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Abstract. We describe practical experiences of using a logic program-
ming based approach to model and reason about concurrent systems.
We argue that logic programming is a good foundation for developing,
prototyping, and animating new specification languages. In particular,
we present the new high-level specification language CSP(LP), unifying
CSP with concurrent (constraint) logic programming, and which we hope
can be used to formally reason both about logical and concurrent aspects
of critical systems.
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1 Introduction and Summary

This (position) paper describes work carried out within the recently started
projects ABCD! and iMoc.2 The objective of the ABCD project is to increase
the uptake of formal methods in the business critical systems industry by low-
ering the cost of entry and increasing the benefits of using formal modelling.
The focus is on support of system definition and architectural design so that
the systems integrator can more easily model systems and validate proposed
system architectures. A main point is to apply formal methods—such as model
checking—early on in the software development cycle, i.e., on high-level specifi-
cations or high-level prototypes of the particular business critical system to be
developed.
To effectively lower the cost of entry for industrial users, we want a specifi-
cation and/or prototyping language which is
— powerful and high-level enough to specify business and safety critical systems
in a natural and succinct manner. For example, we want sophisticated data-
structures and do not want to force the architect to have to come up with
artificial abstractions himself.

! «Automated validation of Business Critical systems using Component-based Design,”
EPSRC grant GR/M91013, with industrial collaborators IBM, ICL, Praxis Critical
Systems, and Roke Manor Research.

% “Infinite state MOdel Checking using partial evaluation and abstract interpretation,”
EPSRC grant GR/N11667.



— expressive enough to easily express and reason about concurrency. Ideally,
one would want to compose larger systems from smaller ones, e.g., by putting
them in parallel and allowing various forms of interaction (synchronisation,
asynchronous message passing, shared memory,...), allowing encapsulation
(hiding,...) and re-use (renaming, parameterisation,...). Ideally, one may
also want to consider timing aspects (timeouts, interrupts,.. . ).

— usable by industrial partners (graphical notation) and reduces the potential
of errors (types, consistency checking,...)

To increase the benefits, we want the systems architect to be able to probe
and examine his specification or prototype, e.g., via animation, and automatic
verification, such as model checking.

Currently, the specification language issue within ABCD is still under inves-
tigation. First case studies were carried out using the B-method [1] and CSP
with functions and datatypes [15,29,9]. Other languages and formalisms, such
as Petri nets, the C-like language Promela of Spin [16], the Alloy language of Al-
coa [17], LOTOS, are being studied (see also [13]). However, the language issue
is far from fixed, and we wish to experiment with various extensions and inte-
grations ([4]) of the paradigms. One might also want to consider domain-specific
specification languages (for the ABC project with IBM a domain specific com-
pensation operator has been developed for reliable transaction processing [8]).
As we will show in this paper, an approach based on logic programming and
partial evaluation seems very promising for this problem:

— a lot of languages can be easily encoded in logic programming, because of
features such as non-determinism, unification, co-routining, constraints,. . .

— one can get compilers using offline partial evaluators such as LOGEN [18].
One can do more sophisticated optimisations using online partial evaluation
systems such as MIXTUS [30], sP [10], or ECCE [22]. One can also apply
existing analysers to infer properties about the source program (see [26]).

— one can easily animate such languages in existing Prolog systems,

— one can do finite and infinite state model checking [27,6],[7], [23], [25].

All of this points will be substantiated in this paper, through a non-trivial high-
level specification language. The design of this new language CSP(LP) was heav-
ily influenced by the possibilities of (constraint) logic programming. In partic-
ular, CSP(LP) supports, amongst others, complex datatypes, constraints, con-
currency, message passing via channels & la CSP and CCS, and asynchronous
message passing via streams. We hope that CSP(LP) is a contribution in its
own right, and can be used to formally reason both about logical and concurrent
aspects of critical systems.

2 CSP, CSP-FDR, and CSP(LP)

2.1 Elementary CSP

CSP is a process algebra defined by Hoare [15]. The first semantics associated
with CSP was a denotational semantics in terms of traces, failures and (failure



and) divergences. Elementary CSP (without datatypes, functions, or other ad-
vanced operators) can be defined as follows. Given X, a finite or enumerable set
of actions (which we will henceforth denote by lower case letters a, b, c,...), and
X, an enumerable set of variables or processes (which we henceforth denote by
identifiers such as @, R, ..., oo MYPROCESS starting with an uppercase letter),
the syntax of a basic CSP expression is defined by the following grammar (where
A denotes a set of actions):

P:=  STOP (deadlock) | SKIP (success) |
a — P (prefix) | P N P (internal choice) |
P O P (external choice) | P |A] P (parallel composition) |
P\A (hiding) | Q (instantiation of a process)

Moreover, each process @ used must have a (possibly recursive) definition @ = P.

