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Abstract. This paper makes use of declarative languages, together with
associated analysis and specialisation tools, to implement powerful and
extensible query languages for aspect oriented programming. Pointcuts
are predicates over events in the execution of a program, and are used
to specify where an aspect should be applied. Expressive and extensible
pointcut languages allow the programmer to abstract away from com-
putational details and write pointcuts at a higher level and in a domain
specific way.
Pointcuts are usually compiled by identifying a set of shadows — that is,
places in the code whose execution is potentially relevant for a pointcut
— and inserting dynamic checks at these places for those parts of the
pointcut that cannot be evaluated statically. Today, the algorithms for
identifying shadows and generating appropriate dynamic checks are spe-
cific for every pointcut designator. This makes it very tedious to extend
the pointcut language.
We propose a logic based pointcut language and a framework for finding
shadows and generating dynamic checks based on partial evaluation of
the pointcut predicates. With this approach it is possible to produce
both powerful and extensible pointcut languages together with efficient
compilation and execution of the resulting program.

1 Introduction

Before proceeding, let us first recall the basic concepts of aspect-oriented pro-
gramming. Since we will refer to AspectJ [14] several times in this work, we will
discuss the terminology in the way it is used in this language.

Crosscutting concerns are concerns (i.e., coherent issues) in a software system
which crosscut the traditional module structure, for example classes in object-
oriented languages. Typical examples for this kind of concerns are logging of
messages, transaction management and the enforcement of security policies. In
object-oriented programming, such concerns usually become scattered over the
system and entangled with other concerns.

Aspect-oriented programming (AOP) is a programming paradigm that allows
to modularize crosscutting concerns in a single module called an aspect. In this
way, aspects can easily be maintained, added and removed from software systems
without changing other modules.



Pointcuts are used to describe at which point an aspect affects the execution
of the basic program. The points that can be selected by a pointcut are called
joinpoints, because they describe points where the execution of different aspects
and the base program can join in the program flow. Pointcuts can be thought of
as defining a set of joinpoints and a pointcut is said to be triggered at a joinpoint,
if the joinpoint is in that set. The functionality that an aspect should introduce
at a selected joinpoint is called advice. The advice is executed at every point in
the execution which triggers the associated pointcut. In addition to the execution
of advice, Pointcuts can be used for a wide range of purposes, such as reverse
engineering [8], detection of application errors [19], or flexible instrumentation
of applications [9].

To create a executable program, the different aspects must be combined with
the base program to which they are applied. This process is called weaving and is
in most implementations performed by a weaver component of the compiler. The
weaver identifies the so called shadows the pointcuts in program, that is, places
in the code, where the pointcut may be triggered. Although there are pointcuts
that select only static places in the code, in most cases dynamic checks will
be necessary to determine if a pointcut is triggered. The weaver generates and
inserts these dynamic checks are at the appropriate places in the code.

The first pointcut languages were relatively static in that pointcuts could
be mapped directly to static locations in the source code of the underlying pro-
gram. Recently, there is a trend towards more dynamic pointcuts which quantify
over dynamic information such as the call-stack [26, 23], dynamic argument val-
ues [10], the full execution trace of the application [1, 22], the structure of the
dynamic heap [22], or even the future of the execution [15].

As said before, such complex dynamic pointcuts cannot easily be mapped to
places in the source code. Rather, some kind of dynamic evaluation is needed.
There are different options to implement the required dynamic evaluation:

– Using an interpreter for the language which also takes care of pointcut eval-
uation. Since this approach is obviously too slow for practical purposes,
interpreters are mainly used in theoretical studies [16, 12] or as a basis of
further optimization [21].

– Complete instrumentation of an application. With this option, dynamic
events are generated and evaluated after every computation step in order
to determine whether a pointcut applies. This strategy also obviously incurs
a major performance penalty.

– Identification of the set of shadows of a pointcut (all places in the code whose
execution will potentially trigger a pointcut) together with the insertion
of dynamic checks at these shadows. This option can be combined with
techniques like dynamic checks that are executed on the virtual machine
level [3] or continuous weaving [11] to further improve the performance.

We will concentrate on the last option. This option is indeed used in many
AOP language implementations such as AspectJ [14]. However, the algorithms
for computing the set of shadows and computing the right dynamic checks are
highly non-trivial. Worse yet, these algorithms are specific to the constructs of a



particular pointcut language. Hence, if the pointcut language is to be extended,
the algorithm has to be revisited and extended as well.

This is not only very elaborate. It is also a major obstacle to keeping the
pointcut language extensible. Extensible pointcut languages have been recog-
nized as a way to make pointcuts more robust, precise, and high-level, to enable
domain-specific libraries of pointcuts, and to put the pointcut language design
into the hand of the programmers [10, 5, 22, 7].

We propose a generic approach to finding shadows and generating dynamic
checks. In our approach, pointcuts are represented as queries in a logic program-
ming language. Our main idea is to compute shadows and checks using techniques
for partial evaluation of logic programs (frequently called partial deduction).

The contributions of this paper are as follows:

– This is the first work to embed the shadow search and dynamic check gen-
eration problem into the framework of partial deduction.

– Our solution can be used to generate major parts of an efficient compiler for
pointcuts automatically.

– It becomes very easy to extend the pointcut language because our technique
is generic in that it does not depend on the pointcut language.

– Our measurements show that our approach scales to reasonably large pro-
grams.

– We describe different options to weave the remaining dynamic checks into
the program.

The remainder of this paper is structured as follows: Sec. 2 gives an overview
of our approach by means of small examples and describes the encoding of source
code in Prolog and the design of the pointcut language. The use of partial eval-
uation and the approximation of runtime entities in our framework is explained
in Sec. 3. Different possibilities to weave residual pointcuts into a program are
described in Sec. 4. Related work is discussed in Sec. 5. Sec. 6 concludes and
gives an outlook to future work.

