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Abstract. Recently, partial deduction of logic programs has been ex-
tended to conceptually embed folding. To this end, partial deductions are
no longer computed of single atoms, but rather of entire conjunctions;
Hence the term “conjunctive partial deduction”.
Conjunctive partial deduction aims at achieving unfold/fold-like program
transformations such as tupling and deforestation within fully automated
partial deduction. However, its merits greatly surpass that limited con-
text: Also other major efficiency improvements are obtained through con-
siderably improved side-ways information propagation. In this extended
abstract, we investigate conjunctive partial deduction in practice. We
describe the concrete options used in the implementation(s), look at ab-
straction in a practical Prolog context, include and discuss an extensive
set of benchmark results. From these, we can conclude that conjunctive
partial deduction indeed pays off in practice, thoroughly beating its con-
ventional precursor on a wide range of small to medium size programs.
However, controlling it in a perfect way proves far from obvious, and a
range of challenging open problems remain as topics for further research.

1 Introduction

Partial deduction [27, 15, 9] is a well-known technique for automatic specialisa-
tion of logic programs. It takes as input a program and a (partially instantiated)
query and returns as output a program tuned towards answering the given query
and any of its instances. The process proceeds by building incomplete SLD(NF)-
trees for the goal atoms, assembling specialised clauses from the leaves, and
subsequently doing likewise for (new) atoms occurring in these clauses.

An important feature (in fact, a bug, one might say) lies in the fact that
specialised clauses are produced for individual, separate atoms. As a conse-
quence, partial deduction is unable to achieve typical transformations involv-
ing elimination of redundant variables [33, 34, 35], as exemplified by the query
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←da(Xs, Y s, Zs,R) and the following program:

da(Xs,Ys,Zs, R) ← app(Xs,Ys, T ), app(T,Zs, R).
app([ ],Ys,Ys).
app([H|Xs],Ys, [H|Zs]) ← app(Xs,Ys,Zs).

The desired, but “classically” unachievable transformed program is:

da([ ],Ys,Zs, R) ← app(Ys,Zs, R).
da([X|Xs],Ys,Zs, [X|Rs]) ← da(Xs,Ys,Zs, Rs).
app([ ],Ys,Ys).
app([X|Xs],Ys, [X|Zs]) ← app(Xs,Ys,Zs).

To overcome such limitations, [22, 16] develop conjunctive partial deduction.
As the name suggests, this extension of convential partial deduction no longer
automatically splits up goals into constituting atoms, but attempts to specialise
the program with respect to (entire) conjunctions of atoms. Sometimes, splitting
a goal into subparts is still necessary to guarantee termination, but, in general, it
is avoided when the latter is not the case. The necessary extensions to the basic
framework [27] are elaborated in [22], while [16] discusses control aspects and
[23] studies the integration with bottom-up abstract interpretation techniques.
Finally, [25] develops a supporting transformation to remove remaining useless
variables from programs produced by conjunctive partial deduction proper. Some
essentials are (mostly) informally recapitulated below; For a formal exposé, we
refer to [22, 16, 23, 25].

The resulting technique incorporates part of the unfold/fold technology [7, 39,
30], and bears some relationship to automated methods proposed in [33, 34, 35].
It also approaches more closely techniques for the specialisation and transfor-
mation of functional programs, such as deforestation [42], and supercompilation
[40, 36]. Especially the latter constituted, together with unfold/fold transforma-
tions, a source of inspiration for the conception and design of conjunctive partial
deduction.

In the present paper, we endeavour to put conjunctive partial deduction on
trial. We use a large set of small and medium size benchmark programs taken
from [20]. Together, we claim, they give a good impression of specialisation and
transformation obtained by various methods on a declarative subset of Prolog.
We will be particularly concerned with the resulting speedups, and also pay
attention to the complexity of the transformation process itself. (In order for
a method to be practically viable, it is not sufficient that it terminates “in
theory”; It should actually do so within reasonable time bounds, i.e. steer clear
of combinatorial explosions.) We will endeavour to make this paper as much
as possible self-contained, or at least understandable in broad lines without the
reader having to consult numerous other papers. However, since experiments
and their results are the true subject matter of the current paper, and these
experiments have been performed using methods constituted of diverse elements
presented in more detail elsewhere, we will occasionally be forced to refer the
reader seeking more technical details on the transformations involved to these
earlier sources. We apologise beforehand if this makes the reading a bit terse for



those to whom the present paper constitutes a first introduction to conjunctive
partial deduction. After all, we do want to focus on practice and experiments
here, and we can only hope that the interested reader will feel encouraged to
consult the respective references for more information on the various techniques
lying at the basis of the work reported below.

In Section 2 then, we do briefly recapitulate core notions from “classical” as
well as conjunctive partial deduction. Section 3 brushes up a well-known ter-
mination problem connected to Prolog’s left-to-right (unfair) computation rule,
as well as some other aspects with a slightly pedestrian, “get things going in
practice” flavour, not addressed before in conjunctive partial deduction in a
general logic programming setting [22, 16]. Next, Sections 4 and 5 constitute
the main body of the paper, describing the particular transformation method(s)
and benchmarks used, showing the results, and highlighting the most interesting
aspects of the latter.

2 Background

We assume the reader to be familiar with the basic concepts of logic programming
and (“conventional” or “classical” or “standard”) partial deduction, as presented
in [26] and [27]. Throughout the paper, we only consider definite programs and
goals.

2.1 Controlling Conventional Partial Deduction

In recent years, following the foundational paper by Lloyd and Shepherdson [27],
considerable progress has been achieved on the issue of controlling automated
partial deduction. In that context, a clear conceptual distinction was introduced
between local and global control [15, 29].

The former deals with the construction of (possibly incomplete) SLD-trees
for the atoms to be partially deduced. In essence, it consists of an unfolding
strategy. Requirements are: termination, good specialisation, avoiding search
space explosion as well as work duplication. Approaches have been based on one
or more of the following elements:
• determinacy [13, 14]

Only (except once) select atoms that match a single clause head. The strat-
egy can be refined with a so-called “look-ahead” to detect failure at a deeper
level. Methods solely based on this heuristic, apart from not guaranteeing
termination, tend not to worsen a program, but are often somewhat too
conservative.

• well-founded measures [8, 28]
Imposing some (essentially) well-founded order on selected atoms guarantees
termination, but, on its own, can lead to overly eager unfolding.

• homeomorphic embedding [36, 24]
Instead of well-founded ones, well-quasi-orders can be used [37, 2]. Homeo-
morphic embedding on selected atoms has recently gained popularity as the
basis for such an order.



At the global control level, closedness [26] is ensured and the degree of poly-
variance is decided: For which atoms should partial deductions be produced?
Obviously, again, termination is an important issue, as well as obtaining a
good overall specialisation. The following ingredients are important in recent
approaches:
• characteristic trees [13, 14, 21, 19]

A characteristic tree is an abstraction of an SLD-tree. It registers which
atoms have been selected and which clauses were used for resolution. As such,
it provides a good characterisation of the computation and specialisation
connected with a certain atom (or goal). Its use in partial deduction lies in the
control of polyvariance: Produce one specialised definition per characteristic
tree encountered.
• global trees [29, 24]

Partially deduced atoms (or characteristic atoms, see below) can be regis-
tered in a tree structure that is kept well-founded or well-quasi-ordered to
ensure (global) termination. In general, doing so, while maintaining closed-
ness, requires abstraction (generalisation).
• characteristic atoms [19, 24]

Recent work has shown that the best control of polyvariance can be obtained
not on the basis of either syntactical structure (atoms) or specialisation be-
haviour (characteristic trees) separately, but rather through a combination
of both. Such pairs consisting of an atom and an associated (imposed) char-
acteristic tree are called characteristic atoms.