We suppose that all used processes are defined by at least one recursive
definition (if there is more than one definition this is seen to be like an external
choice of all the right-hand sides). In the following, we also suppose the alphabet
X to be finite.

Intuitively, a — P means that the system proposes the action a to its en-
vironment, which can decide to execute it. The external choice is resolved by
the environment (except when two branches propose the same action, where a
nondeterministic choice is taken in case the environment chooses that action).
Internal choice is made by the system without any control from the environment.
P [A] Q is the generalized parallel operator of [29], and means that the process
P synchronizes with () on any action in the set of actions A. If an action outside
A is enabled in P or @, it can occur without synchronization of both processes.
Pure interleaving P |@] @ is denoted by P ||| Q. Pure synchronization P [X] Q
is denoted by P || Q. The hiding operator P\ A makes any visible action a € A
of P invisible. In the the operational semantics [29] the latter (as well as the
internal choice) is achieved using the internal action 7.

A major practical difference® with CCS [24] is that CSP allows for synchro-
nisation of an arbitrary number of processes (while CCS only supports binary
synchronisation). This makes CSP processes more difficult to implement, but on
the other hand more suitable as the basis of a high-level specification language
(which is what we are after in this paper).

2.2 CSP-FDR and CSP(LP)

The elementary CSP presented above is not very useful in practice, either as a
programming or a specification language, because its lack of value passing and
the absence of more refined operators. [29,9,31] hence presents an extension of
CSP (which we henceforth call CSP-FDR), along with a machine-readable ASCII
syntax, which is usable in practice. CSP-FDR and the tools FDR and PROBE
are used by government institutions and companies, e.g., in the semiconductor,

3 There are plenty of other differences of course. For example, CSP has been devel-
oped with denotational semantics in mind, while CCS is more tightly linked with
bisimulation.



defence, aerospace, and security areas (for the latter, see [28]). In this extension

of CSP one can:

— pass tuples of datavalues on channels. For example, a!1 — STOP will output
the datavalue 1 on the channel a, while a?z — P(z) will read a datavalue
on channel a and bind z to the value read. One can also put additional
constraints on values that are received on a channel,asin a?z : z > 2 — P(z).

— use constructs such as the if-then-else, let-constructs, and operators such as

interrupt and timeout

— use sets and set operations, sequences and sequence operations, integers and
arithmetic operators, tuples, enumerated types, ranges, ...

This extension of CSP was heavily influenced by functional programming
languages, and hence relies on pattern matching as a means to synchronise on
channels. As a consequence, a?z — P(z) can not synchronise with a?y — Q(y).
In the remainder of this paper we show how, by using logic rather than func-
tional programming as our foundation, we can overcome this limitation, thus
leading to a more powerful language CSP(LP) which reconciles CSP-FDR with

(concurrent) logic programming languages.

The basic syntax of CSP(LP) is summarised in Figure 1. The semantics of
CSP(LP) will become clear in the next section, where we show how it can be

mapped to logic programming.

Operator Syntax Ascii Syntax
stop STOP STOP

skip SKIP SKIP

prefix a—Q a->P
conditional prefix a’r:x>1— P a?x:x>1->P
external choice rPOQ PQ
internal choice PnQ P17l Q
interleaving Pll|Q PIIIQ
parallel composition P [A] Q PLlAITIQ
sequential composition P; @ P ->>Q
hiding P\A P\\ A
renaming P[R] PILRI]]
timeout PrQ P[>Q
interrupt PA;Q P/\Q

if then else if t then P else Q if T then P else (

let expressions
agent definition A=P

letv=ein P

let V=E in P
A =P;

Fig. 1. Summary of syntax of CSP(LP)



3 CSP(LP) and logic programming

3.1 Implementation

In this section we present an operational semantics of CSP(LP). Rather than
using natural deduction style rules (as in [29]) we immediately present the (de-
clarative) Prolog code. This code implements a ternary relation trans, where
trans(e, a,e') means that the CSP(LP) expression e can evolve into the expres-
sion e’ by performing the action a. Our language is not committed choice, there
can be multiple solutions for the same e, and the order of those solutions is not
relevant. Apart from a few minor additions, the rules below basically implement
the operational semantics of [29]; the main difference lies in the generalisation
of the synchronisation mechanism.

