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Abstract. State space visualization is a popular technique for support-
ing the analysis and verification of formal models. It often allows users
to get a global view of the system and to identify structural similarities,
symmetries, and unanticipated properties (only to name a few). However,
state spaces typically become very large, so human inspection of the vi-
sualization becomes difficult. To overcome this challenge, we present an
approach which can considerably reduce the size of the state space by
creating projection diagrams. Moreover, we present an approach to link a
projection diagram with a domain specific visualization. The projection
diagram construction can be initiated directly from user-selected graphical
objects, without the user having to write formulas or having to know the
variables or internal structure of the model. This makes the projection dia-
gram inspection and construction accessible to non-formal method experts.
These techniques have been implemented within the ProB toolset, and we
demonstrate their benefits and usefulness on a case study.
Keywords: Formal Methods, B-Method, State Space, Visualization, Hu-
man Inspection, Domain Specific Visualization, Tool Support.

1 Introduction and Motivation

In state-based formal methods, such as the Classical-B method [2] and its successor
Event-B [1], the system behaviour is modelled by states and transitions. A state
is a particular configuration of variables, whereas transitions link two states and
represent the evolution of the system. Transitions are triggered by the execution
of an operation (or event in Event-B). Some states are marked as initial and the
set of states and transitions reachable from the intial state is the state space of
the model.

The state space can be constructed and validated automatically via model check-
ing [6]. In this process, the validity of temporal properties will be checked, but the
state space itself is “invisible” to the user. However, often it is important for the
developer or a domain expert to inspect the state space (or parts of it) manu-
ally. This can be achieved interactively with animation [8] or by visualizing the
state space [23]. The latter can be especially useful to identify structural simi-
larities, symmetries, and unanticipated properties from the system (only to name
a few) [23]. However, most state space visualization tools and techniques do not
scale well. Indeed, the number of states and transitions typically become very



large, especially at more concrete, refinement levels, and human inspection of the
visualization thus becomes a very difficult task. As an example, consider the state
space visualization shown in Figure 1 (the reader is not expected to be able to
read the diagram, just get a general impression of the problem statement). The
visualization was generated with ProB [18], a validation toolset with support for
Event-B [1] and Classical-B [2], as well as other formalisms (e.g. [19], [10] and [21]).
The visualization shows the full state space (145 states and 673 transitions) of the
first refinement level of the landing gear system Event-B model taken from [9].
Although the visualization shown in Figure 1 is produced at an abstract level (the
whole model covers 6 refinement steps), it is already hard to grasp by humans.

Fig. 1: Full state space visualization of the first refinement of the landing gear system

To overcome this challenge, we present an approach to considerably reduce the
complexity of a state space visualization by creating projection diagrams. The
main objective of the approach is to support human verification of the system by
highlighting relevant aspects of the model (e.g. certain variables or a particular
behaviour), while hiding information that is not relevant from the diagram. We
describe the approach in detail and show that even for large or very large state
spaces the diagram may provide valuable insights. The approach has been imple-
mented into the ProB toolset with support for Event-B, Classical-B, TLA+ and
Z models. However it is generic so that it can also be integrated into another tool
that is capable of producing a state space of a formal model.

In the second part of this paper, we present an approach to link a projection
diagram to a domain specific visualization developed with BMotion Studio [15].
The resulted domain specific diagram consists of the basic projection diagram
enhanced with graphical elements that come from the linked domain specific vi-
sualization. An important insight is the fact that the diagram can be generated
from the graphical visualization directly, without the user having to know the vari-
ables of the model nor having to type expressions in a formal modelling language.
We explain the underlying algorithm of the domain specific diagram and provide
an implementation that comes as an extension of the ProB toolset. In order to
demonstrate the approach, we provide a live visualization, that can be tested and
evaluated online at [14]. Finally, we draw conclusions, discuss future improvements
for the approach, and compare our work with related work.



Running Example Throughout the paper, we use the Event-B model and the
domain specific visualization of the ABZ landing gear system case study1 taken
from [9] to demonstrate our approach. The full specification and a detailed de-
scription of the case study is available at [5].