2 Overview

In this section we give a quick overview of our approach without going into
the details of the partial evaluation process itself. We limit our elaborations to
pointcut queries over Java programs in this work, but other languages can be
handled in a similar manner, with appropriate changes to the encoding of the
program and the type system related predicates.

2.1 Prolog representation of the bytecode

Pointcut queries in our language are Prolog predicates. To enable these Prolog
predicates to reason about the program’s static structure and execution, these
must be represented in the Prolog database.



In our work, we use a representation of the Java bytecode. We have built
a converter which transforms Java bytecode into a Prolog representation of the
byte code. Fig. 4 illustrates how the converted example from Fig. 3 looks like.

The Prolog representation contains the declarations and definitions of all
classes in one database file. There a two kinds of facts in this database: infor-
mation about classes, interfaces, methods and fields and their relationship, and
facts describing the bytecode instructions which form the body of the methods.

For each class there is a fact called class, which includes (in the order of
appearance) the package and class name, the modifiers (public, abstract, etc.), the
super class and the implemented interfaces. The class name is wrapped in a ref

term to indicate that it denotes a reference type (in contrast to a primitive type)
and can be used to access the methods defined in that class.

Methods are represented by method facts. Each method is identified by a unique
number (as its first argument) and the name of its enclosing class. The remaining
arguments are the method name, flags for the method modifiers, the return type
and the list of argument types, in that order.

The remaining facts in the representation encode the different types of byte-
code instructions: get and put for field access instructions, returns, and invoke for
method returns and calls, respectively. Assignments to local variables (denoted
by p1, p2 etc.) are encoded as def facts. A local variable declaration includes an
initializing instruction, which may be either method calls which return a value
(invokeFunc), reading field access (get) or object creation via new

3. Each bytecode
instructions starts with a number identifying the method which contains the
instruction and a number denoting the position of this instruction in the list of
instructions forming the method body. The third argument identifies the line
number in the source code that corresponds to this instruction.

2.2 Example pointcuts

Fig. 1 shows an aspect in the language AspectJ for keeping a display showing
graphical shapes up to date. The base program defining the shapes hierarchy is
given in Fig. 3. The pointcut change in line 4 describes the points in the execution,
where the display should be updated and the advice in line 10 specifies that a
call to display.update should be executed after such a modification (specified by
change).

The display to keep up-to-date is stored in a field of the aspect. The aspect
itself is similar to a class, with the exception that it cannot be instantiated by
the programmer but exists as a singleton object 4.

The first two conditions (line 5 and 6) of the pointcut select calls to a method
called setX resp. setY of an object of static type Point with exactly one parameter
of type int. The condition in line 7 selects calls to the move method with two
3 object creation does not include the constructor call
4 Aspects can also be specified to exist not only once per virtual machine but once

in a thread or once for each object of a specific class or once for a control flow of a
method



1 aspect UpdateSignaling {
2 Display display;
3

4 pointcut change():
5 ( call(void Point.setX(int))
6 || call(void Point.setY(int))
7 || call(void Shape+.moveBy(int, int)) )
8 && !cflowbelow(call(void Shape+.moveBy(int, int)));
9

10 after() returning: change() {
11 display.update();
12 }
13 }

Fig. 1. Display updating in AspectJ

integer arguments the type Shape or any of its subtypes. This is expressed by the
use + appended to Shape. These conditions are combined by || meaning or, which
selects any point that satisfies one of these conditions (this corresponds to the
union of the sets of points selected by the three conditions).

The last condition excludes (this is expressed by the negation operator !

in front of the pointcut) any joinpoint which is in the control flow of a call to
Shape+.moveBy(int,int) but not such a call itself. The control flow of a call (expressed
by cflow) comprises all joinpoints which appear while executing this call, including
the call joinpoint itself. The pointcut cflowbelow excludes this call joinpoint from
the set, selecting only joinpoints below this the call joinpoint in the control flow.
This pointcut is combined with the other three by the && operator meaning and
(or set intersection when thinking about joinpoint sets).

The use of control flow dependent joinpoints illustrated the need for dynamic
checks in the woven code, as the control flow can only be determined at runtime.

In our pointcut language, this pointcut can be expressed as follows:5

(calls(Stack,Loc,Target,setX,_), stype(Target,’shapes.Point’) );
(calls(Stack,Loc,Target,setY,_), stype(Target,’shapes.Point’) );
(calls(Stack,Loc,Target,moveBy,_), instance_of(Target,’shapes.Shape’) ),
\+ cflowbelow(Stack,calls(_,_,moveBy,_))

In order to illustrate the effect of specialization, we will now consider a few
pointcuts and the result of their specialization, without talking yet about how
the specialization actually works. Note that our pointcut language is based on
Prolog and thus uses the conventions that uppercase identifiers denote variables,
lower case or identifiers quoted by ’s are atomic values and _ denotes anonymous
variables. Basic predicates are combined by , meaning and and ; meaning or.

Fig. 2 shows a few sample pointcuts and the result of specializing them with
the example program from Fig. 3. We use the line numbers from Fig. 3 to denote
the shadows; in reality, the method/instruction indexes from the byte code are
used for this purpose.

