
Noname manuscript No.
(will be inserted by the editor)

Inferring Physical Units in Formal Models

Sebastian Krings · Michael Leuschel

Received: date / Accepted: date

Abstract Most state-based formal methods, like B,

Event-B or Z, provide support for static typing. How-

ever, these methods and the associated tools lack sup-

port for annotating variables with (physical) units of

measurement. There is thus no obvious way to rea-

son about correct or incorrect usage of such units. We

present a technique that analyses the usage of physical

units throughout B and Event-B machines, infers miss-

ing units and notifies the user of incorrectly handled

units. The technique combines abstract interpretation

with classical animation, constraint solving and model

checking and has been integrated into the ProB vali-

dation tool, both for classical B and for Event-B. It pro-

vides source-level feedback about errors detected in the

models. We also describe how to extend our approach

to TLA+, an untyped formal language. We provide an
in-depth empirical evaluation and demonstrate that our

technique scales up to real-life industrial models.

Keywords B-Method · Event-B · Physical Units ·
Model Checking · Abstract Interpretation

1 Introduction and Motivation

Static type checking is generally1 considered to be very

useful to catch obvious errors early on and most speci-

fication languages are strongly typed. In particular, the

B language [1] and its successor Event-B [2] are strongly

Part of this research has been sponsored by the EU funded
FP7 project 287563 (ADVANCE) and the DFG funded re-
search project GEPAVAS II.

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf
Tel.: +49 (211) 81-12635, Fax: +49 (211) 81-10712
krings@cs.uni-duesseldorf.de, leuschel@cs.uni-duesseldorf.de

1 See, however, [25].

typed. However, their type systems are relatively sim-

ple. In particular, there is no way to subtype the inte-

gers: a variable holding natural numbers and a variable

holding a negative integer have the same type: INTEGER.

Moreover, there is no way to specify physical units for

integers, which are useful to avoid illegal manipulations,

such as adding a speed value to a time value. For safety

critical systems such a static check would be highly de-

sirable, but currently there is no obvious way to en-

force correctness of physical unit manipulations within

B models.

This article is the extended version of the conference

paper [23], where we proposed a solution to this prob-

lem, by integrating an abstract interpretation technique

into the ProB animator [26,27]. More precisely:

– We provided an abstract semantics for B, in which

integers are represented by their physical units;

– The abstract semantics can be simulated using the

ProB toolset, by switching from the concrete mode

to the abstract mode;

– We can run ProB in abstract mode until a fixpoint

is reached;

– The result (abstract values computed for variables,

parameters, ...) of the fixpoint is analyzed and trans-

lated into source-level user feedback.

The technique has been implemented both for B and

Event-B, and applied to several industrial safety critical

models. For this article we also extend our former work

[23] in different aspects:

– We combine the technique with a translation from

TLA+ to B [18]. This allows us to validate the us-

age of physical units throughout TLA+ models. See

Sect. 3.3 for details.

– We expand our unit analysis for B / Event-B with

refinement. This allows units distributed over sev-

2 Sebastian Krings, Michael Leuschel

eral refinement levels of a B machine, and allows

units themselves to be refined. Details can be found

in Sect. 6.

– We made it possible to add user-defined units to our

analysis.

– For the evaluation, we added several newly crafted

benchmarks and case studies from industrial part-

ners.

– Furthermore, we added an in-depth explanation of

unit conversions of both SI and non-SI units. It can

be found in Sect. 4.3.

An introductory example can be found in Fig. 1.

It contains an extract of a simple B machine model-

ing the movements of a car.2 The current speed and

position are stored in two variables and updated at

every tick of a clock. The duration of one tick is de-

fined by a constant. Implicitly, the speed is measured

in meters per second, the position in meters from a

starting point and the length of a tick is defined in

seconds. However, when updating the car’s position in

the keep speed operation, a multiplication of the speed

with the tick length is missing. While this does not

lead to an invariant violation or B type error, it leads to

wrong results for the position of the car if tick length

is different from 1.

Analyzing the physical units of measurement, the

error is easy to detect. When given the units of speed

(meters per second) and tick length (seconds), we see

that the position should be in meters. Furthermore, we

see that adding position (meters) to speed (meters

per second) does not result in a well-formed unit of

measurement. Hence, the missing multiplication is de-

tected. From the perspective of the B typing rules, how-

ever, the addition is correct: we add two integers.

MACHINE Car

CONSTANTS tick length

PROPERTIES tick length = 2

VARIABLES speed, position

INVARIANT speed : INT & position : INT

INITIALISATION speed,position := 0,0

OPERATIONS

keep speed =

PRE position + speed * tick length : INT

THEN position := position + speed END

...

END

Fig. 1 Introductory Example

Below, in Sect. 2 we will give a short introduction

to B, Event-B and TLA+ in order to make our ex-

2 We return to this example in Sect. 7.1 and provide further
details there.

amples accessible to readers without prior knowledge

of these languages. Typing in the B languages will be

discussed in Sect. 3.1. Further on, in Sect. 3.2 we will

discuss how the syntax of the B language was extended

in order to be able to declare physical units and reason

about them. Section 3.3 will explain how we embedded

physical units into TLA+. We will mainly use the in-

ternational system of units (SI) [36], but a user can also

declare additional non-SI units.

Afterwards, we explain how we use abstract inter-

pretation to analyze physical units in Sect. 4.1. In Sect.

4.2 we explain how we deal with function calls that are

parametric in the units. Unit conversions are treated

in details in Sect. 4.3. Section 5 will explain why we

had to incorporate constraint solving techniques into

our abstract interpreter.

In addition to unit analysis for a single machine, we

provide a refinement chain from abstract to concrete

units in Sect. 6.

Empirical results will be presented in Sect. 7. We

conclude with alternative approaches and related work

in Sect. 8 and a discussion of our results and future

work in Sect. 9.

2 Introduction to B, Event-B and TLA+

B [1] and its successor Event-B [2] are formal languages

for the specification of software and systems. The basic

structure is that of an abstract MACHINE that can be

refined further into more concrete machines. In B, the

the user can introduce CONSTANTS which have to ful-
fill certain PROPERTIES inside a MACHINE. For Event-B,

the static part of a model is defined inside of a con-

text file. In addition to constants, the VARIABLES clause

inside of a machine holds the state variables of the

model. An initial value for them can be assigned inside

the INITIALISATION. Furthermore, an INVARIANT can

be given to specify valid and invalid states. The types

of constants and variables are given together with the

properties and invariants. As B is strongly typed, every

variable or constants has to be typed either explicitly

or by assigning it a value that can be typed.

Possible transitions from one state to another are

defined by the OPERATIONS clause. Inside, the user can

provide generalized substitutions (aka. statements) that

change the content of state variables.

In the examples, we will use two different substitu-

tions:

– The simple substitution, which is enclosed in BEGIN

and END. It can be executed anytime.

Inferring Physical Units in Formal Models 3

– The substitution with precondition BEGIN p THEN s

END, where the assignments in s can only be exe-

cuted if p evaluates to true.

An operation may have a return value, indicated by

<-- separating the variable to return from the operation

body.

A substitution may hold one or more assignments

to the state variables that are executed in parallel. The

assignments are written as variable := expression.

For the sake of simplicity we will only use expressions

using basic arithmetic. However, B and Event-B sup-

port set theory, higher order functions and datatypes

as well as quantification.

In contrast to B and Event-B, TLA+ [24] does not

rely on substitutions to specify state space transitions.

Instead, possible transitions are given in form of a before-

after-predicate. Inside, primed versions of the variable

identifiers refer to the variables of the next state. A

simple TLA+ specification then consists of a predicate

describing the initial states together with the before-

after-predicate. We will describe TLA+ in greater de-

tails once we introduced an example specification.

3 Embedding Units into Existing Modeling

Languages

3.1 Typing in the B Language

The B language [1] provides the following basic types:

– integers,

– booleans,

– user-defined types, with are either enumerated sets,

abstract deferred sets, or machine parameters, and

– strings.

These types can be combined using the Cartesian

product constructor to generate pairs, and the power

set constructor to generate sets. Note that functions

and relations in B are represented as sets of pairs. The

type of the number 1 is thus the set of integers (INTEGER

in B syntax), and the type of the function f = {1 7→
1, 2 7→ 4, 3 7→ 9} is the set of all sets of integer pairs

(POW(INTEGER*INTEGER) in B syntax)3. We will return

to this later in Sect. 4.1.1.

Atelier-B also provides a record constructor for B,

which we will ignore in this paper (but our analysis and

3 Note that this set includes not just functions but all rela-
tions between integers. In B and ProB functions and relations
have the same type; operators for relations can be applied to
functions and vice versa. The fact that a relation is indeed a
function is encoded as an invariant and verified for each state,
i.e. it is a safety property of the system.

tool support it). Atelier-B 4.1 and later provide limited

support for reals and floats in the B language [11].

The Event-B [2] language has the same underlying

type system than classical B. However, Event-B pro-

vides mathematical extensions, which allow adding new

types such as records, reals or inductive data types.

Again, our analysis and tool supports these, but to

avoid distracting from the important issues we will not

present these types in the present article.

3.2 Unit Declarations in the B Language

At some point the user must provide the physical units

for certain variables as a starting point of our analysis.

As already mentioned, the B language does not pro-

vide a mechanism for sub-typing the integers. As such,

we need a mechanism “outside” of the core B language

to declare the units of integer variables. For Event-B,

this has been achieved by attaching new attributes to

variables in the Rodin database [3]. In classical B, this

association must be described within the B ASCII syn-

tax. We wanted to ensure that a B machine making use

of the new syntax is still usable by other tools (such

as Atelier-B). This requirement ruled out an extension

involving keywords or constructs which are not part of

the standard B language and could therefore not be

parsed by tools other than ProB. Instead, we decided

to implement the new functionality inside semantically

relevant comments, i.e., pragmas. While the usual B

block comment is enclosed in /* and */, a pragma is

enclosed in /*@ and */. Other tools like Atelier-B will

treat such a pragma as an ordinary comment.

For our work we have introduced five pragmas to

the B language:

1. “unit”, the pragma used to attach a physical unit

to certain B constructs. This can be done by spec-

ifying the unit either using a B expression in an

SI-compatible form or using a predefined alias like

“cm” instead of “10**-2 * m”. The given unit has

to be a valid SI unit [36]. A derived unit such as “m

* s**-2” is thus acceptable. The usage is shown in

Fig. 2.

2. “inferred unit”, which works similar to unit. It

is automatically added to the pretty printed version

of a machine, attaching units inferred by ProB to

variables and constants. This enables the user to

generate a model containing the information gath-

ered by our analysis.

3. “conversion”, used to annotate operations meant

as conversions between units. An example can be

found in Fig. 3.

4 Sebastian Krings, Michael Leuschel

4. “unit alias”, used to define new aliases for exist-

ing unit definitions. Figure 4 shows how to define

the new alias “mps” for meter per second. Once an

alias has been defined, it can be used to define fur-

ther aliases.

