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Abstract. The so called “cogen approach” to program specialisation,
writing a compiler generator instead of a specialiser, has been used with
considerable success in partial evaluation of both functional and imper-
ative languages.

This paper demonstrates that this approach is also applicable to partial
evaluation of logic programming languages, also called partial deduction.
Self-application has not been as much in focus in partial deduction as
in partial evaluation of functional and imperative languages, and the
attempts to self-apply partial deduction systems have, of yet, not been
altogether that successful. So, especially for partial deduction, the cogen
approach could prove to have a considerable importance when it comes
to practical applications.

It is demonstrated that using the cogen approach one gets very efficient
compiler generators which generate very efficient generating extensions
which in turn yield (for some examples at least) very good and non-trivial
specialisation.

1 Introduction

Partial evaluation has over the past decade received considerable attention both
in functional (e.g. [23]), imperative (e.g. [1]) and logic programming (e.g. [13, 26,
42]). In the context of pure logic programs, partial evaluation is often referred to
as partial deduction, the term partial evaluation being reserved for the treatment
of impure logic programs. A convention we will also adhere to in this paper.

Guided by the Futamura projections (see e.g. [23]) a lot of effort, specially in
the functional partial evaluation community, has been put into making systems
self-applicable. A partial evaluation or deduction system is called self-applicable
if it is able to effectively ~! specialise itself. In that case one may, according to the
second Futamura projection, obtain compilers from interpreters and, according
to the third Futamura projection, a compiler generator (cogen for short).

* Supported by HCM Network “Logic Program Synthesis and Transformation”.
** Supported by the Belgian GOA “Non-Standard Applications of Abstract Inter-
pretation”
~! This implies some efficiency considerations, e.g. the system has to terminate within
reasonable time constrains, using an appropriate amount of memory.



However writing an effectively self-applicable specialiser is a non-trivial task
— the more features one uses in writing the specialiser the more complex the
specialisation process becomes, because the specialiser then has to handle these
features as well. This is why so far no partial evaluator for full Prolog (like MIX-
TUS [45], or PADDY [43]) has been made effectively self-applicable. On the other
hand a partial deducer which specialises only purely declarative logic programs
(like SAGE in [18] or the system in [7]) has itself to be written purely declaratively
leading to slow systems and impractical compilers and compiler generators.

So far the only practical compilers and compiler generators have been ob-
tained by striking a delicate balance between the expressivity of the underlying
language and the ease with which it can be specialised. Two approaches for logic
programming languages along this line are [11] and [39]. However the specialisa-
tion in [11] is incorrect with respect to some of the extra-logical built-ins, leading
to incorrect compilers and compiler generators when attempting self-application
(a problem mentioned in [7], see also [39, 28]). LOGIMIX [39] does not share
this problem, but gives only modest speedups (when compared to results for
functional programming languages, see [39]) when self-applied.

The actual creation of the cogen according to the third Futamura projec-
tion is not of much interest to users since cogen can be generated once and for
all once a specialiser is given. Therefore, from a users point of view, whether
a cogen is produced by self-application or not is of little importance, what is
important is that it exists and that it has an improved performance over di-
rect self-application. This is the background behind the approach to program
specialisation called the cogen approach: instead of trying to write a partial eval-
uation system which is neither too inefficient nor too difficult to self-apply one
simply writes a compiler generator directly. This is not as difficult as one might
imagine at first sight: basically cogen turns out to be just a simple extension
of a “binding-time analysis” for logic programs (something first discovered for
functional languages in [21]).

In this paper we will describe the first cogen written in this way for a logic
programming language: a small subset of Prolog.

The most noticeable advantages of the cogen approach is that the cogen
and the compilers it generates can use all features of the implementation lan-
guage. Therefore, no restrictions due to self-application have to be imposed (the
compiler and the compiler generator don’t have to be self-applied)! As we will
see, this leads to extremely efficient compilers and compiler generators. So, in
this case, having extra-logical features at our disposal makes the generation of
compilers easier and less burdensome.

Some general advantages of the cogen approach are: the cogen manipulates
only syntax trees and there is no need to implement a self-interpreter (meta-
interpreter for the underlying language); values in the compilers are represented
directly (there is no encoding overhead); and it becomes easier to demonstrate
correctness for non-trivial languages (due to the simplicity of the transforma-
tion). In addition, the compilers are stand-alone programs that can be distributed
without the cogen.



A further advantage of the cogen approach for logic languages is that the
compilers and compiler generators can use the non-ground representation (and
even a compiled version of it). This is in contrast to self-applicable partial de-
ducers which must use the ground representation in order to be declarative
(see [20, 34, 18]). In fact the non-ground representation executes several orders
of magnitude faster than the ground representation (even after specialising, see
[8]) and, as shown in [34], can be impossible to specialise satisfactorily by partial
deduction alone. (Note that even [39] uses a “mixed” representation approach
[31, 20]).

Although the Futamura projections focus on how to generate a compiler
from an interpreter, the projections of course also apply when we replace the
interpreter by some other program. In that case the program produced by the
second Futamura projection is not called a compiler, but a generating exten-
ston. The program produced by the third Futamura projection could rightly be
called a generating extension generator or gengen, but we will stick to the more
conventional cogen.

The main contributions of this work are:

e the first description of a handwritten compiler generator (cogen) for a logic
programming language which shows that such a program has quite an elegant
and natural structure.

e a formal specification of the concept of binding-time analysis (BT A) in a
(pure) logic programming setting and a description of how to obtain a generic
algorithm for partial deduction from such a BT A (by describing how to
obtain an unfolding and a generalisation strategy from the result of a BT A).

e benchmark results showing the efficiency of the cogen, the generating exten-
sions and the specialised programs.

The paper is organised as follows: In Sect. 2 we formalise the concept of
off-line partial deduction and the associated binding-time analysis. In Sect. 3 we
present and explain our cogen approach in a pure logic programming setting. In
Sect. 4 we present some examples and results underlining the efficiency of the
cogen. We conclude with some discussions in Sect. 5.

2 Off-Line Partial Deduction

Throughout this paper, we suppose familiarity with basic notions in logic pro-
gramming ([35]). Notational conventions are standard and self-evident. In partic-
ular, in programs, we denote variables through strings starting with (or usually
just consisting of) an upper-case symbol, while the notations of constants, func-
tions and predicates begin with a lower-case character.

