
Translating B to TLA+ for Validation with TLC:
There and Back Again

(Technical Report)

Dominik Hansen and Michael Leuschel

Institut für Informatik, Universität Düsseldorf??

Universitätsstr. 1, D-40225 Düsseldorf
dominik.hansen@uni-duesseldorf.de, leuschel@cs.uni-duesseldorf.de

Abstract. The state-based formal methods B and TLA+ share the com-
mon base of predicate logic, arithmetic and set theory. However, there are
still considerable differences, such as the way to specify state transitions,
the different approaches to typing, and the available tool support. In this
paper, we present a translation from B to TLA+ to validate B specifica-
tions using the model checker TLC. We provide translation rules for almost
all constructs of B, in particular for those which are missing in TLA+. The
translation also includes many adaptions and optimizations to allow efficient
checking by TLC. Moreover, we present a way to validate liveness properties
for B specifications under fairness conditions. Our implemented translator,
Tlc4B, automatically translates a B specification to TLA+, invokes the
model checker TLC, and translates the results back to B. We use ProB to
double check the counter examples produced by TLC and replay them in
the ProB animator. We also present a series of case studies and benchmark
tests comparing Tlc4B and ProB.
Keywords: TLA+, B-Method, Tool Support, Model Checking, Animation.

1 Introduction and Motivation

B [1] and TLA+ [8] are both state-based formal methods rooted in predicate logic,
combined with arithmetic, set theory and support for mathematical functions. How-
ever, as already pointed out in [5], there are considerable differences:

– B is strongly typed, while TLA+ is untyped. For the translation it is obviously
easier to translate from a typed to an untyped language than vice versa.

– The concepts of modularization are quite different.
– Functions in TLA+ are total, while B supports relations, partial functions,

injections, bijections, etc.
– TLA+ has several constructs which are absent in B, such as an if/then/else

for expressions and predicates1 or the choose operator.

?? Part of this research has been sponsored by the EU funded FP7 projects 214158 (DE-
PLOY) and 287563 (ADVANCE).

1 B only provides an if/then/else for substitutions.

– B is limited to invariance properties, while TLA+ also allows the specification
of liveness properties.

As far as tool support is concerned, TLA+ is supported by the explicit state
model checker TLC [13] and more recently by the TLAPS prover [2]. TLC has been
used to validate a variety of distributed algorithms (e.g., [4]) and protocols. B has
extensive proof support, e.g., in the form of the commercial product AtelierB [3]
and the animator, constraint solver and model checker ProB [9, 10]. Both AtelierB
and ProB are being used by companies, mainly in the railway sector for safety
critical control software. In an earlier work [5] we have presented a translation from
TLA+ to B, which enabled applying the ProB tool to TLA+ specifications. In
this paper we present a translation from B to TLA+, this time with the main
goal of applying the model checker TLC to B specifications. Indeed, TLC is a
very efficient model checker for TLA+ with an efficient disk-based algorithm and
support for fairness. ProB has an LTL model checker, but it does not support
fairness (yet) and is entirely RAM-based. The model checking core of ProB is less
tuned than TLA+. On the other hand, ProB incorporates a constraint solver and
offers several features which are absent from TLC, notably an interactive animator
with various visualization options. Our approach is thus to replay the counter-
examples produced by TLC within ProB to get access to those features and to
validate the correctness of our translation. In this paper, we also present a thorough
empirical evaluation between TLC and ProB. The results show that for lower-
level, more explicit formal models, TLC fares better, while for certain more high-
level formal models the constraint solving capabilities of ProB lead to improved
performance. The addition of a lower-level model checker thus opens up many new
application possibilities.

2 Translation

The complete translation process from B to TLA+ and back to B is illustrated in
Fig. 1. Before explaining the individual phases, we will illustrate the translation
with an example and explain the various phases based on that example. More
specific implementation details (e.g., about the parsing process) will be covered in
Sect. 4.

