint Conference and Symposium on Logic Program-
ming, Washington, 1992.

[80] P. Derensart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard,
Reference Manual. Springer-Verlag, 1996.

[81] N. Dershowitz. Termination of rewriting. Journal of Symbolic Com-
putation, 3:69–116, 1987.

[82] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. B,
pages 243–320. Elsevier, MIT Press, 1990.

[83] N. Dershowitz and Z. Manna. Proving termination with multiset
orderings. Communications of the ACM, 22(8):465–476, 1979.

[84] K. Doets. Levationis laus. Journal of Logic and Computation,
3(5):487–516, 1993.

[85] K. Doets. From Logic to Logic Programming. MIT Press, 1994.

[86] W. Drabent. What is failure ? An apporach to constructive negation.
Acta Informatica, 32:27–59, 1995.

[87] W. Drabent. Completeness of SLDNF-resolution for nonfloundering
queries. The Journal of Logic Programming, 27(2):89–106, 1996.

BIBLIOGRAPHY 367

[88] D. Dussart, E. Bevers, and K. De Vlaminck. Polyvariant constructor
specialisation. In Proceedings of PEPM’95, the ACM Sigplan Sym-
posium on Partial Evaluation and Semantics-Based Program Manip-
ulation, pages 54–65, La Jolla, California, June 1995. ACM Press.

[89] E. Eder. Properties of substitutions and unifications. Journal of
Symbolic Computation, 1:31–46, 1985.

[90] A. Ershov. Mixed computation: Potential applications and problems
for study. Theoretical Computer Science, 18:41–67, 1982.

[91] A. Ershov. On Futamura projections. BIT (Japan), 12(14):4–5, 1982.
In Japanese.

[92] S. Etalle and M. Gabbrielli. A transformation system for modular
CLP programs. In L. Sterling, editor, Proceedings of the 12th Inter-
national Conference on Logic Programming, pages 681–695. The MIT
Press, 1995.

[93] M. S. Feather. A survey and classification of some program trans-
formation techniques. In L. Meertens, editor, Proceedings TC2 IFIP
Working Conference on Program Specification and Transformation,
pages 165–195, Bad Tölz, Germany, 1986.

[94] M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, 1990.

[95] H. Fujita and K. Furukawa. A self-applicable partial evaluator and
its use in incremental compilation. New Generation Computing, 6(2
& 3):91–118, 1988.

[96] Y. Futamura. Partial evaluation of a computation process — an
approach to a compiler-compiler. Systems, Computers, Controls,
2(5):45–50, 1971.

[97] J. Gallagher. A system for specialising logic programs. Technical
Report TR-91-32, University of Bristol, November 1991.

[98] J. Gallagher. Tutorial on specialisation of logic programs. In Proceed-
ings of PEPM’93, the ACM Sigplan Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulation, pages 88–98. ACM
Press, 1993.

[99] J. Gallagher and M. Bruynooghe. Some low-level transformations for
logic programs. In M. Bruynooghe, editor, Proceedings of Meta90
Workshop on Meta Programming in Logic, pages 229–244, Leuven,
Belgium, 1990.

368 BIBLIOGRAPHY

[100] J. Gallagher and M. Bruynooghe. The derivation of an algorithm for
program specialisation. New Generation Computing, 9(3 & 4):305–
333, 1991.

[101] J. Gallagher and D. A. de Waal. Deletion of redundant unary type
predicates from logic programs. In K.-K. Lau and T. Clement, ed-
itors, Logic Program Synthesis and Transformation. Proceedings of
LOPSTR’92, pages 151–167, Manchester, UK, 1992.

[102] J. Gallagher and D. A. de Waal. Fast and precise regular approxima-
tions of logic programs. In P. Van Hentenryck, editor, Proceedings of
the Eleventh International Conference on Logic Programming, pages
599–613. The MIT Press, 1994.

[103] J. Gallagher and L. Lafave. Regular approximations of computation
paths in logic and functional languages. In O. Danvy, R. Glück,
and P. Thiemann, editors, Proceedings of the 1996 Dagstuhl Seminar
on Partial Evaluation, LNCS 1110, pages 115–136, Schloß Dagstuhl,
1996. Springer-Verlag.

[104] P. A. Gardner and J. C. Shepherdson. Unfold/fold transformations
in logic programs. In J.-L. Lassez and G. Plotkin, editors, Computa-
tional Logic, Essays in Honor of Alan Robinson, pages 565–583. MIT
Press, 1991.

[105] M. L. Ginsberg. Negative subgoals with free variables. The Journal
of Logic Programming, 11(3 & 4):271–294, October/November 1991.

[106] A. J. Glenstrup and N. D. Jones. BTA algorithms to ensure termina-
tion of off-line partial evaluation. In Perspectives of System Informat-
ics: Proceedings of the Andrei Ershov Second International Memorial
Conference, LNCS. Springer-Verlag, June 25–28 1996.

[107] R. Glück. Towards multiple self-application. In Proceedings of the
Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation, pages 309–320, New Haven, Connecticut, 1991. ACM
Press.

[108] R. Glück. On the generation of specialisers. Journal of Functional
Programming, 4(4):499–514, 1994.

[109] R. Glück and J. Jørgensen. Efficient multi-level generating extensions
for program specialization. In S. Swierstra and M. Hermenegildo,
editors, Programming Languages, Implementations, Logics and Pro-
grams (PLILP’95), LNCS 982, pages 259–278, Utrecht, The Nether-
lands, September 1995. Springer-Verlag.

BIBLIOGRAPHY 369

[110] R. Glück, J. Jørgensen, B. Martens, and M. H. Sørensen. Controlling
conjunctive partial deduction of definite logic programs. In H. Kuchen
and S. Swierstra, editors, Proceedings of the International Symposium
on Programming Languages, Implementations, Logics and Programs
(PLILP’96), LNCS 1140, pages 152–166, Aachen, Germany, Septem-
ber 1996. Springer-Verlag. Extended version as Technical Report
CW 226, K.U. Leuven.

[111] R. Glück and A. V. Klimov. Occam’s razor in metacomputation: the
notion of a perfect process tree. In G. Filé, P. Cousot, M. Falaschi,
and A. Rauzy, editors, Proceedings of WSA’93, LNCS 724, pages
112–123, Padova, Italy, September 1993. Springer-Verlag.

[112] R. Glück, R. Nakashige, and R. Zöchling. Binding-time analysis ap-
plied to mathematical algorithms. In J. Dolezal and J. Fidler, edi-
tors, 17th IFIP Conference on System Modelling and Optimization,
Prague, Czech Republic, 1995. Chapman & Hall.

[113] R. Glück and M. H. Sørensen. Partial deduction and driving are
equivalent. In M. Hermenegildo and J. Penjam, editors, Program-
ming Language Implementation and Logic Programming. Proceedings,
Proceedings of PLILP’91, LNCS 844, pages 165–181, Madrid, Spain,
1994. Springer-Verlag.

[114] R. Glück and M. H. Sørensen. A roadmap to supercompilation. In
O. Danvy, R. Glück, and P. Thiemann, editors, Proceedings of the
1996 Dagstuhl Seminar on Partial Evaluation, LNCS 1110, pages
137–160, Schloß Dagstuhl, 1996. Springer-Verlag.

[115] C. A. Gurr. A Self-Applicable Partial Evaluator for the Logic Pro-
gramming Language Gödel. PhD thesis, Department of Computer
Science, University of Bristol, January 1994.

