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Abstract. We have implemented various symbolic model checking algo-
rithms, like BMC, k-Induction and IC3 for B and Event-B. The high-level
nature of B and Event-B accounts for complicated constraints arising in
these symbolic analysis techniques. In this paper we suggest using static
information stemming from proof obligations to simplify occurring con-
straints. We show how to include proof information in the aforemen-
tioned algorithms. Using different benchmarks we compare explicit state
to symbolic model checking as well as techniques with and without proof
assistance. In particular for models with large branching factor, e.g., due
to complicated data values being manipulated, the symbolic techniques
fare much better than explicit state model checking. The inclusion of
proof information results in further clear performance improvements.
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1 Introduction and Motivation

Model checking is one of the key techniques used in formal software development.
Two variants are currently in use: explicit state model checking and symbolic
model checking. In explicit state model checking, every state is computed, the
invariant is verified and discovered successor states are queued to be analyzed
themselves. Symbolic model checking on the other hand tries to represent the
state space and possible paths through it by predicates representing multiple
states at once. Instead of stepwise exploration of the state space graph, the model
checking problem is encoded as a formula and given to a constraint solverEI

So far, existing model checkers for B and Event-B like PROB [21)20], Eboc [23],
pyB [30] or TLC [3I] (via [I7]) rely on explicit state model checking. PROB
features some symbolic techniques for error detection [I4] and test-case genera-
tion [27], but not full-blown symbolic model checking. This is mostly due to the
high-level nature of B and Event-B. Both the usage of higher-order constructs

** Part of this research has been initially sponsored by the EU funded FP7 project
287563 (ADVANCE).
! BDD-style model checking [10] is also called symbolic model checking. In recent work
PRrROB has been integrated with LTSMin for such kind of model checking.



and the underlying non-determinism accounts for complicated constraints dur-
ing symbolic model checking. Some complexity can be coped with by relying on
SMT solvers [12] or SAT solvers [25], but this is not always the case.

In this paper we have implemented various symbolic model checking algo-
rithms for B and then study various ways to use proof information to opti-
mize them. The proof information is used to strengthen constraints and reduce
the counterexample search space. For Event-B, the information stems from dis-
charged proof obligations exported from Rodin [I]. For classical B, no automatic
proof information is available at the moment within PROBE| However, we can
recompute the information using PROB’s proof capabilities as outlined in [IS§].
Essentially, for a B operation with before-after-predicate BA we search for a
solution to

invariant(x) A BA(z,2") A =conjunct_of _invariant(x').

If PROB reports a contradiction, we know that the operation can not lead to
a violation of the particular conjunct. In addition to the technique in [I§], we
developed a bridge to the Atelier B provers ml and pp.

All techniques used in this paper have been implemented both for classical B
and Event-B. Both languages will be used in our empirical evaluation. For the
sake of brevity we will only talk about Event-B events in the following sections
instead of distinguishing events and operations.

We will introduce the model checking algorithms BMC, k-Induction and IC3
in Sections to For each of them we will show how to include proof infor-
mation into the occurring constraints. Following, in Section[3] we will empirically
compare symbolic model checking to explicit state model checking and model
checking with and without proof assistance. Discussion and conclusions will be
presented in Section [4]

2 Proof Assisted Symbolic Model Checking

When using the B method to develop a software or system, one often alternates
between different phases. Among those are writing and adapting the specifica-
tion, manual and automated proof efforts as well as model checking. Yet, the
different steps are only loosely coupled when it comes to tool support.

In [4] the authors have shown how to augment explicit state model checking
with proof information. In the following, we introduce three symbolic model
checking techniques for B and incorporate proof information in a similar fashion.

We will use the running example in Fig. [1] to illustrate various concepts in
our paper. First, let us introduce the notation we will be using. By = we will
denote a vector of state variables. ' denotes the state variables in the successor
state. A predicate p over the state variables z is denoted by p(z). The same
predicate over the successor state is written as p(z’). By Fvents we denote the
set of events of a B machine. By Inv we denote its invariant.

2 In theory, one could export proof information from Atelier B.



MACHINE Counter
CONSTANTS m
PROPERTIES m : {127,255}
VARIABLES c
INVARIANT c>=0 & c<=m
INITIALISATION c:=0
OPERATIONS
incby(i) = PRE i:1..64 THEN c¢ := c+i END
END

Fig.1: A simple, erroneous B machine

Definition 1. For an event evt € Events let BAcy:(x,2’) denote the before-
after-predicate connecting state variables in x to their successors in x’.