5. “new unit”, used to define entirely new units for

domain specific applications. Figure 5 shows how

the pragma can be used to define a new unit called

“yard”. See the case study in Sect. 7.5 for an ex-

tended example. Sadly the new units are somewhat

limited, as it is currently impossible to specify con-

version rules, arithmetic or special behavior. A user-

defined unit works simply as a new base unit and is

usable in conjunction with the existing ones.

Please note that the unit pragma can only be at-

tached to certain constructs. Among others, these are

declarations of variables and constants as well as integer

literals. It is not possible to annotate relations or func-

tions directly, i.e. by a single pragma containing the unit

of both the range and the domain. However, they can

be annotated on their own by introducing intermediate

variables for them. For example, annotating the unit

of a relation r : 1 .. 5 <-> 8 .. 20 can be done as

shown in Fig. 6. The unit of the relation will then be

inferred by the plugin. These restrictions keep our unit

type system decidable without limiting the overall ex-

pressiveness of our approach.

MACHINE UnitExample

VARIABLES

/*@ unit 10**3 * m */ x,

y

INVARIANT x:NAT & y:NAT & x>y

INITIALISATION x, y := 1, 0

OPERATIONS

n <-- addToX = BEGIN n := x + y END;

END

Fig. 2 Example Usage of the Unit Pragma

MACHINE ConversionExample

VARIABLES

/*@ unit 10**-2 * m */ x,

/*@ unit 10**-3 * m */ y

INVARIANT x:NAT & y:NAT

INITIALISATION x, y := 0, 0

OPERATIONS

mmToCm = x := /*@ conversion */ (10*y)

END

Fig. 3 Example Usage of the Conversion Pragma

/*@ unit alias mps m * s**-1 */

MACHINE UnitExample

VARIABLES

/*@ unit mps */ speed,

.....

END

Fig. 4 Example Usage of the Alias Pragma

/*@ new unit yard */

MACHINE UserDefinedUnit

VARIABLES

/*@ unit yard */ dist,

.....

END

Fig. 5 Example Usage of the New Unit Pragma

MACHINE RangeAndDomain

CONSTANTS

/*@ unit m */ range,

/*@ unit s */ domain

PROPERTIES

range <: NAT & domain <: NAT

VARIABLES

r

INVARIANT

r : domain <-> range

INITIALISATION

range, domain, r := 8 .. 20, 1 .. 5, {}
END

Fig. 6 Annotating Range and Domain

3.3 Unit Annotations for the TLA+ Language

TLA+ and B are both state-based formal methods,

with subtle differences (e.g., concerning typing, refine-

ment, or well-definedness) but they share the common

foundation of predicate logic, arithmetic and set the-

ory. In [18] Hansen and Leuschel have introduced a

translation from TLA+ to B, with the aim of using

the ProB animator or B provers. In this article we can

reap another side-effect of this translation: being able

to use our unit inference algorithm for TLA+ specifi-

cations. To achieve this, we have extended the TLA+

syntax to enable unit annotations in a similar way as

explained for B and Event-B in the previous section.

Then, we have adapted the translator of [18] to ensure

that it preserves the unit annotations. Obviously, this

approach only works for the TLA+ specifications that

can be dealt with by [18], in particular, the translator

has to be able to infer types for all variables of the

specification.

We added unit pragmas to the TLA+ language the

same way we did for B. The only difference is the syntax

of block comments in TLA+. Instead of /*@ and */ we

Inferring Physical Units in Formal Models 5

now enclose a pragma in (*@ and *) to follow the usual

block comment syntax.

In Fig. 7 we give an example for the syntax. The

TLA+ module clock specifies a simple clock storing

its state in three integer variables: hours, minutes and

seconds. It is an extension of the module given in [24].

The before-after-predicate mentioned in Sect. 2 is called

Clock next, the predicate describing possible initial val-

ues for the three variables is stored in Clock init. Ev-

ery time a Clock next step occurs, the variable

seconds is incremented by one. At the same time, hours

and minutes are updated accordingly:

– The new value of minutes is set to (minutes + 1)

modulo 60 if the old value of seconds is equal to 59.

Otherwise the new value of minutes is equal to the

old one.

– The new value of hours is set to (hours + 1) modulo

24 if the old value of minutes is equal to 59. Oth-

erwise the new value of hours is equal to the old

one.

We combine both to the full specification by stating

Clock == Clock init /\ [][Clock next] {seconds},
i.e. that the clock specifications behavior renders the

predicate Clock init true for the initial states while

Clock next is always true (indicated by the temporal

operator []). The additional {seconds} allows stut-

tering steps to occur for which seconds = seconds’

holds, meaning that the clock’s state is allowed to enter

an infinite sequence in which seconds does not change.

See Chapter 2 of [24] for details.

The clock module will be part of our empirical eval-

uation for TLA+ in Sect. 7.

4 Analyzing Units

4.1 Abstract Interpretation on Physical Units

4.1.1 Type Inference as Abstract Interpretation

Inferring units of measurement has a strong connec-

tion to type checking, which itself can be seen as a

special kind of abstract interpretation [14] as outlined

by Cousot in [13]. In consequence, inference of units

throughout a B machine can be done by abstract inter-

pretation of the operations of a machine and abstract

evaluation of invariants, guards, etc.

Regarded as an abstract interpretation, type check-

ing in B can be performed with the abstract domain

outlined in Fig. 8. Initially, any type is still possible,

represented by the bottom element⊥. Upon type check-

ing, the type of each construct is inferred as one of the

following inductively defined B types (see also Sect. 3.1):

– ⊥ ∈ Types
– BOOL ∈ Types
– STRING ∈ Types
– Z ∈ Types
– Given ⊆ Types where Given contains all the user-

defined deferred, enumerated or parameter sets

– x ∈ Types ∧ y ∈ Types⇒ x× y ∈ Types
– t ∈ Types⇒ P(t) ∈ Types
– > ∈ Types

Ordinary type checking expressed as abstract inter-

pretation would basically proceed as follows:

1. all variables will start out with the type ⊥ and

2. literals get assigned their basic type, e.g., 1 will start

with Z, "ab" with STRING, and TRUE with type

BOOL.

3. From this the type of expressions can be deduced in

a bottom-up manner from the type signatures of the

B operators (e.g., + : Z×Z→ Z or ∪ : P(t)×P(t)→
P(t)).

4. This information is propagated through the opera-

tions of the B machine, by inferring the type of the

right-hand side E for every assignment x := E to

a variable x, and then computing the least upper

bound with the current type of x.

5. Steps 3 and 4 are repeated until a fixpoint is reached.

It is considered to be an error if the type of a vari-

able still contains the type ⊥ after a fixpoint has

been reached.

> denotes the fact that incompatible types have

“reached” a certain value or subexpression. This can

occur if a variable must have two different incompat-

ible types, e.g., x in the predicate x = {x + 1}: the

variable x is required to have both the type Z for the

addition with 1 and the type P(⊥) for the equality test

with a set.

⊥ denotes that we have had no type constraints yet,

i.e., any type would be valid. This would, e.g., occur for

x in the predicate {x} 6= {}, where the type of {} would

be inferred as P(⊥).4

Basically, types are ordered using the relation v,

forming the lattice in Fig. 8 and defined using the fol-

lowing five rules. We define @ in the usual way: s @ t

iff s v t ∧ s 6= t.

– ⊥ v t for any t ∈ Types
– t v > for any t ∈ Types
– t v t for any t ∈ Types
– s× t v s′ × t′ iff s v s′ ∧ t v t′.
– P(t) v P(t′) iff t v t′.
4 Note that for Event-B, the Rodin tool will produce an

error message if a variable or expression’s type contains >.

6 Sebastian Krings, Michael Leuschel

---------------------------- MODULE clock ----------------------------

EXTENDS Naturals

VARIABLES

(*@ unit h *) hours,

(*@ unit min *) minutes,

(*@ unit s *) seconds

Clock init ==

hours \in (0 .. 23)

/\ minutes \in (0 .. 59)

/\ seconds \in (0 .. 59)

Clock next ==

hours’ = (IF minutes # 59 THEN hours

ELSE (hours + 1) % 24)

/\ minutes’ = (IF seconds # 59 THEN minutes

ELSE (minutes + 1) % 60)

/\ seconds’ = (seconds + 1) % 60

Clock == Clock init /\ [][Clock next] {seconds}

THEOREM Clock => []Clock init

===

Fig. 7 Example Usage of Pragmas in TLA+

any type

Bool Integer User
Set

multiple types /
error

Powerset
of XString Pair of X

and Y

P(any type)

P(Bool) P(Z) P(Set) P(P(X))P(String) P(XxY)

Fig. 8 B Type System and the Relation @

4.1.2 Concrete Semantics for Units

Below, we will present unit inference in the form of an

abstract interpretation. This raises the question which

concrete semantics is abstracted by unit inference. In-

deed, in the standard concrete semantics of B we can-

not observe unit errors: adding an integer representing

a speed to an integer representing time is a valid ad-

dition and returns a concrete integer value. Hence, for

purposes of unit inference via abstract interpretation,

we “pretend” that every number x (i.e., integer in the

case of B) has an associated “invisible” unit ux attached

to it. In fact, in Sect. 3.2 we have done exactly that: at-

taching units to certain literals via pragmas.

We then also pretend that the concrete operators on

integers follow the physical rules of unit manipulation.

For example, the concrete semantics of the addition x :

ux + y : uy produces the pair x+ y : uz where uz is the

least upper bound in our unit domain. We will describe

this unit domain more precisely later on, but basically

this domain is a lattice containing regular physical units

along with the bottom element ⊥u (representing the

unrestricted unit) and the top element >u representing

an invalid unit.

The purpose of the unit inference, which we present

in the rest of the article, is to infer the possible values

of this “invisible” unit component for program points

and variables of a B machine.

4.1.3 Unit Inference as Abstract Interpretation

The abstract domain used to perform unit analysis is an

extension of the abstract domain used for type checking.

While the types for boolean, string and the construction

of sets, sequences and pairs remain, the integer type is

replaced by an entire subdomain.

The domain is illustrated in Fig. 9, using meters as

an example for the abstract elements. The subdomain

consists of several layers. First of all, a variable of type

integer may have no physical unit attached to it by

Inferring Physical Units in Formal Models 7

the user. This will be represented by int(⊥U) in the

definitions below. From there on, an integer might be

assigned any SI unit, including the dimensionless unit

as a special case.

The dimensionless unit is added to be able to dis-

tinguish between variables for which no unit has been

inferred yet and variables that definitely do not carry

a unit. Furthermore, treating the dimensionless unit in

the same way as the SI units allows the user to an-

notate variables like program counters. That way, an

error involving incorrect usage of such a variable can

be detected, rather than inferring a meaningless unit.

Figure 9 shows how our system will react to multiple

inferred units. As can be seen easily, there is no upper

bound for different units other than the error state on

top.

Definition 1 A base unit is a triple 10c×ue such that

we have c ∈ Z, e ∈ Z, u being a base SI unit.

An abstract integer value can now be represented by

a set of triples of the form 10c × ue where c ∈ Z is the

exponent of the coefficient (10x is called the SI prefix),

u an SI base unit symbol and e ∈ Z the exponent of the

unit5.