The landing gear system is composed of three parts: a digital part including
the control software, a pilot interface, and a mechanical part which contains the
triplicated doors and gears. The system is in charge of controlling the retraction
and extension sequence of the gears with respect to the doors and the pilot handle.
The latter serves as the input to the system.

2 Basic Projection Diagram Algorithm

In this paper, we explain our approach based on the Event-B method [1] and
the ProB tool [18]. However, the presented approach is generic and could also
be integrated for other state-based formal methods and tools that are capable of
producing a state space of a formal model. For instance, the approach has also
been applied to Classical-B, TLA+ and Z models.

The starting point of our approach is to explore the state space of a formal model.
This can be achieved via model-checking [6] or interactively with animation [8].
Note that for our approach it is not mandatory to exhaustively explore the full
state space of the formal model. The algorithm can also be applied on partial
explored state spaces and provides feedback about which states have not yet been
fully explored (see Section 2.1). As described in [20], the state space can be viewed
as a non-deterministic labelled transition system (LTS):

Definition 1 (LTS). An LTS is a 4-tuple (Q,Σ, q0, δ) where Q is the set of states,
Σ the alphabet for labelling the transitions, q0 the initial state and δ ⊆ Q×Σ×Q
is the transition relation. By q

a−→ q′ we denote that (q, a, q′) ∈ δ.

Figure 2 shows a simple example of an LTS for an Event-B model with two
variables x and y. Each node in the graph represents a state of the model, where
each state is defined by a particular configuration of the two variables x and y. In
the following, we use the notation [v1 = r1, ..., vn = rn] to name the configuration
of a state, where v1 = r1, ..., vn = rn are the variables (vx) and their values (rx) in
the respective state. For instance, the initial state q0 (the node with the incoming
serrated arrow) has the configuration [x = 0, y = 0].

The edges in the graph represent the possible transitions of the LTS (δ). In
Event-B, a transition is the execution of an event, which is specified as a gener-
alised substitution allowing deterministic and non-deterministic assignments to be
specified. Each transition is labelled with the corresponding event name, where
Σ = {set x, set y, reset} defines the names of the possible events. For instance,
the event set x can modify the value of the variable x from 0 to 1, which is denoted

by the transition [x = 0, y = 0]
set x−→ [x = 1, y = 0] shown in Figure 2.

The next step in the construction of a projection diagram of an LTS consists of
defining a projection function. All states with the same value for the projection

1 The website http://stups.hhu.de/ProB/index.php5/ABZ14 contains the model and a
live visualization of the ABZ landing gear system.



function are merged into an equivalence class. A transition leads from one equiva-
lence class C to another C ′ if there is a transition from one state s ∈ C to a state
s′ ∈ C ′. Formally, one can define the projection of an LTS as follows:

Definition 2 (Projection). Let L = (Q,Σ, q0, δ) be an LTS and p a projection
function with domain Q. The projection of the LTS using p, denoted by Lp, is
defined to be the LTS (Qp, Σ, p(q0), δp), with Qp = {p(s) | s ∈ Q} and δp =

{p(s) ev−→ p(s′) | s ev−→ s′ ∈ δ)}.

x=0,y=0

set_yset_x

x=1,y=0 x=0,y=1

x=1,y=1

set_y set_x

reset

Fig. 2: Simple LTS

0

set_y
set_x

1

set_y

reset

Fig. 3: Projection of the LTS onto the vari-
able x

Each element in Qp represents an equivalence class, where each equivalence class
merges the states of Q (the states of the original LTS) that have the same value for
the projection function p. To illustrate the idea of a projection, consider Figure 3.
The diagram shows the projection of the simple LTS of Figure 2 onto the variable
x using the projection function p([x = vx, y = vy]) = vx. The projection of an
LTS may obviously not be equivalent to the original LTS, as the sequences of the
events are not necessarily possible in the original LTS. However, all sequences of
the original LTS are possible in any projection of it.2 In order to reduce clutter
in the projection diagram, one can also remove self loops, i.e., removing the event
set y. This is useful, if a user wants to focus on the transitions that can change
the value of the projection function.