Definition 2. For a predicate p = \;c; p; and event evt let proven,,, , denote
a set of conjuncts p; that are proven to hold after the execution of evt on a
p-state, i.e., we have proven,,, , = \;c;pi for some J C I such that

Va, 2’ p(x) A BAew(z,2") = proven,,, ,(z').

Let unproven,,, , = /\ieI\in denote the complement of proven.,, ,, i. e., all
the conjuncts of p that are not in proven.,, ,. We also define proven

proven and unproven,,, = unproven

evt —

evt,Inv evt,Inv*

For the example in Fig. 1} we have BA;pcpy(c,¢’) = Fi € 1.64ANC = c+i.
Furthermore, proven,,, ., (c) = ¢ > 0; the invariant ¢ > 0 is preserved by incby.
This implies unproven,, ., (c) = ¢ < m.

In our current implementation, we have that proven.,,, = /\jerj with
J C I. This however is not a strict limitation. One could add other predicates
discovered to be implied to proven so as to further strengthen the predicates

given below.

evt,p

Lemma 1. A walid solution for Definition|d is always proven.,, ,, = true, mean-
ing that nothing is proven for the event evt. At the other extreme, if all conjuncts
of p are proven to hold after the execution of evt then proven = p and

UNPTOVEN ¢y p, = LTUE.

evt,p

Definition 3. By T we refer to a monolithic transition predicate, i. e., the
disjunction of all before-after-predicates: T(x,%") =\ .c pyents BAe(w,2"). By I
we denote the after predicate of the initialization; including the properties about
the constants.

For Fig. []] we have I(c) = m € {127,255} A c = 0.

In the following sections, we show how proof information can be embedded in
the queries of bounded model checking (Section , k-Induction based model
checking (Section and IC3 (Section [2.3). An empirical evaluation of the
algorithms and the influence of using proof information will be performed in
Section



2.1 BMC — Bounded Model Checking

BMC [5] has been suggested by Armin Biere et. al. in 1999 [6]. One of the main
goals is to avoid the blowup and resulting slow down of BDDs-based model
checking algorithms. This is achieved by replacing the BDDs by a SAT solver.

The basic idea is as follows: For an initial state relation I, a transition re-
lation T and a property p and a bound k starting with & = 0, a sequence of
propositional formulas is generated. Each of the formulas is satisfiable if and
only if there exists a counterexample to the property with length < k. This can
be expressed as:

k—1 k
BMC(p, k) = I(so) A ]\ T(si,si41) A\ —p(s:)
i=0 i=0

In order to include proof information we have to rewrite the predicate. First
of all, if we increase k step-by-step as done in PROB’s implementation of BMC,
it is sufficient to check only the last state for a violation of p:

k—1

BMC(p, k) =1I(sg) A /\ T (s, 8i41) N —p(sk)
i=0

For the example machine in Fig. 1} we have:

BMC(Inv,0) = m € {127,255} Aco =0 A =(cg > 0Acog <m)

BMC(Inv,1) = m € {127,255} Aco = 0A Fi.(i € 1..64 A ¢y = co +1)
A=(c1 2 0Ac <m) (2)

BMC(Inv,2) = m e {127,255} Aco = 0 A Ji(i € 1..64 A ey = co + 1)

AFi.(i €1.64ANco=c1+i)A-(ca >0Aca <m)

PROB'’s constraint solver finds no solution for Egs. and 7 but does
so for Eq. : m = 127,¢9g = 0,¢1 = 64,co = 128. One can see that the con-
straint solver has instantiated the parameter of the event in such a way as to
violate the invariant. PROB’s classical model checker on the other hand “blindly”
enumerates all 64 possible successor states. Using breadth-first search, the coun-
terexample is found after having generated 325 states and 12420 transitions;
taking ~ 1.5s whereas BMC finds the counterexample with & = 2, i.e., after
three calls to the constraint solver and ~ 1s. A depth-first search may generate
a long counterexample of up to 127 steps, depending in which order the succes-
sors are processed. PROB in this case actually processes the successors with the
larger i values first; leading to a counterexample of length 4 after generating 324
states and 323 transitions. The state space is shown in Fig. |2 the corresponding
counterexample is shown in Fig. [3] The larger the branching-factor, the better
BMC becomes as compared to explicit state model checking. When the number