Note that we can not enforce that e 6= 0. While a

base unit with e = 0 cannot be provided by the user,

it might occur as an intermediate result. For instance,

when dividing 102 ×m1 by 101 ×m1 we get 101 ×m0.

Hence, units with e 6= 0 might still contribute to the

unit analysis.

For convenience we define the following deconstruct-

ing functions:

Definition 2 For u a base unit with u = 10p × se, we

define

prefix (u) = p

symbol(u) = s

exponent(u) = e

dimension(u) = se

Definition 3 A unit is a set of base units {u1, . . . , uk}
such that ∀ui, uj • j 6= i⇒ symbol(ui) 6= symbol(uj).

With the definition above, m
s would be expressed as

{100×m1, 100× s−1}. The empty set of triples denotes

a dimensionless integer value.

Another possible representation of a unit would be

the sum of the ci’s in the definition above together with

5 For convenience, some SI derived units and units accepted
for use with the SI standard (see [36]) are stored on their own
rather than converting them.

a set of pairs, each holding an SI base unit and its expo-

nent. Doing so would certainly simplify the implemen-

tation of unit equivalence, arithmetic operations and

unit conversions. However, we decided to stay as close

as possible to the original user input and wanted to pro-

duce more precise error messages which are traceable to

individual user provided triples in the input.

Definition 4 The set of all valid units is denoted by

Units.

As in the type checking domain, we add an element

⊥U to Units denoting that initially any unit is possible.

Additionally, we define >U representing the fact that

multiple units were inferred. Again, this should not oc-

cur in a correct model.

To summarize, we can now define the concrete do-

main C and the abstract domain A used in our abstract

interpretation framework.

Definition 5 The concrete domain C is the set of all

possible B values.

C is mapped to the abstract domain A, consisting

of terms constructed from the function symbols Σ =

{boolean, string, int, given, pair, set}. More formally,A is

recursively defined by

– boolean ∈ A
– string ∈ A
– ∀u ∈ Units ∪ {⊥U ,>U} ⇒ int(u) ∈ A
– ∀S ∈ Given, u ∈ Units ∪ {⊥U ,>U} ⇒ given(S, u) ∈
A

– x ∈ A ∧ y ∈ A ⇒ pair(x, y) ∈ A
– t ∈ A ⇒ set(t) ∈ A,

where Given is the set consisting of the enumerated,

deferred or parameter sets given in the B machine.

Note, that we use both set(t) and given(t, u): While

the first is a set with elements that may hold a unit

themselves, i.e. a set of integers, the second has a unit

directly attached to it, i.e. an enumerated set. We could

unify them both to given(t, u) and assign the unit of the

contained elements of a set(t) to u. However, we keep

them separated as it simplifies the implementation.

The rules for the ordering of units are as follows:

– ⊥U vU u for any u ∈ Units ∪ {>U}
– u vU >U for any u ∈ Units ∪ {⊥U}

The rules for the ordering of abstract values are as

follows:

– t v t for any t ∈ A
– ⊥ v t for any t ∈ A
– t v > for any t ∈ A
– int(u) v int(u′) iff u vU u′

– given(t, u) v given(t, u′) iff u vU u′

8 Sebastian Krings, Michael Leuschel

– pair(s, t) v pair(s′, t′) iff s v s′ ∧ t v t′
– set(t) v set(t′) iff t v t′

To provide the abstraction and concretization func-

tions, we need the following definition:

Definition 6 unit : V ariables → Units ∪ {⊥U} maps

variables to the user given units. It equals to ⊥U if no

unit is given.

To perform abstract interpretation the abstraction

and concretization functions α : C → A and γ : A →
P(C) need to be defined. These functions have to be

recursively defined, as the B type system contains ar-

bitrarily nested data types. The following definitions of

α and γ are used.

α(x) =



boolean if x ∈ BOOL

string if type of x is STRING

int(unit(x)) if x ∈ Z
given(S, unit(x)) if x ∈ S, S ∈ Given
pair(α(x1), α(x2)) if x = (x1 7→ x2)

set(α(x1)) if x1 ∈ x
set(⊥U) if x = ∅

with S ∈ Given and

γ(y) =



BOOL if y = boolean

{s|type of s is STRING} if y = string

S if y = given(S,U)

Z if y = int(U)

γ(y1)× γ(y2) if y = pair(y1, y2)

P(γ(y1)) if y = set(y1).

Please note, that the definition of α does take nei-

ther the integer value of a variable nor the members of

a set into account. The analysis we suggest does solely

focus on the physical units and drops the concrete val-

ues of variables. However, animation and verification of

concrete values is available through ProB and is thus

not necessary here.

The orders vU and v induce a least upper bound

(lub) on Units ∪ {⊥U ,>U} and A respectively. For ex-

ample, we have the following properties and examples

over A:

– lub(int(⊥U), int(u)) = lub(int(u), int(⊥U)) = int(u).

– lub(x, x) = x.

– lub(pair(int(⊥U), int(u)), pair(int(v), int(⊥U))) =

pair(int(v), int(u)).

Our implementation of unit equivalence is shown in

Algorithm 1. We begin by multiplying the SI prefixes of

each unit we want to compare6. If the products are not

6 Basically, this means adding the exponents of the leading
10 of each SI unit.

the same, the units can not be equivalent. Otherwise,

we check if each base unit in the first unit corresponds

to a base unit in the second unit and vice versa. If this

is the case we consider the units to be equivalent.

The B instructions the abstract interpreter needs

to implement can be categorized by their effect on the

units of measurement:

1. Instructions like addition of integers or concatena-

tion of sequences expect all operands and the result

to hold the same unit.

2. Instructions that work on abstract elements which

are composed in a different way while still holding

the same units. The Cartesian product for example

maps two sets to a set of pairs. In the process, the

physical units do not change.

3. Instructions like multiplication or division are able

to generate new units based on the units of their

operands. A list of these operations is given below.

The first and second kind of operations can be im-

plemented by syntactical unification or returning >U

if incompatible units are found. Thus, they solely rely

on the implementation of the least upper bound we ex-

plained above.

The same result could be achieved by a classical type

inference algorithm (e.g., Hindley-Milner). The third

kind however needs more work, and is one justification

for using abstract interpretation rather than syntac-

tic unification-based type inference. Please note that,

rather than using abstract interpretation, classical type

inference algorithms can be made suitable by switching

from syntactic unification to equational unification. See

our discussion of alternative approaches in Sect. 8 for

details.

The third group consists of all the operators of B,

Event-B and TLA+ that can generate new units. These

are

– multiplication and division,

– exponentiation,

– the modulo division,

– cardinality of a set,

– elementary arithmetic operations if used as conver-

sions.

Strictly speaking, the cardinality of a set does not

create a new unit from the unit of its operand. However,

as it returns the dimensionless unit regardless of the

argument, it does not fit into the first two categories.

In Sect. 4.3 we explain how we handle conversions.

Below, we discuss the remaining operations.

On the representation outlined above, multiplica-

tion is implemented by addition of the exponents of

triples holding the same unit symbol. In case there is no

Inferring Physical Units in Formal Models 9

integer without
known unit

(⊥U)

integer with
multiple units /

error (>U>U)

… 10^0 m^-1 10^0 m^1 …

units other
than mdimensionless

Fig. 9 Abstract Domain - Integers in Detail

other triple holding the same symbol, e.g., if we multi-

ply with a dimensionless value, we copy over the original

unit. See Algorithm 2 for an outline. With the multipli-

cation in place, a
b can easily be implemented as a×b−1.

A few operations were not immediately obvious, the

first being modulo division. It was not clear what the

correct operation on the unit domain had to be. The

B Book [1] (page 164) defines the result of the modulo

operation in B as

n mod m = n−m ∗
⌊ n
m

⌋
,

which is equal to the floored division described by Knuth

in [22]. From this follows for the unit of n mod m

unit(n mod m) = unit
(
n−m ∗

⌊ n
m

⌋)
= unit(n).

Aside from the floored division modulo can be de-

fined using the Euclidean division as suggested by Boute

in [9]. In contrast to the definition above, the result of
the modulo operation is required to be positive. The Eu-

clidean division defines the modulo operation by three

equations:

1. q ∈ Z
2. n = m ∗ q + n mod m

3. 0 ≤ n mod m ≤ |m|
This definition is followed by the TLA+ language7.

The two definitions of modulo give different results

for negative divisors. Consider for example n = 1 and

m = −2. With the floored division, the result is

1 mod − 2 = 1− (−2) ∗
⌊

1

−2

⌋
= −1,

whereas the Euclidean definition results in 1.

The unit of n mod m is given by the second equa-

tion: An addition is only valid if both addends and the

7 In contrast to TLA+, B does not support n < 0 as the first
argument to the modulo operator. This is taken into account
by the translation from TLA+ to B.

result share the same unit. Hence, the Euclidean defini-

tion of modulo used by TLA+ does not contradict the

unit definition we made for the B language.

Please note that the Euclidean definition enforces

m to share the unit of n and n mod m as well, while

the floored division cancels out the unit of m. For our

implementation we decided not to enforce a restriction

on the unit of m to remain compatible to TLA+, B and

Event-B at the same time.

All in all, the addition of TLA+ and its interpre-

tation of modulo to our analysis did not make any

changes to our abstract semantics necessary. Following

the above reasoning, in the current implementation of

the unit interpreter the unit of n mod m is the unit of

n.

However, other definitions or implementations for

modulo are certainly possible. See for example the T-,

R- or C-division in [9]. These could easily be integrated

into our abstract interpretation framework. For this

work, we stay with the semantics of modulo described

by our input languages. Up to now, our empirical eval-

uation did not reveal any problems with the given def-

inition.

Another operation that is not immediately obvious

is exponentiation. First of all, we decided to enforce that

the exponent is dimensionless. This is in accordance

with the usual handling of exponents for example in

physics.

Another obstacle is that in order to compute the

unit of be, the value rather than the unit of e is needed.

However, the value has been abstracted away and is

usually only available at runtime anyway. In our imple-

mentation, outlined in Algorithm 3, we therefore added

an additional lookup that checks if the concrete value

of e corresponds to an integer literal. If so, the value is

known and the resulting unit can be computed as ex-

pected. If not, no unit can be computed and we have

to assume that a unit error occurred to be on the safe

side.

10 Sebastian Krings, Michael Leuschel

Further operations frequently available in program-

ming languages that are non-trivial include the trigono-

metric functions, the exponentiation function or loga-

rithms. As these are neither available in B, Event-B nor

TLA+, we do not discuss them here. However, these

operations and their effect on physical units has been

widely discussed in the literature regarding unit analy-

sis in physics. See for example [10] or [17]. Our abstract

implementation framework could easily be extended to

handle these operations.