[116] C. A. Gurr. Specialising the ground representation in the logic pro-
gramming language Gödel. In Y. Deville, editor, Logic Program Syn-
thesis and Transformation. Proceedings of LOPSTR’93, Workshops
in Computing, pages 124–140, Louvain-La-Neuve, Belgium, 1994.
Springer-Verlag.

[117] J. Gustedt. Algorithmic Aspects of Ordered Structures. PhD thesis,
Technische Universität Berlin, 1992.

[118] N. Heintze. Practical aspects of set based analysis. In Proceedings
of the Joint International Conference and Symposium on Logic Pro-
gramming, pages 765–779, Washington D.C., 1992. MIT Press.

370 BIBLIOGRAPHY

[119] J. Herbrand. Investigations in proof theory. In J. van Heijenoort,
editor, From Frege to Gödel: A Source Book in Mathematical Logic,
1879-1931, pages 525–581. Harvard University Press, 1967.

[120] M. Hermenegildo, R. Warren, and S. K. Debray. Global flow analysis
as a practical compilation tool. The Journal of Logic Programming,
13(4):349–366, 1992.

[121] G. Higman. Ordering by divisibility in abstract algebras. Proceedings
of the London Mathematical Society, 2:326–336, 1952.

[122] P. Hill and J. Gallagher. Meta-programming in logic programming.
Technical Report 94.22, School of Computer Studies, University of
Leeds, 1994. To be published in Handbook of Logic in Artificial Intel-
ligence and Logic Programming, Vol. 5. Oxford Science Publications,
Oxford University Press.

[123] P. Hill and J. W. Lloyd. The Gödel Programming Language. MIT
Press, 1994.

[124] K. Hinkelmann. Transformationen von Hornklausel-Wissensbasen:
Verarbeitung gleichen Wissens durch verschiedene Inferenzen. PhD
thesis, Universität Kaiserslautern, 1995.

[125] C. K. Holst. Syntactic currying: yet another approach to partial eval-
uation. Technical report, DIKU, Department of Computer Science,
University of Copenhagen, 1989.

[126] C. K. Holst. Finiteness analysis. In J. Hughes, editor, Proceedings of
the 5th ACM Conference on Functional Programming Languages and
Computer Architecture (FPCA), LNCS 523, pages 473–495. Springer-
Verlag, August 1991.

[127] C. K. Holst and J. Launchbury. Handwriting cogen to avoid problems
with static typing. Working paper, 1992.

[128] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[129] T. Horváth. Experiments in partial deduction. Master’s thesis, De-
partement Computerwetenschappen, K.U. Leuven, Belgium, 1993.

[130] J. Hughes. Backwards analysis of functional programs. In D. Bjørner,
A. P. Ershov, and N. D. Jones, editors, Partial Evaluation and Mixed
Computation, pages 187–208. North-Holland, 1988.

BIBLIOGRAPHY 371

[131] D. Jacobs and A. Langen. Static analysis of logic programs for inde-
pendent AND-parallelism. The Journal of Logic Programming, 13(2
&3):291–314, May/July 1992.

[132] J.-M. Jacquet. Constructing Logic Programs. Wiley, Chichester, 1993.

[133] J. Jaffar and M. J. Maher. Constraint logic programming: A survey.
The Journal of Logic Programming, 19 & 20:503–581, 1994.

[134] G. Janssens and M. Bruynooghe. Deriving descriptions of possible
values of program variables by means of abstract interpretation. The
Journal of Logic Programming, 13(2 & 3):205–258, 1992.

[135] N. D. Jones. The essence of program transformation by partial eval-
uation and driving. In M. S. Neil D. Jones, Masami Hagiya, edi-
tor, Logic, Language and Computation, LNCS 792, pages 206–224.
Springer-Verlag, 1994.

[136] N. D. Jones. An introduction to partial evaluation. ACM Computing
Surveys, 28(3):480–503, September 1996.

[137] N. D. Jones. What not to do when writing an interpreter for spe-
cialisation. In O. Danvy, R. Glück, and P. Thiemann, editors, Pro-
ceedings of the 1996 Dagstuhl Seminar on Partial Evaluation, LNCS
1110, pages 216–237, Schloß Dagstuhl, 1996. Springer-Verlag.

[138] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall, 1993.

[139] N. D. Jones and A. Mycroft. Stepwise development of operational and
denotational semantics for Prolog. In Proceedings of the 1984 Inter-
national Symposium on Logic Programming, pages 289–298, Atlantic
City, New Jersey, 1984. IEEE Computer Society Press.

[140] N. D. Jones, P. Sestoft, and H. Søndergaard. An experiment in
partial evaluation: The generation of a compiler generator. In J.-
P. Jouannaud, editor, Rewriting Techniques and Applications, LNCS
202, pages 124–140, Dijon, France, 1985. Springer-Verlag.

[141] N. D. Jones, P. Sestoft, and H. Søndergaard. Mix: a self-applicable
partial evaluator for experiments in compiler generation. LISP and
Symbolic Computation, 2(1):9–50, 1989.

[142] J. Jørgensen and M. Leuschel. Efficiently generating efficient gener-
ating extensions in Prolog. In O. Danvy, R. Glück, and P. Thiemann,

372 BIBLIOGRAPHY

editors, Proceedings of the 1996 Dagstuhl Seminar on Partial Evalu-
ation, LNCS 1110, pages 238–262, Schloß Dagstuhl, 1996. Springer-
Verlag. Extended version as Technical Report CW 221, K.U. Leuven.

[143] J. Jørgensen, M. Leuschel, and B. Martens. Conjunctive partial de-
duction in practice. In J. Gallagher, editor, Proceedings of the Inter-
national Workshop on Logic Program Synthesis and Transformation
(LOPSTR’96), LNCS 1207, pages 59–82, Stockholm, Sweden, August
1996. Springer-Verlag. Also in the Proceedings of BENELOG’96. Ex-
tended version as Technical Report CW 242, K.U. Leuven.

[144] T. Kanamori and K. Horiuichi. Construction of logic programs based
on generalized unfold/fold rules. In J.-L. Lassez, editor, Proceedings of
the 4th International Conference on Logic Programming, pages 744–
768. The MIT Press, 1987.

[145] T. Kanamori and T. Kawamura. Oldt-based abstract interpretation.
The Journal of Logic Programming, 15:1–30, 1993.

[146] S. Kleene. Introduction to Metamathematics. van Nostrand, Prince-
ton, New Jersey, 1952.

[147] K. Knight. Unification: A multidisciplinary survey. ACM Computing
Surveys, 21(1):93–124, March 1989.

[148] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching
in strings. Siam Journal on Computing, 6(2):323–350, 1977.

[149] H.-P. Ko and M. E. Nadel. Substitution and refutation revisited. In
K. Furukawa, editor, Logic Programming: Proceedings of the Eighth
International Conference, pages 679–692. MIT Press, 1991.

[150] J. Komorowksi. A Specification of an Abstract Prolog Machine and
its Application to Partial Evaluation. PhD thesis, Linköping Uni-
versity, Sweden, 1981. Linköping Studies in Science and Technology
Dissertations 69.

[151] J. Komorowski. Partial evaluation as a means for inferencing data
structures in an applicative language: a theory and implementation
in the case of prolog. In Ninth Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages. Albuquerque,
New Mexico, pages 255–267, 1982.

[152] J. Komorowski. An introduction to partial deduction. In A. Pet-
torossi, editor, Proceedings Meta’92, LNCS 649, pages 49–69.
Springer-Verlag, 1992.