5 One could imagine providing an alternate syntax, e.g. inspired by AspectJ, for those
users less well versed in Prolog.



– calls(Stack,Loc,_,setX,_), withinMethod(Loc, MethID), method(MethID,_,_,public,_,_,_,_,_,_)

Shadow Residual pointcut
21,23 true

– calls(Stack,Loc,R,moveBy,_), instance_of(R, ’shapes.Line’)

Shadow Residual pointcut
29 Stack = [calls(Loc,R,moveBy,_)|_],

dtype(R,T), subtypeeq(T, ’shapes.Line’)

30 true

– calls(Stack,Loc,_, setX, _), cflow(Stack, calls(_,_,moveBy,_))

Shadow Residual pointcut
31 cflow(Stack,calls(_,_,moveBy,_))

21,23 true

Fig. 2. Example pointcuts and their shadows and dynamic checks

The first pointcut selects all calls of a setX method
(calls(Stack,Loc,_,setX,_)) within (withinMethod(Loc, MethID)) a public method
(method(MethID,_,_,public,_,_,_,_,_,_)). In our language, the relation between the
method and the call is expressed in terms of the location (Loc) of an instruction
and the identifier of the method (MethID). The predicate withinMethod binds Loc to
all locations in the code which are lexically contained in the method identified
by MethID.

This first pointcut illustrates that all predicates over static data, like
withinMethod and method, and the static part of the method call are already evaluated
during specialization, hence the residual pointcut is just true

6.
The second pointcut (all calls of moveBy where the receiver object is an instance

of class Line at runtime) illustrates how static type information is incorporated
into the specialization. At the first shadow, the static type of the receiver is Shape,
hence a dynamic check is required whether the receiver is actually a Line. At the
second shadow, however, the statically known receiver type is already Line, hence
no dynamic check is necessary.

The third pointcut (all calls of a setX method in the control flow of a moveBy

method) illustrates the effectiveness of the static approximation of the call stack
during specialization. Whereas the first shadow requires a dynamic check, the
second shadow has no dynamic check because it is known statically that the setX

calls in lines 21 and 23 are in the control flow of a moveBy call. We will see that the
design of the static approximation of the call stack is an important parameter
for the specialization in computing residual pointcuts.

2.3 Programming model

Pointcut queries in our language can refer to the static structure of the program
and a well-defined subset of the dynamic runtime properties. Based on this
6 Actually, the residual program is not completely empty but binds the variables from

the pointcut. For clarity, we have omitted residual programs that only bind variables
but do not contain dynamic checks



information, arbitrary calculations can be used to decide whether or not the
pointcut matches the current state of execution (and thus decide whether an
aspect is applicable or not).

The runtime information that can be used in pointcut queries is not limited to
the current joinpoint (or event), but comprises the whole callstack. The callstack
is represented as a list containing all calls to methods that are currently in
execution, i.e. have not yet finished.

Pointcuts are predicates that match certain points in the program execution,
called joinpoints. In order to describe these joinpoints, pointcuts need to refer
to the context in which they are evaluated. This context comprises — in our
model — the current callstack, the current lexical position and the program. This
context information can be kept implicitly available, as it is the case in AspectJ’s
pointcut language, or given as parameters to the pointcut query. In our case, we
decided to make the callstack and the lexical position explicit parameters of the
pointcut queries, whereas the program is implicitly available as a global set of
facts in the Prolog database.

We use the variable names Stack for callstacks and Loc for lexical position.
A location is a pair loc(MethodNumber,InstrNumber) which represents the method- and
instruction number as given in the byte code. A callstack is represented by a list
of stack frames, where each but the top frame must be a method call, represented
by terms using the function symbol calls/4. The current instruction is at the top
of the stack.

The following listing gives an example callstack as it may look like when
modifying the field x in the method Point.setX, which was called by Line.moveBy:

1 [
2 set(loc(10,5), value(ref(’shapes.Point’),ι2), x, 42),
3 calls(loc(6,11), value(ref(’shapes.Point’),ι2), setX, [value(prim(int),42)]),
4 calls(loc(21,3), value(ref(’shapes.Line’),ι1), moveBy, [value(prim(int),1), value(prim(int),1)])
5 ]

The location loc(6,11) in the call to Point.setX corresponds to sourcecode line 21
(Figure 3 ) and to the bytecode instruction at line 30 in Figure 4.

The first parameter in each stack frame denotes the location of the cor-
responding instruction in the program - it is hence a pointer into the Prolog
representation of the byte code. Values are encoded as pairs which consists of a
type and an address or primitive value like boolean or integer. The expressions
ιns are object references in runtime environment. The representation of values is
hidden from the pointcut programmer, however; the static type, dynamic type
and the value (address for reference values like objects, otherwise the int, bool
etc.) must instead be retrieved with the getter predicates stype(V,T), dtype(V,T)

and value(V,A), respectively. The reason is that the static representation of values
during specialization is different from the representation of runtime values, and
hiding the representation by means of getters is an easy way to hide details of
the specialization process from the pointcut programmer (as well as leading to
cleaner code).



Depending on the weaving strategy, such call stacks may never be explicitly
reified as physical data, but should mainly be seen as the data model upon which
pointcuts are expressed.

2.4 The pointcut library

So far, we have seen how pointcuts can be formulated using the representation of
the byte code and of the call stack directly. The real power of the approach lies
in the fact that we can easily extend the pointcut language by means of Prolog
predicates on top of the raw representation of the call stack and the byte code.

The predicates which form the pointcut language are defined as Prolog predi-
cates themselves, which use the Prolog encoding of the program. The implemen-
tation of these predicates defines the connection between the semantics of the
pointcut language and that of the bytecode language. For instance, in the defi-
nition of instance_of the subtype relation is used, which is directly extracted from
the inheritance relation exposed by the bytecode representation. Similar to the
corresponding AspectJ pointcut designators, the cflow predicate checks whether
a particular entry can be found in the call stack; cflowbelow checks all but the first
stack frame.

The pointcut library is the extension point of the pointcut language: new
pointcut predicates can be introduced by defining them in the pointcut library.
New pointcut predicates can be built in terms of existing predicates and the
bytecode representation. As we will see, the specialization process is indepen-
dent of the predicates defined in the pointcut library; hence every pointcut lan-
guage that operates over the program and the callstack can easily be encoded
by implementing corresponding predicates.