Data: Units x1 ∈ Units, x2 ∈ Units
Result: Equality of Given Units
if

∑
t∈x1

prefix(t) 6=
∑

t∈x2
prefix(t) then

return false
else if {dimension(t) | t ∈ x1} = {dimension(t) | t ∈ x2}
then

return true
else

return false
end

Algorithm 1: Abstract Unit Equality

Data: Factors x1 ∈ Units, x2 ∈ Units
Result: Product p ∈ Units

p := ∅ foreach triple 10c1 × ue1 ∈ x1 do
if there is a triple 10c2 × ue2 ∈ x2 then

p := p ∪ {10c1+c2 × ue1+e2}
x2 := x2 \ {10c2 × ue2}

else
p := p ∪ {10c1 × ue1}

end

end
p := p ∪ x2
return p

Algorithm 2: Abstract Multiplication

Data: Base b ∈ Units, Exponent exp ∈ Units

Result: Product p ∈ Units

if Sourcecode of exp is integer literal i then
p := ∅
foreach triple 10c × ue ∈ b1 do

p := p ∪ {10c∗i × ue∗i}
end
return p

else
return >U

end

Algorithm 3: Abstract Exponentiation

We perform a fixpoint search by executing all oper-

ations of a B machine. Additionally, we evaluate prop-

erties and invariants in every iteration.

Let us have a closer look at the algorithm using the

pseudo code found in Algorithm 4. We start our search

on an initial state containing the abstracted elements.

First of all, we evaluate properties and invariants of

the machine. This step might already infer some units:

If, for example, an addition is encountered, the units

of the operands and of the result are unified. If one of

these units was already known, remaining ⊥U might

be replaced. However, we do not need to calculate the

least upper bound in order to update the state, as we

can not encounter assignments at this stage.

Following, we enter the fixpoint loop. We iterate

over all operations of the machine at hand until the

state does not change anymore. The most interesting

step is the execution of the event. We have to perform

several steps:

1. Preconditions or guards are evaluated. This is roughly

equal to the evaluation of the invariants mentioned

above. The state can not change, but invalid unit

usages can occur and have to be tracked.

2. Afterwards, the substitutions can be executed. Here,

we first need to compute the new values for all vari-

ables. Again, we only use the state and do not need

to change it. There can however be unit errors.

3. Once the new values are found, the state has to be

updated. At this step the least upper bound comes

into play. We determine the least upper bound of

the old and the new values, i.e. if an already inferred

unit changes in an incompatible way we set the state

value to >U . Otherwise, the state value is set to the

least upper bound of the old and the new value.

After the state is updated, we perform error report-

ing. This involves checking two possible error cases:

– One of the state variables might have been set to

>U . This happens if it was updated during the state

transition and the old and new values are not com-

patible. Hence, their least upper bound is >U .

– Invalid unit usage might have occurred without caus-

ing >U to occur in the state variables. This might

happen when the invalid usage occurred during the

evaluation of a boolean expression like the condition

of an if statement.

Additionally, we have to update certain constraints we

will explain in Sect. 5.

For the example machine in Fig. 2, the fixpoint

search would perform the following steps:

1. Initialize the machine: If a unit is attached to an

identifier, the unit is stored. Otherwise, ⊥U is used.

In the example, we set the initial state σ0 to

{(x, int({103 ×m1})), (y, int(⊥U))}.

Inferring Physical Units in Formal Models 11

2. Evaluate the invariant on σ0. The predicate x > y

allows us to infer the unit of y, updating σ0 =

{(x, int({103 ×m1})), (y, int({103 ×m1}))}. No in-

correct usage of units is detected.

3. Execute addToX on σ0:

(a) Generate local state σIN = {(n, int(⊥U)} ∪ σ0
by adding the return value n of addToX to the

state. Initially, no unit is known for it.

(b) Evaluate x+ y = int({103 ×m1})) + int({103 ×
m1})) = int({103 ×m1}))

(c) Substitute n by calculating the least upper bound

of ⊥U and int({103 ×m1})). The resulting out-

put state is

σOUT = {(n, int({103 ×m1})),
(x, int({103 ×m1})),
(y, int({103 ×m1}))}.

4. The invariant is checked on σOUT . No changes oc-

cur.

5. Again, no incorrect usage of units is detected.

6. The next iteration executes addToX again and checks

the invariant a second time. However, the state does

not change and the fixpoint is reached.

Obviously, no new units have to be created in this

example and a Hindley-Milner style type inference al-

gorithm using syntactical unification would have been

sufficient. Figure 10 shows a more involved extension of

the example in Fig. 2. This time, a new unit has to be

inferred and an error occurs:

1. The initial state is

σ0 = {(x, int({103 ×m1})),
(y, int({103 ×m1})),
(res, int({105 ×m1}))}.

2. Evaluate the invariant on σ0. No error is detected.

3. Execute multXandY on σ0:

(a) The local state of multXandY is empty as no local

variable is needed.

(b) Evaluate x ∗ y = int({103 ×m1})) ∗ int({103 ×
m1})) = int({106 ×m2}))

(c) Substitute res by calculating the least upper bound

of int({105 × m1})) and int({106 × m2})). As

these do not correspond to the same unit, Algo-

rithm 1 returns false. The least upper bound is

>U . Therefore, the resulting output state is

σOUT = {(x, int({103 ×m1})),
(y, int({103 ×m1})),
(res, int({>U}))}.

4. The invariant is checked without changing the state.

5. This time, a unit error is detected by successfully

searching the state for an occurrence of >U .

6. With the next iteration, a fixpoint is reached.

MACHINE UnitExample

VARIABLES

/*@ unit 10**3 * m */ x,

/*@ unit 10**3 * m */ y,

/*@ unit 10**5 * m */ res

INVARIANT x:NAT & y:NAT & res:NAT & x>y

INITIALISATION x, y,res := 1, 0, 0

OPERATIONS

multXandY = BEGIN res := x * y END;

END

Fig. 10 Example containing New Unit / Unit Error

4.2 Dealing with Function Calls

MACHINE SquaringFunction

OPERATIONS

res <-- Square Call(ss) =

PRE ss:INTEGER

THEN res := ss*ss END

END

MACHINE GenericUsageOfSquare

USES SquaringFunction

DEFINITIONS Square Def(aa) == (aa*aa)

VARIABLES

/*@ unit m */ xx,

/*@ unit m */ yy,

vv, ww

INVARIANT

xx:NATURAL & yy:INTEGER & vv:NATURAL & ww:NATURAL

INITIALISATION

xx:=2 || yy := -2 || vv := 0 || ww := 0

OPERATIONS

Sq = BEGIN

vv := Square Def(xx) ||

ww <-- Square Call(yy)

END

END

Fig. 11 Calls with Unit Parameters

One problem that arises in unit analysis is that func-

tions and methods can be parametric in units. In gen-

eral, we do not want to define several functions that es-

sentially perform the same operation on different units.

To overcome this problem, F# introduces a generic an-

notation that allows to define for example a squaring

function to map from any unit u to u2 [21]. In the re-

mainder of this section, we will reuse this example to

show how our approach deals with it.

12 Sebastian Krings, Michael Leuschel

σ = {(identifier of x, α(x)) : x variable or constant}
evaluate properties / invariant (might replace ⊥U by a U ∈ Units ∪ {>U} in σ)
repeat

foreach operation / event do
update σ by executing operation / event:

evaluate preconditions / guards (might replace ⊥U by a U ∈ Units ∪ {>U} in σ)
perform substitutions x := x′ by setting x to lub(x, x′) in σ

if parameter or return value contains >U then
report error

end

evaluate properties / invariant (might replace ⊥U by a U ∈ Units ∪ {⊥U ,>U} in σ)
if σ contains >U (i.e. a state variable has been set to >U) then

report error
end
if invalid unit usage detected during evaluation (e.g., in conditions, etc.) then

report error
end
evaluate unit constraints

end

until σ did not change in loop

Algorithm 4: Fixpoint Search (on B / Event-B machine)

In B, there are two ways of defining functions that

should be generic. Both are shown in Fig. 11.

– First, the DEFINITIONS section of a machine can

be used to define macros. In Fig. 11, the machine

GenericUsageOfSquare defines Square Def(aa) to

be replaced by aa*aa. As this is implemented in

ProB by textual replacement, there is no function

call involved when computing vv. It is handled by

the abstract interpreter just like a direct multiplica-

tion.

– Second, B allows to call operations that are de-

fined in another machine. In Fig. 11 the machine

GenericUsageOfSquare uses the machine

SquaringFunction. Hence it is allowed to call

Square Call and assign the return value to the vari-

able ww.

In the second case, a function call has to be per-

formed. Our abstract interpreter based approach is able

to handle the genericity very naturally:

– Upon calling Square Call a local environment con-

taining the parameter ss and the return value res

is set up.

– We store the value of yy inside the local environment

under ss to initialize the parameter with the given

value. This copies over the abstract value holding

the unit to the local state of the called function.

– Using the local state, Square Call computes the ab-

stract multiplication of ss*ss and stores the result

inside res.

– After the function returns, the value of res is taken

from the local state and assigned to ww.

The process is identical to the usual process of call-

ing a function inside an interpreter. In particular, it is

identical to the process performed by our regular, non-

abstract, B interpreter.

There is, however, one key difference between our

approach and the type-inference based one taken by

languages like F#. Within a naive abstract interpreta-

tion framework, the function body has to be evaluated

each time the function is called. In contrast, a type-

inference based analysis could compute a generic type

like u 7→ u2, that maps any unit to its square. These

generic types are then sufficient to perform unit analy-

sis. No further evaluation of the body of a function is

necessary.

For our input languages B, Event-B and TLA+the

repeated evaluation of function bodies does not no-

ticeably slow down the interpreter. To extend our ap-

proach to other languages, particularly those that heav-

ily rely on function calls, the abstract interpreter could

be extended by pre-computing a general signature of

the functions with respect to units [33,32]. Generaliza-

tions or function summaries could be computed upon

the first call to a function or before the analysis starts.

These summaries could then be reused during following

calls to avoid evaluating the body of a function multiple

times.

4.3 Unit Conversion

A special kind of units error is the usage of wrong con-

version rules or even skipping a unit conversion all to-

gether. While this is a problem for the conversion be-

tween different SI units, the situation gets even worse

if the conversion between metric and imperial units is

taken into account. As state-of-the-art software projects

are often developed on a worldwide basis, programmers

Inferring Physical Units in Formal Models 13

accustomed to different units of measurement work to-

gether on the same code base. A common example that

might be problematic is the decision between and con-

sistent usage of metric or imperial units or the date

format.

In fact, errors in unit conversions have already led

to different real-world problems:

– On July 23, 1983 a Boeing 767 flying for Air Canada

was forced to perform an emergency landing due to

low fuel pressure. On a flight altitude of about 41000

feet both engines stopped. Luckily the pilot was

able to safely land the plane on an abandoned mil-

itary airport. Investigations later unveiled that the

ground crew only refueled the airplane by half the

necessary amount, because they mixed up pounds

per liter and kilograms per liter when configuring

the fueling equipment [28]. While this error hap-

pened in a mental calculation a programmer could

have just as easily fallen into the same trap.