BIBLIOGRAPHY 373

[153] R. Kowalski. Predicate logic as a programming language. In Proceed-
ings IFIP Congress, pages 569–574. IEEE, 1974.

[154] R. Kowalski and D. Kühner. Linear resolution with selection function.
Artificial Intelligence, 2:227–260, 1971.

[155] J. B. Kruskal. Well-quasi ordering, the tree theorem, and Vaz-
sonyi’s conjecture. Tansactions of the American Mathematical So-
ciety, 95:210–225, 1960.

[156] V. Küchenhoff. On the efficient computation of the difference between
consecutive database states. In C. Delobel, M. Kifer, and Y. Ma-
sunaga, editors, Deductive and Object-Oriented Databases, Second
International Conference, pages 478–502, Munich, Germany, 1991.
Springer-Verlag.

[157] A. Lakhotia. To PE or not to PE. In M. Bruynooghe, editor, Pro-
ceedings of Meta90 Workshop on Meta Programming in Logic, pages
218–228, Leuven, Belgium, 1990.

[158] A. Lakhotia and L. Sterling. How to control unfolding when special-
izing interpreters. New Generation Computing, 8:61–70, 1990.

[159] J. Lam and A. Kusalik. A comparative analysis of partial deductors
for pure Prolog. Technical report, Department of Computational Sci-
ence, University of Saskatchewan, Canada, May 1990. Revised April
1991.

[160] J.-L. Lassez, M. Maher, and K. Marriott. Unification revisited. In
J. Minker, editor, Foundations of Deductive Databases and Logic Pro-
gramming, pages 587–625. Morgan-Kaufmann, 1988.

[161] K.-K. Lau, M. Ornaghi, A. Pettorossi, and M. Proietti. Correctness
of logic program transformations based on existential termination. In
J. W. Lloyd, editor, Proceedings of ILPS’95, the International Logic
Programming Symposium, pages 480–494, Portland, USA, December
1995. MIT Press.

[162] J. Launchbury. Projection Factorisations in Partial Evaluation. Dis-
tinguished Dissertations in Computer Science. Cambridge University
Press, 1991.

[163] J. L. Lawall. Continuation Introduction and Elimination in Higher-
Order Programming Langauges. PhD thesis, Department of Computer
Science, Indiana University, USA, October 1994.

374 BIBLIOGRAPHY

[164] S. Y. Lee and T. W. Ling. Improving integrity constraint checking
for stratified deductive databases. In Proceedings of DEXA’94, 1994.

[165] S. Y. Lee and T. W. Ling. Further improvement on integrity con-
straint checking for stratifiable deductive databases. In Proceedings
of the 22nd VLDB Conference, Mumbai (Bombay), India, 1996.

[166] M. Leuschel. Self-applicable partial evaluation in Prolog. Master’s
thesis, Departement Computerwetenschappen, K.U. Leuven, Bel-
gium, 1993.

[167] M. Leuschel. Partial evaluation of the “real thing”. In L. Fri-
bourg and F. Turini, editors, Logic Program Synthesis and Transfor-
mation — Meta-Programming in Logic. Proceedings of LOPSTR’94
and META’94, LNCS 883, pages 122–137, Pisa, Italy, June 1994.
Springer-Verlag.

[168] M. Leuschel. Ecological partial deduction: Preserving characteristic
trees without constraints. In M. Proietti, editor, Logic Program Syn-
thesis and Transformation. Proceedings of LOPSTR’95, LNCS 1048,
pages 1–16, Utrecht, The Netherlands, September 1995. Springer-
Verlag.

[169] M. Leuschel. Prototype partial evaluation system to obtain spe-
cialised integrity checks by specialising meta-interpreters. Pro-
totype Compulog II, D 8.3.3, Departement Computerwetenschap-
pen, K.U. Leuven, Belgium, September 1995. Obtainable at
ftp://ftp.cs.kuleuven.ac.be/pub/compulog/ICLeupel/.

[170] M. Leuschel. The ecce partial deduction system and the dppd library
of benchmarks.
Obtainable via http://www.cs.kuleuven.ac.be/~lpai, 1996.

[171] M. Leuschel and D. De Schreye. An almost perfect abstraction oper-
ator for partial deduction. Technical Report CW 199, Departement
Computerwetenschappen, K.U. Leuven, Belgium, December 1994.

[172] M. Leuschel and D. De Schreye. An almost perfect abstraction
operation for partial deduction using characteristic trees. Techni-
cal Report CW 215, Departement Computerwetenschappen, K.U.
Leuven, Belgium, October 1995. Accepted for Publication in New
Generation Computing. Revised in December 1996. Accessible via
http://www.cs.kuleuven.ac.be/~lpai.

BIBLIOGRAPHY 375

[173] M. Leuschel and D. De Schreye. Towards creating specialised in-
tegrity checks through partial evaluation of meta-interpreters. In
Proceedings of PEPM’95, the ACM Sigplan Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 253–
263, La Jolla, California, June 1995. ACM Press.

[174] M. Leuschel and D. De Schreye. Creating specialised integrity checks
through partial evaluation of meta-interpreters. Technical Report
CW 237, Departement Computerwetenschappen, K.U. Leuven, Bel-
gium, July 1996. Submitted for Publication.

[175] M. Leuschel, D. De Schreye, and A. de Waal. A conceptual embedding
of folding into partial deduction: Towards a maximal integration. In
M. Maher, editor, Proceedings of the Joint International Conference
and Symposium on Logic Programming JICSLP’96, pages 319–332,
Bonn, Germany, September 1996. MIT Press.

[176] M. Leuschel and B. Martens. Obtaining specialised update procedures
through partial deduction of the ground representation. In H. Decker,
U. Geske, T. Kakas, C. Sakama, D. Seipel, and T. Urpi, editors, Pro-
ceedings of the ICLP’95 Joint Workshop on Deductive Databases and
Logic Programming and Abduction in Deductive Databases and Know-
ledge Based Systems, GMD-Studien Nr. 266, pages 81–95, Kanagawa,
Japan, June 1995.

[177] M. Leuschel and B. Martens. Partial deduction of the ground repre-
sentation and its application to integrity checking. In J. W. Lloyd,
editor, Proceedings of ILPS’95, the International Logic Programming
Symposium, pages 495–509, Portland, USA, December 1995. MIT
Press. Extended version as Technical Report CW 210, K.U. Leuven.
Accessible via http://www.cs.kuleuven.ac.be/~lpai.

[178] M. Leuschel and B. Martens. Global control for partial deduction
through characteristic atoms and global trees. In O. Danvy, R. Glück,
and P. Thiemann, editors, Proceedings of the 1996 Dagstuhl Seminar
on Partial Evaluation, LNCS 1110, pages 263–283, Schloß Dagstuhl,
1996. Springer-Verlag.

[179] M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisa-
tion and polyvariance in partial deduction of normal logic programs.
Technical Report CW 248, Departement Computerwetenschappen,
K.U. Leuven, Belgium, February 1996. Submitted for Publication.

376 BIBLIOGRAPHY

[180] M. Leuschel, B. Martens, and K. Sagonas. Preserving termination of
tabled logic programs while unfolding. April 1997. Accepted for the
Pre-Proceedings of LOPSTR’97.

[181] M. Leuschel and D. Schreye. Logic program specialisation: How to
be more specific. In H. Kuchen and S. Swierstra, editors, Proceed-
ings of the International Symposium on Programming Languages, Im-
plementations, Logics and Programs (PLILP’96), LNCS 1140, pages
137–151, Aachen, Germany, September 1996. Springer-Verlag.