We will also use the following not so common notations. Given a function
f : A — B we often use the natural extension of f, f* : 24 — 2B, defined
by f*(S) = {f(s) | s € S}. Similarly, given a function f : A — 28 we also
define the function fy : 24 +— 2B by fu(S) = Usesf(s). Both f* and f, are



homomorphisms® from 24 to 2. Given a function f : Ax B +— C and an element
a € A we define the curried version of f, f, : B — C, by f.(X) = f(a,X).
Finally, we will denote by Ajf — A{en; Aelse the Prolog conditional.

2.1 A Generic Partial Deduction Method

Given a logic program P and a goal G, partial deduction produces a new program
P’ which is P “specialised” to the goal G; the aim being that the specialised
program P’ is more efficient than the original program P for all goals which are
instances of G.

The underlying technique of partial deduction is to construct “incomplete”
SLDNF-trees and then extract the specialised program P’ from these incomplete
search trees (by taking resultants, see below). An incomplete SLDNF-tree is a
SLDNF-tree which, in addition to success and failure leaves, may also contain
leaves where no literal has been selected for a further derivation step. Leaves of
the latter kind will be called dangling ([37]). In the context of partial deduc-
tion these incomplete SLDNF-trees are obtained by applying an unfolding rule,
defined as follows.

Definition 1. (Unfolding rule) An unfolding rule U is a function which, given a
program P and a goal G, returns a finite, (possibly) incomplete and non-trivial*
SLDNF-tree for PU{G}.

Given an incomplete SLDNF-tree, partial deduction will generate a set of
clauses by taking resultants. Resultants are defined as follows.

Definition 2. (resultants(t), leaves(r)) Let P be a normal program and A
an atom. Let T be a finite, incomplete SLDNF-tree for P U {«— A} in which
A has been selected in the root node. Let «— Gy,...,«<— G, be the goals in the
(non-root) leaves of the non-failing branches of . Let 01, . .., 0, be the computed
answers of the derivations from «— A to «— G1,...,— G, respectively. Then
the set of resultants, resultants(r), is defined to be the set of clauses {Af «—
Gi,...,Al, — G,}. We also define the set of leaves, leaves(T), to be the atoms
occurring in the goals Gy, ...,G,,.

Partial deduction, as defined for instance in [36] or [4], uses the resultants
for a given set of atoms A to construct the specialised program (and for each
atom in A a different specialised predicate definition will be generated). Under
the conditions stated in [36], namely closedness and independence, correctness
of the specialised program is guaranteed.

In a lot of practical approaches (e.g. [12, 13, 15, 31, 28, 29]) independence
is ensured by using a renaming transformation which maps dependent atoms

 The function h : 2* to 2P is a homomorphism iff A(f)) = @ and k(S U S’) = h(S) U
h(S").

1 A trivial SLDNF-tree is one whose root is a dangling leaf. This restriction is necessary
to obtain correct partial deductions. See also Definition 2 below.



to new predicate symbols. Adapted correctness results can be found in [3] (see
also [32]). Renaming is often combined with argument filtering to improve the
efficiency of the specialised program (see e.g. [14]).

Closedness can be ensured by using the following outline of a partial deduc-
tion algorithm (similar to the ones used in e.g. [12, 13, 29, 30]).

Algorithm 1 (Partial deduction)

1. Let Sy be the set of atoms to be specialised and let i = 0.

2. Apply the unfolding rule U to each element of S;: It = US(S;).

3. Sit1 = abstract(S; Uleaves(I7))

4. If Siy1 # S; (modulo variable renaming) increment i and restart at step 2,
otherwise generate the specialised program by applying a renaming (and fil-
tering) transformation to resultantsy(I7;).

The abstraction operation is usually used to ensure termination and can be
formally defined as follows ([12, 13]).

Definition 3. An operation abstract(S) is any operation satisfying the follow-
ing conditions. Let S be a finite set of atoms; then abstract(S) is a finite set of
atoms S’ with the same predicates as those in S, such that every atom in S is
an instance of an atom in S’.

If the above algorithm terminates then the closedness condition is satisfied. Fi-
nally note that in the above algorithm the atoms in leavesy(I3) are all added
and abstracted simultaneously, i.e. the algorithm progresses in a breadth-first
manner. In general this will yield a different result from a depth-first progres-
sion (i.e. adding one atom at a time). If however abstract is a homomorphism?
then both progressions will yield exactly the same set of atoms and thus the
same specialisation.

2.2 Off-Line Partial Deduction and Binding-Time Analysis

In Algorithm 1 one can distinguish between two different levels of control. The
unfolding rule U controls the construction of the incomplete SLDNF-trees. This
is called the local control (we will use the terminology of [13, 38]). The abstraction
operation controls the construction of the set of atoms for which local SLDNF-
trees are built. We will refer to this aspect as the global control.

The control problems have been tackled from two different angles: the so-
called off-line versus on-line approaches. The on-line approach performs all the
control decisions during the actual specialisation phase (in our case the one
depicted in Algorithm 1). The off-line approach on the other hand performs an
analysis phase prior to the actual specialisation phase, based on some rough
descriptions of what kinds of specialisations will have to be performed. The
analysis phase provides annotations which then guide the control aspect of the
proper specialisation phase, often to the point of making it completely trivial.

2 Le. abstract(Q) = § and abstract(S U S’) = abstract(S) U abstract(S’).



Partial evaluation of functional programs ([10, 23]) has mainly stressed off-
line approaches, while supercompilation of functional ([47, 46]) and partial de-
duction of logic programs ([15, 45, 6, 9, 37, 38, 29, 33]) have concentrated on
on-line control. (Some exceptions are [39, 31, 28].)

The main reason for using the off-line approach is to achieve effective self-
application ([24]). But the off-line approach is in general also more efficient, since
many decisions concerning control are made before and not during specialisation.
For the cogen approach to be efficient it is vital to use the off-line approach, since
then the (local) control can be hard-wired into the generating extension.

Most off-line approaches perform a so called binding-time analysis (BTA)
prior to the specialisation phase. This phase classifies arguments to predicate
calls as either static or dynamic. The value of a static argument is definitely
known (bound) at specialisation time whereas a dynamic argument is not defi-
nitely known (it might only be known at the actual run-time of the program).
In the context of partial deduction, a static argument can be seen as being a
term which is guaranteed not to be more instantiated at run-time (it can never
be less instantiated at run-time). For example if we specialise a program for all
instances of p(a, X) then the first argument to p is static while the second one is
dynamic — actual run-time instances might be p(a,b),p(a, Z), p(a, X) but not
p(b, ¢). We will also say that an atom is static if all its arguments are static and
likewise that a goal is static if it consist only of static (literals) atoms.