Finally, subsidiary transformations, applicable in a post-processing phase, have
been proposed, e.g. to remove certain superfluous structures [12, 1] or to reduce
unnecessary polyvariance [24].

2.2 Conjunctive Partial Deduction

As explained in Section 1, conjunctive partial deduction has been designed with
the aim of overcoming some limitations inherent in its conventional relative. The
essential aspect lies in the joint treatment of entire conjunctions of atoms, con-
nected through shared variables, at the global level (complemented, of course,
with some renaming to deliver program clauses). Basically, this can be seen as a
refinement of abstraction with respect to the conventional case. Indeed, in con-
junctive partial deduction, a conjunction can be abstracted by either splitting
it into subconjunctions, or generalising syntactic structure, or through a com-
bination of both. See also e.g. [34] for a related generalisation operation in the
context of an unfold/fold transformation technique. In classical partial deduc-
tion, on the other hand, any conjunction is always split (i.e. abstracted) into
its constituent atoms before lifting the latter to the global level. Details can be
found in [22, 16].

Apart from this aspect, the conventional control notions described above also
apply in a conjunctive setting. Notably, the concept of characteristic atoms can
be generalised to characteristic conjunctions, which are just pairs consisting of
a conjunction and an associated characteristic tree.



3 Conjunctive Partial Deduction for Pure Prolog

We will for the remainder of the paper only be concerned with conjunctive partial
deduction for pure Prolog. This means, besides disallowing non-pure features,
that we suppose a static (unfair) computation rule, e.g. left-to-right, and that
we will demand preservation of termination under that computation rule (in the
sequel assumed “left-to-right”, unless explicitly stated otherwise).

3.1 Unfolding rules

In the given context, determinate unfolding has been proposed as a way to
ensure that partial deduction will never actually worsen the behaviour of the
program [13, 14]. Indeed, even fairly simple examples suffice to show that non-
leftmost, non-determinate unfolding may duplicate (large amounts of) work in
the transformation result. Leftmost, non-determinate unfolding, usually allowed
to compensate for the all too cautious nature of purely determinate unfolding,
avoids the more drastic deterioration pitfalls, but can still lead to multiplying
unifications.

3.2 Splitting and Abstraction

A termination problem specific to conjunctive partial deduction lies in the pos-
sible appearance of ever growing conjunctions at the global level (see Section 3
of [28] for a comparable phenomenon in the context of local control). To cope
with this, abstraction [15, 24, 16] provides for the possibility of splitting a con-
junction into several parts, thus producing subconjunctions of the original one.
The details can be found in [16]. Let us present a simple example. Consider the
two conjunctions Q1 and Q2:

Q1 = p(X, Y )∧q(Y,Z)

Q2 = p(f(X), Y )∧r(Z,R)∧q(Y, Z)

If specialisation of Q1 leads to specialisation of Q2, there is a danger of non-
termination. The method proposed in [16] prevents this by first splitting Q2 into
Q = p(f(X), Y )∧q(Y, Z) and r(Z,R) and subsequently taking the msg of Q1

and Q. As a result, only r(Z,R) will be considered for further specialisation.
Now, given a left-to-right computation rule, the above operation alters the

sequence in which goals are executed. Indeed, the p- and q-subgoals will hence-
forth be treated jointly (they will probably be renamed to a single atom). Con-
sequently, there is no way an r-call can be interposed. From a purely declarative
point of view, there is of course no reason why goals should not be interchanged,
but under a fixed (unfair) computation rule, however, such non-contiguous split-
ting can worsen program performance, and even destroy termination.

In fact, the latter point has already been addressed in the context of un-
fold/fold transformations (see e.g. [6, 3, 5, 4]). To the best of our knowledge,



however, no satisfactory solutions, suitable to be incorporated into a fully au-
tomatic system, have yet been proposed. Below, we present an example by way
of illustration for the benefit of those readers who are not yet familiar with the
phenomenon from the work on unfold/fold transformations.

Consider the following program:

flipallint(XT,TT) :- flip(XT,TT),allint(TT).

flip(leaf(X),leaf(X)).

flip(tree(XT,Info,YT),tree(FYT,Info,FXT)) :- flip(XT,FXT), flip(YT,FYT).

allint(leaf(X)) :- int(X).

allint(tree(L,Info,R)) :- int(Info), allint(L), allint(R).

int(0).

int(s(X)) :- int(X).

The deforested version, obtained by conjunctive partial deduction using the con-
trol of [16], would be:

flipallint(leaf(X),leaf(X)) :- int(X).

flipallint(tree(XT,Info,YT),tree(FYT,Info,FXT)) :-

int(Info), flipallint(XT,FXT), flipallint(YT,FYT).

where the transformed version of int is unchanged. Under a left-to-right com-
putation rule, the query flipallint(tree(leaf(Z),0,leaf(a)),Res) terminates with the
original, but not with the deforested program.

Contiguous Splitting For this reason, in the benchmarks below, we have in all
but two cases limited splitting to be contiguous, that is, we split into contiguous
subconjunctions only. (This can be compared with the outruling of goal switching
in [3].) As a consequence, compared to the basic (declarative) method in [16],
on the one hand, some opportunities for fruitful program transformation are left
unexploited, but, on the other hand, Prolog programs are significantly less prone
to actual deterioration rather than optimisation. There are many variations on
how to define contiguous subconjunctions. In [16], a non-contiguous method for
splitting was presented, based on maximal connected subconjunctions4:

Definition 1. (maximal connected subconjunctions) Given a conjunction
Q ≡ A1∧ . . .∧An

5, the collection mcs(Q) = {Q1, . . . , Qm} of maximal connected
subconjunctions is defined through the following conditions:

1. Q = Q1∧ . . .∧Qm

2. If a variable X occurs in both Ai and Aj where i < j, then Ai occurs before
Aj in the same Qk.

4 This notion is closely related to those of “variable-chained sequence” and “block” of
atoms used in [33, 34].

5 In this definition and the remainder of this paper, = is modulo reordering and ≡ is
not.



We can define the basic notion of maximal contiguous connected subconjunctions
in a similar way:

Definition 2. (maximal contiguous connected subconjunctions) For a
given conjunction Q ≡ A1∧ . . .∧An, the collection mccs(Q) = {Q1, . . . , Qm} of
maximal contiguous connected subconjunctions is defined through the following
conditions:

1. Q ≡ Q1∧ . . .∧Qm

2. mcs(Qi) = {Qi} for all i ≤ m
3. V ars(Qi) ∩ V ars(Qi+1) = ∅ for all i < m

The conjunctions p(X)∧p(Y )∧q(X, Y ), r(Z, T ) and p(Y ) are the maximal con-
tiguous connected subconjunctions (mccs) of p(X)∧p(Y )∧q(X, Y )∧r(Z, T )∧p(Y ).
Other definitions of contiguous subconjunctions could disallow built-ins and/or
negative literals in the subconjunctions or allow unconnected atoms inside the
subconjunctions, e.g. like p(S) in p(X)∧p(S)∧q(X, Y ).