[182] M. Leuschel and M. H. Sørensen. Redundant argument filtering of
logic programs. In J. Gallagher, editor, Proceedings of the Inter-
national Workshop on Logic Program Synthesis and Transformation
(LOPSTR’96), LNCS 1207, pages 83–103, Stockholm, Sweden, Au-
gust 1996. Springer-Verlag.

[183] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog:
a logic programming language for dynamic domains. The Journal of
Logic Programming, 1997. To appear.

[184] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
1987.

[185] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic pro-
gramming. The Journal of Logic Programming, 11(3& 4):217–242,
1991.

[186] J. W. Lloyd, E. A. Sonenberg, and R. W. Topor. Integrity checking
in stratified databases. The Journal of Logic Programming, 4(4):331–
343, 1987.

[187] J. W. Lloyd and R. W. Topor. Making PROLOG more expressive.
Journal of Logic Programming, 1(3):225–240, 1984.

[188] J. W. Lloyd and R. W. Topor. A basis for deductive database systems.
The Journal of Logic Programming, 2:93–109, 1985.

[189] M. Maher. A logic programming view of CLP. In D. S. Warren, editor,
Proceedings of the 10th International Conference on Logic Program-
ming, pages 737–753. The MIT Press, 1993.

[190] R. Marlet. Vers une Formalisation de l’Évaluation Partielle. PhD
thesis, Université de Nice - Sophia Antipolis, December 1994.

BIBLIOGRAPHY 377

[191] K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs.
In Proceedings of the Joint International Conference and Symposium
on Logic Programming, pages 909–923, Seattle, 1988. IEEE, MIT
Press.

[192] K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs.
Annals of Mathematics and Artificial Intelligence, 1:303–338, 1990.

[193] A. Martelli and U. Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[194] M. Martelli and C. Tricomi. A new SLDNF-tree. Information Pro-
cessing Letters, 43(2):57–62, 1992.

[195] B. Martens. Finite unfolding revisited (part II): Focusing on sub-
terms. Technical Report Compulog II, D 8.2.2.b, Departement Com-
puterwetenschappen, K.U. Leuven, Belgium, 1994.

[196] B. Martens. On the Semantics of Meta-Programming and the Control
of Partial Deduction in Logic Programming. PhD thesis, K.U. Leuven,
February 1994.

[197] B. Martens and D. De Schreye. Two semantics for definite meta-
programs, using the non-ground representation. In K. R. Apt and
F. Turini, editors, Meta-logics and Logic Programming, pages 57–82.
MIT Press, 1995.

[198] B. Martens and D. De Schreye. Why untyped non-ground meta-
programming is not (much of) a problem. The Journal of Logic Pro-
gramming, 22(1):47–99, 1995.

[199] B. Martens and D. De Schreye. Automatic finite unfolding using
well-founded measures. The Journal of Logic Programming, 28(2):89–
146, August 1996. Abridged and revised version of Technical Report
CW180, Departement Computerwetenschappen, K.U.Leuven, Octo-
ber 1993, accessible via http://www.cs.kuleuven.ac.be/~lpai.

[200] B. Martens, D. De Schreye, and T. Horváth. Sound and complete par-
tial deduction with unfolding based on well-founded measures. The-
oretical Computer Science, 122(1–2):97–117, 1994.

[201] B. Martens and J. Gallagher. Ensuring global termination of partial
deduction while allowing flexible polyvariance. In L. Sterling, editor,
Proceedings ICLP’95, pages 597–613, Kanagawa, Japan, June 1995.

378 BIBLIOGRAPHY

MIT Press. Extended version as Technical Report CSTR-94-16, Uni-
versity of Bristol.

[202] G. Metakides and A. Nerode. Principles of Logic and Logic Program-
ming. North-Holland, 1996.

[203] D. Meulemans. Partiële deductie: Een substantiële vergelijkende
studie. Master’s thesis, Departement Computerwetenschappen, K.U.
Leuven, Belgium, 1995.

[204] A. Miniuissi and D. J. Sherman. Squeezing intermediate construction
in equational programs. In O. Danvy, R. Glück, and P. Thiemann, edi-
tors, Proceedings of the 1996 Dagstuhl Seminar on Partial Evaluation,
LNCS 1110, pages 284–302, Schloß Dagstuhl, 1996. Springer-Verlag.

[205] T. Mogensen. The application of partial evaluation to ray-tracing.
Master’s thesis, DIKU, University of Copenhagen, Denmark, 1986.

[206] T. Mogensen. Constructor specialization. In Proceedings of PEPM’93,
the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 22–32. ACM Press, June 1993.

[207] T. Mogensen and A. Bondorf. Logimix: A self-applicable partial
evaluator for Prolog. In K.-K. Lau and T. Clement, editors, Logic
Program Synthesis and Transformation. Proceedings of LOPSTR’92,
pages 214–227. Springer-Verlag, 1992.

[208] A. Mulkers, W. Winsborough, and M. Bruynooghe. Live-structure
data-flow analysis for prolog. ACM Transactions on Programming
Languages and Systems, 16(2):205–258, 1994.

[209] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Com-
putation Algorithm for Top-Down Abstract Interpretation of Logic
Programs. Technical Report ACT-DC-153-90, Microelectronics and
Computer Technology Corporation (MCC), Austin, TX 78759, Apr.
1990.

[210] K. Muthukumar and M. Hermenegildo. Combined determination of
sharing and freeness of program variables through abstract interpreta-
tion. In K. Furukawa, editor, Proceedings of the Eighth International
Conference on Logic Programming, pages 49–63, Paris, 1991. MIT
Press, Cambridge.

[211] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of
Variable Dependency Using Abstract Interpretation. The Journal of
Logic Programming, 13(2&3):315–347, July 1992.

BIBLIOGRAPHY 379

[212] L. Naish. Higher-order logic programming in Prolog. Technical
Report 96/2, Department of Computer Science, University of Mel-
bourne, 1995.

[213] A. P. Nemytykh, V. A. Pinchuk, and V. F. Turchin. A self-applicable
supercompiler. In O. Danvy, R. Glück, and P. Thiemann, editors, Pro-
ceedings of the 1996 Dagstuhl Seminar on Partial Evaluation, LNCS
1110, pages 322–337, Schloß Dagstuhl, 1996. Springer-Verlag.

[214] G. Neumann. Transforming interpreters into compilers by goal classi-
fication. In M. Bruynooghe, editor, Proceedings of Meta90 Workshop
on Meta Programming in Logic, pages 205–217, Leuven, Belgium,
1990.

[215] G. Neumann. A simple transformation from Prolog-written metalevel
interpreters into compilers and its implementation. In A. Voronkov,
editor, Logic Programming. Proceedings of the First and Second Rus-
sian Conference on Logic Programming, LNCS 592, pages 349–360.
Springer-Verlag, 1991.

[216] M. H. A. Newman. On theories with a combinatorial definition of
‘equivalence’. Annals of Mathematics, 43(2):223–243, 1942.

[217] J.-M. Nicolas. Logic for improving integrity checking in relational
databases. Acta Informatica, 18(3):227–253, 1982.

[218] U. Nilsson and J. Ma luszyński. Logic, Programming and Prolog. Wi-
ley, Chichester, 1990.

[219] R. O’Keefe. On the treatment of cuts in Prolog source-level tools. In
Proceedings of the Symposium on Logic Programming, pages 68–72.
IEEE, 1985.