We will now formalise the concept of a binding-time analysis. For that we first
define the concept of divisions which classify arguments into static and dynamic
ones.

Definition 4. (Division) A division of arity n is a couple (S, D) of sets of
integers such that SUD = {1,...,n} and SN D = .

We also define the function divide which, given a division and a tuple of
arguments, divides the arguments into the static and the dynamic ones:
divide(s,py((t1,- .. tn)) = ((tiy,-- . ti,), (Ljys .-, t5)) where (iy,... i) (resp.
(J1,---,Jk)) are the elements of S (resp. D) in ascending order.

As a notational convenience we will use (d1,...,0,) to denote a division
(S, D) of arity n, where 6; = s if ¢ € S and 6; = d if i« € D. For example
(s,d) denotes the division ({1}, {2}) of arity 2. From now on we will also use the
notation Pred(P) to denote the predicate symbols occurring inside a program
P. We now define a division for a program P which divides the arguments of
every predicate p € Pred(P) into the static and the dynamic ones:

Definition 5. (Division for a program) A division A for a program P is a map-
ping from Pred(P) to divisions having the arity of the corresponding predicates.
In accordance with the motations outlined at the beginning of this section, we
will often write A, for A(p). We also define the function A5 by AS(T) = ¥
iff dividea,(T) = (y,%). Similarly we define the function Ag by Ag(f) =7z iff
divide,(T) = (9, %).



Ezample 1. ({1},{2}) is a division of arity 2 and ({2,3},{1}) a division of ar-
ity 3 and we have for instance divide {2 3} 1y)((a,b,c)) = ((b,c), (a)). Let P be
a program containing the predicate symbols p/2 and ¢/3. Then A = {p/2 —
({1},{2}),q/3 — ({2,3},{1})} is a division for P (using the notational conve-
nience introduced above we can also write A = {p/2 — (s,d),q/3 — (d,s,s)}).
We then have for example A$((a,b,c)) = (b, ¢) and Ad((a,b,c)) = (a).

Divisions can be ordered. A division is more general than another one if it
classifies more arguments as dynamic. This is captured by the following defini-
tion.

Definition 6. (Partial order of divisions) Divisions of the same arity are par-
tially ordered: (S,D) C (S',D") iff D C D'.
We also define the notation L, = ({1,...,n},0) and T,, = (0,{1,...,n}).
This order can be extended to divisions for some program P. We say that A’
is more general than A, denoted by A T A', iff for all predicates p € Pred(P):
A, C AL

As already mentioned, a binding-time analysis will, given a program P (and
some description of how P will be specialised), perform a pre-processing analysis
and return a division for P describing when values will be bound (i.e. known). It
will also return an annotation which will then guide the local unfolding process
of the actual partial deduction. From a theoretical viewpoint an annotation
restricts the possible unfolding rules that can be used (e.g. the annotation could
state that predicate calls to p should never be unfolded whereas calls to ¢ should
always be unfolded). We therefore define annotations as follows:

Definition 7. (Annotation) An annotation A is a set of unfolding rules (i.e. it
is a subset of the set of all possible unfolding rules).

In order to be really off-line, the unfolding rules in the annotation should
not take the unfolding history into account and should not depend “too much”
on the actual values of the static (nor dynamic) arguments. In the following
subsection we will come back on what annotations can look like from a practical
viewpoint. We are now in a position to formally define a binding-time analysis
in the context of (pure) logic programs:

Definition 8. (BT A,BTC) A binding-time analysis (BT A) yields, given a pro-
gram P and an initial division Ay for P, a couple (A, A) consisting of an anno-
tation A and a division A for P more general than Ag. We will call the result
of a binding-time analysis a binding-time classification (BTC).

The initial division 4y gives information about how the program will be
specialised. In fact Ay specifies what the initial atom(s) to be specialised (i.e.
the ones in Sy of Algorithm 1) will look like (if p’ does not occur in Sy we simply
set Ag(p’) = L,). The role of A is to give information about what the atoms
in Algorithm 1 will look like at the global level. In that light, not all BT'C as
specified above are correct and we now develop a safety criterion for a BT C wrt



a given program. Basically a BT'C' is safe iff every atom that can potentially
appear in one of the sets S; of Algorithm 1 (given the restrictions imposed by
the annotation of the BT A) corresponds to the patterns described by A. Note
that if a predicate p is always unfolded by the unfolding rule used in Algorithm 1
then it is irrelevant what the value of A, is.

For simplicity, we will from now on impose that a static argument must be
ground.® In particular this guarantees our earlier requirement that the argument
will not be more instantiated at run-time.

Definition 9. (safe wrt A) Let P be a program and let A be a division for P
and let p(t) be an atom with p € Pred(P). Then p(t) is safe wrt A iff As(t) is
a tuple of ground terms. A set of atoms S is safe wrt A iff every atom in S is
safe wrt A. Also a goal G is safe wrt A iff all the atoms occurring in G are safe
wrt A.

For example p(a, X) is safe wrt A = {p/2 — (s,d)} while p(X,a) is not.

Definition 10. (safe BTC, safe BT A) Let § = (A, A) be a BTC for a program
P and let U € A be an unfolding rule. Then 3 is a safe BTC for P and U iff for
every goal G, which is safe wrt A, U returns an incomplete SLDNF-tree whose
leaf goals are safe wrt A. Also B is a safe BT'C for P iff it is a safe BT'C for
P and for every unfolding rule U € A. A BT A is safe if for any program P it
produces a safe BTC for P.

So, the above definition requires atoms to be safe in the leaves of incomplete
SLDNF-trees, i.e. at the point where the atoms get abstracted and then lifted
to the global level.* So, in order for the above condition to ensure safety at all
stages of Algorithm 1, the particular abstraction operation should not abstract
atoms which are safe wrt A into atoms which are no longer safe wrt A. This
motivates the following definition:

Definition 11. An abstraction operation abstract is safe wrt a division A iff
for every finite set of atoms S, which is safe wrt A, abstract(S) is also safe wrt

A.

2.3 A Particular Off-Line Partial Deduction Method

In this subsection we define a specific off-line partial deduction method which
will serve as the basis for the cogen developed in the remainder of this paper. For
simplicity, we will from now on restrict ourselves to definite programs. Negation
will in practice be treated in the cogen either as a built-in or via the if-then-else
construct (see Appendix A).