Static conjunctions Actually, the global control regime used in some of our
experiments deviates from the one described by [16] in one further aspect. Even
though abstraction (splitting) ensures that the length of conjunctions (the num-
ber of its atoms) remains finite, there are (realistic) examples where the length
gets very large. This, combined with the use of homeomorphic embeddings (or
lexicographical orderings for that matter), leads to very large global trees, large
residual programs and a bad transformation time complexity.

Take for example global trees just containing atomic goals with predicates
of arity k and having as argument just ground terms s(s(...s(0)...)) representing
the natural numbers up to a limit n. Then we can construct branches in the
global tree having as length l = (n + 1)k. Indeed for n = 1, k = 2 we can
construct a branch of length 22 = 4: p(s(0), s(0)), p(s(0), 0), p(0, s(0)), p(0, 0)
while respecting homeomorphic embedding or lexicographical ordering.6

When going to conjunctive partial deduction the number of argument posi-
tions k is no longer bounded, meaning that, even when the terms are restricted
to some natural depth, the size of the global tree can be arbitrarily large. Such
a kind of explosion can actually occur for realistic examples, notably for meta-
interpreters written in the ground representation specialised for partially known
queries (see the benchmarks).

One way to ensure that this does not happen is to limit the conjunctions that
may occur at the global level. For this we have introduced the notion of static
conjunctions. A static conjunction is any conjunction that can be obtained by
non-recursive unfolding of the goal to be partially evaluated (or a generalisation
thereof). The idea is then, by a static analysis, to compute a set of static con-
junctions S from the program and the goal, and then during partial deduction
6 Of course, by not restricting oneself to natural numbers up to a limit n we

can construct arbitrarily large branches starting from the same p(s(0), s(0)) :
p(s(0), s(0)), p(s(s(....s(0)...))), 0), p(s(s(....0...))), 0), . . ..



only to allow conjunctions (at the global level) that are abstracted by one of
the elements of S. This is ensured by further splitting of the disallowed con-
junctions. (A related technique is used in [34].) In our implementation, we use
a very simpleminded way of approximating the set of static conjunctions, based
on counting the maximum number of occurences of each predicate symbol in a
conjunction in the program or in the goal to be partially deduced. Then S ap-
proximates all conjunctions where each predicate occurs at most as many times
as specified by its associated maximum. In the example above, the maximum for
flip and allint is 2, while for the other predicates it is 1.

Another approach, investigated in the experiments, is to avoid using home-
omorphic embeddings on conjunctions, but go to a less explosive strategy, e.g.
requiring a decrease in the total term size.

4 The System and the Implemented Methods

The partial evaluation system we used is called ecce and is developed by
Leuschel [20]. The system consists of a generic algorithm to which one may
add one’s own methods for unfolding, partitioning, abstraction, etc. All built-ins
handled by the system are supposed to be declarative (e.g. ground is supposed
to be delayed until ground,...). Some of the built-ins that are handled are: =, is,
<, =<, <, >=, nonvar, ground, number, atomic, call, \==, \=. In the following
we will give a short description of the different methods that we used in the
experiments.

4.1 The Algorithm

The system implements a variant of the concrete algorithm described in [16].
The algorithm uses a global tree γ with nodes labeled with (characteristic) con-
junctions. When a conjunction Q gets unfolded, then the conjunctions in the
bodies of the resultants of Q (maybe further split by the abstraction) are added
as child nodes (leaves) of Q in the global tree.

Algorithm 1
Input: a program P and a goal ← Q
Output: a set of conjunctions Q
Initialisation: i := 0; γ0 := the global tree with a single node, labeled Q
repeat

1. for all leaves L in γi labeled with conjunction QL and for all bodies B in
U(P, QL) do:
(a) Q = partition(B)
(b) for all Qi in Q do:

i. remove Qi from Q
ii. if whistle(γi, L, Qi) then Q = Q ∪ abstract(γi, L, Qi)

elseif Qi is not an instance of a node in γi then add a child L′ to L
with label Qi

2. i := i + 1
until γi = γi−1

output the set of nodes in γi



The function U does the local unfolding. It takes a program and a conjunction
and produces a set of (generalised) resultants: Q ← Q′. The function partition
does the initial splitting of the bodies into maximal contiguous connected sub-
conjunctions (or mcs’s or plain atoms for standard partial deduction). Then for
each of the subconjunctions it is checked if there is a risk of non-termination.
This is done by the function whistle. The whistle will look at the labels (con-
junctions) on the branch in the global tree to which the new conjunction Qi

is going to be added as a child and if Qi is “larger” than one of these, it re-
turns true. Finally, if the “whistle blows” for some subconjunction Qi, then Qi

is abstracted by using the function abstract. After the algorithm terminates the
residual program is obtained from the output by unfolding and renaming (details
can be found in [22, 16, 25]).

Concrete Settings We have concentrated on four local unfolding rules:

1. safe determinate (t-det.): do determinate unfolding allowing one left-most
non-determinate step using homeomorphic embedding with covering ances-
tors of selected atoms to ensure finiteness.

2. safe determinate indexed unfolding (l-idx). The difference with t-det. is that
more than one left-most non-determinate unfolding step is allowed. However
only “indexed” unfolding is then allowed, i.e. it is ensured that the unification
work that might get duplicated is captured by the Prolog indexing (which
may depend on the particular compiler). Again, homeomorphic embeddings
are used to ensure finiteness.

3. homeomorphic embedding and reduction of search space (h-rs): non-left-
most unfolding is allowed if the search space is reduced by the unfolding. In
other words, an atom p(t̄) can be selected if it does not match all the clauses
defining p. Again, homeomorphic embeddings are used to ensure finiteness.
Note that, in contrast to 2 and 3, this method might worsen the backtracking
behaviour.

4. “Mixtus”-like unfolding (x): See [37] for further details (we used max rec =
2, max depth = 2, maxfinite = 7, maxnondeterm = 10 and only allowed
non-determinate unfolding when no user predicates were to the left of the
selected literal).

The measures that we have used in whistles are the following:

1. homeomorphic embedding (homeo.) on the conjunctions
2. termsize on the conjunctions
3. homeomorphic embedding (homeo.) on the conjunctions and homeomorphic

embedding on the associated characteristic trees
4. termsize on the conjunctions and homeomorphic embedding on the charac-

teristic trees

Abstraction is always done by possibly splitting conjunctions further and
then taking the msg as explained in Subsection 3.2. One method (SE-hh-x)
also uses the ecological partial deduction principle [19] to ensure preservation
of characteristic trees upon generalisation (something which we have not yet



implemented for the conjunctive methods). The methods we have used for par-
tioning are based either on splitting into mcs’s (non-contiguous) or into maxi-
mal contiguous connected subconjunctions. Additionally we may limit the size
of conjunctions by using static conjunctions.