Basic Operators First, the elementary processes STOP and SKIP are ex-
tremely straightforward to encode:

trans(stop,_,_) :- fail.
trans(skip,tick,stop).

The unconstrained prefix operator is not much more difficult. Observe that
the first argument to prefiz is a tuple of values (annotated by either “!I”, “?” or
“). The constrained prefix operator is slightly more complicated. The actual
implementation of the predicate test actually makes use of the co-routining and
constraints facilities of SICStus Prolog. Notably, we use, e.g., the SICStus dif
predicate, which delays if the arguments are not sufficiently instantiated.

trans(prefix(V,Ch,X), io(V,Ch) ,X).
trans(prefix(V,Ch,Constraint,X), io(V,Ch) ,X) :- test(Constraint).

The CSP choice operators M, O are implemented exactly as in [29]. The
rules for the external choice might seem a bit surprising at first, but they are
needed to ensure that 7 — P behaves like P (7 — P is equivalent to P in the
CSP semantics).

trans(int_choice(X,_Y) ,tau,X).
trans(int_choice(_X,Y),tau,Y).

trans (ext_choice(X,_Y),A,X1) :- trans(X,A,X1),dif(A,taun).
trans(ext_choice(_X,Y),A,Y1) :- trans(Y,A,Y1),dif(A,taun).
trans(ext_choice(X,Y),tau,ext_choice(X1,Y)) :- trans(X,tau,X1).
trans (ext_choice(X,Y),tau,ext_choice(X,Y1)) :- trans(Y,tau,Y1).

One can also implement the CCS style choice operator + (which has a sim-
pler operational semantics, but it treats 7 — P differently from P and hence
neither the CSP failures-divergences semantics nor weak bisimulation [24] is a
congruence for +):



trans(ccs_choice(X,_Y),A,X1) :- trans(X,A,X1).
trans(ccs_choice(_X,Y),A,Y1) :- trans(Y,A,Y1).

Implementing sequential composition is again pretty straightforward:

trans(seq(P,Q),A,seq(P1,Q)) :- trans(P,A,P1), dif(A=tick).
trans(seq(P,Q) ,tau,Q) :- trans(P,tick,_).

Finally, the timeout and interrupt operators >, /A; are implemented as follows:

trans (timeout(P,_Q),A,P1) :- dif(A,tau),trans(P,A,P1).
trans (timeout (P,Q) ,tau,timeout (P1,Q)) :- trans(P,tau,P1).
trans (timeout (_P,Q),tau,Q).

trans (interrupt (P,Q) ,A,interrupt(P1,Q)) :- dif(A,tick),trans(P,A,P1).
trans (interrupt(P,Q),tick,omega) :- trans(P,tick, ).
trans (interrupt(P,Q),1i,Q).

Agent calls and recursion When implementing agent calls to recursive defini-
tions one has to be extremely careful in the presence of divergence and multiple
agent equations.

Suppose that we have a set of agent/2 facts which represent all agent defini-
tion equations. These facts are generated from the CSP(LP) Ascii syntax using a
parser. A first prototype predictive recursive descent parser has been developed
in SICStus Prolog itself using DCG’s.

If there are multiple equations for the same agent, then the entire agent
should be seen as having an ezternal choice between all individual equations.
Now, the following piece of code seems the natural solution:

trans (agent_call(X),A,NewExpr) :-
evaluate_agent_call(X,EX),agent (EX,AE) ,trans (AE,A,NewExpr) .

This implementation is rather efficient, amenable to techniques such as par-
tial evaluation (cf. Section 4.2), and the scoping of parameters works as ex-
pected.? It is also possible to add delay declarations to ensure that a call is only
unfolded if its arguments are sufficiently instantiated.® However, the above code
is not always correct:

— when an infinite number of calls without visible action is possible the inter-
preter might loop, instead of generating a divergent transition system.