Let us first define a particular unfolding rule.

3 This simplifies stating the safety criterion of a BT'A because one does not have to
reason about “freeness”. In a similar vein this also makes the BT A itself easier.

4 Also, when leaving the pure logic programming context and allowing extra-logical
built-ins (like =../2) a local safety condition will also be required.



Definition 12. ({U;) Let L C Pred(P). We will call L the set of reducible
predicates. Also an atom will be called reducible iff its predicate symbol is in L.
We then define the unfolding rule Uy to be the unfolding rule which selects the
leftmost reducible atom in each goal (and of course, for atomic goals «— A in the
root, it always selects A).

We will use such unfolding rules in Algorithm 1 and we will restrict ourselves
(to avoid distracting from the essential points) to safe BT A’s which return re-
sults of the form 8 = ({Ur}, A). In the actual implementation of the cogen
(Appendix B) we use a slightly more liberal approach in the sense that specific
program points (calls to predicates) are annotated as either reducible or non-
reducible. Also note that nothing prevents a BT A from having a pre-processing
phase which splits the predicates according to their different uses.

Ezxample 2. Let P be the following program

(1) p(X) < q(X,Y),q(Y, Z)
(2) q(a,b) «
(3) q(b,a) «—

Let A = {p— (s),q — (s,d)}. Then 3 = ({Uq},4) is a safe BTC for P. For
example the goal « p(a) is safe wrt A and unfolding it according to Uy, will
lead (via the intermediate goals < ¢(a,Y),q(Y, Z) and < (b, Z)) to the empty
goal O which is safe wrt A. Note that every selected atom is safe wrt A.%> Also
note that 3 = ({Ug }, Q) is a not a safe BT'C for P. For instance, for the goal
« p(a) the unfolding rule Uy, just performs one unfolding step and thus stops
at the goal « ¢(a,Y), q(Y, Z) which contains the unsafe atom ¢(Y, Z).

The only thing that is missing in order to arrive at a concrete instance of
Algorithm 1 is a (safe) abstraction operation, which we define in the following.

Definition 13. (gena, abstracta) Let P be a program and A be a division
for P. Let A = p(t) with p € Pred(P). We then denote by gena(A) an atom
obtained from A by replacing all dynamic arguments of A (according to A,) by
distinct variables.

We also define the abstraction operation abstracta to be the natural extension
of the function gena: abstracta = gen’,.

For example, if A = {p/2 — (s,d),q/3 — (d,s,s)} then gena(p(a,b)) =
p(av X) and gena (Q(CL, b, C)) = Q(Xa b, C)' Then abstractA({p(a, b>’ Q(CL, b, C)}) =
{p(a, X),q(X,b,c)}. Note that, trivially, abstract 5 is safe wrt A.

Note that abstract o is a homomorphism and hence, as already noted, we can
use a depth-first progression in Algorithm 1 and still get the same specialisation.
This is something which we will actually do in the practical implementation.

In the remainder of this paper we will use the following off-line partial de-
duction method:

® As already mentioned, this is not required in definition 10 but (among others) such
a condition will have to be incorporated for the selection of extra-logical built-in’s.



Algorithm 2 (off-line partial deduction)

1. Perform a BT A (possibly by hand) returning results of the form ({U.}, A)

2. Perform Algorithm 1 with Uy as unfolding rule and abstracta as abstraction
operation. The initial set of atoms Sy should only contain atoms which are
safe wrt A.

Proposition 1. Let ({Ug}, A) be a safe BT'C for a program P. Let Sy be a
set of atoms safe wrt A. If Algorithm 2 terminates then the final set S; only
contains atoms safe wrt A.

We will explain how this particular partial deduction method works by look-
ing at an example.

Ezample 3. We use a small generic parser for a set of languages which are defined
by grammars of the form S ::= aS|X (where X is a placeholder for a terminal
symbol). The example is adapted from [26] and the parser P is depicted in Fig. 1.

Given the initial division Ay = {nont/3 — (s,d,d), t/3 — L3} a BT A might
return the following result 8 = ({Uyg/3y}, 4) where A = {nont/3 — (s,d,d),
t/3 +— (s,d,d)}. It can be seen that (3 is a safe BT'C for P.

Let us now perform the proper partial deduction for Sy = {nont(c,R,T)}.
Note that the atom nont(c, R, T') is safe wrt A (and hence also wrt A). Unfold-
ing the atom in Sy yields the SLD-tree in Fig. 2. We see that the atoms in the
leaves are {nont(c, V,T)} and we obtain S; = Sy. The specialised program after
renaming and filtering looks like:

nont.([a|V], R) < nont.(V, R)
nont.([c|R], R) «—

a
(2
(3

) nont(X,T,R) — t(X,T,R)

) nont(X,T,R) — t(a,T,V),nont(X,V,R)
) (X, [X|ES), ES) —

Fig. 1. A parser

3 The cogen approach for logic programming languages

For presentation purposes we from now on suppose that in Algorithm 2 the
initial set Sy consists of just a single atom Ay (a convention adhered to by a lot
of practical partial deduction systems).

A generating extension of a program P with respect to a given safe BTC
({Ur}, A) for P, is a program that performs specialisation (using part 2 of
Algorithm 2) of any atom A which is safe wrt A. So in the case of the parser



— nont(c, T, R)

<1/ )

— t(a,T,V),nont(c,V,R) « t(c,T,R)

(3 l l (3)

— nont(c, V, R) o

Fig. 2. Unfolding the parser of Fig. 1

from Ex. 3 a generating extension is a program that, when given the safe call
nont(c, R, T), produces the residual program shown in the example.

A compiler generator, cogen, is a program that given a program P and a safe
BTC p for P produces a generating extension of P wrt (.

We will first consider what the generating extensions wrt a program P and
a safe BT'C' 3 should look like. Once this is clear we will consider what cogen
should look like.

As already stated, a generating extension should specialise safe calls to pred-
icates. Let us first consider the unfolding aspect of specialisation. The partial
deduction algorithm first unfolds the initial top-level atom (to ensure a non-
trivial tree). It then proceeds with the unfolding until no more reducible atoms
can be selected and collects the atoms in the leaves of the unfolded SLDNF-tree.
This process is repeated for all the new (generalised) atoms which have not yet
been unfolded, until no more new non-reducible atoms are found. Notice that
all predicates may potentially have to be unfolded.