All unfolding rules were complemented by a simple more specific transfor-
mation in the style of SP [14] and allow the selection of ground negative liter-
als. Post-processing removal of unnecessary polyvariance [24], determinate post-
unfolding as well as redundant argument filtering [25] were always enabled.

A further extension wrt [19, 24] relates to built-ins which are also registered
in the characteristic tree. The only problematic aspect is that, when generalis-
ing built-ins which generate bindings (like is/2, =../2) and which are no longer
executable after generalisation, these built-ins have to be removed from the gen-
eralised characteristic tree (i.e. they are no longer selected).

5 Benchmarks

For the experimentation, we have adopted a practical approach and measured
what a normal user sees. In particular, we do not count the number of inferences
(the cost of which varies a lot) or some other abstract measure, but the actual
execution time and size of compiled code (using Prolog by BIM 4.0.12).

The benchmark programs are taken from [20]; Short descriptions are given
in Appendix A. Tables showing the results of the experiments, as well as further
details, can be found in Appendix B. The results are summarised in Tables 1
and 2. We also compared to the existing systems mixtus [37], paddy [32] and sp
[14, 15]. In Table 1, transformation times (TT) of Ecce and mixtus also include
time to write to file. Time for sp does not and for paddy we do not know. The∞
means abnormal termination (user interrupt, crash or heap overflow) occurred
for some examples. > 12h, on the other hand, signifies that the execution had not
terminated after 12 hours (see Appendix B). The unfolding used by sp does not
seem to be simply determinate unfolding (look e.g. at the results for depth.lam),
hence the “?” in Table 1.

5.1 Analysing the Results

One conclusion of the experiments is that conjunctive partial deduction (using
determinate unfolding and contiguous splitting) pays off while guaranteeing no
(serious) slowdown. In fact, the cases where there is a slowdown are some of those
that were designed to show the effect of deforestation (flip, match-append,
maxlength and upto.sum2). Two of these are handled well by the methods
using non-contiguous splitting. On the fully unfoldable benchmarks, S-hh-t gave
a speedup of 2.57 while Csc-hh-t achieved a speedup of 5.90, illustrating nicely
that conjunctive partial deduction diminishes the need for agressive unfolding.
Notice that Mixtus and Paddy have very agressive unfolding rules and fare well
on the fully unfoldable benchmarks. However, on the non-fully unfoldable ones,
even S-hh-t, based on determinate unfolding, is already better. The best standard



System Partition Whistle Unf Total Total
C/S S/D Contig Conj Chtree Speedup TT (min)

Cdc-hh-t Conj dyn. contig homeo homeo t-det 1.93 62.46
Csc-hh-t Conj static contig homeo homeo t-det 1.89 29.72
Csc-th-t Conj static contig termsize homeo t-det 1.92 5.95
Csc-hn-t Conj static contig homeo none t-det 1.89 35.49
Csc-tn-t Conj static contig termsize none t-det 1.76 2.67
Cdc-th-t Conj dyn. contig termsize homeo t-det 1.96 31.18
Csc-th-li Conj static contig termsize homeo l-idx 1.89 > 12h + 12.95

Cdm-hh-t Conj dyn. mcs homeo homeo t-det 2.00 > 12h + 110.49
Csm-hh-h Conj static mcs homeo homeo h-rs 0.77 > 12h + 73.55

S-hh-t Std - - homeo homeo t-det 1.56 3.00
S-hh-li Std - - homeo homeo l-idx 1.65 14.95
SE-hh-x Std-Eco - - homeo homeo mixtus 1.76 2.96

Mixtus Std - - mixtus none mixtus 1.65 ∞ + 2.71
Paddy Std - - mixtus none mixtus 1.65 ∞ + 0.31

SP Std - - pred = = det ? 1.34 3*∞ + 1.99

Table 1. Overview of all methods

System Total Weighted Fully Not Fully Average
Speedup Speedup Unfoldable Unfoldable Relative Size

Speedup Speedup (orig = 1)

Cdc-hh-t 1.93 2.44 5.90 1.66 2.39
Csc-hh-t 1.89 2.38 5.90 1.62 2.02
Csc-th-t 1.92 2.44 5.90 1.65 1.68
Csc-hn-t 1.89 2.40 5.90 1.62 1.67
Csc-tn-t 1.76 2.18 4.48 1.54 1.53
Cdc-th-t 1.96 2.49 5.90 1.69 2.27
Csc-th-li 1.89 2.38 7.07 1.61 1.79

Cdm-hh-t 2.00 2.39 5.90 1.72 3.17
Csm-hh-h 0.77 0.52 6.16 0.63 3.91

S-hh-t 1.56 1.86 2.57 1.42 1.60
S-hh-li 1.65 2.09 4.88 1.42 1.61
SE-hh-x 1.76 2.24 8.36 1.48 1.46

Mixtus 1.65 2.11 8.13 1.38 1.67
Paddy 1.65 2.00 8.12 1.38 2.49

SP 1.34 1.54 2.08 1.23 1.18

Table 2. Short summary of the results (higher speedup and lower code size is better,
the notion “weighted”is explained in Appendix B)



partial deduction method, for both runtime and (apart from SP) code size, is
SE-hh-x. Still, compared to any of the standard partial deduction methods, our
conjunctive methods (except for Csm-hh-h, Csc-tn-t, which are not meant to be
competitors anyway) have a significantly better average speedup.

Furthermore, the experiments also show that the process of performing con-
junctive partial deduction can be made efficient, especially if one uses determi-
nate unfolding combined with a termsize measure on conjunctions (Csc-th-t and
Csc-tn-t) in which case the average transformation time is comparable with that
of standard partial deduction. Of course only further experiments may show how
the transformation times grow whith the size of programs. In fact, the system
was not written with efficiency as a first concern and there is a lot of room for
improvement on this point.

Next, the experiments demonstrate that using the termsize measure instead
of homeomorphic embedding on conjunctions clearly improves the average trans-
formation time without loosing too much specialisation. But they also show that
if one uses the termsize measure, then the use of characteristic trees becomes
vital (compare Csc-th-t and Csc-tn-t). However, methods with homeomorphic
embedding on conjunctions (e.g. Csc-hn-t), do not seem to benefit from adding
homeomorphic embedding on characteristic trees as well (e.g. Csc-hh-t). This, at
first sight somewhat surprising phenomenon, can be explained by the facts that,
for the benchmarks at hand, the homeomorphic embedding on conjunctions, in
a global tree setting, is already a very generous whistle, and, in the absence of
negation (see the discussions in [24]), a growing of the conjunction will often
result in a growing of the characteristic tree as well. Even more surprisingly,
on the other hand, nevertheless adding embedding checks on characteristic trees
does not result in larger overall transformation times. Quite on the contrary: it
even reduces them!

Comparing Csc-hh-t and Cdc-hh-t, one can see that using static conjunc-
tions also pays off in terms of faster transformation time without much loss of
specialisation. If one looks more closely at the results for the two methods, then
the speedup and the transformation times are more or less the same for the two
methods except for the rather few cases where static conjunctions were needed:
groundunify.complex, liftsolve.db2, regexp.r2, regexp.r3, remove2 and
imperative.power. For those cases, the loss of speedup due to the use of static
conjunctions was small or insignificant while the improvement in transformation
time was considerable.