— it effectively treats all equations as being in a big C'CS choice rather than
being within an external choice. The interpreter is thus only correct for agent
definitions which never produce a 7 action as their first action.

* Unlike the CSP in FDR [9], where the out!1 within P(out) = out!1->STOP does
not refer to the parameter out if a global channel out exists.

® Although this can be semantically tricky: e.g., what is the logical meaning of a
floundering derivation?



The easiest way to solve this problem is to impose restrictions on the equa-
tions to ensure that the above problems do not arise (similar to what is done
in FDR [9]). If the restrictions are not satisfied one has to generate an explicit
external choice and possibly explicit 7 actions as well. This is not a practical
problem, however, as the translation can be done automatically by the parser.

Let expressions and conditionals Because of the absence of recursion, let
expressions and conditionals are fortunately much less problematic to implement
(below \+ denotes negation):

trans(let (V,VExp,CExp) ,tau,CExp) :- evaluate_argument(VExp,Val),V=Val.

trans(if (Test,Then,_Else),A,X1) :- test(Test), trans(Then,A,X1).
trans (if (Test,_Then,Else),A,X1) :- \+(test(Test)), trans(Else,A,X1).
trans(if (Test,Then),A,X1) :- test(Test), trans(Then,A,X1).

Hiding, Renaming, and Restriction Hiding can be implemented by replac-
ing visible actions by the special 7 action:

trans(hide (Expr,CList), A, hide(X,CList) ) :-

trans (Expr,A,X) ,dif (A,tick) ,not_hidden(A,CList).
trans(hide (Expr,CList), tau, hide(X,CList) ) :-

trans (Expr,A,X) ,hidden(A,CList).
trans(hide (Expr,_CList), tick, omega) :- trans(Expr,tick,_X).

hidden(A,CList) checks whether the channels of A appear within the chan-
nel list CList and not_hidden is its sound negation, implemented using dif.

The following implements renaming. Note that, because of our logic program-
ming foundation, we can quite easily implement relational renaming [29].°

trans (rename (Expr,RenList), RA, rename(X,RenList) ) :-
trans (Expr,A,X), rename_action(A,RenList,RA).

One can also implement CCS-like restriction in much the same style.

Synchronisation Operators via Unification The essence of our implemen-
tation of the parallel composition operators can be phrased as: “synchronisation
is unification.” The classical definition of synchronisation in CSP-FDR is based
on pattern matching: the synchronised values must either be ground and identi-
cal (asin ¢!l — P [{c}| c!1 = Q) or one value must be ground and the other a
free variable (as in ¢!l — P [{c}] ¢’z — Q(z)). We can implement a generalisa-
tion of this scheme, which allows variables or even partially instantiated terms
on both sides and where synchronisation results in unification. This leads to the
following piece of code for the generalised parallel operator:

5 E.g., the expression (a->b->STOP) [[ a<-c, a<-d 1] has the traces {c, d,cb,db}.



trans(par(X,CList,Y), io(V,Ch), par(X1,CList,Y1)) :-
trans(X, io(V1i,Ch), X1),trans(Y, io(V2,Ch), Y1),
unify_values(V1,V2,V) ,hidden(io(V,Ch),CList).
trans(par(X,CList,Y), A, par(X1,CList,Y) ) :-
trans(X,A,X1),dif(A,tick) ,not_hidden(A,CList)). /* covers tau */
trans(par(X,CList,Y), A, par(X,CList,Y1) ) :-
trans(Y,A,Y1),dif(A,tick) ,not_hidden(A,CList)). /* covers tau */
trans(par(X,CList,Y), tau, par(omega,CList,Y) ) :- trans(X,tick,_).
trans (par(X,CList,Y), tau, par(X,CList,omega) ) :- trans(Y,tick,_).
trans (par(omega,CList,omega), tick, omega ).

The interleaving operator ||| is then defined as follows:
trans(interleave(P,Q),A,R) :- trans(par(X,[],Y),A,R).
One can also implement CCS style synchronisation:

trans(ccs_par(X,Y), tau, ccs_par(X1,Y1)) :- trans(X, io(V1i,Ch), X1),
trans(Y,io(V2,Ch), Y1), ccs_unify_values(V1,V2,_V).

trans(ccs_par(X,Y), A, ccs_par(X1,Y) ) :- trans(X,A,X1).

trans(ccs_par(X,Y), A, ccs_par(X,Y1) ) :- trans(Y,A,Y1).