2.1 Example

Below we use a specification (adapted from [10]) of a process scheduler (Fig. 2). The
specified system allows at most one active process at the same time. Each process
can qualify for being selected by the scheduler by entering a FIFO queue. The
specification contains two variables: a partial function state mapping each process
to its state (a process must be created before it has a state) and a FIFO queue
modeled as a (injective) sequence of processes. In the initial state no process is
created and the queue is empty. Moreover, the specification has various operations
to create (new), delete (del), or add a process to queue (addToQueue). Additionally,

2

B Model SableCC
B Parser

Abstract
Syntax
Tree

Semantic
Verifier

(functionality
inference,...)

TLC
Optimizer

(subtype
inference,...)

B-TLA+
Translator

TLA +
Model

TLC
Model

Checker

Counter
Example

Trace
ProB

Replay

TLC4B
Libraries TLC4B

Fig. 1. The TLC4B Translation and Validation Process

there are two operations to load a process into the processor (enter) and to remove a
process from the processor (leave). The specification contains two safety conditions
beside the typing predicates of the variables:

– At most one process should be active.

– Each process in the FIFO queue should have the state ready .

The translated TLA+- specification is shown in Fig. 3. (We will explain later
how this translation is computed.) At the beginning of the module some standard
modules are loaded via the EXTEND statement. These modules contain several
operators used in this specification. The invariant of the B specification is divided
into several definitions in the TLA+ module. This enables TLC to provide better
feedback about which part of the invariant is violated. A TLA+ action is created
for each B operation. Substitutions are translated as before-after predicates where
a primed variable represents the variable in the next state. Unchanged variables
must be explicitly specified. In TLA+ an action is a conjunction of a precondition
and before-after predicate. The whole TLA+ specification is described by the Spec
definition. A valid behavior for the system has to satisfy the Init predicate for the
initial state and then each step of the system must satisfy the next-state relation
Next which is a disjunction of all actions.

To validate the translated TLA+ specification with TLC we have to provide
an additional configuration file (Fig 4) telling TLC the main (specification) defini-
tion and the invariant definitions. Moreover, we have to assign values to all con-
stants of the module.2 In this case we assign a set3 of model values to the constant
PROCESSES and single model values to the other constants. In terms of function-
ality, model values correspond to elements of a enumerated set in B. Model values
are equal to themselves and unequal to all other model values.

2 We translate a constant as variable if it can have several values. All values will be
enumerated in the initialization and the variable will be kept unchanged in all actions.

3 The size of the set is a default number or can be specified by the user.

3

MODEL Scheduler
SETS PROCESSES; STATE = {idle, ready, active}
VARIABLES state, queue
INVARIANT

state ∈ PROCESSES 7→ STATE
& queue ∈ iseq(PROCESSES)
& card(state−1[{active}]) ≤ 1
& !x.(x ∈ ran(queue) ⇒ state(x) = ready)

INITIALISATION state := {} || queue := []
OPERATIONS

new(p) = PRE p /∈ dom(state)
THEN state := state ∪ {(p 7→ idle)} END

del(p) = PRE p ∈ dom(state) ∧ state(p) = idle
THEN state := {p} �− state END

add(p) = PRE p ∈ dom(state) ∧ state(p) = idle
THEN state(p) := ready || queue := queue ← p END

enter = PRE queue 6= [] ∧ state−1[{active}] = {}
THEN state(first(queue)) := active || queue := tail(queue) END

leave(p) = PRE p ∈ dom(state) ∧ state(p) = active
THEN state(p) := idle END

END

Fig. 2. MODEL Scheduler

2.2 Translating Data Values and Functionality Inference

Due to the common base of B and TLA+, most data types exist in both languages
e.g. sets, functions and numbers. As a consequence, the translation of these data
types is almost simple.

A missing data type in TLA+ Relations are4, but TLA+ provides all necessary
data types to define relations based on the model of the B-Method. We represent
a relation in TLA+ as a set of tuples (e.g. {〈1,TRUE 〉, 〈1,FALSE 〉 〈2,TRUE 〉}).
The drawback of this approach is that in contrast to B, TLA+’s own functions
and sequences are not based on the relations defined is this way. As an example,
we cannot specify a function as a set of pairs in TLA+; in B it is usual to do this
as well as to apply set operators (e.g. the union operator as in r ∪ {2 7→ 3}) to
functions or sequences. To support such a functionality in TLA+, functions and
sequences should be translated as relations if they are used in a “relational way”. It
would be possible to always translate functions and sequences as relations. But in
contrast to relations, functions and sequences are built-in data types in TLA+ and
their evaluation is optimized by TLC (e.g. lazy evaluation). Hence we extended the
B type-system to distinguish between functions and relations. Thus we are able to
translate all kinds of relations and to deliver an optimized translation.