[220] S. Owen. Issues in the partial evaluation of meta-interpreters. In
H. Abramson and M. Rogers, editors, Meta-Programming in Logic
Programming, Proceedings of the Meta88 Workshop, June 1988, pages
319–339. MIT Press, 1989.

[221] M. Paterson and M. Wegman. Linear unification. Journal of Com-
puter and System Sciences, 16(2):158–167, 1978.

[222] A. Pettorossi and M. Proietti. Transformation of logic programs:
Foundations and techniques. The Journal of Logic Programming,
19& 20:261–320, May 1994.

380 BIBLIOGRAPHY

[223] A. Pettorossi and M. Proietti. Rules and strategies for transforming
functional and logic programs. ACM Computing Surveys, 28(2):360–
414, June 1996.

[224] A. Pettorossi, M. Proietti, and S. Renault. Enhancing partial de-
duction by unfold/fold rules. In J. Gallagher, editor, Proceedings of
the International Workshop on Logic Program Synthesis and Trans-
formation (LOPSTR’96), LNCS 1207, Stockholm, Sweden, August
1996. Springer-Verlag. To appear.

[225] A. Pettorossi, M. Proietti, and S. Renault. Reducing nondeterminism
while specializing logic programs. In N. D. Jones, editor, Proceed-
ings of ACM Symposium on Principles of Programming Languages
(POPL’97), pages 414–427, Paris, France, January 1997.

[226] D. Poole and R. Goebel. Gracefully adding negation and disjunction
to Prolog. In E. Shapiro, editor, Proceedings of the Third Interna-
tional Conference on Logic Programming, pages 635–641. Springer-
Verlag, 1986.

[227] S. Prestwich. The PADDY partial deduction system. Technical Re-
port ECRC-92-6, ECRC, Munich, Germany, 1992.

[228] S. Prestwich. An unfold rule for full Prolog. In K.-K. Lau and
T. Clement, editors, Logic Program Synthesis and Transformation.
Proceedings of LOPSTR’92, Workshops in Computing, University of
Manchester, 1992. Springer-Verlag.

[229] S. Prestwich. Online partial deduction of large programs. In Pro-
ceedings of PEPM’93, the ACM Sigplan Symposium on Partial Eval-
uation and Semantics-Based Program Manipulation, pages 111–118.
ACM Press, 1993.

[230] M. Proietti and A. Pettorossi. Semantics preserving transformation
rules for Prolog. In Proceedings of the ACM Symposium on Partial
Evaluation and Semantics based Program Manipulation, PEPM’91,
Sigplan Notices, Vol. 26, N. 9, pages 274–284, Yale University, New
Haven, U.S.A., 1991.

[231] M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this
order, for avoiding unnecessary variables in logic programs. In
J. Ma luszyński and M. Wirsing, editors, Proceedings of the 3rd Inter-
national Symposium on Programming Language Implementation and
Logic Programming, PLILP’91, LNCS 528, pages 347–358. Springer-
Verlag, 1991.

BIBLIOGRAPHY 381

[232] M. Proietti and A. Pettorossi. The loop absorption and the general-
ization strategies for the development of logic programs and partial
deduction. The Journal of Logic Programming, 16(1 & 2):123–162,
May 1993.

[233] M. Proietti and A. Pettorossi. Completeness of some transforma-
tion strategies for avoiding unnecessary logical variables. In P. Van
Hentenryck, editor, Proceedings of International Conference on Logic
Programming, ICLP’94, MIT Press, pages 714–729, 1994.

[234] M. Proietti and A. Pettorossi. Synthesis of programs from unfold/fold
proofs. In Y. Deville, editor, Logic Program Synthesis and Transfor-
mation. Proceedings of LOPSTR’93, Workshops in Computing, pages
141–158, Louvain-La-Neuve, Belgium, 1994. Springer-Verlag.

[235] Prolog by BIM 4.0, October 1993.

[236] T. C. Przymusinksi. On the declarative and procedural semantics of
logic programs. Journal of Automated Reasoning, 5(2):167–205, 1989.

[237] G. Puebla and M. Hermenegildo. Implementation of multiple spe-
cialization in logic programs. In Proceedings of PEPM’95, the ACM
Sigplan Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, pages 77–87, La Jolla, California, June 1995.
ACM Press.

[238] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 55–76. Plenum Press, 1978.

[239] T. Reps. Program specialization via program slicing. In O. Danvy,
R. Glück, and P. Thiemann, editors, Proceedings of the 1996 Dagstuhl
Seminar on Partial Evaluation, LNCS 1110, pages 409–429, Schloß
Dagstuhl, 1996. Springer-Verlag.

[240] A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, 1965.

[241] S. A. Romanenko. A compiler generator produced by a self-applicable
specializer can have a surprisingly natural and understandable struc-
ture. In D. Bjørner, A. P. Ershov, and N. D. Jones, editors, Partial
Evaluation and Mixed Computation, pages 445–463. North-Holland,
1988.

[242] F. Sadri and R. Kowalski. A theorem-proving approach to database
integrity. In J. Minker, editor, Foundations of Deductive Databases

382 BIBLIOGRAPHY

and Logic Programming, chapter 9, pages 313–362. Morgan Kauf-
mann Publishers, Inc., Los Altos, California, 1988.

[243] K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive
database engine. In Proceedings of the ACM SIGMOD International
Conference on the Management of Data, pages 442–453, Minneapolis,
Minnesota, May 1994. ACM.

[244] D. Sahlin. An Automatic Partial Evaluator for Full Prolog. PhD
thesis, Swedish Institute of Computer Science, March 1991.

[245] D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog.
New Generation Computing, 12(1):7–51, 1993.

[246] T. Sato. Equivalence-preserving first-order unfold/fold transforma-
tion systems. Theoretical Computer Science, 105:57–84, 1992.

[247] S. Schoenig and M. Ducassé. A backward slicing algorithm for prolog.
In R. Cousot and D. A. Schmidt, editors, Static Analysis, Proceed-
ings of 3rd International Symposium, SAS’96, LNCS, pages 317–331,
Aachen, Germany, September 1996. Springer-Verlag.

[248] H. Seidl. Parameter-reduction of higher-level grammars. Theoretical
Computer Science, 55:47–85, 1987.

[249] H. Seki. Unfold/fold transformation of stratified programs. Theoret-
ical Computer Science, 86:107–139, 1991.

[250] H. Seki. Unfold/fold transformation of general programs for the
well-founded semantics. The Journal of Logic Programming, 16:5–
23, 1993.

[251] R. Seljée. A new method for integrity constraint checking in deductive
databases. Data & Knowledge Engineering, 15:63–102, 1995.

[252] J. C. Shepherdson. Language and equality theory in logic program-
ming. Technical Report PM-91-02, University of Bristol, 1991.

[253] J. C. Shepherdson. Unsolvable problems for SLDNF resolution. The
Journal of Logic Programming, 10(1,2,3 & 4):19–22, 1991.

[254] D. A. Smith. Constraint operations for CLP(FT). In K. Furukawa,
editor, Logic Programming: Proceedings of the Eighth International
Conference, pages 760–774. MIT Press, 1991.

BIBLIOGRAPHY 383

[255] D. A. Smith. Partial evaluation of pattern matching in constraint
logic programming languages. In N. D. Jones and P. Hudak, editors,
ACM Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, pages 62–71. ACM Press Sigplan Notices 26(9),
1991.

[256] D. A. Smith and T. Hickey. Partial evaluation of a CLP language.
In S. Debray and M. Hermenegildo, editors, Proceedings of the North
American Conference on Logic Programming, pages 119–138. MIT
Press, 1990.