Fig. 2: State space of explicit state model checking

oot SETUP_CONSTANTS(127) _ 5,  INITIALISATION(O) . _, incby(64) __ _,  incby(64) ©

Fig. 3: Counterexample found by BMC

of possible parameter values becomes unbounded, e.g., supposing the incby event
had no upper bound on i, BMC is often the only practical solutionEl

Next, we extend the transition relation to either assert a property after every
step or assert its negation:

Definition 4. For a predicate p we define T, and T, by

Tp(z,z') = \/ (BAc(x, ") Ap(a))

ec Events
T, (z,2") = \/ (BAc(x, ") A proven,,, ,(z') N —unproven,,, ("))
e€ Events

For k > 1, the proven conjuncts of p can be used to strengthen the constraint:

3 PROB gives the user the opportunity to set an upper-bound on the number of suc-
cessor states per event for the explicit model checker; exhaustive model checking is
then not possible but counterexamples can still be found.



k-2

BMC(p, k) = I(s0) Ap(so) A /\ Tp(sissiv1) A T, (Sk—1, 5) (4)
i=0

For the example machine in Fig. [I} we have that for £ = 0 the constraint
remains unchanged, but for £k = 1 and k = 2 we obtain:

BMC(Inv,0) = m € {127,255} Acog =0 A =(co < m)
BMC(Inv,1) = m € {127,255} Acg =0

AJi(i€1.64Nc1=co+i)Aeg > 0A(cr <m)
BMC(Inv,2) = m € {127,255} Ay =0

AJi(i€1..64Nc1=co+i)Aer 20N <m
AJi(i € 1..64 ANca=c1+i) Aeca > 0A=(ca <m)

Remember that unproven.,, ,(si) evaluates to true if all conjuncts of p have
been proven to hold after the execution of evt. Hence, for completely proven
events —~unproven,,, ,(sx) is false and the corresponding disjunct in 7};" is obvi-
ously unsatisfiable. However, we can not remove such completely proven events
from the first k£ — 1 steps as they might contribute to the path to a violation of
p, using another final event.

Another BMC approach is to use the test-case generation algorithm from [27],
using —p as target predicate. In contrast to the BMC technique above, the tran-
sition predicate is not monolithic, and the algorithm builds up a tree of feasible
paths. We have extended the algorithm from [27] to also use —unproven,,, ,
instead of —p, where euvt is the last event of any given path. The algorithm op-
tionally uses a static enabling analysis to filter out infeasible paths before calling
the solver. In the remainder of the paper we refer to this algorithm as BMC*.

2.2 k-Induction

k-Induction [29] is a mixture of BMC and proof by induction. For the method
to be complete, one has to avoid getting stuck in loops. Hence, the constraints
are strengthened to avoid a state occurring twice on a given path. E|

The base condition is encoded in Eq. ; it is basically a BMC step and tries
to find a counterexample of length k starting from the initialization. Like in
Section we assume that we gradually increase the value of k starting from 0,
as shown in Algorithm [I| The inductive step, including the uniqueness of states,
is expressed in Eq. @, where Azm are the axioms on the constants of the model
(e.g., m € {127,255} in our running example).

4 We could have added theses constraints s; # s; also in Section



Data: Property P

Result: true iff P holds

1 procedure boolean k-induction(P)

2 k=20

3 while true do

4 if Base(P, k) satisfiable then return false

5 elsif Step(P, k) unsatisfiable then return true
6 else k.= k+1 end

7 end

Algorithm 1: k-Induction

k—1
Base(p, k) = I(s0) A [\ T(si,si41) A —p(sk) (5)
=0

k

k
Step(p, k) = Azm A /\ 8i £ 55 N\ /\ T(si, 8i41) N /\ p(si) A p(spt+1) (6)
0<i<j<k i=0 =0

For k = 0 Step(Inv, k) corresponds to trying to find counterexamples to the
B invariant preservation proof obligations. In a similar fashion, Base(Inv, 0) cor-
responds to finding initial states which violate the invariant. Hence, if Base(p,0)
and Step(T, p,0) are unsatisfiable, we have found an inductive proof of the prop-
erty p. However, the difference with B’s approach to proving invariants does
appear when Step(T,p,0) is satisfiable, i.e., there exists a state which satisfies
p and a successor state violates p. The k-induction method tries to construct
a real counterexample, starting from a valid initial state, not from any state
satisfying p. Hence, the value of k is now increased and we try to find a real
counterexample of length k + 1 using the BMC constraint Eq. (5)).