The crucial idea for simplicity and efficiency of the generating extension is
to incorporate a specific predicate p, for each predicate p/n. This predicate
has n + 1 arguments and is tailored towards unfolding calls to p/n. The first
n arguments correspond to the arguments of the call to p/n which has to be
unfolded. The last argument collects the result of the unfolding process. More
precisely, py(t1, ..., tn, B) will succeed for each branch of the incomplete SLDNF-
tree obtained by applying the unfolding U, to p(t1, ..., t,) whereby it will return
in B the atoms in the leaf of the branch® and also instantiate t1, ..., t, via the
composition of mgu’s of the branch. For complete SLDNF-trees (i.e. for atoms
which get fully unfolded) the above can be obtained very efficiently by simply
executing the original predicate definition of p for the goal «— p(ty,...,t,) (no
atoms in the leaves have to be returned because there are none). To handle the
case of incomplete SLDNF-trees we just have to adapt the definition of p so that
unfolding can be stopped (for non-reducible predicates according to U.) and so
that in that case the atoms in the leaves are collected.

5 For reasons of clarity and simplicity in unflattened form.



This can be obtained very easily by transforming every clause defining the
predicate p/n into a clause for p,/(n + 1), as done in the following definition.
The following could actually be called a compiled non-ground representation,
and contributes much to the final efficiency of the generating extensions.

Definition 14. Let P be a program and C = p(t) <« Ai,..., Ay a clause of P
defining a predicate symbol p/n. Let L C Pred(P) be a set of reducible predicate
symbols. We then define the clause 05 for the predicate p, to be:

pu(f, [Rl, ,Rk]) — 81, ...,Sk

1. 8 = qu(3,Ri) and R; is a fresh unused variable, if A; = q(3) is reducible
2. §; =true and R; = Ay, if A; is not reducible

We will denote by P~ the program obtained by applying the above transformation
to every clause in P and removing all true atoms from the bodies.

In the above definition inserting a literal of the form ¢, (5, R;) corresponds to
further unfolding whereas inserting true corresponds to stopping the unfolding
process. In the case of Ex. 3 with £ = {t/3}, applying the above to the program
P of Fig. 1 gives rise to the following program P~:

nont_u(X,T,R, [V1,nont(X,V,R)]) :- t_u(a,T,V,V1).
nont_u(X,T,R,[V1]) :- t_u(X,T,R,V1).
t_u(X, [XIR],R,[1).

Evaluating the above code for the call nont_u(c,T,R,Leaves) yields two
computed answers which correspond to the two branches in Fig. 1:

> ?-nont_u(c,T,R,Leaves).
T =[a | _52]
Leaves = [[],nont(c,_52,R)]

Yes ;
T = [c | R]
Leaves = [[]]
Yes

The above code is of course still incomplete as it only handles the unfolding
process and we have to extend it to treat the global level as well. Firstly, call-
ing p, only returns the atoms of one leaf of the SLDNF-tree, so we need to
add some code that collects the information from all the leaves. This can be
done very efficiently using Prolog’s findall predicate. So in the following call
findall(B,nont_u(c,R,T,B),Bs) the Bs will be instantiated to the following list
q[[[],nont(c,_48,_49)1, [[1]1] which essentially corresponds to the leaves of the
SLDNF-tree in Fig. 2, since by flattening out we obtain: [nont(c,_48,_49)].
Furthermore, if we call

findall(clause(nont(c,T,R),Bdy) ,nont_u(c,T,R,Bdy),Cs)



we will even get in Cs a representation of the two resultants of Ex. 3.

Once all the resultants have been generated, the body atoms have to be gen-
eralised (using gena) and unfolded if they have not been encountered yet. The
easiest way to achieve this is to add a function p,, for each non-reducible pred-
icate such that, p,, implements the global control aspect of the specialisation.
That is, for every atom p(%), if one calls p,,(f, R) then R will be instantiated to
the residual call of p() (i.e. the call after filtering and renaming, for instance the
residual call of p(a, b, X) might be p;(X)). At the same time p,, also generalises
this call, checks if it has been encountered before and if not, unfolds the atom,
generates code and prints the resultants (residual code) of the atom. We have
the following definition of p,,:

Definition 15. Let P be a program and p/n be a predicate defined in P. Let
L C Pred(P) be a set of reducible predicate symbols. For p € Pred(P) we define
the clause CB,, defining the predicate p,, to be:

pm(f, R) «
(find_pattern(p(t), R) — true
; (insert_pattern(p(3), H),
findall(C, (pu (3, B),treat_clause(H, B, C)), Cs),
pp(Cs),
find_pattern(p(t), R))).

where p(3) = gena(p(t)). Finally we define P~ = {CP, | p € Pred(P)\ L}.7

In the above, the predicate find_pattern checks whether its first argument is a
call that has been encountered before and its second argument is the residual call
to this (with renaming and filtering performed). This is achieved by keeping a list
of the predicates that have been encountered before along with their renamed and
filtered calls. So, if the call to find_pattern succeeds, then R has been instantiated
to the residual call of p(t), if not, then the other branch of the conditional is
tried.

The predicate insert_pattern will add a new atom (its first argument) to the
list of atoms encountered before and return (in its second argument H) the
generalised, renamed and filtered version of the atom. The atom H will provide
(maybe further instantiated) the head of the resultants to be constructed. This
call to insert_pattern is put first to ensure that an atom is not specialised over
and over again at the global level.

The call to findall(C, (p, (3, B),treat_clause(H, B, C)), Cs) unfolds the gener-
alised atom p(3) and returns a list of residual clauses for p(3) (in Cs). The call to
pu(3, B) inside findall returns a leaf goal of the SLDNF-tree for p(s). This goal
is going to be the body of a residual clause with head H. For each of the atoms
in the body of this clause two things have to be done. First, for each atom a

" This corresponds to saying that only reducible atoms can occur at the global level,
and hence only reducible atoms can be put into the initial set of atoms Sp of Al-
gorithm 1. If this is not what you want then just change the above definition to
“p € Pred(P)” or to “p € (Pred(P)\ L)U{po}”.



specialised residual version has to be generated if necessary. Second, each atom
has to be replaced by a call to a corresponding residual version. Both of these
tasks can be performed by calling the corresponding “m” function of the atoms,
so if a body contains an atom p(t) then p,,(t, R) is called and the atom is re-
placed by the value of R. The task of treating the body in this way is done by
the predicate treat_clause and the third argument of this is the new clauses.

The predicate pp pretty-prints the clauses of the residual program. The last
call to find_pattern will instantiate R to the residual call of the atom p(t).