[257] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm
of Mercury: An efficient purely declarative logic programming lan-
guage. The Journal of Logic Programming, 1996. To Appear.

[258] M. H. Sørensen and R. Glück. An algorithm of generalization in
positive supercompilation. In J. W. Lloyd, editor, Proceedings of
ILPS’95, the International Logic Programming Symposium, pages
465–479, Portland, USA, December 1995. MIT Press.

[259] M. H. Sørensen, R. Glück, and N. D. Jones. Towards unifying partial
evaluation, deforestation, supercompilation, and GPC. In D. San-
nella, editor, Programming Languages and Systems — ESOP ’94.
Proceedings, LNCS 788, pages 485–500, Edinburgh, Scotland, 1994.
Springer-Verlag.

[260] M. Sperber. Self-applicable online partial evaluation. In O. Danvy,
R. Glück, and P. Thiemann, editors, Proceedings of the 1996 Dagstuhl
Seminar on Partial Evaluation, LNCS 1110, pages 465–480, Schloß
Dagstuhl, 1996. Springer-Verlag.

[261] L. Sterling and R. D. Beer. Metainterpreters for expert system con-
struction. The Journal of Logic Programming, 6(1 & 2):163–178,
1989.

[262] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[263] M. Stickel. Upside-down meta-interpretation for the model-elimina-
tion theorem-proving procedure for deduction and abduction. April
1993.

[264] J. Stillman. Computational Problems in Equational Theorem Proving.
PhD thesis, State University of New York at Albany, 1988.

[265] K. Stroetmann. A completeness result for SLDNF-resolution. The
Journal of Logic Programming, 15(4):337–35, April 1993.

384 BIBLIOGRAPHY

[266] P. J. Stuckey. Constructive negation for constraint logic program-
ming. In Proceedings, Sixth Annual IEEE Symposium on Logic in
Computer Science, pages 328–339, Amsterdam, The Netherlands,
July 1991. IEEE Computer Society Press.

[267] P. J. Stuckey. Negation and constraint logic programming. Informa-
tion and Computation, 118(1):12–33, April 1995.

[268] A. Takeuchi and K. Furukawa. Partial evaluation of Prolog programs
and its application to meta programming. In H.-J. Kugler, editor,
Information Processing 86, pages 415–420, 1986.

[269] H. Tamaki and T. Sato. Unfold/fold transformations of logic pro-
grams. In S.-Å. Tärnlund, editor, Proceedings of the Second Inter-
national Conference on Logic Programming, pages 127–138, Uppsala,
Sweden, 1984.

[270] H. Tamaki and T. Sato. OLD Resolution with Tabulation. In
E. Shapiro, editor, Proceedings of the Third International Conference
on Logic Programming, number 225 in LNCS, pages 84–98, London,
July 1986. Springer-Verlag.

[271] P. Tarau and K. De Bosschere. Memoing techniques for logic pro-
grams. In Y. Deville, editor, Logic Program Synthesis and Transfor-
mation. Proceedings of LOPSTR’93, Workshops in Computing, pages
196–209, Louvain-La-Neuve, Belgium, 1994. Springer-Verlag.

[272] F. Tip. A survey of program slicing techniques. Journal of Program-
ming Languages, 3:121–181, 1995.

[273] V. F. Turchin. The concept of a supercompiler. ACM Transactions
on Programming Languages and Systems, 8(3):292–325, 1986.

[274] V. F. Turchin. The algorithm of generalization in the supercompiler.
In D. Bjørner, A. P. Ershov, and N. D. Jones, editors, Partial Evalu-
ation and Mixed Computation, pages 531–549. North-Holland, 1988.

[275] V. F. Turchin. Program transformation with metasystem transitions.
Journal of Functional Programming, 3(3):283–313, 1993.

[276] V. F. Turchin. Metacomputation: Metasystem transitions plus super-
compilation. In O. Danvy, R. Glück, and P. Thiemann, editors, Pro-
ceedings of the 1996 Dagstuhl Seminar on Partial Evaluation, LNCS
1110, pages 482–509, Schloß Dagstuhl, 1996. Springer-Verlag.

BIBLIOGRAPHY 385

[277] M. van Emden and R. Kowalski. The semantics of predicate logic as
a programming language. Journal of the ACM, 23(4):733–742, 1976.

[278] F. van Harmelen. The limitations of partial evaluation. In P. Jackson
and F. van Harmelen, editors, Logic-Based Knowledge Representa-
tion, pages 87–111. MIT Press, 1989.

[279] R. Venken. A Prolog meta interpreter for partial evaluation and its
application to source to source transformation and query optimiza-
tion. In ECAI-84: Advances in Artificial Intelligence, pages 91–100,
Pisa, Italy, 1984. North-Holland.

[280] R. Venken and B. Demoen. A partial evaluation system for Prolog:
Theoretical and practical considerations. New Generation Comput-
ing, 6(2 & 3):279–290, 1988.

[281] P. Wadler. Deforestation: Transforming programs to eliminate in-
termediate trees. Theoretical Computer Science, 73:231–248, 1990.
Preliminary version in ESOP’88, LNCS 300.

[282] M. Wallace. Compiling integrity checking into update procedures. In
J. Mylopoulos and R. Reiter, editors, Proceedings of IJCAI, Sydney,
Australia, 1991.

[283] D. H. D. Warren. Higher-order extensions to Prolog: Are they
needed? In J. E. Hayes, D. Michie, and Y.-H. Pao, editors, Ma-
chine Intelligence 10, pages 441–454. Ellis Horwood Ltd., Chicester,
England, 1982.

[284] D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Automatic on-
line partial evaluation. In Proceedings of the Conference on Func-
tional Programming Languages and Computer Architectures, LNCS
523, pages 165–191, Harvard University, 1991. Springer-Verlag.

[285] W. Winsborough. Multiple specialization using minimal-function
graph semantics. The Journal of Logic Programming, 13(2 & 3):259–
290, 1992.

386 BIBLIOGRAPHY

Index

2D, 323
<S , 88
Ancγ(n), 116
P ↓G, 35
PLm, 157
PLu , 156
T ↑ ∞, 18
T ↑ i, 18
TP , 18
TP (A), 299
UP (A), 299
UL, 152
[L]P , 197
2, 15
[H|T], 12
∆, ∆̂, 149
[], 12
Πbi, 196
Πb, 91
Πcl, 196
Πc, 91
Θ+

U (G), 178
Θ−U (G), 178
DP (A, τ), 68, 90
ε, 324
≡S , 88
=r, 226
∃(F), 14
γP (A, τA), 66
�∗ca, 115
�∗, 111, 270
�, 109, 125
〈. . .〉, 324

d.e, 113, 113
chabsP,U , 56
chatoms(Ã,P ,U), 86
chatom(A,P ,U), 86
chtree(← Q ,P ,U), 53
hvecT (.), 88
mgu(S), 21
mgu∗, 176
M(A), 226
ρα,p, 228
θ |V , 20
>P , 247
∀(F), 14
], 324
∧, 14
abstract∆, 152
comp(P), 19
dom(θ), 20
f∗, 323
f∪, 323
gen∆, 152
h(t), 88
leaves(τ), 33
leavesP (A, τ), 69
lfp(TP), 18
msv(P), 299
msvA(C), 299
neg(U), 176
pos(U), 176
prefix (τ), 102
ran(θ), 20
resultants(τ), 33

387

388 INDEX

vars(E), 20
AP , 15
BP , 16
HP , 16
LP , 15
UP , 16
“p”(t1, . . . , tn), 184
“T ”, 184
false, 13, 14
true, 13, 14