Comparing Csc-th-li to Csc-th-t, one sees that indexed unfolding does not
seem to have a definite effect for conjunctive partial deduction. In some case the
speedup is better and in some cases worse. Only for relative.lam is indexed
unfolding much better than determinate, but this corresponds to a case where
the program can be completely unfolded. This is of course partially due to the
fact that conjunctive partial deduction diminishes the need for aggressive un-
folding, but for some examples it would still be highly beneficial to allow more
than “just” determinate unfolding. For standard partial deduction however, in-
dexed (as well as “Mixtus”-like) unfolding leads to definite improvement over



determinate unfolding. Note that the “Mixtus”-like unfolding used by SE-hh-x
does not seem to pay off for conjunctive partial deduction at all. In a preliminary
experiment, the method Csc-th-x only produced a total speedup of 1.69, i.e. only
slightly better than mixtus or paddy and worse than SE-hh-x. In future work
we will examine how more aggressive unfolding rules can be more sucessfully
used for conjunctive partial deduction.

For some benchmarks, the best speedup is obtained by the non-safe methods
Cdm-hh-t or Csm-hh-h based on non-contiguous mcs splitting. But one can
also see that these methods may in some cases lead to a considerable slowdown
(missionaries and remove) and sometimes even to errors (imperative.power
and upto.sum1) because the point at which built-ins are evaluated has been
changed. This shows that methods based on non-contiguous splitting can lead
to better specialisation due to tupling and deforestation, but that we need some
method to control the splitting and unfolding to ensure that no slowdown, or
change in termination can occur.

Conclusion

It looks like conjunctive partial deduction is efficient and pays off compared to
standard partial deduction, but there are still many unsolved problems. Indeed,
the speedups compared to standard partial deduction are significant but less
dramatic than we initially expected. This is due to the fact that non-contiguous
conjunctive partial deduction on the one hand often leads to serious slowdowns
and is not really practical for most applications, while contiguous conjunctive
partial deduction on the other hand is in general too weak to deforest or tuple
datastructures.

Therefore it is vital, if one wants to more heavily exploit the advantages of
conjunctive partial deduction, to add non-contiguous splitting (i.e. reordering)
in a safe way which guarantees no serious slowdown. A first step towards a
solution is presented in [5], but it remains quite restrictive and considers only
ground queries. Another, more pragmatic approach might be based on making
use of some mode system to allow reordering of literals as long as the resulting
conjunction remains well-moded. This would be very similar to the way in which
the compiler for Mercury [38] reorders literals to create different modes for the
same predicate. For the semantics of Mercury any well-moded re-ordering of the
literals is allowed. Altough this approach does not ensure the preservation of
termination, it is then simply considered a programming error if one well-moded
query terminates while the other does not.
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A Benchmark Programs

The benchmark programs were carefully selected and/or designed in such a
way that they cover a wide range of different application areas, including: pat-
tern matching, databases, expert systems, meta-interpreters (non-ground vanilla,
mixed, ground), and more involved particular ones: a model-elimination theorem
prover, the missionaries-cannibals problem, a meta-interpreter for a simple im-
perative language. The benchmarks marked with a star (∗) can be fully unfolded.
Full descriptions can be found in [20].

Benchmark Description

advisor∗ A very simple expert system - benchmark by Thomas Horváth [17].
applast The append-last program.
contains.kmp A benchmark based on the “contains” Lam & Kusalik benchmark [18],

but with improved run-time queries.
depth.lam∗ A Lam & Kusalik benchmark [18].
doubleapp The double append example. Tests whether deforestation can be done.
ex depth A variation of depth.lam with a more sophisticated object program.
flip A simple deforestation example from Wadler [42].
grammar.lam A Lam & Kusalik benchmark [18].
groundunify.complex A ground unification algorithm calculating explicit substitutions [10].
groundunify.simple∗ A ground unification algorithm calculating explicit substitutions.
imperative.power A solver for a simple imperative language. Specialise a power sub-program

for a known power and base but unknown environment.
liftsolve.app The lifting meta-interpreter for the ground representation

with append as object program.
liftsolve.db1∗ The lifting meta-interpreter [14] with a simple, fully unfoldable object program.
liftsolve.db2 The lifting meta-interpreter with a partially specified object program.
liftsolve.lmkng Testing part of lifting meta-interpreter (generates an ∞ number of chtrees).
map.reduce Specialising the higher-order map/3 (using call and =..) for the

higher-order reduce/4 in turn applied to add/3.
map.rev Specialising the higher-order map for the reverse program.
match-append A very naive matcher, written using 2 appends. Same queries as match.kmp.
match.kmp Try to obtain a KMP matcher. A benchmark based on the “match”

Lam & Kusalik benchmark [18] but with improved run-time queries.
maxlength Tests whether tupling can be done.
memo-solve A variation of ex depth with a simple loop prevention mechanism

based on keeping a call stack.
missionaries A program for the missionaries and cannibals problem.
model elim.app Specialise the Poole & Goebel [31] model elimination prover

(also used by de Waal & Gallagher [11]) for the append program.
regexp.r1 A naive regular expression matcher. Regular expression: (a+b)*aab.
regexp.r2 Same program as regexp.r1 for ((a+b)(c+d)(e+f)(g+h))*.
regexp.r3 Same program as regexp.r1 for ((a+b)(a+b)(a+b)(a+b)(a+b)(a+b))*.
relative.lam∗ A Lam & Kusalik benchmark [18].
remove A sophisticated deforestation example.
remove2 An even more sophisticated deforestation example. Adapted from Turchin [41].
rev acc type A simple benchmark generating an ∞ number of different characteristic trees.
rev acc type.inffail A simple benchmark with infinite determinate failure at pe time.
rotateprune A more sophisticated deforestation example [33].
ssuply.lam∗ A Lam & Kusalik benchmark [18].
transpose.lam∗ A Lam & Kusalik benchmark [18].
upto.sum1 Calculates the sum of squares for 1 up to n. Adapted from Wadler [42].
upto.sum2 Calculates the square of integers in nodes of a tree and sums these up.

Adapted from Wadler [42].

Table 3. Description of the benchmark programs



B Benchmark Results

We benchmarked time and size of compiled code under Prolog by BIM 4.0.12.
The timings were not obtained via a loop with an overhead but via special prolog
files (generated automatically by our partial deduction system). These files call
the original and specialised programs directly (i.e. without overhead) at least
100 times for the respective run-time queries. The timings were obtained via the
time/2 predicate of Prolog by BIM 4.0.12 on a Sparc Classic under Solaris. The
compiled code size was obtained via statistics/4 and is expressed in units, where
1 unit = 4.08 bytes (in the current implementation of Prolog by BIM).

All timings were for renamed queries, except for the original and for sp (which
does not rename the top-level query — this puts sp at a slight disadvantage of
about 10% in average). Note that Paddy systematically included the original
program and the specialised part could only be called in a renamed style. We
removed the original program whenever possible and added 1 clause which allows
calling the specialised program in an unrenamed style as well (just like Mixtus
and Ecce) to avoid distortion in the code size (and speedup) figures.