Furthermore it can be of interest to add new descriptions of the program
- for example, the complete trace of the application or profiling information
- and to use these descriptions in the definition of new pointcut predicates,
thus providing the programmer with access to the new model. If the added
descriptions are static (e.g., representations of configuration files), the specializer
will automatically compile all references to the static data away. If the added
descriptions are dynamic, a corresponding static approximation of the dynamic
data has to be provided. We will discuss this point later.

3 The specialization framework

Program specialization is a technique to specialise a given general purpose
program for certain specific application area. Partial evaluation [13] is a well-
established technique that obtains a specialised program by pre-computing parts
of the original source program that only depend on some given part of the input
(called the static data).

Our specialization framework performs the task of computing shadows and
the respective residual programs for pointcut queries. This is achieved by par-
tially evaluating the pointcut query w.r.t. the static part of the input. This static



1 package shapes;
2

3 interface Shape {
4 public void moveBy(int dx, int dy);
5 }
6 class Point implements Shape {
7 private int x, y;
8 public int getX() { return x; }
9 public int getY() { return y; }
10 public void setX(int x) { this.x = x; }
11 public void setY(int y) { this.y = y; }
12 public void moveBy(int dx, int dy) {
13 x += dx; y += dy;
14 }
15 }
16 class Line implements Shape {
17 private Point p1, p2;
18 public Point getP1() { return p1; }
19 public Point getP2() { return p2; }
20 public void moveBy(int dx, int dy) {
21 p1.setX(p1.getX()+dx);
22 p1.setY(p1.getY()+dy);
23 p2.setX(p2.getX()+dx);
24 p2.setY(p2.getY()+dy);
25 }
26 }
27 class GraphicApp {
28 public void test(Shape s, Line l, int dx, int dy){
29 s.moveBy(dx,dy)
30 l.moveBy(dx,dy);
31 l.getP1().setX(42);
32 }
33 }

Fig. 3. The shape example

1 class(’shapes’,ref(’shapes.Line’),
2 default,false,false,false,
3 ref(’java.lang.Object’)).
4 interfaces(ref(’shapes.Line’),
5 ref(’shapes.Shape’)).
6 field(ref(’shapes.Line’),’p1’,
7 private,false,false,
8 false,false, false,
9 ref(’shapes.Point’)).
10 field(ref(’shapes.Line’),’p2’,
11 private,false,false,false,false,
12 false,ref(’shapes.Point’)).
13

14 method(6,ref(’shapes.Line’),
15 ’moveBy’,public,false,
16 false,false,false,false,false,
17 [prim(int),prim(int)],void).
18 ...
19 def(6,7,22,ref(’shapes.Point’),p11,
20 get(ref(’shapes.Point’),’p1’,
21 ref(’shapes.Line’),thisValue)).
22 def(6,8,22,ref(’shapes.Point’),p13,
23 get(ref(’shapes.Point’),’p1’,
24 ref(’shapes.Line’),thisValue)).
25 def(6,9,22,prim(int),p14,
26 invokeFunc(’getY’,ref(’shapes.Point’),
27 p13,[],[],prim(int))).
28 def(6,10,22,prim(int),p16,
29 add(p14,param(2))).
30 invokeProc(6,11,22,’setY’,
31 ref(’shapes.Point’),p11,
32 [prim(int)],[p16]).
33 ...
34 return(6,22,25).

Fig. 4. Excerpts of Prolog encoding

part is given by the representation of the program, which determines the possible
static contexts in which the pointcut may be evaluated.

In order to make more static information available to the specialization pro-
cess, we will later introduce static approximations of runtime entities like values
and the callstack.

Specialization is performed by a partial evaluator for Prolog. The behavior of
this tool is controlled by a description of the pointcut primitives and predicates
in the pointcut library which marks certain parts of the pointcut program as
callable. That means that they can be (safely) evaluated at specialisation time.

After a short introduction to our partial evaluator, we present the partial
evaluation of pointcut queries with respect to the program source.

3.1 Partial evaluation

The partial evaluation (or specialiser) tool used throughout this work is based on
the core of the offline specialiser presented in [17]. It is thus similar to the core of
logen [18].7 An offline partial evaluator is one which works in two phases: first
7 Albeit being an offline partial evaluator rather than a compiler generator.



the source program is annotated, partitioning the instructions of the program
into those that can be evaluated by the partial evaluator and those that cannot.
In the second phase—the specialisation phase proper—the specialised code is
generated by following the annotations. In the following we suppose some basic
familiarity with offline partial evaluation.

The core of this evaluator is quite short and is given in Fig. 5. The body/2

predicate takes the annotated clause as its first argument and binds it second
one to the residual program. while the first two clauses simply deal with the
extension of the predicate over the connectives , and ;, the last three clauses
define the whole partial evaluator, as we use it in this work.

The partial evaluator uses annotations to decide which part of the program
can be evaluated. In our system, a query is annotated by wrapping it into the
functor which represents the annotation. For example, call(f(X)) means that f(X)

can be evaluated at specialization time. The partial evaluator has been extended
to automatically annotate un-annotated source code; using a set of rules on how
the standard pointcut predicates should be treated.

We will now give an overview of the annotations available in our system:

– In case of a call annotation, the residual code is true, if the evaluation of the
query succeeds. If there is no answer to the query, no residual program is
generated, which is equivalent to the residual program fail. However, if the
evaluation of the query yields multiple answers, the specialiser will return
multiple residual clauses, which can be regarded as alternative solutions. In
the case of infinitely many answers, the partial evaluator will, like the base
program, not terminate.