We can now define what a generating extension of a program is:

Definition 16. Let P be a program, L € Pred(P) a set of predicates and
({Ur}, Q) a safe BTC for P, then the generating extension of P with respect to
({Uc}, Q) is the program P, = PF U P-.

The complete generating extension for Ex. 3 is shown in Fig. 3.

nont_m(B,C,D,E) :-
(find_pattern(nont(B,C,D) ,E) -> true
; (insert_pattern(nont(B,F,G),H),
findall(I, (nont_u(B,F,G,J),treat_clause(H,J,I)),K),
pp(K),
find_pattern(nont(B,C,D) ,E)
)).
nont_u(B,C,D, [E,memo(nont(B,G,D))]) :- t_u(a,C,G,E).
nont_u(d,I,J,[K]) :- t_u(Hd,I,J,K).
t_u(L, [LIM],M, []).

Fig. 3. The generating extension for the parser

The generating extension is called as follows: if one wants to specialise an atom
p(t), where p is one of the non-reducible predicates of the subject program P
then one calls the predicate p,, of the generating extension in the following way
pm(t,)-

The job of the cogen is now quite simple: given a program P and a safe BT'C 3
for P, generate a generating extension for P consisting of the two parts described
above. The code of the essential parts of our cogen is shown in Appendix B. The
predicate predicate generates the definition of the global control m-predicates
for each non-reducible predicate of the program whereas the predicates clause,
bodys and body take care of translating clauses of the original predicate into
clauses of the local control u-predicates. Note how the second argument of bodys
and body corresponds to code of the generating extension whereas the third
argument corresponds to code produced at the next level, i.e. at the level of the
specialised program. Further details on extending the cogen to handle built-ins
and the if-then-else can be found in Appendix A.



4 Examples and Results

In this section we present some experiments with our cogen system as well as
with some other specialisation systems. We will use three example programs to
that effect.

The first program is the parser from Ex. 3. We will use the same annotation
as in the previous sections: nont — (s, d, d).

The second example program is the “mixed” meta-interpreter (sometimes
called InstanceDemo) for the ground representation of [12, 13, 31] in which the
goals are “lifted” to the non-ground representation for resolution. We will spe-
cialise this program given the annotation solve — (s,d), i.e. we suppose that
the object program is given and the query to the object program is dynamic.

Finally we also experimented with a regular expression parser, which tests
whether a given string can be generated by a given regular expression. The
example is taken from [39]. In the experiment we used dgenerate — (s,d) for
the initial division, i.e. the regular expression is fully known whereas the string
is dynamic.

4.1 Experiments with COGEN

The Tables 1, 2 and 3 summarise our benchmarks of the COGEN system. The
timings were by using Prolog by BIM on a Sparc Classic running Solaris (timings,
at least for Table 1, were almost identical for a Sun 4).

Program| Time Annotation
parser | 0.02s| nontw— (s,d,d)
solve | 0.06 s solve — (s,d)
regexp | 0.02 s| dgenerate — (s,d)

Table 1. Running COGEN

Program| Time Query
parser | 0.01s nont(c, T, R)
solve | 0.01 s| solve("{q(X) «— p(X),p(a) <}, Q)
regexp | 0.03s| dgenerate(”(a+b) * .a.a.b”,S)
Table 2. Running the generating extension

Program|Speedup Factor Runtime Query
18
parser 2.35 nont(c, [a,...,a,c,bl,[b])
solve 7.23 solve("{q(X) — p(X),p(a) <}, — q(a)”)
regexp 101.1 dgenerate(” (a + b) x .a.a.b”,” abaaaabbaab”)

Table 3. Running the specialised program

The results depicted in Tables 1, 2 and 3 are very satisfactory. The generating
extensions are generated very efficiently and also run very efficiently. Further-
more the specialised programs are also very efficient and the speedups are very



satisfactory. The specialisation for the parser example corresponds to the one
obtained in Ex. 3. By specialising solve our system COGEN was able to remove
almost all the overhead of the ground representation, something which has been
achieved for the first time in [12]. In fact, the specialised program looks like this:

solve__0([]1).
solve__0([struct(q, [B])IC]) :- solve__O([struct(p,[B])]), solve__0(C).
solve__0([struct(p, [struct(a,[]1)])ID]) :- solve__0([]), solve__0(D).

The specialised program obtained for the regexp example actually corre-
sponds to a deterministic automaton, a feat that has also been achieved by the
system LOGIMIX in [39]. For further details about these examples, as well as the
experiments, see [25].

4.2 Experiments with other Systems

We also performed the experiments using some other specialisation systems. All
systems were able to satisfactorily handle the parser example and came up with
(almost) the same specialised program as COGEN. More specific information is
presented in the following paragraphs.

MIXTUS ([45]) is a partial evaluator for full Prolog which is not (effectively)
self-applicable. We experimented with version 0.3.3 of MIXTUS. MIXTUS came
up with exactly the same specialisation as our COGEN for the parser and solve
examples. MIXTUS was also able to specialise the regexp program, but not to
the extent of generating a deterministic automaton.

We experimented with the sP system (see [12]), a specialiser for a subset
of Prolog (not including the if-then-else). For the solve example sp was able
to obtain the same specialisation as COGEN, but only after re-specialising the
specialised program a second time. Due to the heavy usage of the if-then-else
the regexp example could not be handled directly by Sp.

LOGIMIX ([39]) is a self-applicable partial evaluator for a subset of Prolog,
containing if-then-else, side-effects and some built-in’s. This system falls within
the off-line setting and requires a binding time annotation. It is not (yet) fully
automatic, in the sense that the program has to be hand-annotated. For the
parser and regerp examples, LOGIMIX came up with almost the same programs
than COGEN. We were not able to annotate solve properly. It might be that
this example cannot be handled by LOGIMIX because the restrictions on the
annotations are more severe than ours (in COGEN the unfoldable predicates do
not require a division and COGEN allows non-deterministic unfolding — the latter
seems to be crucial for the solve example).

LEUPEL ([28, 31]) is a (not yet effectively self-applicable) partial evaluator
for a subset of Prolog, very similar to the one treated by LOGIMIX. The system is
guided by an annotation phase which is unfortunately also not automatic. The
annotations are “semi-online”, in the sense that conditions (tested in an on-line
manner) can be given on when to make a call reducible or non-reducible. For the
parser and regexrp examples the system performed the same specialisation as



COGEN. For the solve example LEUPEL even came up with a better specialisation
than COGEN, in the sense that unfolding has also been performed at the object
level:

solve__1([1).
solve__1([struct(q, [struct(a,[1)1)[A]) :- solve__1(A).
solve__1([struct(p, [struct(a,[1)1)[A]) :- solve__1(A).