2.1 Categorizing Edges and Equivalence Classes

To provide a more refined visualization we categorize the equivalence classes and
edges. We distinguish between definite and non-definite, as well as between de-
terministic and non-deterministic edges. In addition, we distinguish between two
types of equivalence classes: the equivalence classes that contain only one single

2 I.e., the original LTS is a trace refinement of the projection LTS.



state and the equivalence classes that have not yet been fully explored (e.g., if the
state space has not been explored exhaustively).

In the following subsections we explain the different types of edges and equiva-
lence classes and illustrate them with an example. To do this, let L = (Q,Σ, q0, δ)

be an LTS and Lp = (Qp, Σ, p(q0), δp, E) its projection. Given an edge x
ev−→

y ∈ δp, we denote x as the source and y as the target equivalence class. More-
over, we call an edge x

ev−→ y ∈ δp enabled for a particular state s, with s ∈ x if
∃s′ · (s′ ∈ y ∧ s ev−→ s′ ∈ δ).

Class1 Class2

e

e

e

definite

Fig. 4: Definite edge

Class1 Class2

e

e

e

semi-det

Fig. 5: Semi-deterministic edge

Definite Edges. An edge is definite, iff it is enabled in all states of the source
equivalence class. Thus, the set of all definite edges of Lp can be defined as follows:

Definite = {x ev−→ y | x ev−→ y ∈ δp ∧ ∀s · (s ∈ x⇒∃s′ · (s′ ∈ y ∧ s ev−→ s′ ∈ δ))}.

Figure 4 illustrates the idea of a definite edge: there is a definite edge between
the equivalence classes Class1 and Class2 whenever e is enabled in all states of
the source equivalence class (Class1 ). An edge is non-definite iff it is not definite.
In order to distinguish the different edge types in the projection diagram, definite
edges are drawn as solid lines, while non-definite edges are drawn as dashed lines.3

Semi-Deterministic and Non-Deterministic Edges. As illustrated in Fig-
ure 5, an edge e is semi-deterministic iff the underlying event always leads to the
same target equivalence class (Class2 ) from the source class (Class1 ). However, it
does not have to be enabled in all states of the source equivalence class (Class1 ).
Thus, the set of all semi-deterministic edges of Lp is defined as follows:

SemiDet = {x ev−→ y | x ev−→ y ∈ δp ∧ ¬(∃z · (z 6= y ∧ x ev−→ z ∈ δp))}.

Furthermore, we denote an edge as non-deterministic if it is not semi-deterministic.
Thus, the set of all non-deterministic edges of Lp is composed of all edges (δp) ex-
pect of the semi-deterministic edges (SemiDet):

NonDet = δp \ SemiDet .

3 In ProB the user can customize the style and colour of the edge types.



Figure 6 shows an example of a non-deterministic edge. Given the three equiv-
alence classes Class1, Class2 and Class3, the edge e is non-deterministic if e is
enabled and it leads to at least two distinct target equivalence classes (e.g. Class2
and Class3 ).

Class1 Class2

Class3

e

e

e

non-det

non-det

Fig. 6: Non-deterministic edge

Deterministic and Non-Deterministic Definite Edges. An edge is deter-
ministic if it is both semi-deterministic and definite. As an example, the edge e
shown in Figure 4 is definite and deterministic. This is because e is enabled in
all states of the source equivalence class (Class1 ) and it leads to the same target
equivalence class (Class2 ). The set of all edges of Lp that are deterministic and
definite is defined as:

DetDef = SemiDet ∩ Definite.

Moreover, edges that are non-deterministic and definite are defined as follows:

NonDetDef = NonDet ∩ Definite.

For instance, the edge shown in Figure 6 is definite and non-deterministic as it
is enabled in all states of the source equivalence class (Class1 ) and it leads to two
distinct target equivalence classes (Class2 and Class3 ).

Non-deterministic, semi-deterministic, deterministic and definite edges are dis-
tinguished by their colour (which can be set by the user).

Single State and Partial Equivalence Classes. An equivalence class is sin-
gle, iff one state is merged into the equivalence class. Thus, the set of all single
equivalence classes can be defined as follows:

Single = {x | x ∈ Qp ∧ card({s|s ∈ Q ∧ p(s) = x}) = 1}.