– Handling of the rescall annotation is quite simple: the wrapped query is left
as residual program, without any further evaluation.

– Handling the unfold annotation is similar to the normal evaluation of a Pro-
log query, which searches for a clause whose head unifies with the term and
evaluates the body of this rule. As the partial evaluator works on annotated
programs, which is retrieved by the predicate rule/2. As with normal Pro-
log evaluation, multiple applicable rules create backtracking in the partial
evaluator, which leads to multiple residual clauses.

Evaluator control and Automatic Annotation Offline specialization tools require
an annotated rule for each predicate that must be unfolded. A rule, like a nor-
mal Prolog clause, has a head and a body, but the body consists of annotated
Prolog code. Normally, the program is annotated once and then used with dif-
ferent dynamic data, for example when compiling a program by specializing an
interpreter w.r.t. the source program.

Our system does not require the programmer to annotate her pointcuts man-
ually, but we rather use a standard set of rules to perform this annotation auto-
matically before specialisation. Only in the case where these annotations are not
optimal from the programmer’s view, should he annotate the program himself.
A typical example for this case is the introduction of user-defined predicates. As



the specialiser normally leaves calls to these predicates as residual code, it can
be useful to annotate the predicates to benefit from partial evaluation.8

Whenever the specialiser needs a rule for unfolding a predicate term P

1. it checks the rule database rule_db/2 for a predefined rule.
2. if no predefined rule is found, the body of the clause is examined and for

each subquery in the body the annotation database (annotation_db/2) is queried
for a predefined annotation. If no such annotation is present, the default
annotation rescall is used.

The predefined annotations for the predicates in the pointcut library is given
in Fig. 6.

1 body((A;B),Body)
:- body(A,Body) ; body(B,Body).

2 body((A,B),(CA,CB))
:- body(A,CA), body(B,CB).

3 body(call(C),true) :- call(C).
4 body(rescall(C),C).
5 body(unfold(X), B) :- unfold(X,B).
6 unfold(X,Code)

:- rule(X,B), body(B,Code).
7

8 specialise( pointcut([S,L],Body), pointcut([S,L],ResBody) ) :-
9 create_rule_body(Body, AnnotatedBody), body( (call(joinpoint(S,L)), AnnotatedBody), ResBody).

Fig. 5. The specialiser core and its interface

Predicate Annotation
within/3 call
instance_of/2 unfold
stype/2 call
subtype/2 call
subtypeeq/2 call
calls/5 unfold
get/5 unfold
set/5 unfold
cflowbelow/2 unfold
cflow/2 unfold

Fig. 6. Predefined annotations

In cases were a built-in should not be annotated call, the user must provide
an annotated rule-body for the enclosing rule or add an annotation entry to
database, which makes this annotation a global choice for this built-in call.

3.2 The partial evaluation of pointcuts

The basic concept to use partial evaluation for shadow matching is to think
of the pointcut query as a logic program and the state of the software system
(i.e., the program representation, typing information, heap, callstack, etc) as its
input. The static part of this input comprises the static type information and
the program’s bytecode.

Shadow finding now means to specialise the pointcut w.r.t. to the static data.
If the query returns solutions, the binding of the pointcut’s location parameter
can be used to identify the shadows and the residual program can be woven at
this shadow.
8 An alternative would have been the adaptation of an automatic binding-time analysis

such as [6].



The specialization is performed by the predicate specialise/2 (Fig. 5), which
takes a pointcut as its first argument and binds its second argument to the
residual pointcut (observe that we wrap the pointcut query itself inside the
pointcut/2 predicate).

The first subquery of specialise generates an annotation of the pointcut query.
A call to the joinpoint predicate is then put in front of this annotated body and
the resulting term is specialised by the partial evaluator. The call to the joinpoint

predicate ensures that each solution of the partial evaluation actually denotes
the static part of a joinpoint, that is an instruction in the bytecode together
with its static context.

3.3 Approximation of runtime entities

In the scenario of pointcut specialisation, only the static part of the program is
available. The static view onto the program consists of the class, interface and
field declarations and a set of bytecode instructions. In contrast, the pointcut
language allows the user to specify crosscuts based on runtime data, for example
parameter and receiver values, the elements of the callstack and the actual type
of a value.

In the case of values, the only solution is to leave checks as residual programs,
as there is no information on actual values available from the static part of
the program. The easiest way to handle actual types is to generate all possible
instantiations and explore them by backtracking. If, for example, a pointcut
constraints a variable to be a subtype of a class, the partial evaluator may try
all possible subclasses. The problem with this implementation is that it does not
scale well for programs with a large number of classes. A better solution is to
use abstract values as approximations of runtime entities.

We will now describe the approximation of the actual type of a value and the
elements of the callstack and how they are used in the specialisation process.

Approximation of the callstack The static event, i.e. the statically known part
of the joinpoint event, for a location can be used to construct an approximation
of the runtime callstack at this location. The static event is an approximation of
the first element of the callstack, which contains the current event. Furthermore,
the second element of the callstack must be a call to the method that contains
the current location. The stack approximation is constructed by the predicate
staticStack. For the example callstack in the last section we can thus give the
following approximation:
1 [
2 set( loc(10,5), value([’java.lang.Object’, ’shapes.Point’ | _],_,_), x, value([prim(int)],_,_) ),
3 calls( _, value([’java.lang.Object’, ’shapes.Point’ | _],_,_), setX, [value([prim(int)],_,_)] ),
4 ]

Better approximations that contain more elements or more precise type in-
formation can be generated by using the callgraph of the program . As the
construction of the application’s callgraph can be very costly, it is desirable to
be able to control the amount of approximation. In our framework this can easily



be accomplished by modifying the staticStack predicate (to produce more/other
information).