Runtimes (RT) are given relative to the runtimes of the original programs.
In computing averages and totals, time and size of the original program were
taken in case of non-termination or an error occurring during transformation.
The total speedups are obtained by the formula

n∑n
i=1

speci

origi

where n = 36 is the number of benchmarks and speci and origi are the abso-
lute execution times of the specialised and original programs respectively. The
weighted total speedups are obtained by using the code size sizei of the original
program as a weight for computing the average:∑n

i=1 sizei∑n
i=1 sizei

speci

origi

TT is the transformation time in seconds.
Timing in (BIM) Prolog, especially on Sparc machines, can sometimes be

problematic. For instance, for maxlength, deforestation does not seem to pay
off. However, with reordering of clauses we go from a relative time of 1.4 (i.e.
a slowdown) to a relative time of 0.9 (i.e. a speedup)! On Sicstus Prolog 3, we
even get a 20 % speedup for this example (without reordering)! The problem is
probably due to the caching behaviour of the Sparc processor.

The following versions of the existing systems have been used: version 0.3.3
of mixtus , the version of paddy delivered with eclipse 3.5.1 and a version of
sp dating from September 25th, 1995. We briefly explain the use of ∞ in the
tables:
• ∞, sp: this means real non-termination
• ∞, mixtus: heap overflow after 20 minutes
• ∞, paddy: thorough system crash after 2 minutes



It seems that the latest version 0.3.6 of mixtus does terminate for the
missionaries example, but we did not yet have time to redo the experiments.
paddy and sp did not terminate for one other example (memo-solve and im-
perative.power respectively) when we accidentally used not instead of \+ (not
is not defined in SICStus Prolog; paddy and sp follow this convention). After
changing to \+, both systems terminated.

> 12h means that the specialisation was interrupted after 12 hours (though,
theoretically, it should have terminated by itself when granted sufficient time to
do so). bi err means that an error occured while running the program due to a
call of a built-in where the arguments were not sufficiently instantiated.

Finally, a brief remark on the match-append benchmark. The bad figures of
most systems seem to be due to a bad choice of the filtering, further work will
be needed the avoid this kind of effect. Also, none of the presented methods
was able to deforest this particular example. However, if we run for instance
Csc-hh-t twice on match-append we get the desired deforestation and a much
improved performance (relative time of 0.03 !). It should be possible to get this
effect directly by using a more refined control.

This article was processed using the LATEX macro package with LLNCS style



Cdc-hh-t Csc-hh-t Csc-th-t
(DynamicContig-hh-det) (StaticContig-hh-det) (StaticContig-th-det)

Benchmark RT Size TT RT Size TT RT Size TT

advisor 0.47 412 0.90 0.47 412 0.86 0.47 412 0.87
applast 0.36 202 0.92 0.36 202 0.80 0.36 202 0.67
contains.kmp 0.11 1039 5.61 0.11 1039 5.41 0.11 1039 5.44
depth.lam 0.15 1837 4.11 0.15 1837 4.01 0.15 1837 3.82
doubleapp 0.80 362 0.85 0.80 362 0.88 0.80 362 0.84
ex depth 0.26 508 3.30 0.29 407 1.62 0.29 407 1.60
flip 1.33 686 1.41 1.33 686 1.25 1.33 686 1.02
grammar.lam 0.16 309 1.94 0.16 309 1.84 0.16 309 1.82
groundunify.complex 0.40 6247 118.69 0.47 6277 19.47 0.47 6277 19.08
groundunify.simple 0.25 368 0.78 0.25 368 0.80 0.25 368 0.75
imperative.power 0.40 36067 906.60 0.40 3132 71.37 0.40 3293 42.85
liftsolve.app 0.05 1179 5.75 0.05 1179 5.98 0.05 1179 5.74
liftsolve.db1 0.01 1280 22.39 0.01 1280 14.23 0.01 1280 13.33
liftsolve.db2 0.16 17472 2599.03 0.21 21071 1594.90 0.17 5929 198.19
liftsolve.lmkng 1.02 1591 3.09 1.02 1591 2.66 1.02 1591 2.63
map.reduce 0.07 507 0.78 0.07 507 0.85 0.07 507 0.80
map.rev 0.11 427 0.83 0.11 427 0.82 0.11 427 0.80
match-append 1.21 406 1.29 1.21 406 1.14 1.21 406 1.17
match.kmp 0.73 639 1.16 0.73 639 1.15 0.73 639 1.15
maxlength 1.40 620 1.22 1.40 620 1.14 1.40 620 1.17
memo-solve 0.81 1095 5.88 0.81 1095 2.53 0.81 1095 4.54
missionaries 0.69 2960 7.93 0.69 2960 7.59 0.69 2960 7.13
model elim.app 0.12 451 2.65 0.12 451 2.66 0.12 451 2.58
regexp.r1 0.39 557 1.76 0.39 557 1.36 0.39 557 1.41
regexp.r2 0.41 833 3.57 0.53 692 1.52 0.53 692 1.55
regexp.r3 0.31 1197 6.85 0.44 873 1.82 0.44 873 1.87
relative.lam 0.07 1011 5.80 0.07 1011 5.39 0.07 1011 5.32
remove 0.62 1774 5.34 0.62 1774 4.89 0.62 1774 4.92
remove2 0.87 1056 3.42 0.92 831 2.08 0.92 831 2.13
rev acc type 1.00 242 1.01 1.00 242 0.91 1.00 242 0.96
rev acc type.inffail 0.63 864 3.21 0.63 864 3.01 0.63 864 3.09
rotateprune 0.71 1165 3.08 0.71 1165 2.80 0.71 1165 2.81
ssuply.lam 0.06 262 1.31 0.06 262 1.17 0.06 262 1.19
transpose.lam 0.17 2312 2.87 0.17 2312 2.45 0.17 2312 2.53
upto.sum1 1.20 848 4.00 1.20 848 3.64 0.88 734 3.03
upto.sum2 1.12 623 1.48 1.12 623 1.46 1.12 623 1.48

Average 0.52 2484 103.91 0.53 1648 49.35 0.52 1228 9.73
Total 18.66 89408 3740.8 19.10 59311 1776.5 18.73 44216 350.3
Total Speedup 1.93 1.89 1.92
Weighted Speedup 2.44 2.38 2.44

Table 4. Ecce Determinate Conjunctive Partial Deduction (A)



Csc-hn-t Csc-tn-t Cdc-th-t
(StaticContig-hn-det) (StaticContig-tn-det) (DyanmicContig-th-det)