For instance, the equivalence class Class3 in Figure 6 is single, as it contains
only one state.

Furthermore, we highlight the equivalence classes that have non yet been fully
explored. This may be the case, whenever the full state space has not been exhaus-
tively explored. As in the categorization of edges, the different types of equivalence
classes are distinguished by their (user defined) colour.

2.2 Application of the Projection Diagram

Note, from now on we will use projection functions of the form p(s) = eval(E, s),
where s ∈ Q, E an expression over the variables and constants of the model, and
eval is the function that evaluates the expression E in state s. The projection
function is thus defined by a “custom” expression E. With this scheme, we can
project the state space of a model on a single variable v (E = v) but also on
a set of variables v1, . . . , vk (E = (v1 7→ . . . 7→ vk)). We can also project on
particular properties of a variable v, e.g., its cardinality (E = card(v)) or its range
(E = ran(v)).

In this Section we present some example applications of the projection diagram
and demonstrate how we have applied it in the process of validating the landing
gear model introduced in Section 1.

The handle and gears of the landing gear system are closely related, since the
extension and retraction of the gears can always be interrupted by a counter order
of the handle. A projection on both aspects of the model (the gears and the pilot
handle) helped us to inspect their behaviour in the process of modelling the landing
gear system. To do this, consider the visualization of the projection diagram shown
in Figure 7. The visualization was produced with ProB and demonstrates the
projection of the fourth refinement level of an earlier version of the landing gear
model (the full state space covers 6,283 states and 31,299 transitions) using the
projection function p(s) = eval(E, s), with E = ran(gear) 7→ handle. Note that
ran(gear) is the set of states of the three gears, abstracting away which particular
gear is in which state. E.g., ran(gear) has the same value {retracted, gear moving}
for gear = {left 7→ retracted , right 7→ retracted , front 7→ gear moving} and gear =
{left 7→ gear moving , right 7→ gear moving , front 7→ retracted}.

Each rectangle represents an equivalence class (all states with the same value for
the expression E) and is labelled with the associated expression value, as well as
with the number of states that are merged into the equivalence class. A directed
edge between two equivalence classes represents a transition which is labelled with
the associated event name.

The diagram confirms that in every state the handle can be toggled (the corre-
sponding transitions are definite) and that the only event which can modify the
handle is env toggle handle. We can also see that the gears do not jump directly
from retracted to extended or vice versa. The transitions for changing the gear
state are not definite: this is to be expected, as the doors have to put into the
correct position first. This again confirms our intuition about the modelled sys-
tem. A quick look at the diagram also reveals an unexpected behaviour. The three
gears are always in the same state (card(ran(gear))) is always 1), which is too
restrictive: the gears and doors should move asynchronously. Figure 8 shows the



projection of the sixth refinement level, where the unexpected behaviour was fixed
using the same projection function as before.4 Now, the diagram clearly shows
that the three gears can now move at different speeds.

ran(gear) |-> handle

# states: 1

({gear_moving}|->down)

# states: 2624

({gear_moving}|->up)

# states: 2848

({retracted}|->down)

# states: 1576

({retracted}|->up)

# states: 1832

({extended}|->up)

# states: 4148

({extended}|->down)

# states: 4228

INITIALISATION

env_toggle_handle

env_toggle_handle

env_start_retractingenv_start_retracting

env_retract_gear

env_toggle_handle

env_retract_gear

env_toggle_handle

env_toggle_handle

env_toggle_handle

env_extend_gear env_extend_gear

env_start_extending
env_start_extending

Fig. 7: State space projection of an earlier version of the fourth refinement level on variable
handle and range of gears