Compared to BMC, k-Induction has the advantage of including an explicit
termination condition. Suppose for example we take for p the predicate ¢ >
—2Ac # —1 for Fig. [1] In this case BMC will never terminate, as for every value
of k£ no counterexample can be found. k-Induction, however, can already stop
with k& = 1, as Step(Inv, 1) is unsatisfiable. This is an interesting result, given
that the state space of the model is infinite. The constraints are shown in Fig. [4]
and are unsatisfiable except for Step(Inv,0). Step(Inv,0) corresponds to the B
proof obligation for the event, checking that p is inductive. Hence, the B proof
method is not able to prove that ¢ > —2 A ¢ # —1 always holds. (A user would
need to find an inductive invariant such as ¢ > 0 implying the property. The IC3
algorithm in the next section will do just that automatically.)

The Base constraint is equal to the one in BMC: Base(p, k) = BMC(p, k).
Hence, we can include proof information in the same fashion and simply reuse
the optimized constraint Eq. from Section For the inductive step, we
can again use 7, for the last step, to only look for violations of unproven parts

P
of p. Following Algorithm [I] we also know that all intermediate states must



me{127,255)
Base(p,0) ¢=0
a(cg =2 A ¢ 1)

me{127,255} 3iie1..64 solution: m=127,
Step(p,0) =2 A0 [T cq=ogH —| (cy=2 A cq#l) cg=2 ¢4 =1

me{127,255} aiie1..64 cq#6q
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2

Fig. 4: Steps of k-Induction Algorithmfor Fig. With property ¢ > —2Ac¢ # —1

satisfy the property p; this we can encode using 7T}, leading to the definition in
Eq. . As in BMC, we can not remove before-after-predicates from the first
steps. Constraints are simplified but the search space is not reduced.

k—1
Step(p, k) = Azm A p(so) A /\ 8i # 85 N /\ Tp(siysi41) A T, (Sks Skv1)
0<i<j<k =0
(7)

2.3 IC3

In contrast to BMC presented in Section [2.I] and k-Induction presented in Sec-
tion the IC3 algorithm does not use an unwinding (/\f=0 T(si,8i+1)) of the
transition system. Instead, only single step queries are performed.

In order to verify a system, IC3 tries to automatically find an inductive
invariant implying the property in question. To do so, it keeps a list of frames
F; over-approximating the set of states reachable in < 7 steps. Counterexamples
reachable in one or two steps are handled as a special case, as shown in line 2 of
Algorithm [2] Afterwards, for each level k£ IC3 tries to find a property violation
in a single step, i. e., a solution to Fx AT A —p.

If no solution exists, k is incremented and a new frame holding p is added.
Otherwise, IC3 tries to show that the faulty state is in fact not reachable from
the initialization. This is done by incrementally strengthening frames until Fj
becomes strong enough to prevent the property violation from occurring. A
partial outline is shown in procedure strengthen in Algorithm[2} The Counterea-
ample exception is thrown by inductivelyGeneralize if generalization fails and
the counterexample can not be proven spurious.



Data: Property p, Transition predicate 7', Initial state predicate I
Result: true iff p holds
1 procedure boolean ic3(p, T, I)
2 if sat(I(so) A —p(so)) V sat(I(so) A T(so,s1) A —p(s1)) then return false
end

3 Fo := I, clauses(Fp) == 0

4 Fy = p, clauses(F1) :== ()

5 k=1

6 while true do

7 if not strengthen(k, P, T') then return false end

8 propagate_clauses(k)

9 if 3 € [1,k]: clauses(F;) = clauses(F;41) then return true end
10 k=Fk+1
11 end

Algorithm 2: IC3: Main Loop

1 procedure boolean strengthen(k,p, T)

2 try

3 while sat(Fy(s) A T(s,s") A —p(s’)) do

4 s := the predecessor extracted from the witness
5 n := inductivelyGeneralize(s, k — 2, k)

6 pushGeneralization((n + 1, s), k)

7 end

8 return true

9 catch Counterezample

10 return false

Algorithm 3: IC3: Strengthen

Afterwards, a new counterexample might be found and IC3 will start to iter-
ate between finding counterexamples and strengthening frames. If strengthening
the frames eventually fails, a counterexample to the property is found. Other-
wise, an inductive invariant has been found.