4 Relations are not mentioned in the language description of [8]. In [7] Lamport introduces
relations in TLA+ only to define the transitive closure.

4

module Scheduler
extends Sequences, Relations, Functions, FunctionsAsRelations, SequencesExtended
constants PROCESSES , idle, ready , active
variables state, queue
STATES

∆
= {idle, ready , active}

Invariant1
∆
= state ∈ RelParFuncEleOf (PROCESSES , STATES)

Invariant2
∆
= queue ∈ ISeqEleOf (PROCESSES)

Invariant3
∆
= Cardinality(RelImage(RelInverse(state), {})) ≤ 1

Invariant4
∆
= ∀ x ∈ Range(queue) : RelCall(state, x) = ready

Init
∆
= state = {} ∧ queue = 〈〉

new(p)
∆
= p /∈ RelDomain(state)
∧ state ′ = state ∪ {〈p, idle〉} ∧ unchanged 〈queue〉

del(p)
∆
= RelCall(state, p) = idle
∧ state ′ = RelDomSub({p}, state) ∧ unchanged 〈queue〉

addToQueue(p)
∆
= RelCall(state, p) = idle

∧ state ′ = RelOverride(state, {〈p, ready〉})
∧ queue ′ = Append(queue, p)

enter
∆
= (queue 6= 〈〉 ∧ RelImage(RelInverse(state), {active}) = {})
∧ state ′ = RelOverride(state, {〈Head(queue), active〉})
∧ queue ′ = Tail(queue)

leave(p)
∆
= RelCall(state, p) = active
∧ state ′ = RelOverride(state, {〈p, idle〉}) ∧ unchanged 〈queue〉

Next
∆
= ∨ ∃ p ∈ PROCESSES : new(p)
∨ ∃ p ∈ RelDomain(state) : del(p)
∨ ∃ p ∈ RelDomain(state) : addToQueue(p)
∨ enter
∨ ∃ p ∈ RelDomain(state) : leave(p)

vars
∆
= 〈state, queue〉

Spec
∆
= Init ∧ 2[Next]vars

Fig. 3. Module Scheduler

5

SPECIFICATION Spec
INVARIANT Invariant1, Invariant2, Invariant3, Invariant4
CONSTANTS
PROCESSES = {PROCESSES1,PROCESSES2, PROCESSES3}
idle = idle
ready = ready
active = active

Fig. 4. Configuration file for module Scheduler

We use a type inference algorithm adapted to the extend B type-system to
get the required type information for the translation. Unifying a function type
with a relation type will result in a relation type (e.g. P(Z × Z) for both sides of
the equation λx .(x ∈ 1..3|x + 1) = {(1, 1)}). However there are several relational
operators keeping a function type if they are applied to operands with a function
type (e.g. ran, first or tail). For these operators we have to deliver two translation
rules (functional vs relational).5 Moreover the algorithm verifies the type correctness
of the B specification (i.e. only values of the same type can be compared with each
other).

2.3 Translating Operators

In TLA+ some common operators such as arithmetic operators are not built-in
operators. They are defined in separate modules called standard modules which
can be included at the top of a specification.6 We reuse the concept of standard
modules to include the relevant B operators. Due to the lack of relations in TLA+

we have to provide a module containing all relational operators (Fig. 5).
Moreover B provides a rich set of function types (they are not part of the B

type system) which are missing in TLA+. A function type is a combination of
partial/total and injective/surjective/bijective. In TLA+ we only have total func-
tions. We group all missing functional operators together in an additional module
(Fig. 6).

Some operators exists in both languages but their definitions differs slightly.
For example, the B-Method requires that the first operand for the modulo operator
must be a natural number. In TLA+ it can be also a negative number.