Figure 9 illustrates how one combine various variables into a single expression.
The Figure projects the state space of the “standard” scheduler benchmark exam-
ple from [16] (also used, e.g., in [20]), which schedules processes and keeps disjoint
sets of waiting, ready and active processes. In the Figure we abstract away from
the process identities, by computing the cardinality of these sets. Furthermore,
we add these sets together, to project on the total number of processes. One can
clearly see that only two events change the total number of processes: new and
del . Moreover, new is always enabled when less than 3 processes exist, while del is
only possible when more than one process exists and is not always possible. This
confirms our intution, as active processes cannot be deleted straightaway. Figure 9
shows how one can focus on very specific aspects of a model using the projection
diagrams. We believe that one should probably generate a variety of projection di-
agrams for any particular model — each for very specific aspects — and that they
can or should be incorporated into the documentation accompanying the model.
In the next section we show how we can increase the value of these diagrams, by
incorporating graphical elements and making them accessible to domain experts
not versed in formal modelling.

4 In the meantime, the variable gear has been renamed into gears.



ran(gears) |-> handle

# states: 1

({extended}|->down)

# states: 27

INITIALISATION

({extended}|->up)

# states: 27

toggle_handle_down

({extended,gear_moving}|->up)

# states: 6

env_start_retracting_first

toggle_handle_up

env_start_retracting_first

({gear_moving}|->up)

# states: 1

env_start_retracting_first

({retracted,extended,gear_moving}|->up)

# states: 6

env_retract_gear_skip

({extended,gear_moving}|->down)

# states: 6

toggle_handle_down

({retracted,extended}|->up)

# states: 6

env_retract_gear_skip

({gear_moving}|->down)

# states: 1

toggle_handle_down

({retracted,gear_moving}|->up)

# states: 6

env_retract_gear_skip

env_start_retracting_first

({retracted,extended,gear_moving}|->down)

# states: 6

toggle_handle_down

env_retract_gear_skip

env_extend_gear_last

toggle_handle_up

toggle_handle_up

env_extend_gear_skip

({retracted,gear_moving}|->down)

# states: 6

toggle_handle_down

({retracted}|->up)

# states: 27

env_retract_gear_last

env_start_extending

toggle_handle_up

env_start_extending

env_extend_gear_skip
({retracted,extended}|->down)

# states: 6

env_extend_gear_skip

toggle_handle_up env_start_extending

env_extend_gear_skip

env_start_retracting_first

env_start_retracting_first

toggle_handle_down

env_start_extending

env_start_extending

toggle_handle_up

({retracted}|->down)

# states: 27

toggle_handle_down

env_start_extending

toggle_handle_up

Fig. 8: Projection on expression ran(gears) 7→ handle of the third refinement

3 Linking with Domain Specific Visualization

BMotion Studio [15] is a tool for creating domain specific visualizations of formal
models. The tool provides various graphical elements (shapes, images, buttons,...)
that can be used to represent the different aspects of a model. As an example,
consider the model of the landing gear system. A domain specific visualization of
the model can show the physical environment (gears and doors) and the archi-
tecture of the hydraulic part (valves and cylinders). Moreover, observers are used
to link the formal model with the visualization and allow the tool to compute a
visualization for any given state. An observer binds an expression or a variable
to a graphical element (e.g. a shape or an image) and changes its properties (e.g.



(card(ready) + card(waiting)) + card(active)

# states: 1

0

# states: 1

1

# states: 6

3

# states: 13

2

# states: 15

INITIALISATION

new

new

del

del

new del

Fig. 9: Projection on expression card(ready) + card(waiting) + card(active) of a process
scheduler

the colour or position) according to the value of the expression or variable in the
respective state.

In this Section we present another diagram type called domain specific diagram.
The basic idea of the domain specific diagram is to create a projection of graphical
elements of a domain specific visualization. To do this, we apply the following
approach:

1. The user selects the graphical elements for the projection from the domain
specific visualization.

2. We determine recursively the observers of the selected graphical elements5 and
derive the expressions fi (which can be simple variables) that are required to
draw the state of the selected graphical elements.

3. We construct the projection expression E = f1 7→ ... 7→ fn and compute the
projection diagram using the projection function p(s) = eval(E, s) as described
in Section 2.

4. For each equivalence class of the projection diagram, we compute the rep-
resentation of the selected graphical elements according to the value of the
projection function of the respective equivalence class. Note that, if computed
separately, all states in this equivalence class would yield the same visualiza-
tion for the selected graphical elements.