In the following, we will only go into details of IC3 wherever proof information
can be incorporated. For a complete overview, see Bradley’s original paper [9]
or the one by Een, et. al. in [I3]. Algorithms [2| and 3| follow the implementation
of [9].

The first change to incorporate proof support takes place in the main loop of
IC3. When implemented as suggested by Bradley in [9], IC3 features a special
case for 0-step and 1-step reachability of a property violation as explained above.
This is shown in line 2 of Algorithm [2l The query on line 2 can be changed in
the same way we did for BMC and k-Induction. After splitting the transition
relation and adding proof information we obtain:

sat(I(so) A =p(so)) V sat(I(so) AT, (s0,51))



Table 1: Runtimes (in seconds) and Speedup (in percent)
Model MC BMC BMC* k-Induction 103

use proof info no yes no yes no yes no yes no yes

Models with Invariant Violations

LargeBranching - - 1.18 0.99 (16.1%) 0.97 0.98 (-1.03%) - 1.1 (o0) 1.0 1.0 (0.0%)
Search - - - - - - - - - -
SearchEvents - - 1.12 1.12 (0.0%) 1.08 1.05 (2.78%) - 1.06 1.07 (-0.94%)
Travel Agency 111 1.09 (1.8%) - - 32.18 21.64 (32.75%) -

CountersWrong 0.83  0.83 (0.0%) 0.9 0.96 (-6.67%) 0.94 0.88 (6.38%) 0.95 0.99 (-4.21%) 0.97 0.96 (1.03%)
Correct Models

Coloring - - - - 1.22 (c0) 1.44 1.44 (0.0%)
Counters - - - - 1.0 0.92 (8.0%) 0.87 0.87 (0.0%)
fom0 0.82 0.88 (-7.32%) - - - - 0.84 0.83 (1.19%)
fom1 081 0.8 (1.23%) - - - - 0.9 0.89 (1.11%)
RO_GearDoor 078 0.79 (-1.28%) - - 0.96 0.86 (10.42%) 0.94 0.91 (3.19%)
R1Valve 092 092 (0.0%) - - 7.24 0.85 (88.26%) 1.01 0.96 (4.95%)
R2_Outputs 184 178 (3.26%) - - 0.84 0.9 (-7.14%) 0.89 0.9 (-1.12%)
R3_Sensors 3.06 2.85 (6.86%) - - - 093 (c0)  1.210.96 (20.66%)
R4_Handle 33.19 27.61 (16.81%) - - - - - -

The key point where adding proof assistance improves the performance how-
ever is inside the strengthen procedure of IC3. The original version is given in
Algorithm [3| Inside, the algorithm tries to find a state included in F} that has a
successor violating the property. With the usual transformation, Fy(s)AT(s, s")A
—p(s’) is transformed into Fy(s) AT, (s,s").

In addition to simplifying the query itself, we can provide the sub routines
inductivelyGeneralize and pushGeneralization with the event that lead to the
violating state. This enables simplifying the respective predicates considerably.

In IC3, adding proof information has more benefits than just simplifying the
occurring constraints. Due to the one-step nature of queries, constraint solving
can be skipped altogether if unproven,,;, = true. As no paths are built up
explicitly, fully proven events have to be considered only during strengthening.
They can safely be omitted during the counterexample search. Thus, including
proof information leads to a reduction of the search space.

3 Empirical Results

The four algorithms described above have been implemented and are available
in the nightly builds of PROBH For the empirical evaluation we want to focus
on two questions:

— Does the usage of proof information considerably improve the performance
of symbolic model checking algorithms for B and Event-B?

® Available at http://stups.hhu.de/ProB. Information on how to use the new algo-
rithms can be found on the PROB wiki: For the BMC™ algorithm see
http://stups.hhu.de/ProB/Bounded_Model_Checking. The other algorithms are
documented at http://stups.hhu.de/ProB/Symbolic_Model_Checking.
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— Can symbolic model checking algorithms compete with explicit state model
checking (MC) as done by PrROB?