Representation of values In pointcuts, variables can be used to bind values,
for example by providing them as arguments to event predicates. These value
variables can be used in two different contexts: as the actual value (for instance
in comparisons) or as the actual type (in subtype-checks). However, this dynamic
information is not accessible at specialisation time. Nevertheless specialisation
should be able to benefit from the static information about the variable that
can be retrieved from the programs bytecode.

To solve this problem, we introduce an abstraction of values. It is based on
the idea to associate with each variable the set of all classes whose instances
the variable can possibly hold. In the context of Java single inheritance, we can
describe the set of all possible types of a variable by the :<-maximal (i.e. the most
general) type of the set. To make this abstraction compatible with unification,
we encode the most general type of the variable as an open list containing all its
super classes9. In this form, two encodings can be unified if one is the prefix of
the other list, which means that it encodes a super type of the other list.

For example, the list presentation of the class shapes.Line from our example
is [’java.lang.Object’, ’shapes.Line’ | _]. A class shapes.Arrow :< shapes.Line would be
encoded as [’java.lang.Object’, ’shapes.Line’, ’shapes.Arrow’ | _] and the unification
of both will yield the latter list as required.

To associate the abstract type with the variable for the dynamic type and
argument, type variables are bound to a term value(AbsType,DynType,DynValue), where
AbsType is the encoding of the possible types of this variable and DynType and DynValue

denote the dynamic type and value and are variables in the specialisation phase.

3.4 Description of Pointcut Predicates

To take advantage from the approximation of runtime values and the callstack,
we provide descriptions of the pointcut predicates defined in the pointcut library:
a description of a pointcut library predicate does not only provide the necessary
annotations for the partial evaluator, but also includes additional calls to handle
the approximations of dynamic entities. Fig. 7 shows the description of some of
the pointcut library predicates.

3.5 Example specialisations

After introducing the specialisation and approximation techniques, we demon-
strate the specialisation process using example pointcuts. We use the program
given in Fig. 3 in Sec. 2.

9 There is no list representation for interfaces as they lack a common base interface.
The abstraction of an interface is simply a variable. In this case, no information
about the static type can be exploited in the specialization.



calls( Stack, Loc, Rec, MName, Args ) :-
Stack = [calls(Location, Receiver, MethodName, Arguments)| ],
| {z }

call

location = loc(MethodID, OpcodeIdx),
| {z }

call

methodInvokation(MethodID,OpcodeIdx,
| {z }

call

MethodName, ReceiverType, , ArgTypes, , ),
| {z }

call

abstractValue(Receiver,ReceiverType),
| {z }

call

abstractValues(Arguments,ArgTypes).
| {z }

call

instance_of(Var, Class) :- abstractValue(Var, Class
| {z }

call

, dtype(Var, DT), subtypeeq(DT, Class)
| {z }

rescall

cflow(S, Ev) :- S = [Ev| ]
| {z }

call

, \+ var(Ev), Ev = calls(Loc, Rec, MethodName, Args)
| {z }

call

,

calls(S, Loc, Rece, MethodName, Args), !
| {z }

call

.

cflow([_|Cs], Ev) :- cflow(Cs, Ev)
| {z }

rescall

.

cflowbelow([_ |Ss],Ev) :- cflow(Ss, Ev)
| {z }

unfold

.

Fig. 7. Description of the calls predicate

The pointcuts that we want to discuss are named pc1-pc3 and are stored in
the Prolog source by means of pointcut/2 facts. This predicate binds its second
argument to the pointcut term identified by the name given as first argument.

The first pointcut we want to discuss is pc1 = calls(S,L,Rec,moveBy,_), selecting
all method call joinpoints to a method called moveBy. The following two inter-
preter invocations shows the access to the pointcut predicates and the result of
specialisation:

1 2 ?- pointcut(pc1,P).
2 P = pointcut([_G332, _G335], calls(_G332, _G335, _G340, moveBy, _G342)) ;
3 3 ?- specialisePointcut(pc1,Result).
4 Result = pointcut([ [calls(loc(2, 2), _G394, moveBy, [prim(int), prim(int)]),

5 calls(loc(_G608, _G609), _G604, test, _G606)|_G529], loc(2, 2) ], true) ;

6 Result = pointcut([ [calls(loc(2, 3),
7 value([ref(’java.lang.Object’), ref(’shapes.Line’)|_G644], _G620, _G621),
8 moveBy, [prim(int), prim(int)]), calls(loc(_G608, _G609), _G604, test, _G606)|_G529],

9 loc(2, 3) ], true )

The lengthy output is a result of the partial instantiation of the callstack
parameter and the binding of values to type abstractions. The shadows loca-
tion and the residual pointcut are marked with a frame in both results. Both
residual pointcuts are true, meaning that there is no dynamic check required
at the shadow. The locations (2,2) and (2,3) refer to lines 29 and 30 in Fig. 3,
respectively.



In the next example we show the effect of constraining the set of possible
types of a variable. In the pointcut pc2, only calls to a moveBy method on a value,
which is an instance of a ’shapes.Point’ at runtime. Calculating the shadows gives
1 5 ?- pointcut(pc2,P).
2 P = pointcut([_G338, _G341], (calls(_G338, _G341, _G349, moveBy, _G351),
3 instance_of(_G349, ’shapes.Point’)))
4 6 ?- shadows(pc2,S).
5 S = [ (loc(2, 2), subtypeeq(_G383, ref(’shapes.Point’)))]

The location (2,3) is not a shadow of this modified pointcut, as the static
type of the receiver is shapes.Line. The call at location (2,2) requires a runtime
check to determine, if the receiver is an instance of shapes.Point.