5. We assign the adapted graphical elements to the corresponding equivalence
classes and create the domain specific diagram.

For generating the diagram we use the Cytoscape.js framework6, a JavaScript li-
brary for analysis and visualization of graphs. One main advantage of Cytoscape.js
is, that the diagram becomes interactive, so that the user can rearrange the nodes

5 In BMotion Studio graphical elements are arranged hierarchically. Thus, we also need
to determine recursively the observers of the child graphical elements.

6 http://js.cytoscape.org/.



an edges as desired. A good layout of the nodes and edges of the diagram can be
crucial for its readability [11].

To illustrate the idea of the approach, consider the domain specific diagram in
Figure 10 produced with ProB and the JavaScript observer in Figure 11. In line
1 we register a formula observer [13] on the graphical element that matches the
selector “#handle”, i.e. the image that represents the handle (the prefix “#” is
used for matching a graphical element by its ID). Line 2 states that the observer
should observe the variable handle, i.e. the variable that defines the state of the
pilot handle of the landing gear system. In lines 3 to 6 we define the action which
is applied on the image element whenever a state change occurred. In this case,
the observer sets the path (src) of the image element (origin) to a new path that is
constructed based on the value of the variable handle in the current state (val[0])7.
The diagram in Figure 10 demonstrates the projection on the pilot image element
(the graphical element that matches the selector “#handle”) using the projection
function p(s) = eval(E, s), where E = handle is automatically derived from the
observer shown in Figure 11. For each equivalence class, the representation of
the image element is computed. To do this, we apply the observer in Figure 11
manually using the value of the projection function of the respective class. The
adapted image element is then assigned to the equivalence class. For instance, the
diagram in Figure 10 shows the two possible states of the handle (up and down)
and its graphical representation. As with the basic projection diagram, every node
in the graph represents an equivalence class and we categorize the equivalence
classes and edges as described in Section 2.1.

Fig. 10: Projection on handle

1 $("#handle").observe("formula", {

2 formulas: ["handle"],

3 trigger: function (origin, val) {

4 origin.attr("src",

5 "handle_" + val[0] + ".png");

6 }

7 });

Fig. 11: JavaScript observer for image ele-
ment that represents the handle

Another example is shown in Figure 12, illustrating the projection on the graph-
ical elements representing the handle and the front gear cylinder of the fifth re-
finement level of the landing gear system using the derived projection function
p(s) = eval(E, s), with E = handle 7→ gears(front). The visual feedback may
help the user to localize specific equivalence classes for further inspection, even

7 The domain specific visualization provides different images to represent the states of
the handle (down and up).



if the diagram slightly becomes larger or the layout of the diagram is unflatter-
ing. For instance, one can identify at a glance the equivalence classes, where the
cylinder is extended or where the handle is set to down.

Fig. 12: Domain specific projection on handle and gear

Although developing a domain specific visualization requires extra effort, the ben-
efits of combining it with a projection diagram can be considerable. For instance,
it can be used to get a common understanding about the underlying model within
a team or to discuss the model with non-formal methods experts. As an example,
consider Figure 13 that shows the projection on the cabin of a simple lift model8.
One can see at a glance (without knowledge about the underlying model or the
used formalism), that the cabin is able to stop and to open the door at all three
floors. The diagram also confirms that the cabin door must always be closed (in-
dicated by a gray fill) before the lift can move. This is indicated by the solid edges
labelled with the event close door.

The domain specific diagram feature can even support the development of a do-
main specific visualization. For example, we have used it to check if a particular
graphical element represents all relevant states properly and to eliminate unde-
sirable behaviour in the domain specific visualization of the landing gear model.
Consider the diagram shown in Figure 10 which is very small (although the full
state space covers 25,217 states and 149,041 transitions) and easy to inspect by
a human: one can see at a glance that the handle behaves as expected in the do-
main specific visualization (and in the formal model). Similar diagrams can also
be created for other graphical elements (e.g. Figure 12).