Benchmark RT Size TT RT Size TT RT Size TT

advisor 0.47 412 0.88 0.47 412 1.20 0.47 412 0.82
applast 0.36 202 0.64 0.36 202 0.73 0.36 202 0.86
contains.kmp 0.11 1039 5.19 0.63 862 1.16 0.11 1039 5.22
depth.lam 0.15 1837 3.95 0.15 1837 4.18 0.15 1837 3.53
doubleapp 0.80 362 0.86 0.80 362 1.13 0.80 362 0.86
ex depth 0.29 407 1.60 0.29 407 1.75 0.27 508 3.08
flip 1.33 686 1.07 1.33 686 1.14 1.33 686 1.41
grammar.lam 0.16 309 1.77 0.16 309 1.98 0.16 309 1.76
groundunify.complex 0.40 4869 15.03 0.47 5095 18.67 0.40 6247 81.35
groundunify.simple 0.25 368 0.76 0.25 368 0.94 0.25 368 0.73
imperative.power 0.37 2881 49.33 0.37 2881 32.88 0.40 37501 1039.48
liftsolve.app 0.05 1179 5.50 0.05 1179 5.65 0.05 1179 5.43
liftsolve.db1 0.01 1280 13.60 0.01 1280 13.56 0.01 1280 20.39
liftsolve.db2 0.17 10146 1974.50 0.33 3173 19.84 0.17 11152 628.47
liftsolve.lmkng 1.09 1416 1.82 1.07 1416 2.09 1.02 1591 2.89
map.reduce 0.07 507 0.83 0.07 507 1.09 0.07 507 0.77
map.rev 0.11 427 0.79 0.11 427 1.04 0.11 427 0.80
match-append 1.21 406 0.91 1.21 406 1.06 1.21 406 1.18
match.kmp 0.73 639 1.11 0.73 613 1.69 0.73 639 1.22
maxlength 1.40 620 1.20 1.40 620 1.31 1.40 620 1.13
memo-solve 0.81 1095 4.28 1.38 1709 6.73 0.81 1095 10.32
missionaries 0.69 2960 7.06 0.71 3083 6.03 0.69 2960 7.86
model elim.app 0.12 451 2.63 0.12 451 2.75 0.12 451 2.60
regexp.r1 0.39 557 1.38 0.39 557 1.84 0.39 557 1.76
regexp.r2 0.53 692 1.55 0.53 692 1.66 0.43 833 3.55
regexp.r3 0.44 873 1.81 0.44 873 2.00 0.30 1197 6.01
relative.lam 0.07 1011 5.34 0.45 1252 6.78 0.07 1011 5.74
remove 0.65 1191 2.42 0.65 1191 2.19 0.62 1774 5.39
remove2 0.92 831 2.04 0.92 831 1.89 0.87 1056 3.45
rev acc type 1.00 242 0.67 1.00 242 0.84 1.00 242 1.04
rev acc type.inffail 0.63 598 0.87 0.63 598 0.98 0.63 864 3.24
rotateprune 0.71 1165 2.79 0.71 1165 2.55 0.71 1165 3.10
ssuply.lam 0.06 262 1.15 0.06 262 1.32 0.06 262 1.32
transpose.lam 0.17 2312 2.46 0.17 2312 2.62 0.17 2312 2.51
upto.sum1 1.20 848 3.77 0.88 734 2.83 0.88 734 3.40
upto.sum2 1.12 623 1.45 1.12 623 1.39 1.12 623 1.49

Average 0.53 1270 58.97 0.57 1100 4.37 0.51 2345 51.78
Total 19.04 45703 2123.01 20.40 39617 157.49 18.35 84408 1864.16
Total Speedup 1.89 1.76 1.96
Weighted Speedup 2.40 2.18 2.49

Table 5. Ecce Determinate Conjunctive Partial Deduction (B)



Csc-th-li Cdm-hh-t Csm-hh-h
(StaticContig-th-lidx) (DynamicMcs-hh-det) (StaticMcs-hh-hrs)

(Non-det. unfolding) (Cautious Deforestation) (Aggressive Deforestation)

Benchmark RT Size TT RT Size TT RT Size TT

advisor 0.32 809 0.85 0.47 412 0.80 0.46 647 1.00
applast 0.34 145 0.67 0.36 202 0.97 0.36 145 0.85
contains.kmp 0.10 1227 15.73 0.11 1039 5.16 0.10 814 5.77
depth.lam 0.15 1848 12.65 0.15 1837 3.99 0.15 1848 5.91
doubleapp 0.82 277 0.98 0.80 362 0.84 0.82 277 0.83
ex depth 0.27 659 6.31 0.26 508 3.15 0.34 1240 6.18
flip 0.95 493 1.26 0.75 441 1.11 0.69 267 0.81
grammar.lam 0.14 218 2.15 0.16 309 1.74 0.16 309 2.21
groundunify.complex 0.47 19640 117.12 0.40 6247 137.68 0.47 8113 77.21
groundunify.simple 0.25 368 0.76 0.25 368 0.75 0.25 399 1.27
imperative.power 0.69 3605 155.55 0.37 103855 4548.51 bi err 85460 1617.93
liftsolve.app 0.05 1179 6.04 0.05 1179 5.44 0.06 1210 6.26
liftsolve.db1 0.02 1326 19.94 0.01 1280 20.85 0.02 1311 18.10
liftsolve.db2 - - > 12h 0.17 17206 1813.49 - - > 12h
liftsolve.lmkng 1.00 1591 4.22 1.02 1591 2.85 1.24 1951 8.89
map.reduce 0.08 348 0.78 0.07 507 0.85 0.08 348 0.84
map.rev 0.13 285 0.79 0.11 427 0.88 0.13 285 0.75
match-append 1.36 362 1.02 1.21 406 1.20 1.36 362 0.98
match.kmp 0.65 543 1.65 0.73 639 1.18 0.65 543 0.94
maxlength 1.30 620 1.22 1.40 620 1.18 1.10 314 1.19
memo-solve 0.95 1015 3.69 1.12 1294 22.69 1.50 3777 34.84
missionaries 0.54 15652 348.68 - - > 12h 21.17 43268 2537.39
model elim.app 0.13 444 3.11 0.12 451 2.77 0.12 451 3.20
regexp.r1 0.20 457 1.04 0.39 557 1.91 0.20 457 1.21
regexp.r2 0.41 831 4.98 0.41 833 3.65 0.57 1954 6.43
regexp.r3 0.31 1041 14.70 0.31 1197 6.84 1.89 9124 31.07
relative.lam 0.00 261 6.19 0.07 1011 5.84 0.01 954 7.31
remove 0.87 1369 7.31 0.62 1774 5.51 6.40 4116 7.69
remove2 0.93 862 3.51 0.87 1056 3.65 0.94 862 2.34
rev acc type 1.00 242 1.21 1.00 242 1.08 1.00 242 1.73
rev acc type.inffail 0.66 700 2.24 0.63 864 3.26 0.61 786 1.94
rotateprune 0.80 1470 4.62 0.71 1165 4.01 0.17 691 2.33
ssuply.lam 0.06 262 1.41 0.06 262 1.36 0.06 262 1.69
transpose.lam 0.18 2312 2.99 0.17 2312 2.77 0.19 2436 4.34
upto.sum1 0.88 734 2.81 bi err 448 3.43 bi err 479 3.79
upto.sum2 1.00 654 1.48 0.65 394 1.50 0.58 242 1.11

Average 0.53 1824 21.70 0.50 4380 189.23 1.30 5027 125.90
Total 19.03 63849 759.66 18.01 153295 6622.9 46.84 175944 4406.33
Total Speedup 1.89 2.00 0.77
Weighted Speedup 2.38 2.39 0.52

Table 6. Ecce Non-Determinate Conjunctive Partial Deduction



S-hh-t S-hh-li SE-hh-x
(StdPD-hh-det) (StdPD-hh-lidx) (StdEcoPD-hh-mixtus)

