
Requirements Traceability between Textual
Requirements and Formal Models Using ProR

Lukas Ladenberger and Michael Jastram

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf??

{ladenberger,jastram}@cs.uni-duesseldorf.de

Traceability within a system description is a challenging problem of require-
ments engineering [1]. In particular, formal models of the system are often based
on informal requirements, but creating and maintaining the traceability between
the two can be challenging. In [2], we presented an incremental approach for pro-
ducing a system description from an initial set of requirements. The foundation
of the approach is a classification of requirements into artefacts W (domain prop-
erties), R (requirements) and S (specification) [3]. In addition, the approach uses
designated phenomena as the vocabulary employed by the artefacts. The central
idea is that adequacy of the system description must be justified, meaning that
W ∧ S ⇒ R. The approach establishes a traceability, and the resulting system
description may consist of formal and informal artefacts.

We created tool support for this approach by integrating Rodin [4] and
ProR [5]. Rodin is an Eclipse-based open tool platform for formal modelling in
Event-B [6]. ProR is a platform for requirements engineering that is also based
on Eclipse and part of the Eclipse Requirements Modeling Framework (RMF)1.

A seamless integration between ProR and Rodin is possible, as both are based
on Eclipse. The integration plug-in is installed into Rodin via an update site2.
We designed it with the goal to support the approach described in [2] and to ease
the integration of natural language requirements and Event-B. Supporting other
formalisms is possible in principle, and we are currently working on supporting
integration with classical B [7]. Figure 1 shows ProR installed inside Rodin.

The integration allows the identification of phenomena within natural lan-
guage requirements (Rodin already allows the identification of phenomena in
formal model artefacts); it supports the creation of traces between arbitrary
artefacts; and it tracks whenever the source or target of a trace changes by
marking it as “suspect” (allowing the re-validation of traces).

ProR already supports some features required for an integration. For in-
stance, ProR supports classifying informal and formal artefacts as W , R and S.
Other features had to be provided by an integration plug-in, as described below.

There are still some limitations, that we discuss in the conclusion. In the
following, we describe the specific features of the tool in more detail.

?? Part of this research has been sponsored by the EU funded FP7 project 214158:
DEPLOY (Industrial deployment of advanced system engineering methods for high
productivity and dependability).

1 http://eclipse.org/rmf.
2 The update site URL is http://www.stups.uni-duesseldorf.de/pror updates.



2

Fig. 1. ProR running inside the Rodin Platform for Event-B modelling.

Tracing of phenomena used in artefacts Textual requirements are rendered
by colour-highlighting those text passages that correspond to phenomena (Fig-
ure 1). The user has to mark them by square brackets. In doing so, the text
passage is rendered in blue, otherwise in red, reminding the user that an un-
declared phenomena is used. In addition, unmarked, recognised phenomena are
highlighted as well to warn the user about a possible omission (Figure 2). The
marked phenomena are automatically synchronized with the model.

Fig. 2. The tool warns the user about a possible omission.

Annotated traces to modelling elements Manual creation of traces between
requirements and formal model elements is supported via drag and drop. Figure 1
shows how the right column “Link” of the specification editor summarizes the
number of outgoing (target) and incoming (source) traces. Details of the outgoing
trace can be switched on as shown in figure 3. Selecting an outgoing trace shows
the targets properties in the Property View. For instance, we see in figure 3 that
the trace target which is the event switch move is selected. Selecting the target
shows its attributes in the Property View, including the formal event itself. This
is a reference to the model, not a copy of the event. As a consequence, whenever
the formal model element changes, the reference also changes (and the trace



3

will be marked as “suspect”, as described below). In addition, traces can be
annotated if additional information is necessary.

Fig. 3. The unveiled traces of an element. As the link target is selected, the link target’s
properties are shown in the Property View (the lower pane).

Change management to both the requirements and the formal model
Last, when traced formal model elements change, the trace is marked as “sus-
pect” by showing a small icon as demonstrated in figure 4. Two columns exist
for the source and the target of the trace, respectively. The user sees at a glance
which requirements or formal model elements need to be revalidated. This is par-
ticularly useful if the requirements document becomes large. By double-clicking
on the “suspect” icon, the user can mark the trace as “revalidated” and the icon
will be removed.

Fig. 4. A small icon indicates whenever the source (the requirement) or the target
(formal model element) needs to be revalidated.

Conclusion We believe that the integration between Rodin and ProR supports
the user in managing requirements in natural language and the corresponding
traces to formal model elements, as outlined by our approach described in [2].



4

There are still some limitations, however. While all required data structures
exist, the tool would benefit from more sophisticated reporting. In particular, [2]
lists a number of properties of a correct system description. While the presence
of these properties does not guarantee correctness, their absence indicates a
problem. Reporting on the state of these properties would be valuable.

Furthermore, we believe that the integration is useful even beyond supporting
our approach. For instance, the capability of marking traces as “suspect” if the
source or the target change could be useful in many situations, even without the
use of formal methods.

Last, we believe that this integration brings two complimentary fields of
research, requirements engineering and formal modelling, closer together.

References

[1] O. Gotel and A. Finkelstein: An Analysis of the Requirements Traceability Problem
IEEE Computer Society (1994)

[2] M. Jastram and S. Hallerstede and L. Ladenberger: Mixing Formal and Informal
Model Elements for Tracing Requirements AVOCS 2011 (2011)

[3] C. A. Gunter and M. Jackson and E. L. Gunter and P. Zave: A Reference Model
for Requirements and Specifications IEEE Software Vol. 17, 37–43 (2000)

[4] J.-R. Abrial and M. J. Butler and S. Hallerstede and T. S. Hoang and F. Mehta and
L. Voisin: Rodin: An Open Toolset for Modelling and Reasoning in Event-B STTT
Vol. 12, 447–466 (2010)

[5] M. Jastram: ProR, an Open Source Platform for Requirements Engineering based
on RIF SEISCONF (2010)

[6] J.-R. Abrial: Modeling in Event-B: System and Software Engineering Cambridge
University Press (2010)

[7] J.-R. Abrial: The B-Book: Assigning programs to meanings Cambridge University
Press (1996)