Such optimisations depend on the particular object program and are therefore
outside the reach of purely off-line methods.

CHTREE is a fully automatic system for a declarative subset of Prolog (similar
to the language handled by SP) based on the work in [29, 33]. It is an on-line
system which has a very precise abstraction operation, minimising specialisation
losses. We used a local unfolding rule based on the homeomorphic embedding
relation (see e.g. [33, 46]). For the solve example the CHTREE came up with
a better specialisation than COGEN, almost identical to the one obtained by
LEUPEL (but this time fully automatically). Due to the heavy usage of the if-
then-else the regexp example could, similarily to SP, not be handled directly by
CHTREE.

We also did some experiments with the PADDY system (see [43]) written for
full Eclipse (a variant of Prolog). PADDY basically performed the same special-
isation of solve as CHTREE or LEUPEL, but left some useless tests and clauses
inside. PADDY was also able to specialise the regexp program, but again not to
the extent of generating a deterministic automaton.

Finally we tried out the self-applicable partial deducer SAGE (see [18]) for
the logic programming language Godel. SAGE came up with (almost) the same
specialised program for the parser example as COGEN. SAGE performed little
specialisation on the solve example, returning almost the unspecialised program
back. Due to the heavy usage of the if-then-else the regexp example could not
be handled by SAGE.

4.3 Comparing Transformation Times

The systems which gave us access to the transformation times were PADDY,
MIXTUS, LEUPEL, CHTREE and LOGIMIX. The results can be found in Table 4.
The columns marked by spec contain the times needed to produce the specialised
program (i.e. the time to perform the first Futamura projection), whereas the
columns marked by genex contain the times needed to produce the generating
extensions (i.e. performing the second Futamura projection). The latter columns
only make sense for COGEN, for the self-applicable system LOGIMIX as well as
for COGEN, imix Obtained via the third Futamura projection of LOGIMIX. As
can be seen in Table 4, COGEN is by far the fastest system overall, as well
for specialisation as for compiler generation, while producing almost the best
specialised code. More details about the experiments can be found in [25]. Note
however that the timings of CHTREE include the printing of tracing information
and that a rather naive implementation of the homeomorphic embedding relation
was used.



Finally the figures in Tables 1 and 2 really shine when compared to the com-
piler generator and the generating extensions produced by the self-applicable
SAGE system. Unfortunately self-applying SAGE is currently not possible for nor-
mal users, so we had to take the timings from [18]: generating the compiler
generator takes about 100 hours (including garbage collection), generating a
generating extension took for the examples (which are probably more complex
than the ones treated in this section) in [18] at least 11.8 hours (with garbage
collection). The speedups by using the generating extension instead of the partial
evaluator range from 2.7 to 3.6 but the execution times for the system (including
pre- and post-processing) still range from 113s to 447s.

Specialiser | Prolog | Architecture |parser|parser| solve | solve |regexp|regexp
System genex | spec |genex| spec |genex | spec
COGEN BIM | Sparc Classic | 0.02 s| 0.01 s| 0.06 s| 0.01 s| 0.02 s| 0.03 s
MIXTUS SICStus | Sparc Classic - 0.14s| - 1.36 s| - 13.63 s
PADDY Eclipse Sun4 - 0.05s| - 0.80 s| - 3.17 s
CHTREE BIM | Sparc Classic - 0.21s| - 9.07s| - -
LEUPEL BIM Sparc Classic - 0.11s| - 0.64s| - 4.00 s
LoGIMIX | SICStus | Sparc Classic | 1.47 s| 0.02 s| - - 1.28 s| 0.09 s
COGENogimix| SICStus | Sparc Classic | 1.10 s| 0.02 5| - - 0.98 s| 0.08 s

Table 4. Comparative Table of Specialisation Times

5 Discussion and Future Work

In comparison to other partial deduction methods the cogen approach may, at
least from the examples given in this paper, seem to do quite well with respect to
speedup and quality of residual code, and outperform any other system with re-
spect to transformation speed. But this efficiency has a price. Since our approach
is off-line it will of course suffer from the same deficiencies than other off-line
systems when compared to on-line systems. Also, no partially static structures
were needed in the above examples and our system cannot handle these, so it
will probably have difficulties with something like the transpose program (see
[12]) or with a non-ground meta-interpreter. However, our notion of BT' A and
BTC is quite a coarse one and corresponds roughly to that used in early work
on self-applicability of partial evaluators for functional programming languages,
so one might expect that this could be refined considerably.

Although our approach is closely related to the one for functional program-
ming languages there are still some important differences. Since computation in
our cogen is based on unification, a variable is not forced to have a fixed binding
time assigned to it. In fact the binding-time analysis is only required to be safe,
and this does not enforce this restriction. Consider the following program:

gX) :- p(X),qX)



p(a).
q(a).

If the initial division A states that the argument to g is dynamic, then Aq is
safe for the program and the unfolding rule that unfolds predicates p and q. The
residual program that one gets by running the generating extensions is:

g__0(a).

In contrast to this any cogen for a functional language known to us will classify
the variable X in the following analogue functional program (here exemplified in
Scheme) as dynamic:

(define (g X) (and (equal? X a) (equal? X a)))

and the residual program would be identical to the original program.

One could say that our system allows divisions that are not uniformly con-
gruent in the sense of Launchbury [27] and essentially, our system performs
specialisation that a partial evaluation system for a functional language would
need some form of driving to be able to do.

Whether application of the cogen approach is feasible for specialisation of
other logical programming languages than Prolog is hard to say, but it seems es-
sential that such languages have some metalevel built-in predicates, like Prolog’s
findall and call predicates, for the method to be efficient. This means that it is
probably not possible to use the approach (efficiently) for Godel. Further work
will be needed to establish this.

Related Work in Partial Evaluation

The first hand-written compiler generator based on partial evaluation principles
was, in all probability, the system RedCompile for a dialect of Lisp [2]. Since then
successful compiler generators have been written for many different languages
and language paradigms [44, 21, 22, 5, 1, 16].

In the context of definite clause grammars and parsers based on them, the
idea of hand writing the compiler generator has also been used in [40, 41].8
However it is not based on (off-line) partial deduction. The exact relationship to
our work is currently being investigated.