We apply both the algorithms introduced in Section [2| as well as PROB’s
explicit state model checker (MC) to a selection of models, including artificial
and real benchmarks. We use the explicit state model checker with and without
proof support as outlined in [4]. The following models were used:

— LargeBranching, a crafted benchmark featuring a counterexample reachable
in two steps. However, the initialization has numerous outgoing edges. Dis-
covering the counterexample thus heavily relies on picking the right transi-
tions to follow. The model is included to show that the symbolic algorithms
are not influenced by this fact.

— Search, a classical B model of a binary search algorithm. SearchFEvents mod-

els the same algorithm, but is written in Event-B style with simpler events.

While this leads to simpler constraints, it increases the number of conjuncts

due to the increased number of events.

TravelAgency, a classical B model of a travel agency system storing and

managing car and room rentals. The model includes an invariant violation.

Coloring, a model of a graph coloring algorithm by Andriamiarina and Méry.

In this particular model, the algorithm works on a concrete graph of 40 nodes.

f-m0 and f-m1, two hybrid models taken from [2].

Counters(Wrong), two artificial benchmarks featuring two independent coun-

ters, one of them bounded and one counting up infinitely. Both models fea-

ture an infinite state space. Counters Wrong has a finite counterexample.

RO_Gear_Door, R1_Valve, R2_Outputs, R3_Sensors and Rj_Handle are the

first refinement levels of our model [I5] for the ABZ 2014 landing gear case

study [8].

All benchmarks were run on a MacBook Pro featuring a 2.6 GHz i7 CPU
and 8 GB of RAM. We did not run anything in parallel in order to avoid issues
due to hyper-threading or scheduling. For each benchmark, a number of different
results can occur:

— wverified, i.e., the model could be model checked exhaustively without an
invariant violation being detected.

— counterexample found, i.e., a state violating the invariant was found in the
model and a trace to it has been computed.

— incomplete, i.e., no invariant violation has been found but model checking
was not exhaustive. This could be due to timeouts or due to PROB being
unable to solve occurring constraints. Currently, we do not try to recover. In
case of BMC or k-Induction one could for instance try to increase k anyway.

The results are given in Table [I| showing the runtimes on successful benchmarks
as well as the speedup achieved by using proof information.

The state space of the Search model is too large to be traversed by PROB’s
explicit state model checker. Unfortunately, the involved substitutions result in
complex constraints that cannot be checked by the symbolic algorithms. The



effect is increased by the unwinding of the transition system, as complicated
constraints start to occur multiple times.

The SearchEvents model features simpler substitutions and is thus more
suited for symbolic analysis. Using proof information, all symbolic algorithms
are able to find the counterexample. Without proof information, k-Induction is
not able to check the model anymore. LargeBranching paints a similar picture.

The TravelAgency model on the other hand has a relatively small state space
and can easily be verified using MC. However, it features involved constructs
like sequences resulting in complicated constraints. BMC* is the only symbolic
technique to find the counterexample, albeit taking much longer than MC.

The Coloring model is quite big and can not be checked exhaustively by MC
in the given time. Only IC3 and k-Induction with proof information are able to
do so. For IC3 this is due to its focus on one step reachability in combination with
the model being correct: Only a small amount of counterexample candidates are
discovered by IC3 and are immediately detected as spurious.

Abrial’s hybrid models can be verified by MC and IC3. Here, constraints be-
come considerably more involved with each unwinding of the transition relation
done in BMC and k-Induction. IC3 is again able to verify the model thanks to
its local search for counterexamples.

The infinite counters show one of the key limitations of explicit state model
checking. Once a state space is infinite, exhaustive analysis is obviously impos-
sible. For the correct model, BMC reaches its iteration limit without detecting
an error. Both k-Induction and IC3 are able to analyze the models.

The landing gear model shows that the benefit of using proof information
increases with the complexity of the model. As can be seen in Table [1| com-
putation times go down once proof information is used. As for SearchFEuvents
and LargeBranching, for R3_Handle k-Induction can only successfully be used
if proof information is considered. For the first refinement steps, IC3 is quicker
than explicit state model checking with PROB. However, once the fourth refine-
ment level is reached, none of the symbolic algorithms can handle the occurring
constraints anymore.