As we will see below, this innocently looking generalisation adds a lot of
power, resulting in a language CSP(LP) which unifies CSP-FDR, (constraint)
logic programming and concurrent logic programming. Of course, from a seman-
tical point of view we have to be very careful when using this extension. For
example, when computing a trace for a CSP(LP) specification, we have to check
that there are concrete values for the uninstantiated variables which satisfy all
the constraints set up by the interpreter.

3.2 The Expressive Power of CSP(LP)

Obviously, CSP(LP) allows one to express basically all things expressible in
CSP-FDR. In this section we illustrate the additional expressivity of CSP(LP).

Classical Prolog in CSP(LP) We first show how one can do “classical” logic
programming within CSP(LP), thus showing it to be a proper extension of both
logic programming as well as of CSP-FDR. E.g. this is how one can encode the
append and double-append predicates in CSP(LP).

App(nil,_Z,_Z) = SKIP;

App(cons(_H,_X),_Y,cons(_H,_Z)) = App(_X,_Y,_Z);

Dapp(_X,_Y,_Z,_R) = App(_X,_Y,_XY) ->> App(_XY,_Z, R);

MAIN = Dapp(cons(a,nil),cons(b,nil),cons(c,nil),_R) ->> (cas!_R -> STOP);

The computed answer is output on channel cas. Note that sequential compo-
sition is used to encode conjunction and SKIP is used to encode success. This
essentially mimics Prolog left-to-right execution. More flexible co-routining can
be encoded using the interleaving operator:”

7 But then, to prevent looping of the interpreter, one needs to generate a r-action for
every unfolding (as discussed in Section 3.1). One could also add delay declarations.



Dapp(_X,_Y,_Z,_R) = App(_X,_Y,_XY) ||| App(_XY,_Z,_R);

Constraints The following encodes the Petri net from [23] (controlling access to

a critical section [cs] via a semaphore) and also shows how one can use constraints
within CSP(LP).

Petri(P,Sem,CS,Y,RC) enter: (Sem>0 and P>0)->Petri(P-1,Sem-1,CS+1,Y,RC);
Petri(P,Sem,CS,Y,RC) exit:(CS>0) -> Petri(P,Sem+1,CS-1,Y+1,RC);
Petri(P,Sem,CS,Y,RC) = restart:(Y>0) -> Petri(P+1,Sem,CS,Y-1,RC+1);

MAIN = Petri(2,1,0,0,0);

Streams and Shared Memory As CSP(LP) can handle logical variables, we
can basically use all the “tricks” of concurrent (constraint) logic programming
languages [32] to represent asynchronous communication via streams (at the cost
of complicating the semantical underpinning, as we have to use delay declarations
to ensure that values are not read before they have been written). The example
below illustrates this feature, where the process INT instantiates a stream (by
generating ever larger numbers) and BUF reads from the stream and outputs
the result on the channel b.

delay BUF(X) until nonvar(X);

BUF(nil) = STOP;

BUF(cons(_H,_T)) = b!_H -> BUF(_T);
INT(_X,cons(_X,_T)) = i!_X -> INT(+(_X,1),_T);
MAIN = 1INT(0,_S) ||l BUF(_S);

One can also encode a limited form of (write-once read-many) shared mem-
ory. In that case variables are similar to pointers which can be passed around
processes. In the simple example below, three processes share the pointer X to
a memory location. When RESET sets this location to 0 the result becomes
immediately visible to the 2 REP processes.

REP(X) = t.X -> REP(X);
RESET(0) = reset -> STOP;
MAIN = (REP(X) ||| REP(X) ||| RESET(X));

3.3 Adding Domain-Specific Features

Inspired by [8], we have added a domain specific compensation operator <. In-
tuitively, P b S behaves like P until the special abort action is performed.
At that point all the actions performed by P since the last commit action are
compensated for in reverse order, according to the renaming specified by S. For
example, for P = a — b — abort — STOP we have that P < {a ¢ c,} has the
trace (a,b, abort,c,). This compensation operator was used to arrive at a suc-
cinct specification of an electronic bookshop in Appendix A. For example, we use
the construct Shopper(id) <t {db.rem + db.add} to ensure that, if the shopper
process Shopper(id) terminates abnormally, books are re-inserted automatically



into the main database db. One can encode more elaborate compensation mech-
anisms, which, e.g., distinguish between sequential and parallel compensations
[8]-

trans(compensate(P,RenLst,CP) ,A,compensate(P1,RenLst,prefix(V,CH,CP))) :-
dif(A,tick),dif(A,io([],abort)),dif(A,io([],commit)),trans(P,A,P1),
compensate_action(A,RenLst,RA), RA = io(V,CH).