– On September 23, 1999 NASA lost the Mars Cli-

mate Orbiter, a space orbiter send to Mars as a

part of the Discovery program. It was equipped with

a radiometer and a camera. Aside from collecting

climate data, NASA intended to use it as a com-

munication relay to the Mars Polar Lander. The

whole mission had a budget of about 320 million

dollars, with the spacecraft accounting for close to

$130 millions. When trying to place the probe in a

stable orbit around Mars, the Mars Climate Orbiter

crashed into it. NASA later revealed a communica-

tion problem between NASA and the manufacturer

of the navigation software. While NASA was using

the SI-unit N
s for the engine’s impulses, the naviga-

tion software was using the imperial unit lbf = lb
s

[35].

Some of the common programming errors regarding

unit conversions can be avoided by an analysis like the

one we suggest.

As mentioned in Sect. 3.2 we introduced a pragma

that allows us to annotate arithmetic operations as unit

conversions as shown in Fig. 3.

This is necessary because the plugin itself is ob-

viously unable to distinguish between modifying the

amount and converting the same amount to a different

unit just by looking at the operation itself. In Fig. 3,

10*y could as well set x to ten times y instead of con-

verting from centimeters to millimeters.

We considered several modes of operation for unit

conversions:

– The easiest way to do unit conversion would be to

rely on especially crafted units. In order to con-

vert from cm to mm, we could multiply with 100

mm ∗ cm−1. However, we would rely on the user

to input the correct conversion unit together with

the matching conversion factor. We dropped this ap-

proach because we wanted to strive for more auto-

matic verification of conversions.

– A second possible implementation would have been

to try to auto-detect if the users attempts a unit

conversion. For this to work we would set up both

possibilities inside the interpreter and evaluate both

paths. Eventually, one should lead to a fixpoint con-

taining the final unit information of the model at

hand. While the approach seams reasonable, we would

have needed to figure out how to deal with conflicts:

– Certain paths might return an error while oth-

ers do not. Interaction with the users would be

the only proper way to decide if the model is

erroneous.

– There might be a choice of possible conversions,

e.g., if one or more units are no inferred yet.

Some of them might lead to a later inconsistency

or a unit error. Again, user interaction would be

necessary.

Implementing the second choice could be done em-

ploying the backtracking capabilities of the underlying

Prolog system. However, it would render the results of

our unit analysis more ambiguous. Error messages deal-

ing with possible conversions that were inserted auto-

matically would certainly be harder to understand. A

more advanced version of our analysis could however

suggest conversions in cases a unit error is detected

somewhere.

In consequence, we decided on an approach quite

similar to the first. The user still inputs the required

conversion factors. However, instead of crafting a con-

version unit, the arithmetic operation is annotated as

a conversion. With the added annotation, our plugin is

able to verify the correctness of the conversion factor

and to figure out the resulting unit. This could not be

done without an explicit distinction between converting

and multiplying the amount.

Let us discuss our algorithm on another example

machine that shows how a common unit conversion

mistake is prevented by our analysis. The B machine

in Fig. 12 computes the conversion between hours and

seconds. Once the fixpoint algorithm reaches a multi-

plication it has two possibilities:

– If there is no conversion annotation, the plugin

tries to infer units for 3600 and seconds.

– However, with the added pragma, the plugin knows

that it is supposed to find a unit for seconds that

is compatible with the unit of hours and the given

conversion factor.

14 Sebastian Krings, Michael Leuschel

Finding a compatible unit is done by consuming the

conversion factor step by step. First, the plugin knows

that it can use a conversion factor of 60 to convert from

hours to minutes. This is stored as an exception to the

general rule of “multiply by ten” for SI unit conversion.

This leads us to the new expression seconds := 60*x

where x is stored in minutes. We apply the algorithm

recursively as long as the conversion factor is greater

than 18. If there are several possibilities for a conver-

sion, we rely on the backtracking capabilities of Prolog

to try them out in a nondeterministic way.

In addition to conversion factors, our analysis is

able to handle linear conversions like the one Celsius

to Fahrenheit.

MACHINE NonSIConversion

VARIABLES

seconds,

/*@ unit h */ hours

INVARIANT seconds:NAT & hours:NAT

INITIALISATION seconds,hours := 0,5

OPERATIONS

convert = seconds := /*@ conversion */ (3600*hours)

END

Fig. 12 Example Usage of the Conversion Pragma

5 Extending Abstract Interpretation with

Constraints

Below we show that our abstract interpretation scheme

on its own still has some limitations. Consider the B

machine in Fig. 13, where the variable x contains a

length in meters, t holds a time interval in seconds,

and the unit of y should be inferred. Evaluating the

assignment t := (x∗y)∗t requires several interpretation

steps:

1. The interpreter computes the product of x and y.

As y = int(⊥U), the interpreter can only return

int(⊥U) as a result.

2. In consequence, the interpreter finds that (x∗y)∗t =

int(⊥U) ∗ t = int(⊥U) ∗ int({100 × s1}) = int(⊥U).

3. The assignment t := (x ∗ y) ∗ t is evaluated by com-

puting the least upper bound of t and int(⊥U), i.e.,

int({100 × s1}). No information is propagated back

8 Note that there is only experimental support for floating
point numbers in B and Event-B. Hence, we currently do
not support conversions like the one from seconds to minutes
using 1

60
as a conversion factor. It would, however, be possible

to implement this as an extension of our approach and we will
do so once real / float support stabilizes. TLA+ supports real
numbers. However, at the moment, our translation does not.

to the inner expressions; we are thus unable to infer

the unit of y.

The example shows that it is necessary to attach

some kind of constraints to the resulting variables con-

taining ⊥U . Inside, the operation and the operands that

lead to ⊥U are stored. They will be used to re-execute

the operation if more information is known.

Definition 7 A unit constraint can be attached to any

variable x with x = ⊥U . It consists of two operands

o1, o2 for which o1 = ⊥U ∨ o2 = ⊥U holds. Hence, no

result can be computed at the moment. Furthermore,

it contains an operation op ∈ {mult , div , pow}. It stores

the fact that

– x = o1 ∗ o2, iff op = mult ,

– x = o1
o2

, iff op = div ,

– x = oo21 , iff op = pow .

We implemented constraints for multiplication, di-

vision and exponentiation, as those cannot be handled

by the interpretation-based algorithm alone. There is

no need for constraints in case of addition, subtraction,

etc. because those can only be correct if operands and

result hold the same unit. Hence, the variables storing

the inferred units can just be unified.

As shown in Algorithm 4 the constraints are evalu-

ated after each iteration of the fixpoint search.

In general, if a variable with an attached constraint

has been unified with another variable in the current

iteration, the unit analysis reacts differently depending

on the values of the operands. The behavior as outlined

in Algorithm 5 is:

– The variables do not hold a physical unit at the

moment. Hence, we cannot solve the constraint.

– After the unification, the variable contains a physi-

cal unit. Now, we have to look at the operands o1, o2
inside the constraint:

– If o1 = ⊥U∧o2 = ⊥U , there are multiple possible

solutions. We again delay the computation to the

next iteration of the fixpoint algorithm.

– If o1 6= ⊥U ∧ o2 6= ⊥U the constraint is dropped

without further verification as there is nothing

left to infer.

– If o1 6= ⊥ ∧ o2 = ⊥U , we can compute o2 by

reversing the operation.

– If o1 = ⊥ ∧ o2 6= ⊥U , we can compute o1 by

reversing the operation.

– Further unifications in the second step may allow to

solve constraints on other variables.

Using the exponentiation in reverse underlies the

same limitations mentioned in Sect. 4.1.3.

In the example given in Fig. 13 two constraints are

used to infer the unit of variable y. First, a constraint

Inferring Physical Units in Formal Models 15

Data: Unit Constraint c (attached to variable x 6= ⊥U)

extract operation op and operands o1, o2 from c

if o1 6= ⊥U ∧ o2 6= ⊥U then
remove constraint c

else if o1 = ⊥U ∧ o2 6= ⊥U then
switch op do

case mult do o1 := x/o2
case div do o1 := x ∗ 02

case pow do o1 := o2
√
x

end

else if o1 6= ⊥U ∧ uo2 = ⊥U then

switch op do
case mult do o2 := x/o1
case div do o2 := o1/x

end

end

Algorithm 5: Handling of Unit Constraints

containing x and y is attached to the intermediate re-

sult of the inner multiplication. We receive an interme-

diate variable temp, with an attached unit constraint

holding op = mult , o1 = x and o2 = y. The result of

the outer multiplication is annotated in the same way:

t ∗ temp results in a variable t̂emp with a constraint

holding ôp = mult , ô1 = t, ô2 = temp. When comput-

ing the assignment t := t̂emp, we know that the outer

multiplication has to return seconds for the usage of

units to be consistent. t̂emp now has the value s and

the attached constraint can be used to infer the unit

value of ô2 by

ô2 =
t̂emp

ô1
=
s

s
= dimensionless.

Hence, temp is inferred as dimensionless. This enables

the constraint attached to temp itself, allowing the al-

gorithm to compute a value for o2 in the same way. We

have

o2 =
temp

o1
=

dimensionless

m
= m−1.

As o2 = y the unit of y is now known to be m−1.

We do not perform error handling when evaluating

constraints. If a new unit has been inferred, the state

has changed and the next iteration of the fixpoint search

will eventually discover new errors. If the state did not

change, solving the constraint did not add any informa-

tion. We could only detect an error already reported.

See Algorithm 4 for details.

6 A Refinement Chain for Physical Units

The plugin as initially introduced by us in [23] was only

able to analyze the usage of physical units throughout a

MACHINE InvolvedConstraintUnits

VARIABLES /*@ unit m */ x, y, /*@ unit s */ t

INVARIANT

x:NAT & y:NAT & t:NAT

INITIALISATION x, y, t := 1, 1, 1

OPERATIONS

Op = BEGIN t := (x*y)*t END

END

Fig. 13 Machine requiring involved constraint solving

MACHINE RefinementExample

VARIABLES

/*@ unit length */ abstract length,

/*@ unit m */ distance,

/*@ unit m**2 */ area

INVARIANT

abstract length:NAT & distance:NAT & area:NAT

INITIALISATION abstract length,distance,area := 0,0,0

OPERATIONS

n <-- correct =

BEGIN n := abstract length + distance END;

n <-- wrong =

BEGIN n := abstract length + area END;

END

Fig. 14 Example Usage of Unit Refinement

single B machine and its included machines. However,

there was no way of assuring the consistent usage of

units inside a chain of B machines refining each other.

Furthermore, we learned through our empirical evalua-

tion that it would sometimes come in handy to be able

to assign a more abstract unit like “length” or “speed”

without the need to assign a specific SI-unit.

Both problems boil down to refinement:

– Analyzing physical units through a chain of B ma-

chines means being able to convert from more ab-

stract units used in the abstract refinement levels

to concrete units that are assigned to variables in

the refinement levels closer to an actual implemen-

tation. Essentially, a more abstract variable needs

to hold a more abstract unit than its refined coun-

terpart.

– The same situation might occur inside a single ma-

chine. A user should be allowed to use both fully

specified units and more abstract units for different

variables occurring in the same model. Beyond the

first case, this means that the different refinement

levels might occur in a common expression.