In our last example, calls to setX in the control flow of a call to the method
test are selected.
1 7 ?- pointcut(pc4,P).
2 P = pointcut([_G335, _G338], (calls(_G335, _G338, _G346, setX, _G348),
3 cflow(_G335, calls(_G353, _G354, test, _G356)))) ;
4 8 ?- shadows(pc3,S).
5 S = [ (loc(2, 5), true),
6 (loc(6, 6), cflow([calls(loc(_G427, _G428), _G423, moveBy, _G425)|_G420],
7 calls(_G430, _G431, test, _G433))),
8 (loc(6, 16), cflow([calls(loc(_G396, _G397), _G392, moveBy, _G394)|_G389],
9 calls(_G399, _G400, test, _G402))) ]

The location (2,5) corresponds to line 31 of Fig. 3, (6,6) and (6,16) to line 21
and 22, respectively.

Fig. 8 gives some figures for the speed of specialisation. The first three lines
show the performance of specialising the example pointcuts. As these examples
show, specialisation for small programs is quite efficient. The last four lines rows
of To give an outlook on how our approach scales for medium sized programs,
we tested specialisation of pointcuts on a bytecode toolkit project called BAT
with about 800 types (classes+interfaces) and a bytecode size of about 2,25 MB.

Pointcut Shadows Time
pc1 2 0.08 ms
pc2 1 0.12 ms
pc3 3 0.13 ms
callStringMethod 6,655 0.30 sec
ctor 3,187 0.32 sec
ctorRec 1,313 0.55 sec
ctorNotRec 1,874 0.50 sec

Fig. 8. Specialisation runtime

4 Weaving residual programs

Hitherto we have only tackled the problems of finding shadows and computing
efficient residual pointcut programs. However, this is only one part of the weaving



process. What remains is to insert the residual pointcut checks into the bytecode.
We identified the following possibilities to process the residual Prolog programs:

Using a Prolog interpreter. Under the assumption that a Prolog interpreter
is part of the runtime environment, Java code can be inserted which calls this
interpreter for the residual pointcut query, checks the solutions and possibly
calls the advice. Alas, this solution would also require the whole pointcut
library, the user defined pointcut predicates and the Prolog representation
to be accessible at runtime. Although this approach is quite simple, the
overhead of keeping a Prolog interpreter and the libraries available for the
virtual machine may not be tolerable in practice. Still, there are many tools
for embedding Prolog within Java (e.g., [4], [29]), so this is a definitely a
feasible solution.

Transforming the Prolog program. In order to produce efficient Java code,
there are in principle several possible avenues.
1. A first approach is to produce specialized Prolog code in a special subset

of Prolog that can be efficiently translated to Java. E.g., one could try
and ensure that all the residual code is in a form similar to Mercury [24]
which can be compiled into efficient imperative code.

2. Another solution is to ensure that the specialized code is close to abstract
machine code or assembly code. This can be achieved by threading the
environment of the interpreter via definite clause grammars; see [27] for
more details and a worked out case study.

Certain parts of the residual program, however, could be treated in a special
way. Residual predicates that refer to entities which are present in the Java
virtual machine, like the callstack, argument values of a call or the actual type
of a value. It is a promising idea to include a way to make this information
directly accessible from the Java virtual machine. Calls to those predicates could
then be translated directly into special bytecode instructions which have to be
executed by an augmented virtual machine. The analysis of such techniques and
their efficient implementation is part of ongoing research.

5 Related work

This is not the first work to use partial evaluation techniques in the context
of pointcuts. Masuhara et al. have proposed a model where an aspect-oriented
compiler is generated from a Scheme interpreter of the AO language using partial
evaluation of Scheme programs [21]. Hence this work assumes that an interpreter
for the whole base language is available. Also, the execution speed of a partially
evaluated interpreter cannot keep up with today’s optimizing compilers and
virtual machines. Hence our work takes a different approach which does not
require an interpreter for the language and with which programs can still be
executed on optimizing virtual machines.

Ostermann, Mezini and Bockisch [22] present Alpha, a prototype language
with a very expressive logic-based pointcut language. Alpha’s pointcut language
served as the base of our pointcut language.



The work discusses Alpha pointcuts in comparison with their equivalent
AspectJ pointcuts w.r.t. to robustness under changes in the structure of the
software system. It is argued that expressiveness of Alpha pointcuts allows the
programmer to express pointcuts on a higher abstraction level, which lowers
their coupling to actual syntax elements.

In addition, an approach based on abstract interpretation of pointcut queries
is presented, which aims primarily at the reduction of space usage. This is
achieved by collection all references to events used in the pointcut queries and
restrict event generation to the corresponding expressions.

Our work goes beyond [22] in that we give a realistic approach to implement
(a subset) of such an expressive pointcut language in the context of Java, a
commercial programming language.

Walker and Viggers [25] discuss temporal pointcuts, called history patterns
or tracecuts, to enrich the AspectJ [2] pointcut language with the ability to
reason about former calls and their temporal relations. Moreover, data that has
been passed as an argument can be accessed by the advice as it could be done
via variable binding in our language. Tracecuts are patterns that are matched
against a history of calls by a finite automaton. The implementation translates
a program with tracecuts into AspectJ source code. Although more information
about the computation history is available, the expressiveness of the pointcut
language is very limited in contrast to our approach.

In [1], Allan et al. discuss the extension of the AspectJ language to be a
able to express sequences of ”classic”’ AspectJ pointcuts. The language has been
implemented as part of the Aspect-Sandbox (ASB) project, which aims at easing
the implementation and testing of new features in aspect oriented languages. The
extended language allows a sequencing pattern of ordinary AspectJ pointcuts to
be considered as a pointcut and, additionally, allows the use of variables to bind
and constraint terms very similar to those in logic based pointcut languages:
when a variable is bound to a certain value at one event in the sequence, any other
use of this variable at a later event must point to the same value, otherwise the
whole sequence does not match. The implementation of shadow computation and
optimization remains hand-coded, which is the main difference to the approach
we presented.