Benchmark RT Size TT RT Size TT RT Size TT

advisor 0.47 412 0.87 0.31 809 0.85 0.31 809 0.78
applast 1.05 343 0.71 1.48 314 0.75 1.48 314 0.70
contains.kmp 0.85 1290 2.69 0.55 1294 5.97 0.09 685 4.48
depth.lam 0.94 1955 1.47 0.62 1853 3.76 0.02 2085 1.91
doubleapp 0.95 277 0.65 0.95 216 0.58 0.95 216 0.53
ex depth 0.76 1614 2.54 0.44 1649 4.26 0.32 350 1.58
flip 1.05 476 0.77 1.03 313 0.65 1.03 313 0.53
grammar.lam 0.16 309 1.91 0.14 218 2.43 0.14 218 1.90
groundunify.complex 0.40 5753 13.47 0.47 8356 50.63 0.53 4800 0.75
groundunify.simple 0.25 368 0.78 0.25 368 0.77 0.25 368 22.03
imperative.power 0.42 2435 75.10 0.58 2254 62.97 0.54 1578 27.42
liftsolve.app 0.05 1179 6.05 0.06 1179 6.40 0.06 1179 6.57
liftsolve.db1 0.01 1280 13.27 0.02 1326 20.82 0.02 1326 7.33
liftsolve.db2 0.18 3574 16.86 0.76 3751 242.86 0.61 4786 34.25
liftsolve.lmkng 1.07 1730 1.80 1.07 1730 2.12 1.02 2385 2.75
map.reduce 0.07 507 0.91 0.08 348 0.82 0.08 348 0.86
map.rev 0.11 427 0.83 0.13 285 0.88 0.11 427 0.89
match-append 1.21 406 0.64 1.36 362 0.75 1.36 362 0.68
match.kmp 0.73 639 1.16 0.65 543 1.77 0.70 669 1.23
maxlength 1.20 715 1.07 1.10 715 1.16 1.10 421 0.95
memo-solve 1.17 2318 4.74 1.20 2238 4.96 1.09 2308 4.31
missionaries 0.81 2294 5.11 0.66 13168 430.99 0.72 2226 9.21
model elim.app 0.63 2100 2.82 0.13 444 3.18 0.13 532 3.56
regexp.r1 0.50 594 1.28 0.20 457 1.03 0.29 435 0.98
regexp.r2 0.57 629 1.28 0.61 737 4.67 0.51 1159 4.87
regexp.r3 0.50 828 1.74 0.38 961 14.00 0.42 1684 14.92
relative.lam 0.82 1074 1.89 0.00 261 5.88 0.00 261 4.06
remove 0.71 955 1.46 0.68 659 1.02 0.68 659 0.90
remove2 0.74 508 1.15 0.75 453 1.30 0.80 440 1.00
rev acc type 1.00 242 0.70 1.00 242 0.92 1.00 242 0.83
rev acc type.inffail 0.63 864 1.48 0.80 850 1.25 0.60 527 0.80
rotateprune 0.71 1165 1.77 1.02 779 1.10 1.02 779 0.88
ssuply.lam 0.06 262 1.15 0.06 262 1.51 0.06 262 1.18
transpose.lam 0.17 2312 2.49 0.17 2312 2.99 0.17 2312 1.98
upto.sum1 1.06 581 2.18 1.07 581 1.80 1.20 664 3.11
upto.sum2 1.10 623 1.50 1.05 485 1.38 1.05 485 0.94

Average 0.64 1196 4.90 0.61 1466 24.70 0.57 1073 4.77
Total 23.12 43038 176.29 21.86 52772 889.18 20.47 38614 171.65
Total Speedup 1.56 1.65 1.76
Weighted Speedup 1.86 2.09 2.24

Table 7. Ecce Standard Partial Deduction Methods



Mixtus paddy sp

Benchmark RT Size TT RT Size TT RT Size TT

advisor 0.31 809 0.85 0.31 809 0.10 0.40 463 0.29
applast 1.27 309 0.28 1.30 309 0.08 0.84 255 0.15
contains.kmp 0.16 533 2.48 0.11 651 0.55 0.75 985 1.13
depth.lam 0.04 1881 4.15 0.02 2085 0.32 0.53 928 0.99
doubleapp 1.00 295 0.30 0.98 191 0.08 1.02 160 0.11
ex depth 0.40 643 2.40 0.29 1872 0.53 0.27 786 1.35
flip 1.03 495 0.37 1.02 290 0.12 1.02 259 0.13
grammar.lam 0.17 841 2.73 0.43 636 0.22 0.15 280 0.71
groundunify.complex 0.67 5227 11.68 0.60 4420 1.53 0.73 4050 2.46
groundunify.simple 0.25 368 0.45 0.25 368 0.13 0.61 407 0.20
imperative.power 0.56 2842 5.35 0.58 3161 2.18 1.16 1706 6.97
liftsolve.app 0.06 1179 4.78 0.06 1454 0.80 0.23 1577 2.46
liftsolve.db1 0.01 1280 5.36 0.02 1280 1.20 0.82 4022 3.95
liftsolve.db2 0.31 8149 58.19 0.32 4543 1.60 0.82 3586 3.71
liftsolve.lmkng 1.16 2169 4.89 0.98 1967 0.32 1.16 1106 0.37
map.reduce 0.68 897 0.17 0.08 498 0.20 0.09 437 0.23
map.rev 0.11 897 0.16 0.26 2026 0.37 0.13 351 0.20
match-append 0.47 389 0.27 0.98 422 0.12 0.99 265 0.18
match.kmp 1.55 467 4.89 0.69 675 0.28 1.08 527 0.49
maxlength 1.20 594 0.72 0.90 398 0.17 0.90 367 0.31
memo-solve 0.60 1493 12.72 1.48 3716 1.70 1.15 1688 3.65
missionaries - - ∞ - - ∞ 0.73 16864 82.59
model elim.app 0.13 624 5.73 0.10 931 0.90 - - ∞
regexp.r1 0.20 457 0.73 0.29 417 0.13 0.54 466 0.37
regexp.r2 0.82 1916 2.85 0.67 3605 0.63 1.08 1233 0.67
regexp.r3 0.60 2393 4.49 1.26 10399 1.35 1.03 1646 1.20
relative.lam 0.01 517 7.76 0.00 517 0.42 0.69 917 0.35
remove 0.81 715 0.49 0.71 437 0.12 0.75 561 0.29
remove2 1.01 715 0.84 0.84 756 0.12 0.82 386 0.25
rev acc type 1.00 497 0.99 0.99 974 0.33 - - ∞
rev acc type.inffail 0.97 276 0.77 0.94 480 0.28 - - ∞
rotateprune 1.02 756 0.49 1.01 571 0.12 1.00 725 0.31
ssuply.lam 0.06 262 0.93 0.08 262 0.08 0.06 231 0.52
transpose.lam 0.18 1302 3.89 0.18 1302 0.43 0.26 1267 0.52
upto.sum1 0.96 556 1.80 1.08 734 0.30 1.05 467 0.48
upto.sum2 1.06 462 0.44 1.06 462 0.13 1.01 431 0.21

Average 0.61 1234 4.44 0.61 1532 0.51 0.75 1497 3.57
Total 21.83 43205 155.37 21.87 53618 17.95 26.86 49399 117.80
Total Speedup 1.65 1.65 1.34
Weighted Speedup 2.11 2.00 1.54

Table 8. Existing systems