trans (compensate(P,RenLst,CP) ,A,compensate(P1,RenLst,CP)) :-
dif (A,tick),dif (A,io([],abort)),dif(A,io([],commit)),trans(P,A,P1),
\+(compensate_action(A,RenLst,_)).

trans (compensate(P,_,_) ,tick,omega) :- trans(P,tick,_).

trans (compensate(P,_,CP),io([],abort),CP) :- trans(P,io([],abort),_).

trans (compensate(P,RenLst,_) ,io([],commit) ,compensate(P1,RenLst,skip)) :-
trans(P,io([],commit),P1).

In the context of our work with industrial partners, we have also been able to
write an interpreter for the high-level PROFORMA language, which is being used
for clinical decision making. All this underlines our claim that logic program-
ming is a very good basis to implement, and experiment with (domain specific)
specification languages. Furthermore, once that implementation is complete, one
can then use many existing, generic tools to obtain features such as animation,
compilation, model checking, without further implementation effort. We demon-
strate this in the following sections.

4 Applying Existing Tools
4.1 Animation

An animator was developed using the Tcl/Tk library of SICStus Prolog 3.8.4.
This turned out to be very straightforward, and the tool depicted in Figure 2
was basically developed in a couple of days (and can be grafted on top of other
interpreters). Part of the code looks like this, where translate_value converts
terms into a form readable by Tcl/Tk:

tcltk_get_options(Options) :- current_expression(CurState),
findall (BT, (trans(CurState,B,_NE),translate_value(B,BT)), Acts),
(history([])-> (Options=Acts) ; (append(Acts,[’BACKTRACK’],Options))).

The tool was inspired by the ARC tool [14] for system level architecture mod-
elling and supports (backtrackable) step-by-step animation of the CSP speci-
fication as well as an iterative deepening search for invalid states. We plan to
provide a graphical notation for CSP(LP) and also link the tool with the partial
evaluators and model checkers described below.

4.2 Compiling using Partial Evaluation

As our interpreter has been written purely declaratively, we can apply many
existing specialisation and analysis tools without much hassle.
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Fig. 2. Screenshot of the Animator for CSP(LP)

One potential application is the compilation of CSP(LP) code into ordinary
Prolog code using partial evaluation. For example, the following is a compilation
of the CSP(LP) process BUF' (in the context of a tracing predicate trace) from
the previous section using the ECCE online partial evaluator [22]:

/* Specialised program generated by Ecce 1.1 */

/* Transformation time: 183 ms */
trace(agent_call(a_BUF (keep(A))),B) :- trace__1(A,B).
trace__1(A,[]).

trace__1([A|B], [io([A],b)|C]) :- trace__1(B,C).

This compilation is very satisfactory, and has completely removed the over-
head of CSP(LP). Further work will be required to achieve efficient, predictable
compilation for all CSP(LP) programs, e.g., by using an offline specialiser such as
[18]. It also seems that partial evaluation could be used to compute the so-called
symbolic operational semantics of CSP-FDR (see, e.g., [20]).

4.3 Model Checking

One can directly link the interpreter either with logic programming based CTL
model checking as in [27, 6], [7], [23, 21] [25] to achieve finite state model checking
at no extra implementation effort.



For instance, when combining® our CSP interpreter with the CTL model
checker of [23], we were able to check CTL formulas such as O(—deadlock),
odeadlock, orestart, O ¢ restart for the Petri process from Section 3.2 (without
the place RC to make the state space finite):

check(F) :- sat(agent_call(a_MAIN),F).
| ?- check(ag(not(p(deadlock)))).

yes

| ?- check(ef(p(deadlock))).

no

| 7- check(ef(p(io([],restart)))).

yes

| ?- check(ag(ef(p(io([],restart))))).
yes

This task again required very little effort, and it would have been much
more work to generate, e.g., a Promela encoding of CSP(LP) for use with model
checker SPIN. In future work, we aim to combine our interpreter directly with an
infinite state model checker, as described in [23], thus providing more powerful
verification and hopefully limiting the need for users to manually abstract the
system to be analysed.