Operator B-Method TLA+

a modulo b a ∈ N ∧ b ∈ N1 a ∈ Z ∧ b ∈ N1

To verify B’s well-definedness condition for modulo we use TLC’s ability to check
assertions. The special operator Assert(P , out) throws a runtime exception with the

5 For various reasons we do not redefine TLA+ built-in operators e.g. set operators.
6 TLC supports operators of the common standard modules Integers and Sequences in a

efficient way by overwriting them with Java methods.

6

module Relations
extends FiniteSets, Naturals, TLC
Relation(X , Y)

∆
= subset (X ×Y)

RelDomain(R)
∆
= {x [1] : x ∈ R}

RelRange(R)
∆
= {x [2] : x ∈ R}

RelInverse(R)
∆
= {〈x [2], x [1]〉 : x ∈ R}

RelDomRes(S , R)
∆
= {x ∈ R : x [1] ∈ S} Domain restriction

RelDomSub(S , R)
∆
= {x ∈ R : x [1] /∈ S} Domain subtraction

RelImage(R, S)
∆
= {y [2] : y ∈ {x ∈ R : x [1] ∈ S}}

RelOverride(R1, R2)
∆
= {x ∈ R : x [1] /∈ RelDomain(R2)} ∪ R2

RelComposition(R1, R2)
∆
= {〈u[1][1], u[2][2]〉 : u ∈

{x ∈ RelRanRes(R1, RelDomain(R2))× RelDomRes(RelRange(R1), R2) :
x [1][2] = x [2][1]}}

...

Fig. 5. Module Relations

module Functions
extends FiniteSets
Range(f)

∆
= {f [x] : x ∈ domain f }

Image(f , S)
∆
= {f [x] : x ∈ S}

TotalInjFunc(S , T)
∆
= {f ∈ [S → T] :

Cardinality(domain f) = Cardinality(Range(f))}
ParFunc(S , T)

∆
= union {[x → T] : x ∈ subset S}

ParInjFunc(S , T)
∆
= {f ∈ ParFunc(S , T) :

Cardinality(domain f) = Cardinality(Range(f))}
...

Fig. 6. Module Functions

error message out if the predicate P is false. Otherwise, Assert will be evaluated
to true. The B modulo operator can thus be expressed in TLA+ as follows:

Modulo(a, b) =̂ IF Assert(a ≥ 0, ”ERROR”)THEN a % b ELSE 0

The else clause will never reached because a runtime exception is thrown.
We also have to consider well-definedness conditions if we apply a function call

to a relation as happened in the example translation (Sect. 2.1):

RelCall(r , x)
∆
= if Cardinality(r) = Cardinality(RelDom(r)) ∧ x ∈ RelDom(r)

then (choose y ∈ r : y [1] = x)[2]
else Assert(FALSE , “ERROR”)

In summary, we provide the following standard modules for our translation:

– Relations (Sect. A.8)

7

– Functions (Sect. A.6)
– SequencesExtended (Sect. A.7)
– FunctionsAsRelations (Sect. A.9)
– SequencesAsRelations (Sect. A.10)
– BBuiltins (Sect. A.4)

2.4 Adaptions & Subtype Inference & TLC Optimizations

Firstly we will describe how TLC evaluates expressions: In general TLC evaluates
an expression from left to right. Evaluating an expression containing a bounded
variable such as an existential quantification (∃x ∈ S : P), TLC enumerates all
values of the associated set and then substitutes them for the bounded variable
in the corresponding predicate. Due to missing constraint solving techniques, TLC
is not able to evaluate another variant of the existential quantification without
an associated set (∃x : P). This version is also a valid TLA+ expression and di-
rectly corresponds to the way writing a existential quantification in B (∃x .(P)).
But we confine our translations to the subset of TLA+ which is supported by
TLC. Thus the translation is responsible for making all required adaptions to de-
liver an executable TLA+ specification. For the existential quantification (or all
other expressions containing bounded variables), we use the inferred type τ of the
bounded variable as the associated set (∃x ∈ τx : P .) However, it is easy to see
that in some cases it is not a good idea to enumerate over a type of a variable
especially if the type is a infinite set. Alternatively, it is often possible to restrict
the type of the bounded variable based on a static analyses of the corresponding
(typing) predicate. We use a pattern matching algorithm to find the following kind
of expressions where x is a bounded variable, e is an expression, and S is ideally a
subset of the type7: x = e , x ∈ S , x ⊆ S or x ⊂ S .