4 Related Work

Several other approaches exist for state space visualization. In this work we are
concerned with reducing the size and complexity of states space visualizations
which have a large number of nodes and transitions. However, we are also con-
cerned with supporting the verification of formal models, e.g. by producing state

8 The formal model can be found at [14].



Fig. 13: Projection on cabin of simple lift model

space visualizations that are even accessible for non-formal method experts. Thus,
we compare our work with other approaches that tend to improve the visualiza-
tion of larger state spaces, as well as with other approaches that have the goal to
make formal models accessible to non-formal method experts. Because our work
has a strong focus on the B-method, we first compare our work with state space
visualization approaches with support for the B-method. Afterwards, we compare
our approach with other related work.

State Space Visualization for the B-Method. Our approach has been im-
plemented into the ProB toolset [18]. ProB also provides further state space
visualization features with the motivation to reduce the complexity of the pro-
duced graphs. Two of them are presented in [20]: the signature merge approach
and the DFA-abstraction algorithm. The signature merge approach is very simi-
lar to our approach: while our approach merges all states based on a projection
function, the signature merge approach merges all states with the same enabled
events to a common signature. While the approach can be tuned by deselecting
events from the signature, our approach can be tuned by adapting the projection
function. For instance, our approach enables the user to focus on certain variables
(or even just properties of those) of a formal model and to see only those events
which can modify those variables. On the other hand, the basic idea of the DFA-
abstraction algorithm is to abstract the labelling of the edges, i.e., to abstract
away from event arguments and to apply the classical minimization algorithm for
Deterministic Finite Automaton (DFA). The DFA-abstraction algorithm produces
a visualization in which the transitions are equivalent to these in the original state
space. However, this produces a larger graph which may still be difficult for humans
to grasp [20].



In [12] the authors present two complementary approaches to increase the under-
standing of formal models by producing behavioural views from B models, rather
than focusing on reducing the size and complexity of larger state spaces. In par-
ticular, the under-approximation approach also uses the ProB model-checker [18]
to exhaustively explore the state space of a formal model as a first step. While our
approach groups nodes based on a projection function, the under-approximation
approach produces a graph by grouping concrete states satisfying a same abstract
state predicate.

More State Space Visualization Approaches. The work done in [24, 25] ad-
dresses the problem of visualizing large state spaces and presents a tool called Di-
aGraphica with different features for the interactive visual analysis of state spaces.
The tool supports the fsm input file format9 for representing state spaces as plain
text. It would be interesting to see if the work presented in this paper could be
combined with the DiaGraphica tool, i.e. to export the state spaces produced by
ProB (the full state space and the state space produced by the basic projection
diagram algorithm) into the fsm format and to load it with the DiaGraphica tool.

The muCRL2 system also provides a 3-D state space visualization technique [7,
22], which tries to cater for showing a large number of nodes as opposed to our
approach of projecting the state space onto a smaller refinement of it.

5 Conclusion

In this paper we have presented an approach for state space visualization with
projection diagrams. The main objective of the approach is to considerably reduce
the size of a state space and to support human visual verification of the system
by highlighting relevant aspects of the model. In the second part of this paper,
we have presented an extension of the approach to link a projection diagram to a
domain specific visualization developed with BMotion Studio. The approach has
been implemented into the ProB toolset with support for Event-B, Classical-B,
TLA+ and Z models.

Throughout the paper, we have demonstrated the benefits and usefulness of the
approach by applying it on the Event-B model and domain specific visualization of
the landing gear system taken from [9]. For this purpose, various example projec-
tion diagrams are presented in this paper. Moreover, we created a live visualization
that can be tested online [14].

Although the produced projection diagram may not be equivalent to the original
state space (as far as the sequences of the events are concerned), the projection
may achieve a good result in reducing the size of the state space, while still pre-
serving beneficial information. In particular, the categorization of the edges and
equivalence classes proved to be very useful in supporting the inspection of the
diagram and to infer useful properties of the respective formal model.

Our approach is also flexible, as the user may adjust the underlying projection
function. The possibility to define an individual projection function enables the

9 http://www.comp.leeds.ac.uk/scsajp/applications/data/fsm.html.



user to query the full state space and to obtain only the information in which the
user is interested in (comparable with defining queries on a database).