Goldsmith et al. [9] present a framework to automize the instrumentation of
source code to find static and dynamic pattern in programs. The language PQTL
they introduce is basically a subset of SQL which operates on a database repre-
senting the program trace. In the database, each type of event is represented as
a table, include timing information (much like the timestamps used in our work)
for each event. Since the query language is built on SQL, dependencies between
events must be expressed in terms of JOIN s and SQL logical connectives. This
makes queries harder to understand as one has to consider the table layout and
the SQL syntax, which is less predicative than Prolog.

The PARTIQLE compiler for PQTL uses timing graphs and a set of rules to
determine the instrumentation sites in the application based on the queries and
constructs minimal runtime data structures for the event database based on the



properties and events used in the query. The program is then instrumented at
byte code level with instructions to add the required event data to the database
and to check for event data that can be deleted. By the use of timing graphs
for the partial order of events, so called retention checks are generated which
prevent events to be added to the database which, at that point in the execution,
cannot match any join in the query.

The difference between the PARTIQLE system and our approach lies in the
expressiveness and extensibility of the pointcut language: PQTL can recognize
patterns formulated in a very limited and fixed language, whereas in our lan-
guage arbitrary predicates over the callstack can be expressed and user-defined
pointcuts can be added to the pointcut language.

A work that also targets at detection of wrong behavior, may it be static
or dynamic, is discussed in [20] by Martin et al. The PQL language has a more
Java-like syntax to specify query which allows to define named queries and to use
them to build more complex and even recursive queries, which provide a kind of
Kleene-star operator. PQL queries are composed of the primitives method call,
field access, object creation and the end of the program as well as negation,
matching another query and partial-order matching of events.

Although the language can match context-sensitive patterns over the execu-
tion trace, the pattern language is fixed and is - in contrast to our language -
very limited.

6 Conclusions and Future Work

We have presented a generic and extensible framework for finding pointcut shad-
ows in Java programs. For this we have used logic programming, together with
associated analysis and specialisation tools.

The framework is extensible at different points: the joinpoint model can be
extended by adding new events or the modification of existing ones. Further-
more, new program models and pointcut predicates can be added to provide
the programmer with a more domain specific language. This flexibility has the
advantage, that the weaving and optimization layer of compilers does not have
to be re-implemented when the pointcut language changes. The level of abstrac-
tion used in the approximation of the runtime behavior can be varied to switch
between fast compile-test cycles and more accurate - but slower - compilation.

As we have demonstrated, the performance of our framework scales reason-
able with program size. However, there are plenty of promising goals for future
work: the integration into real compiler architectures and the weaving for special
virtual machines are the most important problems which have to be solved.

Furthermore, there are different optimisation options, which have not yet
been integrated: Static analysis techniques based on the Prolog bytecode rep-
resentation can be used to compute better approximations of values and the
callstack. Closer approximations do not only speed up the evaluation process
but can also result in much more optimized residual pointcuts. Static informa-
tion, for instance the subtyping relation, static events and abstract values, can



be memoized. That is, after the first computation the results are cached and
reused in subsequent calls. Tabled Prolog systems - like XSB [28] - have internal
support for this kind of optimization. Finally, the use more advanced technolo-
gies, like faster Prolog systems instead of SWI-Prolog and the full-fledged logen
partial evaluation system are likely to speedup the optimisation.
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16. R. Lämmel. A semantical approach to method-call interception. In AOSD ’02:
Proceedings of the 1st international conference on Aspect-oriented software devel-
opment, pages 41–55, New York, NY, USA, 2002. ACM Press.

17. M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof. Specializing interpreters
using offline partial deduction. In K.-K. L. Maurice Bruynooghe, editor, Program
Development in Computational Logic, pages 341–376. Springer Verlag, LNCS 3049,
November 2004.

18. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation
in Prolog using a hand-written compiler generator. Theory and Practice of Logic
Programming, 4(1):139–191, 2004.

19. M. Martin, B. Livshits, and M. S. Lam. Finding application errors and secu-
rity flaws using PQL: a program query language. In OOPSLA ’05: Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 365–383, New York, NY, USA, 2005.
ACM Press.

20. M. Martin, B. Livshits, and M. S. Lam. Finding application errors and secu-
rity flaws using pql: a program query language. In OOPSLA ’05: Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 365–383, New York, NY, USA, 2005.
ACM Press.

21. H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and optimization model
for aspect-oriented programs. In Proceedings of Compiler Construction (CC2003),
LNCS 2622. Springer, 2003.

22. K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased
modularity. In ECOOP’05: European Conference on Object-Oriented Program-
ming. Springer LNCS, 2005.

23. D. Sereni and O. de Moor. Static analysis of aspects. In Proceedings of AOSD’03.
ACM, 2003.

24. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
An efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1–3):17–64, 1996.

25. R. J. Walker and K. Viggers. Technical report.
26. M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic

join points in aspect-oriented programming. ACM Trans. Program. Lang. Syst.,
26(5):890–910, 2004.

27. Q. Wang, G. Gupta, and M. Leuschel. Towards provably correct code generation
via Horn logical continuation semantics. In PADL’05, Springer LNCS 3350, pages
98–112, 2005.

28. XSB Home Page. http://xsb.sourceforge.net/.
29. Q. Zhou and P. Tarau. Garbage Collection Algorithms for Java-Based Prolog

Engines. In V. Dahl and P. Wadler, editors, Practical Aspects of Declarative Lan-
guages, 5th International Symposium, PADL 2003, pages 304–320, New Orleans,
USA, Jan. 2003. Springer, LNCS 2562.