We were able to integrate refinement into our ap-

proach in a straight forward way. First of all, the def-

inition of a unit has to be relaxed to allow for only

partially known units:

16 Sebastian Krings, Michael Leuschel

Definition 8 A refinable base unit is a triple 10c × ue
such that we have c ∈ Z ∪ {unknown}, e ∈ Z, u being

a base SI unit.

The deconstruction functions from Def. 2, such as

symbol(.) and prefix (.), can be lifted to refinable units

as expected. Definition 3 can now be adapted for refin-

able units:

Definition 9 A refinable unit is a set of refinable base

units {u1, . . . , uk} such that

∀ui, uj • j 6= i⇒ symbol(ui) 6= symbol(uj).

With this definition, we allow unit triples that con-

tain the placeholder “unknown” as the first element.

We do not allow units without a known base SI unit

or exponent, as these would more or less be equal to a

fully unknown unit. Now, we can define which units are

abstract, i.e. they can be refined and which units are

concrete, i.e. they can not be refined anymore.

Definition 10 A refinable unit u is called abstract,

if there exists a triple t ∈ u such that prefix (t) =

unknown.

Definition 11 A refinable unit u is called concrete, if

it is not abstract.

These changes result in a new layer added to the

domain shown in Fig. 9. The new units are added in

between ⊥U and the fully inferred units above it.

Now, we have a representation for an abstract unit

like “length”, namely {10unknown × m1}. To integrate

abstract units into our abstract interpretation frame-

work, only a few changes are necessary: While the ab-

straction function α as well as the concretization func-

tion γ do not need to be changed aside from extending

the set of all units, we have to extend the definition of

the least upper bound.

If we compute the least upper bound of two units,

we have to be able to compute a unit less abstract than

both of the units. In case one of the units is still set

to ⊥, we can simply return the other one. If one of the

units does already hold >, we can only return >. If the

units are equal, the least upper bound is equal to both

of them.

However, if one of the units is abstract and not iden-

tical to the other one, computing the least upper bound

has to be done in a more elaborate fashion. To do so,

we compare the units triple by triple and replace “un-

known” where possible. Our implementation is shown

in Algorithm 6. It can be seen as an extension to the

unit equivalence algorithm shown in Algorithm 1.

A concluding example can be found in Fig. 14. It fea-

tures an abstract variable abstract length that stores

Data: Units x1 ∈ Units, x2 ∈ Units
Result: Refining Least Upper Bound lub ∈ Units

lub := ∅
foreach triple t1 ∈ x1 do

if there is a triple t2 ∈ x2 with

symbol(t1) = symbol(t2) then
if exponent(t1) 6= exponent(t2) then

return >
end

if prefix(t1) = unknown ∨ prefix(t1) = prefix(t2)
then
lub := lub ∪ {t2}

else

if prefix(t2) = unknown then
lub := lub ∪ {t1}

else
return >

end

end

x2 := x2 \ {t2}
else

return >
end

end
if x2 6= ∅ then

return >
else

return lub

end

Algorithm 6: Refining Least Upper Bound

any length. Furthermore, there a two concrete variables

distance and area with the appropriate units attached

to them. The two operations highlight how our infer-

ence algorithm works on abstract units:

– If the operation correct is executed, the interpreter

has to compute the sum of abstract length and

distance. As abstract length holds the abstract

unit 10unknown × m1 and distance holds the con-

crete unit 100 ×m1, the least upper bound is 100 ×
m1 according to Algorithm 6. Obviously, no unit

error occurs.

– On the contrary, executing the operation wrong does

result in a unit error: area holds the concrete unit

100 ×m2. Hence, in Algorithm 6 the else branch is

executed and > is returned as the resulting least

upper bound of abstract length and area.

7 Empirical Results

Our empirical evaluation examines the following three

key aspects:

– the effort needed to annotate the machines and de-

bug them if necessary;

Inferring Physical Units in Formal Models 17

Table 1 Benchmarks - Analysis

Classical B
No. machine LOC # operations # iterations time analysis
1 Car 74 4 2 < 10 ms
2 TrafficLight 81 2 1 < 10 ms
3 System 322 20 2 50 ms

4 measure 42 2 1 < 10 ms
5 utils 24 2 1 < 10 ms
6 utils i 38 2 1 < 10 ms
7 ctx 16 0 1 < 10 ms
8 ctx i 16 0 1 < 10 ms
9 fuel0 64 2 2 < 10 ms
10 fuel i 106 6 2 < 10 ms

11 compensated gradient 3079 20 3 620 ms
12 vital gradient 986 4 3 160 ms
13 sgd 773 0 2 170 ms

14 params scn f6 372 bis 99 0 2 < 10 ms
15 actions scn f6 372 bis 526 17 2 25 ms
16 params custom unit 99 0 2 20 ms
17 actions custom unit 526 17 2 35 ms

Event-B
No. machine LOC # operations # iterations time analysis
18 T m0 115 6 3 20 ms
19 T m1 179 11 3 30 ms
20 C m0 108 4 3 20 ms
21 C m1 141 4 3 20 ms
22 C m2 162 4 3 40 ms
23 C m3 228 7 3 90 ms

TLA+

No. machine LOC # operations # iterations time analysis
24 Clock 18 1 1 240 ms
25 WaterTank 37 1 1 260 ms

– additionally, the number of iterations performed and

the time spent in search for a fixpoint was of par-

ticular interest;

– the accuracy of the abstract interpretation.

To evaluate the performance of the unit analysis

plugin, several case studies on different crafted and real

world example machines were performed. Most of the

machines used in the case studies can be found online9.

We will discuss six of them in the following sections.

7.1 Traffic Light Warning System

The first case study is based on an intelligent traf-

fic light warning system. The traffic light broadcasts

information about its current status and cycle to on-

coming cars using an ad-hoc wireless network. The sys-

tem should warn the driver and eventually trigger the

brakes, in case the car approaches a traffic light and

will not be able to pass when it would be still allowed.

9 http://www.stups.uni-duesseldorf.de/models/sosym_

units/

After the annotations were done, the plugin reported

an incorrect usage of units. The underlying cause was

the definition

ceil div(a, b) ==
a

b
+
b− 1 + a mod b

b
,

a ceiling division that rounds the result up to the next

integer value. It was introduced to keep the approxima-

tion of breaking distances sound.

The expected result for the unit of ceil div is the

unit of a regular division, that is the unit of a divided

by the unit of b. However, the definition above does not

lead to a consistent unit. Thus, the former definition of

ceil div was not convenient for use with the unit plugin.

It was changed to

ceil div(a, b) ==
a

b
+

min(1, a mod b)

(b+ 1) mod b
,

which leads to the expected result.

Furthermore, the speed of the car was stored as a

length and implicitly used as a “distance per tick”. Our

plugin discovered that the speed variable could not be

associated with any suitable unit without giving further

errors.

http://www.stups.uni-duesseldorf.de/models/sosym_units/
http://www.stups.uni-duesseldorf.de/models/sosym_units/

18 Sebastian Krings, Michael Leuschel

Table 2 Benchmarks - Annotating

Classical B
No. machine LOC # constants & variables thereof annotated time annotating
1 Car 74 6 2 (≈ 33%) ≈ 30 min
2 TrafficLight 81 6 2 (≈ 33%) ≈ 20 min
3 System 322 13 4 (≈ 31%) ≈ 60 min

4 measure 42 3 1 (≈ 33%) ≈ 5 min
5 utils 24 0 0 (0%) ≈ 5 min
6 utils i 38 0 0 (0%) ≈ 5 min
7 ctx 16 3 1 (≈ 33%) ≈ 5 min
8 ctx i 16 3 1 (≈ 33%) ≈ 5 min
9 fuel0 64 6 1 (≈ 17%) ≈ 5 min
10 fuel i 106 6 1 (≈ 17%) ≈ 5 min

11 compensated gradient 3079 766 -a ≈ 45 min
12 vital gradient 986 263 -a ≈ 45 min
13 sgd 773 251 -a ≈ 90 min

14 params scn f6 372 bis 99 34 10 (≈ 29%) ≈ 20 min
15 actions scn f6 372 bis 526 51 10 (≈ 20%) ≈ 20 min
16 params custom unit 99 34 10 (≈ 29%) -b

17 actions custom unit 526 51 10 (≈ 20%) -b

Event-B
No. machine LOC # constants & variables thereof annotated time annotating
18 T m0 115 9 3 (≈ 33%) ≈ 15 min
19 T m1 179 13 2 (≈ 15%) ≈ 15 min
20 C m0 108 13 2 (≈ 15%) ≈ 15 min
21 C m1 141 16 2 (≈ 13%) ≈ 15 min
22 C m2 162 17 2 (≈ 12%) ≈ 15 min
23 C m3 228 19 2 (≈ 11%) ≈ 15 min

TLA+

No. machine LOC # constants & variables thereof annotated time annotating
24 Clock 18 3 3 (100%) ≈ 1 min
25 WaterTank 37 7 2 (≈ 29%) ≈ 15 min

a Several of the constants and variables inside these models are dimensionless and used for program counters, track ids and
so on. Hence, the number of annotated variables is not representative as a benchmark and is therefore left out.

b Same as above with meters replaced by the custom unit “yards”. Hence, no time was measured.

To overcome the problem we introduced a new vari-

able TICK LENGTH, set it to one and annotated it with

seconds. With the speed being stored in meters per sec-

ond and the position of the car in meters, a multiplica-

tion with TICK LENGTH fixes the unit usage.

Regarding the performance factors mentioned above,

the number of iterations and the computation time was

measured. Furthermore we timed annotating the ma-

chine and correcting unit errors if necessary. The results

are listed in benchmarks 1 to 3 in Tables 1 and 2. For

comparison purposes, the table also lists the number

of lines of code and the number of operations for each

machine10. No variables contained >U , so the abstract

interpretation did not lead to a loss of precision.

The effort needed to annotate and correct the model

was reasonably low, in particular when compared with

10 Both were counted on the internal representation of the
machines. Thus, the metrics include code from imported ma-
chines. Comments are not counted, as they are not in the
internal representation. However, new lines used for pretty
printing are counted.

the time needed to create the model in the first place.

The evaluation also showed that it is easy to split de-

veloping the model and performing unit analysis.

7.2 ClearSy Tutorial

The second case study used a ClearSy tutorial on mod-

eling in B11. It contains both abstract and implementa-

tion machines (all in all seven B machines). The system

uses several sensors to estimate the remaining amount

of fuel in a tank.

The first step was to annotate all variables with

their respective units. When no error was found, the

number of pragmas was gradually reduced, to measure

the efficiency of our approach with less user input avail-

able. Eventually, we only needed one pragma for the

abstract and one for the implementation machine. All

11 The tutorial including the machines can be found at http:
//www.tools.clearsy.com/wp1/?page_id=161.

http://www.tools.clearsy.com/wp1/?page_id=161
http://www.tools.clearsy.com/wp1/?page_id=161

Inferring Physical Units in Formal Models 19

other units could be inferred12. In the process, no unit

reached >U . The benchmarks are presented in Table

1 and Table 2, rows 4 to 10: again, the computation

time is very low and only two iterations are needed

to fully infer the units of all variables. The additional

step of introducing an implementation level did not lead

to longer computation times. No significant annotation

work was needed on the implementation machine, once

the abstract machine had been analyzed.