Moreover, we believe that inspecting multiple small projection diagrams (with a
manageable number of nodes and transitions) representing different aspects of the
model can be more helpfully then inspecting only one big state space visualization.
This was also confirmed by applying our approach on validating the landing gear
model. One reason for this is that the user can concentrate on a specific aspect
of the model (e.g. on certain variables) or to check a particular behaviour, while
hiding nonrelevant information from the diagram.

We also believe that a projection diagram may help to verify properties of the
model which are hard to express as invariants. For instance, in the landing gear
model we used the diagram to verify that the extension and retraction sequence
works as desired and that the controller responds correctly to toggling the handle
during both sequences.

Finally, we believe that combining the projection diagram with a domain specific
visualization affords further advantages. For example, the graphical representation
of a specific aspect or behaviour of the model can be helpful for discussing the
specification with non-formal method experts and for the further development of
the specification. A non-formal method expert can even use this feature without
any knowledge about the notation used in formal methods, since the projection is
produced based on graphical elements and the underlying projection function is
derived automatically from the attached observers.

Evaluation and Future Work. Table 1 shows some runtime statistics obtained
after applying the basic projection algorithm (runtime BP) and the domain spe-
cific projection algorithm (runtime DSP) on the models presented in this paper,
after the corresponding state space had been fully explored with ProB. We use
the projection function p(s) = eval(E, s), where s ∈ Q and E is the projection ex-
pression (third column of Table 1). The measured time includes the actual runtime
for both algorithms (implemented in ProB) without the time needed to exhaus-
tively explore the full state space (i.e. the model checking time) and without the
time needed for generating and layouting the actual diagram. In fact, the model
checking and layouting time is not included, because it depends on the used model
checking and layouting tool respectively. Moreover, the state space needs to be
explored only once in order to generate multiple projection diagrams.

Table 1: Runtime of algorithm for various models and projection functions

Model States /
Transitions*

Projection Expression Runtime
BP

Runtime
DSP

Scheduler 36/121
card(ready)
+card(waiting)
+card(active)

0.01 s -

Landing Gear (old), 4th Ref 6,283/31,299 ran(gear) 7→ handle 0.02 s -

Landing Gear, 5th Ref 25,217/149,041

ran(gears) 7→ handle 0.98 s -
gears 7→ handle 1.06 s -

handle 0.77 s 1.59 s
handle 7→ gears(front) 0.88 s 3.20 s

Simple Lift 186/838
door 0.03 s 0.70 s

floor 7→ door 0.03 s 1.10 s

*The states and transitions of the full state space of the corresponding model.



In general, the runtime of the DSP takes longer than the BP. This is because
the DSP uses the BP to generate the actual data (see Section 3) and needs some
additional time to generate the graphical representation of the equivalence classes.

Table 1 also confirms that the runtime of both algorithms (DSP and BP) in-
creases with the number of nodes and transitions of the state space.

In the future, we plan to apply the algorithms on more case studies to obtain
additional statistics. Moreover, a good layout of the nodes and the edges of a
projection diagram is crucial for its readability and accessibility. A next step would
be also to adapt the underlying layout algorithm of the projection diagrams so that
the nodes (the equivalence classes) are ordered based on the defined projection
function. As an example, this was already done manually in the diagram shown
in Figure 7. We ordered the nodes so that the left side of the diagram contains
the equivalence classes where the handle is set to down, whereas the right side
contains the equivalence classes where the handle is set to up.

We also plan to enhance the projection diagram with interactive features. For
instance, it would be desirable to “jump” into an equivalence class and to inspect
the individual states which have been merged into it. This could be in particular
useful to take a closer look on equivalence classes that have unexpected outgoing
edges, e.g. if the user expected a definite edge, but the equivalence class has a
non-definite edge instead. One could jump into the affected class and inspect the
states in which an event is not enabled.

Finally, we plan to symbolically construct a projection diagram statically using
the built-in constraint solver of ProB [17] rather than first having to (exhaus-
tively) explore the full state space using the model-checking feature of ProB.
This is related to proof-based approaches such as [4] and [3].
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