A-closed, 34
A-covered, 35
abduction, 217
abductive logic programming, 173
abstract compilation, 3, 168, 169
abstract interpretation, 64, 167,

224, 303, 315
abstraction, 45, 271

syntactic, 49
abstraction operator, 45, 271

safe, 151
accumulating parameter, 316, 317
admissible renaming, 75
algorithm

conjunctive msv, 310
conjunctive partial deduction,

276
ecological partial deduction,

87
FAR, 263
minimisation of finite state au-

tomata, 121
msg of characteristic trees, 104
off-line partial deduction, 153
partial deduction with global

trees, 118
RAF, 254
RAF (polyvariant), 260
standard partial deduction, 45

alphabet, 11, 12
underlying a program, 15

annotation, 150
answer, 20
anti-unification, 21
arc, 324
arity, 12
assert, 186
associativity
∧, 14, 225

atom, 12
atomic renaming, 227

fresh, 233
automated theorem proving, 1
automatic memory management,

2
axiom of choice, 112

backtracking behaviour, 278
base, 16
beam determinate, 39
binding, 17
binding-time analysis, 144, 148,

150, 150, 152, 153, 155,
165, 166, 167, 168, 169

safe, 151
binding-time classification, 150, 150,

153, 154, 155, 158, 159,
165, 167

safe, 151
bindings

left-propagation, 198
block, 271, 272
body of clause, 15
bound occurrence, 14
BTA, (see binding-time analysis)
BTC, (see binding-time classifi-

cation)
built-ins, 28, 93, 125, 126, 184,

329

c.a.s., (see computed answer)
cardinality, 323
cartesian product, 323

INDEX 389

CET, (see Clark’s equality the-
ory)

characteristic atom, 65
concretisation, 66
precise concretisation, 66
safe, 68
unconstrained, 67
well-formed, 66

characteristic conjunction, 269, 276
characteristic path, 51

concatenation, 79
characteristic tree, 53, 65, 278

adornment, 64
improving precision, 90
improving precision, 90, 283
normalised, 64

child, 324
Clark’s equality theory, 19, 93
clause, 15
clause numbers, 50
closed world assumption, 17
closedness, 34, 222
closure, 14
CLP, (see constraint logic program-

ming)
cogen, 144, 146, 147, 148, 151,

152, 155, 159, 166, 169
mulit-level, 169

cogen, 335, 337, 339
cogen approach, 146, 148, 154, 157,

165
common instance, 34
compiler, 144
compiler generator, 144
compiler techniques, 1, 2
complete SLD-derivation, 22
completed definition, 19
completeness of SLD, 23
completion, 19
composition, 20
computed answer, 23

incomplete derivation, 32

sequence, 197
computed answer substitution, (see

computed answer)
computed instance, 23
concatenation, 324
concretisation, 66

precise, 86
confluence, 255
conjunction

reordering, 226
conjunctive partial deduction, 169,

223
fair, 236

connective, 11
consequence, 13
constant, 12, 12

static vs. dynamic, 126
constant folding, 3
constrained atom, 92
constrained partial deduction, 91,

93, 94
constraint, 91
constraint logic programming, 91
constructive negation, 27, 93
constructor specialisation, 161
contiguous connected subconjunc-

tions, 274
control of polyvariance, 44, 45
copy, 186
correct answer, 20, 24
correct instance, 23
coveredness, 35, 222
covering ancestor, 43, 277
cut, 197
CWA, 17

dangling leaf, 32
database, 174

update, 173
declarative programming language,

1, 322
deduction, 1

390 INDEX

deductive database, 173, 174, 175
definite clause, 15
definite clause grammar, 168, 328
definite goal, 15
definite program, 15
definition, 19

completed, 19
definition of a predicate, 247
definition rule, 233
deforestation, 222, 224, 273, 279,

283, 304, 328, 330, 331
denotational semantics, 197, 198
dependence upon p, 35
depth bound, 95, 136
depth-k abstraction, 64
derivation, 22
determinate unfolding, 277
determinate post-unfolding, 278
determinate tree, 39

beam, 39
fork, 39
shower, 39

determinate unfolding, 39, 93, 94,
127

determincay, 39
deterministic, 168
de Bruijn numbering, 111
diamond lemma, 255
division, 149

more general, 149
domain of substitution, 20
downward closed, 67
driving, 166

negative information, 94
dynamic argument, 148, 149
dynamic input, 29
dynamic meta-programming, 186,

190
dynamic renaming, 57

ecce, 91, 125, 125, 126, 130, 162,
163, 164, 165, 223, 256,

283, 304, 306, 314
ecological partial deduction, 278
embedding, 109
embedding extension, 110
empty clause, 15
empty list, 12
empty substitution, 19
equality, 19
equivalence, 13
erasure, 247

applying, 247
correct, 248
maximal, 248
safe, 252

evaluation, 29
existential closure, 14
existential quantifier, 12
expression, 18, 87

fact, 174
failed derivation, 22
failure

persistence, 80, 81
fair, 236
Fibonacci, 306
filtering, 245
findall, 156, 157, 158, 166, 185
findall, 185
finite failure, 22
finite state automaton

minimisation, 121
first-order language, 13
first-order logic, 1, 11

vs. logic programming, 17
fixpoint, 18
floundering, 27
fold-allowing, 236, 238
folding, 232

implicit, 222
folding rule, 232
fork determinate, 39
formula, 13, 14

INDEX 391

free occurrence, 14
FT , 92, 93
full erasure, 247
fully unfoldable, 126
function symbol, 11, 12
functional programming, 1, 166
functionality, 305, 305, 306
functor

static vs. dynamic, 126
Futamura projections, 3, 144, 217

generalisation
syntactic, 49

generalisation operator, 45
generating extension, 147, 158
global control, 36
global graph, 121
global tree, 116, 275

well-quasi-ordered, 117
goal, 15
goal switching, 273
Gödel, 28, 157, 163, 166
graph, 324
ground, 16
ground representation, viii, 147,

157, 184, 184, 313, 314,
328, 355, 357

groundness analysis, 167, 168

head of clause, 15
Herbrand base, 16
Herbrand interpretation, 16
Herbrand model, 16, 18

least, 16, 17
minimal, 16

Herbrand universe, 16
higher-order programming, 3, 329
homeomorphic embedding, 39, 43,

109, 270, 275, 277, 278,
282

dynamic functors, 125
homomorphism, 323

Horn clause, 1

idempotent, 20
identity substitution, 19
idleness test, 177
if-then-else, 125
immediate consequence operator,

18
in-lining, 3
inconsistency, 14

in databases, 174
inconsistency indicators, 174
independence, 34, 222
induced updates, 177
inductive logic programming, 173
infinite failure, 22
infinitely failed derivation, 22
inherited from, 236
instance, 18

common, 34
integrity checking

pre-compiling, 313, 314
specialised, 314

integrity constraint, 173, 174, 175
violation, 174

interpretation, 13, 16
domain, 13

interpreter, 144

Knuth-Morris-Pratt, 329

labelled global graph, 121
labelling, 324
λ-calculus, 1
language, 13

underlying a program, 15
LD-derivation, 24, 269
LD-tree, 24
leaf, 324

dangling, 32
leaf atom, 69
least fixpoint, 18

392 INDEX

least general generalisation, 21
least Herbrand model, 16, 17
leupel, 162, 164, 165, 199, 201,