7.3 Hybrid Systems

For the next case study, we used some of the Event-B

hybrid machines described in [4]. Hybrid systems usu-

ally consist of a controller working on discrete time in-

tervals, while the environment evolves in a continuous

way. To deal with the challenge of analyzing both a dis-

crete and a continuous component simultaneously, time

is modeled by a variable called “now”. It can be used

as input to several functions mapping it to a real-world

observation, taken from the environment at that mo-

ment in time. Hence, this approach is an addition to

the former case studies using different techniques.

From the three models described in [4], two were

used as case studies: the hybrid nuclear model and the

hybrid train model. The hybrid nuclear model was orig-

inally introduced in [7]. It models a temperature con-

trol system for a heat producing reactor that can be

cooled by inserting one of two cooling rods once a crit-

ical temperature is reached. The hybrid train example

was originally developed in [31]. It features one or more

trains running on the same line. Each train receives a

point m on the track where it should stop at the least.

The machines with less abstraction introduced hy-

brid components by using functions as explained above.

The unit plugin stores these functions as mappings from

one unit to another. Hence, to be able to fully analyze

the usage of units inside a machine, there have to be

annotations on both the discrete and the continuous

variables.

In the train models, the variables holding speed and

position were annotated in the abstract model. In the

more concrete model, the acceleration was stored as
m
s while one of the time variables was annotated as

seconds. Both configurations lead to full inference of

the used units through all variables and constants. No

unset variables or variables with multiple inferred units

occurred.

In the hybrid nuclear models, different combinations

of annotating one of the temperatures and one of the

12 The exception being variables and sets belonging to the
system’s status. Here, no unit of measurement applies and no
unit was inferred.

time variables were tried. Regardless of the combina-

tion, once both a temperature and a time were anno-

tated, all other units could be inferred. The belonging

benchmarks are 18 to 23 in Tables 1 and 2.

7.4 Alstom Models

To evaluate the performance of the unit plugin on large

scale examples, several B railway models from Alstom

were used as benchmarks. The models precisely sim-

ulate the behavior of trains in order to fine-tune pa-

rameters of control systems. As most of these machines

are confidential, neither source code nor implementa-

tion details can be provided.

During the evaluation, the plugin showed some dif-

ficulties in handling large B functions or relations of

large cardinality. Mainly, this is because for every new

element that is added to a relation, the plugin tries

to infer new units for range and domain. In almost all

cases this does not modify the currently inferred units.

In a future revision, the plugin might rely more on in-

formation from the type checker to reduce the number

of inferences.

Furthermore, lookup of global variables and their

units slowed the interpreter down. When accessing ele-

ments of deferred or enumerated sets, the machine had

to be unpacked frequently. To overcome this limitation,

certain units are now cached to reduce the lookup time.

As discussed in 3.2, there is no way to annotate both

range and domain of a function or relation at once, as

this would require another pragma or at least a second

variant of the unit pragma. Therefore, they have to be

annotated on their own. Our evaluation shows that this

is possible without substantial rewriting of a machine.

Examples 11 to 13 in Table 1 and 2 shows the bench-

mark results for some of the Alstom machines. Total

lines of code and number of operations are again given

to ease comparison with the former case studies. As can

be seen, our analysis scales to these large, industrial ex-

amples.

7.5 Alstom Models 2

We performed a second case study on machines taken

from Alstom transportation modeling an aspect of the

European Train Control System (ETCS). In this case

study, classical B is used to model a single railway track.

At its sides, signals are placed at various positions. The

signals might allow the trains to pass through without

interruption. However, in case a signal turns to red, the

train has to stop within a certain area in front of the

signal.

20 Sebastian Krings, Michael Leuschel

The model then places several trains on the track

following each other. Each train can be assigned a speed.

Obviously, there are several safety aspects the model

has to care for, e.g., the trains may not be in the same

section of the track. The goal is to trigger de- and ac-

celeration of each train in order to find a configuration

that minimizes breaking maneuvers and maximizes the

throughput of the track.

The system consists of a machine called “params”

that is used to set up necessary constants. It is accom-

panied by “actions” that includes variables and opera-

tions on them.

This time, the intended physical units of measure-

ment were already given by the implementors of the

machines. However, they were stored in simple com-

ments and thus hidden from analysis.

We selected this case study, because it employs a

feature not used in the former studies: user-defined units.

The feature was originally added to our plugin to sup-

port non-standard units like the once used in railway

applications.

To show that adding units does not slow down our

analysis, we benchmarked two versions of “params” and

“actions”. In the first version, we use meters for every

distance. In the second version, we introduced yards by

adding the global pragma

/*@ new unit yards */. Please note that, as explained

in Sect. 3.2, this just introduces a new unit symbol

“yards”. There is no conversion rule between meters

and yards13.

Both variants were able to incorporate the units

given by the implementors. Annotating was straight-

forward and no errors could be found using the analy-

sis. There was no notable delay introduced by utilizing

user-defined units.

7.6 TLA+ Machines

The TLA+ Clock model mentioned in Sect. 3.3 rep-

resents a simple clock storing the time in three in-

teger variables used for hours, minutes and seconds.

In this case study, we verify the consistent usage of

units throughout the machine. The critical part is the

Clock next predicate.

It contains three conjuncts, each updating one of

the variables:

– seconds’ = (seconds + 1) % 60 sets the new value

of seconds. Following the inference rules explained in

Sect. 4.1 the unit of (seconds + 1) % 60 is equal

13 Upon request of our industrial customers we since added
several custom units to the units included by default. Con-
version rules were added as well.

to the unit of (seconds + 1) and therefore the unit

of seconds. Units are used consistently.

– hours’ = (IF minutes # 59 THEN hours ELSE

(hours + 1) % 24) and

– minutes’ = (IF seconds # 59 THEN minutes

ELSE (minutes + 1) % 60) dispatches on a vari-

able that uses a different unit than the variable that

is updated. We will look at the translation to explain

how our plugin evaluates this to be correct.

minutes’ = (IF seconds # 59 THEN minutes ELSE

(minutes + 1) % 60) is translated into the equivalent

B expression (λt.(t ∈ {1} ∧ seconds 6= 59|minutes) ∪
(λt.(t ∈ {1}∧¬seconds 6= 59|(minutes+1) mod 60)))(1)

as explained in [18]14.

The analysis correctly computes that the unit of

minutes and (minutes+1) mod 60 is the unit ofminutes

(min). Following, the abstract element representing the

lambda expressions is set(pair(int(⊥U),int(min)), a set

of pairs that each contain an untyped integer and an

integer representing minutes. If we apply this to 1, an

integer, the result is an integer representing minutes.

This is compatible to the unit of the variable minutes

and hence no unit error is found.

The benchmarks can be found in Tables 1 and 2,

row 24. Time needed for the translation from TLA+ to

B is included in the analysis time and takes up most of

the time spend. Lines of code and number of operations

are counted on the translated machine.

Aside from the Clock model we performed a second

benchmark on a simple water tank modeled in TLA+.

The model stores the amount of water in a tank, an up-

per and a lower threshold (all in m3), a steady outflow

and a pump controlled inflow (both in m3

s). With the

constant outflow, the water level sinks until the lower

threshold is reached. This should trigger the pump,

causing the water level to rise again. Upon other goals,

the model should verify that a certain minimal amount

of water is always present.

Annotating the model with physical units was again

quite straight forward. This time, the length of a tick

or an update operation was already encoded as a con-

stant and set to one, much as we did in the Traffic Light

Warning System. However, we encountered a unit error.

The multiplication with the tick length was missing in

the water level’s update operation. As the duration of

an update was set to a single second, the missing mul-

tiplication did not cause errors detectable by common

model checking. Initializing the model with a different

14 A relation constructed as the set union of the two lambda
expressions. Depending on the condition of the if expression,
one of the lambda expressions is empty while the other one
contains exactly one element: the result of the if expression.
We apply the relation to 1 to extract this element.

Inferring Physical Units in Formal Models 21

or even a nondeterministically chosen tick length would

have made the error detectable by model checking.

We fixed the model in order to perform our bench-

marks. The results are again presented above. Fixing

the error took quite some time as the source-linked er-

ror information for TLA+ is not as good as the one we

implemented for B and Event-B. This will be improved

in future versions.

8 Alternative Approaches and Related Work

Aside from the idea to use abstract interpretation, an

extension of the type checking capabilities of ProB was

initially considered. This approach would act more like

a static analysis of the B machine, rather than inter-

preting it (abstractly) while observing the state space.

Note, however, that simple syntactical unification-based

type inference (Hindley-Milner style) is not powerful

enough due to the generation of new units, e.g., during

multiplication.

In order to use a unification-based algorithm the

simple syntactic unification would have to be replaced

by equational unification, i.e. unification with respect to

a given theory [6]. Inside this theory, the computation

of units under operations like multiplication and divi-

sion could be axiomatized. Other operations like addi-

tion or subtraction could still be handled by using type

variables where necessary. With the usual operations,

the set of physical units forms an abelian group [12],

over which equational unification is decidable [6]. Fur-

thermore, most general unifiers can be computed for

this theory and a unification algorithm can be imple-

mented in a straight-forward fashion [21]. This tech-

nique is widely used in languages that support unit

analysis.

In contrast to the interpreter based approach, imple-

menting an extended type checker would possibly have

resulted in less implementation work. On the downside,

it would not be able to animate or to reason about

intermediate states. In contrast, the interpreter based

approach can also be used as an interactive aid while

debugging errors.

A type checking approach for a modeling language

is followed in [19]. The authors describe a language ex-

tension for Z adding physical units. The correct usage of

units is verified by static analysis. Support for physical

units is also present in the specification languages Mod-

elica [29] and Charon [5]. While the Modelica standard

supports physical units of measurement directly in the

specification language, not all tools implementing the

standard support all features of it. Furthermore, the

standard does not describe how units should be inferred

or which algorithms should be used.

Aside from specification languages, several exten-

sions for general purpose language exist. Among others

there are solutions for Lisp [15], C [20], C++ [37], Java

[16] and F# [21].

In [21] and [38] the limitations of syntactical unification-

based type inference are solved by inferring new units

as the solutions of a system of linear equations as ex-

plained above. In our approach these equations can to

some extent be found in the constraints mentioned in

Sect. 5.

Another approach is followed in [34] and [30], pro-

viding an expressive type system containing physical

units for Simulink, a modeling framework based on Mat-

lab. The approach followed in [34] is different from the

one implemented in this article and from the equational

unification based algorithms. Instead of using abstract

interpretation, the problem is translated into an SMT

problem [8], which can be solved by a general purpose

solver.

In addition to performing unit analysis, an SMT or

constraint based approach could make it easier to gen-

erate test cases that verify the required properties. In

particular, calculating the unsatisfiable core makes it

possible to generate minimal test cases for certain er-

rors. However, in contrast to the abstract interpreter

based approach, verifying intermediate states and per-

forming animation involve multiple reencodings of the

problem to SMT-LIB.