Future Work

The most obvious goal of the near future is to see if a complete and precise
binding-time analysis can be developed. Since we imposed that a static term
must be ground, one might think that the BT A corresponds exactly to ground-
ness analysis. This is however not entirely true because a standard groundness
analysis gives information about the arguments at the point where a call is

8 Thanks to Ulrich Neumerkel for pointing this out.



selected (and often imposing left-to-right selection). In other words, it gives
groundness information at the local level when using some standard execution.
A BT A however requires groundness information about the arguments of calls
in the leaves, i.e. at the point where these atoms are lifted to the global level. So
what we actually need is a groundness analysis adapted for unfolding rules and
not for standard execution of logic programs. However, by re-using and running
a standard groundness analysis on a transformed version of the program to be
specialised, we can come up with a reasonable BT A. More details, along with
some initial experiments using the PLAI system [19], can be found in [25].

On a slightly longer term one might try to extend the cogen and the binding-
time analysis to handle partially static structures. It also seems natural to inves-
tigate to what extent more powerful control and specialisation techniques (like
the unfold/fold transformations, [42]) can be incorporated into the cogen in the
context of conjunctive partial deduction ([32, 17]).
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A Extending the cogen

It is straightforward to extend the cogen to handle primitives, i.e. built-ins (=/2,
not/1,=../2, call/l,...) or externally defined user predicates. The code of these
predicates will not be available and therefore no predicates to unfold them can
be generated. The generating extension can either contain code that completely
evaluates calls to primitives in which case the call will then be marked reducible
or code that produces residual calls to such predicates in which case the call
is marked non-reducible. So we extend the transformation of Def. 14 with the
following two rules:

3. 8, = A; and R; =[] if A; is a reducible built-in
4. §; = true and R; = A; if A; is a non-reducible built-in

As alast example of how to extend the method we will show how to handle the
Prolog version of the conditional: A;¢ — Aty o Aglge- For this we will introduce
the notation G® where G = A, ..., A;, to mean the following:

GR=8,..,5

where S;, R; are defined as in Def. 14 and R = [Rq, ..., Ri] (i-e. this allows us
perform the transformations recursively on the sub-components of a conditional).

If the test of a conditional is marked as reducible then the generating exten-
sion will simply contain a conditional with the test unchanged and where the
two “branches” contain code for unfolding the two branches (similar to the body

(3}

of a function indexed by “u”), i.e. Def. 14 is extended with the following rule:

5.8, = (G1 — (GR,R; = R); (G?,Ri =TR')) and R; is a fresh variable, if
Az’ = (Gl — GQ ;G3) is reducible.

If the test goal of the conditional is non-reducible then we assume that the
three subgoals are either a call to a non-reducible predicate, a call to a non-
reducible (dynamic) primitive or another dynamic conditional. This restriction is



not severe, since if a program contains conditionals that get classified as dynamic
by the BT A and these contain arbitrary subgoals then the program may by a
simple source language transformation be transformed into a program which
satisfies the restriction. Def. 14 is extended with the following rule:

6. S; = (A7, Ap, Ay RR R T and R; = (R — R} R”), if Ay = (4] — Ab; Aj)
is non-reducible.

where A}, A} and Aj are goals that satisfy the restriction above. This restric-
tion ensures that the three goals {A] | i = 1,2,3} compute their residual code
independently of each other and the residual code for the conditional is then a
conditional composed from this code.

B A Prolog cogen

This appendix contains the listing of the cogen. The system is available via
http://www.cs.kuleuven.ac.be/ 1pai.

[* ————————— e */
/* COGEN =/
/¥ —————————— *x/
cogen :-—

findall(C,predicate(C),Clausesl),
findall(C,clause(C),Clauses2),
pp(Clausesl),

pp(Clauses2).

flush_cogen :- print_header,flush_pp.

predicate(clause(Head, [if ([find_pattern(Call,V)], [truel,
[insert_pattern(GCall,H),
findall(NClause,
(RCall,treat_clause(H,Body,NClause)),
NClauses),
pp(NClauses),
find_pattern(Call,V)])1)) :-
generalise(Call,GCall),
add_extra_argument ("_u",GCall,Body,RCall),
add_extra_argument ("_m",Call,V,Head) .

clause(clause(ResCall,ResBody)) :-
ann_clause(Call,Body),
add_extra_argument("_u",Call,Vars,ResCall),
bodys (Body,ResBody,Vars) .



bodys ([1,[1,[1).

bodys ([G|GS] ,GRes,VRes) :-
body(G,G1,V),
filter_cons(G1,GS1,GRes,true),
filter_cons(V,VS,VRes, []),
bodys (GS,GS1,VS).

filter_cons(H,T,HT,FVal) :-
((nonvar(H) ,H = FVal) -> (HT = T) ; (HT = [HIT])).

body (unfold(Call) ,ResCall,V) :-
add_extra_argument ("_u",Call,V,ResCall).
body (memo (Call) ,true,memo(Call)).
body(call(Call),Call, []).
body(rescall(Call),true,rescall(Call)).
body (if (G1,G2,G3), /* Static if: */
if (RG1, [RG2, (V=VS2)], [RG3, (V=VS3)]),V) :-
bodys(G1,RG1,VS1), bodys(G2,RG2,VS2), bodys(G3,RG3,VS3).
body(resif(G1,G2,G3), /* Dynamic if: */
[RG1,RG2,RG3],if (VS1,VS2,VS3)) :-
body(Gl,RGl,VSl), body(G2,RG2,VS2), body(GS,RGB,VS3).

generalise(Call,GCall) :-—
delta(Call,STerms,_), Call =.. [Pred|_],
delta(GCall,STerms,_), GCall =.. [Pred|_].

add_extra_argument(T,Call,V,ResCall) :-
Call =.. [Pred|Args],res_name(T,Pred,ResPred),
append (Args, [V] ,NewArgs) ,ResCall =.. [ResPred|NewArgs].

res_name(T,Pred,ResPred) :-
name (PE_Sep,T) ,string_concatenate (Pred,PE_Sep,ResPred) .

print_header :-

print(’/?),print (P * —-————-mmm—————mm e *?),print(°/’),nl,
print(’/’) ,print (’* GENERATING EXTENSION *’),print(’/’),nl,
print(’/?) ,print(’* - -— - *’),print(’/’),nl,

print(’:’),print(’- reconsult(memo).’),nl,
print(’:’) ,print(’- reconsult(pp).’),nl,
(static_consult(List) -> pp_consults(List) ; true),nl.