Regarding speedup, we can report from ~ 7% (Counters Wrong with BMC)
up to ~ 88% (R1-Valve with k-Induction). For most of the models, incorporat-
ing proof information leads to a speedup. Using IC3, our approach leads to a
performance decline for some models. We suspect it is because adding additional
constraints is not necessarily beneficial for a constraint solver.

Summarizing, we can answer the two questions stated at the beginning:

— The inclusion of proof information into the symbolic model checking algo-
rithms does improve the performance most of the time. Furthermore, some
models can only be checked if proof information is used.

— For some, albeit small, models symbolic techniques can compete with explicit
state model checking. Symbolic model checkers allow to verify infinite state
spaces which are beyond the scope of PROB’s classical model checker.

— Among the symbolic techniques, BMC* was the best for erroneous models,
while IC3 was best for correct models.



— However, existing solvers for B and Event-B are still to weak to handle
the constraints occurring in larger or more involved models. This currently
hinders symbolic model checking efforts.

4 Discussion, Related Work and Conclusion

In [4] the authors presented a similar integration of proof information into ex-
plicit state model checking algorithms. As is the case with our implementation,
the authors report a speedup by not checking invariants known to be true. In
contrast to our approach, the use of proof information never slowed down the
model checking process.

Compared with [4], we have added a way to construct proof information
within PROB itself, using a bridge to the Atelier B provers and using PROB’s
proving capabilities [I8]. Of course this takes time and does not always pay off.

In [4], as with BMC and k-Induction, the search space itself is never reduced.
Search space reduction through using proof techniques is considered in [28]
and [24]. For model checking CTL and LTL properties, proof information can
be used as well. In [26] the model checker SMV is coupled with theorem proving
techniques. In a similar fashion, [3] combines the Alloy Analyzer with the Athena
theorem prover.

Instead of using theorem provers to support model checking, one can use
model checkers for theorem proving. We have done so using PrROB [22]18].

Our evaluation shows that using symbolic model checking techniques for B
and Event-B models is beneficial: Several counterexamples could only be de-
tected by the symbolic algorithms. Furthermore, some models could be model
checked exhaustively. As already outlined in [I4], symbolic techniques prove to
be a valuable addition to explicit techniques. The techniques are actually also
applicable to TLA™T, via PROB’s translation from TLA™T to B [16]|ﬂ

They key weakness of employing symbolic model checking techniques lies
within the expressiveness of B and Event-B. Even though constraint solvers and
SMT solvers have increased their efficiency by a huge margin, the constraints oc-
curring during symbolic model checking of high-level languages like B are still too
involved. Among other abstraction techniques, integrating static (proof) infor-
mation into the constraints is one way to help. It brings down computation times
and sometimes enables successful validation. We are also working on strengthen-
ing the underlying constraint solver, by integrating SMT solvers such as Z3 [19].
Still, more improvements need to be achieved until full symbolic verification of
B and Event-B models becomes viable.

Regarding the different model checking algorithms, especially IC3 seems
promising. In contrast to the other two algorithms, its focus on one step reacha-
bility keeps occurring constraints easier. This makes it more suited for symbolic
model checking of high-level languages like B and Event-B. Additionally, the
integration of proof information can lead to a reduced search space. As IC3 has

5 For further information regarding TLAT support in PROB have a look at
http://stups.hhu.de/ProB/TLA.
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originally been developed for hardware model checking, it is not trivial to lift it
to the software world. To do so, we would like to investigate IC3 for B together
with abstraction techniques as introduced in [I1] or [7].

Another direction of future work could be to generate missing proof obliga-
tions from the model checking run. Analyzing predicates that lead to a timeout
one could find problematic properties and try to prove them externally or in an
independent run. Once the constraint solver gets stuck we could ask an external
solvelm to proof or disprove further invariants. Afterwords, one could extend the
set of properties under consideration.

In summary, we have implemented four symbolic model checking algorithms
for B and Event-B and have shown how to integrate proof information to improve
the algorithms’ performance. Our evaluation shows that bounded model checking
can effectively find counterexamples in models with very large branching factors
and that IC3 is capable of automatically proving models with infinite state spaces
correct. Further research is, however, needed to scale up the symbolic techniques
to models with more involved events.
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