In a recent followup [30], the authors present their

new tool “DimSim” that is able to handle compositional

analysis of Simulink as well as underspecification. In

this version, the problem is translated into a set of con-

straints or equations solvable by Gauss-Jordan elimi-

nation. Hence, it can be seen as an implementation of

equational unification.

9 Discussion and Conclusion

In conclusion, our approach of combining abstract inter-

pretation with constraint solving works reasonably well.

It is competitive with the equational unification based

approaches mentioned in Sect. 8. The newly developed

plugin extends ProB by the ability to perform unit

analysis for formal models developed in B or Event-B.

In connection with the translation from TLA+ to B [18]

it enables ProB to analyze units in TLA+ machines.

We provide source-level error feedback to the user and

usually a small number of annotations is sufficient to in-

fer the units of all variables and check the consistency of

a machine. Screenshots of the tool integration showing

input, output and error messages linked to the source

code can be found in Figures 15, 16 and 17.

22 Sebastian Krings, Michael Leuschel

Fig. 15 Screenshot ProB with source-level feedback

Fig. 16 Rodin Integration: Variables and Units

Fig. 17 Rodin Integration: Error Markers

Figure 15 shows the source-linked error reporting for

a B model inside the Tcl/Tk based ProB standalone.

Here, ProB reports that the return value of an oper-

ation has multiple units attached to it. Once the user

clicks on the error message in the lower left panel, the

corresponding source code lines are highlighted. Fur-

thermore, the different units inferred can be seen as

well.

Figure 16 shows how error reporting is done for an

Event-B model inside the Rodin platform. We display

both the annotated as well as the inferred unit. In case

an error is detected, the incompatible units are pre-

sented to the user. Furthermore, the error reporting ca-

pabilities of Eclipse are used to attach error markers to

different source code positions as shown in Fig. 17.

Inferring Physical Units in Formal Models 23

In future, we plan to support other languages, in

particular CSP ‖ B and Z. Furthermore, the integra-

tion of TLA+ is not as user-friendly as it is for B and

Event-B. Improving error output and source-linked in-

formation is one of our next targets.

As anticipated, the plugin is able to infer units of

constants and variables and handle their conversions.

Additionally, user controlled unit conversions can be

performed and are fully integrated with the analysis

tools.

Furthermore, the extension of B and TLA+ by prag-

mas leaves all machines usable by the different tools

and tool sets without limitations. Deploying unit anal-

ysis does not interfere with any step of a user’s usual

workflow.

Most machines only needed a few iterations inside

the fixpoint algorithm. Furthermore, the top element

was only reached in machines containing errors. Thus,

the selected abstract domain seems fitting for the de-

sired analysis results.

While the overall performance generally matches

the expectations, there is still room for improvement.

Especially on large machines, computations should be

refined. Yet, more input from industrial users is needed

first, both in form of reviews and test reports as well as

in form of case studies and sample machines.

We plan to further investigate the usage of con-

straints to speed up unit inference. In particular, an in-

depth comparison with the SMT and constraint based

approaches will be performed. This comparison will fo-

cus both on speed as well as on the completeness of the

resulting unit information.

All in all, the unit analysis plugin extends the capa-

bilities of B, TLA+ and ProB and is a useful addition

to the existing tools. It should be able to find errors

which can not be discovered easily by the existing tools

and might lead to errors in a future implementation.

The technique scales to real-life examples and the ani-

mation capabilities aid in identifying the causes of er-

rors.

Acknowledgements We are grateful to reviewers

of SEFM and SoSyM for their useful feedback, which

helped to improve the paper. Our thanks also go to

Luis-Fernando Meija for providing us with interesting

industrial case studies.

References

1. Abrial, J.R.: The B-Book. Cambridge University Press
(1996). DOI 10.1017/CBO9780511624162

2. Abrial, J.R.: Modeling in Event-B: System and Software
Engineering. Cambridge University Press (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S.: An open exten-
sible tool environment for Event-B. In: Z. Liu, J. He

(eds.) Proceedings ICFEM’06, LNCS 4260, pp. 588–605.
Springer-Verlag (2006). DOI 10.1007/s10009-010-0145-y

4. Abrial, J.R., Su, W., Zhu, H.: Formalizing hybrid systems
with Event-B. In: Proceedings ABZ’12, LNCS 7316, pp.
178–193. Springer (2012)

5. Anand, M., Lee, I., Pappas, G., Sokolsky, O.: Unit
& dynamic typing in hybrid systems modeling with
CHARON. In: Computer Aided Control System Design,
pp. 56–61. IEEE (2006)

6. Baader, F., Snyder, W.: Unification theory. Handbook of
automated reasoning 1, 445–532 (2001)

7. Back, R.J., Seceleanu, C.C., Westerholm, J.: Symbolic
simulation of hybrid systems. In: Proceedings APSEC’02,
pp. 147–155. IEEE Computer Society (2002)

8. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Stan-
dard: Version 2.0. Tech. rep., Department of Com-
puter Science, University of Iowa (2010). Available at
www.SMT-LIB.org

9. Boute, R.T.: The Euclidean Definition of the Functions
Div and Mod. ACM Trans. Program. Lang. Syst. 14(2),
127–144 (1992)

10. Bridgman, P.: Dimensional Analysis. Yale University
Press (1922). URL http://books.google.de/books?id=

vehfnkmJIlkC

11. ClearSy: Atelier B 4.1 Release Notes. Aix-en-Provence,
France (2009). Available at http://www.atelierb.eu/

12. Collins, J.B.: A mathematical type for physical vari-
ables. In: S. Autexier, J. Campbell, J. Rubio, V. Sorge,
M. Suzuki, F. Wiedijk (eds.) Intelligent Computer Math-
ematics, Lecture Notes in Computer Science, vol. 5144, pp.
370–381. Springer Berlin Heidelberg (2008)

13. Cousot, P.: Types as abstract interpretations. In:
Conference Record of the Twentyfourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 316–331. ACM Press, New
York, NY, Paris, France (1997)

14. Cousot, P., Cousot, R.: Abstract interpretation: A uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In: Proceedings
POPL’77, pp. 238–252. ACM (1977)

15. Cunis, R.: A package for handling units of measure in
Lisp. ACM SIGPLAN Lisp Pointers 5, 21–25 (1992)

16. van Delft, A.: A Java extension with support for dimen-
sions. Software: Practice and Experience 29(7), 605–616
(1999)

17. Gibbings, J.: Dimensional Analysis. Springer London
(2011)

18. Hansen, D., Leuschel, M.: Translating TLA+ to B for
validation with ProB. In: Proceedings iFM’2012, LNCS
7321, pp. 24–38. Springer (2012)

19. Hayes, I.J., Mahony, B.P.: Using units of measurement
in formal specifications. Formal Aspects of Computing 7
(1994)

20. Jiang, L., Su, Z.: Osprey: a practical type system for val-
idating dimensional unit correctness of C programs. In:
Proceedings ICSE’06, pp. 262–271. ACM (2006)

21. Kennedy, A.: Types for units-of-measure: Theory and
practice. Central European Functional Programming
School pp. 268–305 (2010)

22. Knuth, D.E.: The Art of Computer Programming, Vol-
ume 1: Fundamental Algorithms. Addison Wesley Long-
man Publishing Co., Inc., Redwood City, CA, USA
(1997)

23. Krings, S., Leuschel, M.: Inferring physical units in
B models. In: Proceedings SEFM’2013, LNCS 8137.
Springer (2013)

http://books.google.de/books?id=vehfnkmJIlkC
http://books.google.de/books?id=vehfnkmJIlkC

24 Sebastian Krings, Michael Leuschel

24. Lamport, L.: Specifying Systems, The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley (2002)

25. Lamport, L., Paulson, L.C.: Should your specification
language be typed. ACM Trans. Program. Lang. Syst.
21(3), 502–526 (1999)

26. Leuschel, M., Butler, M.: ProB: A model checker for
B. In: Proceedings FME’03, LNCS 2805, pp. 855–874.
Springer (2003)

27. Leuschel, M., Butler, M.: ProB: an automated analysis
toolset for the B method. Int. J. Softw. Tools Technol.
Transf. 10(2), 185–203 (2008)

28. Lockwood, G.: Final Report of the Board of Injury: In-
vestigating the Circumstances of an Accident Involving
the Air Canada Boeing 767 Aircraft C-GAUN that Ef-
fected an Emergency Landing at Gimli, Manitoba on the
23rd Day of July, 1983. Minister of Supply and Services
Canada (1985). URL https://books.google.de/books?

id=Ej5PAAAAMAAJ

29. Modelica Association: The Modelica Language Specifica-
tion version 3.0 (2007). URL http://www.modelica.org/

30. Owre, S., Saha, I., Shankar, N.: Automatic dimensional
analysis of cyber-physical systems. In: Proceedings
FM’12, LNCS 7436, pp. 356–371. Springer (2012)

31. Platzer, A.: Logical Analysis of Hybrid Systems: Proving
Theorems for Complex Dynamics. Springer (2010)

32. Reps, T.W.: Program analysis via graph reachability.
Information & Software Technology 40(11-12), 701–726
(1998). DOI 10.1016/S0950-5849(98)00093-7. URL http:

//dx.doi.org/10.1016/S0950-5849(98)00093-7

33. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedu-
ral dataflow analysis via graph reachability. In: Confer-
ence Record of POPL’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
San Francisco, California, USA, January 23-25, 1995,
pp. 49–61 (1995). DOI 10.1145/199448.199462. URL
http://doi.acm.org/10.1145/199448.199462

34. Roy, P., Shankar, N.: SimCheck: An expressive type sys-
tem for Simulink. In: Proceedings NFM’10, pp. 149–160.
NASA (2010)

35. Stephenson, A., LaPiana, L., Mulville, D., Rutledge, P.,
Bauer, F., Folta, D., Dukeman, G., Sackheim, R., Norvig,
P.: Mars climate orbiter - mishap investigation report -
phase i report (1999)

36. Thompson, A., Taylor, B.N.: The International System
of Units (SI). Nist Special Publication (2008)

37. Umrigar, Z.: Fully static dimensional analysis with C++.
ACM SIGPLAN Notices 29(September), 135–139 (1994)

38. Wand, M., O’Keefe, P.: Automatic dimensional inference.
Computational Logic: Essays in Honor of Alan Robinson
pp. 479–483 (1991)

https://books.google.de/books?id=Ej5PAAAAMAAJ
https://books.google.de/books?id=Ej5PAAAAMAAJ
http://www.modelica.org/
http://dx.doi.org/10.1016/S0950-5849(98)00093-7
http://dx.doi.org/10.1016/S0950-5849(98)00093-7
http://doi.acm.org/10.1145/199448.199462

	Introduction and Motivation
	Introduction to B, Event-B and TLA+
	Embedding Units into Existing Modeling Languages
	Analyzing Units
	Extending Abstract Interpretation with Constraints
	A Refinement Chain for Physical Units
	Empirical Results
	Alternative Approaches and Related Work
	Discussion and Conclusion