202, 204, 206, 207, 208,
209, 213, 215, 223

lexicographical ordering, 275
Lisp, 168
list length, 42
list notation, 12
literal, 14
local control, 36
logen, 159, 162, 223, 335–346
logic

first-order, 11
logic programming, 1
logical consequence, 13
logical equivalence, 13
logimix, 161, 162, 164, 165, 188,

223
lookahead, 39, 127
loop checking, 187, 190
LST, 177, 202

map/3, 28, 329
maximal connected subconjunction,

271
mcs, (see maximal connected sub-

conjunction)
memoisation, 166
Mercury, 3, 168, 284
meta-interpreter, 182
meta-program, 182
meta-programming, 182

renaming apart, 185
specifying partial knowledge,

187
unfolding, 187
unification, 185
variant test, 187

mgu, 21
mgu∗, 176
minimal Herbrand model, 16

mixed computation, 29
mixed representation, 188, 328
mixtus, 126, 128, 130, 146, 161,

163, 164, 165, 199, 223,
279, 281, 282, 291

model, 13, 16
monovariance, 64
monovariant, 44, 121
more general, 19
more specific program, 246
more specific resolution, 125, 278
more specific version, 299
most general instance, 21
most general unifier, 21
most specific generalisation, 21

characteristic atoms, 109
msg, 21, 49
msg∗, 299
multiple specialisation, 199
multiset, 226

NAF, (see negation as failure)
natural extension, 323
natural numbers

modelling, 17
negation as failure, 25
neighbourhoods, 135
new predicates, 233
node, 324
non-determinism, 2
non-ground representation, 147, 184
non-monotonic inference, 17
non-reducible, 152
normal program, 15
normal program clause, 15

object program, 182
off-line, 143, 144
old predicates, 233
OLDT, 224, 303, 317
on-line, 143
order of solutions, 127

INDEX 393

ordered subconjunction, 270
contiguous, 270

P-characteristic atom, 66
paddy, 126, 130, 146, 163, 164,

165, 199, 223, 279, 281,
291

parent, 324
parsing problem, 134, 282
partial deducer, 32
partial deduction, 1, 2, 31, 32, 33,

221, 295
for a characteristic atom, 69
of A, 33
of A, 33
of a conjunction, 225
wrt A, 33

partial evaluation, 1, 2, 29, 221
partial order

non-strict, 43
strict, 42

partially specified data, 2
partitioning function, 227

non-contiguous, 228
pattern matching, 329
phantomness test, 177
PLAI, 167
polyvariance, 44

superfluous, 121
poset, 43
post-processing, 278
potential update, 175, 176, 176,

314
potentially added, 178
potentially deleted, 178
powerset, 323
pre-compilation, 183
pre-fixpoint, 18
pre-interpretation, 13
precedence, 13
precise concretisation, 66
predecessor, 324

predicate
partially deduced, 33

predicate dependency graph, 35
predicate symbol, 11, 12
predicates

old and new, 233
process tree, 135
program, 15

definite, 15
normal, 15

program clause, 15
program specialisation, 2, 221, 295,

319
program transformation, 221
Prolog, 12, 24, 28, 39, 40, 93, 269

termination, 127
Prolog by BIM, 128, 129, 279
proposition, 12
pruning constraint, 93, 94
punctuation symbol, 12, 13
purely determinate, 39

quantifier, 12
quasi-monotonic, 116
query, 15

RAF, (see redundant argument fil-
tering)

range, 20
range-restricted, 174, 175
ray tracing, 3
recursive function, 29
RedCompile, 168
reducible, 152
redundant argument, 245, 248
redundant argument filtering, 254,

278
polyvariant, 260

redundant clause, 64
redundant variables, 222
refinement, 309

least, 309

394 INDEX

refutation, 14, 22
regular approximation, 315
regular approximation, 245
regular expression, 330
relation, 324
relevant unifier, 21
renaming, 57, 222, 245, 253

admissible, 75
atomic, 227

renaming function, 228
renaming substitution, 19
reordering, 283
residual program, 29
resolvent, 21

incomplete derivation, 32
restriction of substitution, 20
resultant, 33, 224, 225
resultant tuple, 309

interpretation, 309
retract, 186
root, 324
rule, 174

s-poset, 42
sage, 163, 164, 189, 223
Scheme, 166
scope, 14
selected atom, 21
selection rule, 24

left-to-right, 24
self-application, 3, 30, 144, 164
sequences, 324
set

partially ordered, 43
partially strictly ordered, 42

set-based analysis, 315
sharing analysis, 167
shower determinate, 39
SLD, 22, 23
SLD+-derivation

complete, 22
SLD-derivation

complete, 22
incomplete, 32

SLD-derivation step, 21
SLD-refutation, 22
SLD-tree

complete, 23
fair, 236
illustration, 24, 50
non-trivial, 236

SLDNF, 24
incompleteness, 27

SLDNF-derivation, 32
complete, 26
generalised, 68

safe, 68
unsafe, 68

incremental, 178, 179
length, 33
pseudo, 26
rank, 25

SLDNF-tree, 32
incomplete, 32
non-trivial, 32
pseudo, 25
trivial, 32

SLDNFA, 217
SLDNFE, 27
SLS, 27, 313
software development, 319
soundness of SLD, 23
sp, 125, 126, 130, 161, 163, 164,

223, 278, 279, 292
specialised update procedure, 182
specialiser projections, 145, 315
speedup

super-linear, 305
total, 128, 279
weighted, 279

splitting, 270
non-contiguous, 273

standard partial deduction, 45, 295
standardising apart, 22, 185

INDEX 395

static argument, 148, 149
static conjunction, 275
static input, 29
structure, 91
substitution, 17, 19

composition, 20
domain, 20
empty, 19
idempotent, 20
range, 20
renaming, 19

successor, 324
supercompilation, 31, 94, 95, 109,

135, 136, 224

T&S-definition rule, 233
T&S-folding rule, 232
tabling, 166, 187, 190, 214, 224,

303
Tamaki-Sato folding, 253
term, 12
term rewriting systems, 109
termination, 127
termsize, 278
trace term, 64
transformation complexity, 275
transformation sequence, 234
tree, 324
truth value, 13
tuple, 324
tupling, 222, 283
type, 67
type graphs, 315

unfold/fold, 2, 31, 221, 231, 273
unfolding, 32, 231

mixtus-like, 126, 278
determinate, 214, 277
indexed, 277

unfolding rule, 38, 231
unification, 21

explicit, 184, 185, 314, 355,
357

unifier, 21
unit (code size), 129, 256, 278
universal closure, 14
universal quantifier, 12

inside clauses, 15
universe, 16
unnecessary polyvariance, 278
update

concrete, 182
pattern, 182

useless clauses, 245

vanilla meta-interpreter, 134
variable, 11, 12
variable renaming, 232
variable-chained sequence, 271
variant, 19

characteristic atoms, 108

weight vector, 88
weighted speedup, 279
well-formed formula, 13
well-founded, 42
well-founded order, 39, 42
well-quasi order, 39, 43, 270
wfo, 42
whistle, 277, 278
wqo, (see well-quasi order)

XSB, 166, 214

396 INDEX

ein wort
Ein Wort, ein Satz —: aus Chiffern steigen
erkanntes Leben, jäher Sinn,
die Sonne steht, die Sphären schweigen
und alles ballt sich zu ihm hin.

Ein Wort —, ein Glanz, ein Flug, ein Feuer,
ein Flammenwurf, ein Sternenstrich —,
und wieder Dunkel, ungeheuer,
im leeren Raum um Welt und Ich.

Gottfried Benn, 1941.