5 Related Work

We are not the first to realise the potential of logic programming for animat-
ing and/or implementing high-level specification languages. See for example [3],
where an animator for VERILOG is developed in Prolog, or [2] where Petri
nets are mapped to CLP. Also, the model checking system XMC contains an
interpreter for value-passing CCS [27,6]. Note, however, that CCS [24] uses a
more low-level communication mechanism than CSP and that we provide a much
richer specification language with sophisticated datatypes, functions, etc.

The idea of automatically generating compilers from interpreters by partial
evaluation is not new either. Its potential for domain specific languages has been
identified more recently (e.g., [5]) but has not yet made a big impact in the logic
programming area. A similar approach is advocated in [11] to systematically
generate correct compilers from denotational semantics specifications in logic
programming. This approach was applied in [19] to verify an Ada implementa-
tion of the“ Bay Area Rapid Transit” controller. The approach in [11,19] has
its root in denotational semantics, while we focus on operational semantics with
associated techniques such as model checking. Also, [11,19] tries to verify im-
plementations while we try to apply our techniques earlier in the software cycle,
to specifications expressed in a new higher-level language (possibly with domain
specific features) but whose verification is (arguably) more tractable than for
the final implementation.

8 For this we had to slightly adapt the interpreter, as the CTL checker currently runs
only in XSB Prolog.



Also, extending logic programming for concurrency is not new. Many concur-
rent (constraint) logic programming languages have been developed (see, e.g.,
[32]). Compared to these languages, we have added synchronous message passing
communication via named channels, as well as many CSP-specific operators and
features (such as the distinction between internal and external choice). A partic-
ular, more recent language worth mentioning is Oz [33, 12], which also integrates
(amongst others) concurrency with logic programming. All of the above are real
programming languages, whereas we are interested in a specification language
suitable to rigorous mathematical inspection and verification. In other words,
we want to be able to reason about distributed and concurrent systems, and not
necessarily develop efficient distributed programs.
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A Simple E-bookshop in CSP(LP)

-- a generic database

agent DB(multiset) : {db};

DB(nil) = db'!empty?_pid -> DB(nil);

DB(_State) = db7member._x?_pid: (_x in _State) -> DB(_State);
DB(_State) = db7add?_x7_pid -> DB(cons(_x,_State));

DB(_State) = db?rem?_x7_pid: _x in _State -> DB(rem(_State,_x));
DB(_State) = db7nexists?_x7_pid: not(_x in _State) -> DB(_State);

—— a basket is a database
agent NewBasket : {basket};
NewBasket = DB(nil) [[ {db <- basket} 1];

-- a shopper process with its own basket
agent NewShopper(integer) : {pay,db};
NewShopper(_id) =
(((Shopper(_id) [| {basket} |] NewBasket) \\ {basket} )
<> {db.rem<-db.add} ) \\ {abort,commit}
->> end!_id->STOP;

agent Shopper(integer) : {pa,db,basket,checkout,quit};
Shopper(_id) = db!member!_x!_id ->
((db'!'rem._x!_id -> basket'!add._x!_id -> Shopper(_id)) N
(db'nexists._x!_id -> Shopper(_id)) );
Shopper(_id) = checkout!_id -> Payer(_id);
Shopper(_id) = quit!_id -> abort -> SKIP;

agent Payer(integer) : {pay,db,basket};
Payer(_id) =

((pay!_id?ok —-> commit -> SKIP) []

(pay!_id?ko -> dbladd!_x -> abort -> SKIP) );
Payer(_id) = basket7empty -> SKIP;

-- a simple credit card agency
agent CreditCardAgency(multiset) : {pay};
CreditCardAgency(_DB) = pay7_id!ok:(_id in _DB) -> CreditCardAgency(_DB) ;
CreditCardAgency(_DB) =
pay?_id!'ko:not(_id in _DB) -> CreditCardAgency(_DB);

-- a test system with 2 shoppers and 2 books
agent MAIN : {db,pay};
MAIN = (DB(cons(the_bible,cons(das_kapital,nil)))
[l {av} I]
( NewShopper(1) ||| NewShopper(2)
)) [l {pay} |1 CreditCardAgency(cons(1,nil));