If more than one of these patterns can be found for one variable, we build the
intersection to keep the associated set as small as possible:

B-Method TLA+

∃x .(x = e ∧ x ∈ S1 ∧ x ⊆ S2 ∧ P) ∃x ∈ ({e} ∩ S1 ∩ SUBSET S2) : P

This reduces the number of times TLC has to evaluate the predicate P . 8

Sometimes TLC can use heuristics to evaluate an expression. For example TLC
can evaluate 〈1, 2, 1〉 ∈ Seq({1, 2}) to true without evaluating the infinite set of
sequences. We will show how we can use these heuristics to generate an optimized
translation. As mentioned before functions have to be translated as relations if they
are used in a relational way in the B specification. How should we translate the set
of all total functions (S → T)? The easiest way is to convert each function to a
relation in TLA+:

MakeRel(f)
∆
= {〈x , f [x]〉 : x ∈ DOMAIN f }

7 The B language description in [3] requires that each (bounded) variable must be typed
by one these pattern before use.

8 In some cases, the associated set is still infinite and the user has to restrict the set to
be finite.

8

The resulting operator for the set of all total functions is:

RelTotalFunctions(S ,T)
∆
= {MakeRel(f) : f ∈ [S → T]}

However this definition has a disadvantage, if we just want to check if a single
function is in this set the whole set will be evaluated by TLC. Using the following
definition TLC avoids the evaluation of the whole set:

RelTotalFunctionsEleOf (S ,T)
∆
= {f ∈ SUBSET (S × T) :

∧ Cardinality(RelDomain(f)) = Cardinality(f)
∧ RelDomain(f) = S}

In this case, TLC only checks if a function is a subset of the cartesian product (the
whole Cartesian product will not be evaluated) and the conditions are checked only
once. The advantage of the first definition is that it is faster to evaluate the whole
set. As a consequence, we use both definitions for our translation and choose the first
if TLC has to enumerate the set (e.g. ∃x ∈ RelTotalFunctions(S ,T) : P) and the
second testing if a function belongs to the set (e.g. f ∈ RelTotalFunctionsEleOf (S ,T)
as an invariant).

3 Checking Temporal Formulas

One of the main advantages of TLA+ is that temporal properties can be specified
directly in the language itself. Moreover the model checker TLC can be used to
verify such formulas. But before we show how to write temporal formulas for a
B specification we first have to describe a main distinction between both formal
methods. In contrast to B, TLA+ allows stuttering steps at any time.9 This means
that a regular step of a TLA+ specification is either a step satisfying one of the
actions or an stuttering step leaving all variables unchanged. When checking a
specification for errors such as invariant violations it is not necessary to consider
stuttering steps, because such an error will be detected in a state and stuttering
steps only allow self transitions and do not add additional states. For deadlock
checking stuttering steps are also not regarded by TLC, but verifying a temporal
formula with TLC often ends in a counter-example caused by stuttering steps. For
example, assuming we have a very simple specification of a counter in TLA+ with
a single variable c

Spec =̂ c = 1 ∧2[c′ = c + 1]c

We would expect that the counter will eventually reach 10 (3(c = 10)). However
TLC will report a counter-example, saying that at a certain state (before reaching
10), a infinite number of stuttering will occur and 10 will never reached. From
the B site we do not want to care about these stuttering steps. TLA+ allows
the adding of fairness conditions to the specification to avoid infinite stuttering
steps. Adding weak fairness for the next-state relation (WF (Next)) would prohibit

9 [Next]vars ≡ Next ∨UNCHANGED vars

9

a infinite number of stuttering steps if a step of the next-state relation is possible
(i.e. Next is always enabled):

WF (A) =̂ ∨ 23(〈A〉vars)
∨ 23(¬ENABLED(A))

However this fairness condition is too strong: It asserts that either the action A
will be executed infinitely often changing the state of the system (A must not be a
stuttering step)

〈A〉vars ≡ A ∧ vars ′ 6= vars

or A will be disabled infinitely often. Assuming weak fairness for the next state
relation will also eliminate user defined stuttering steps. User defined stuttering
steps result from B operations which do not change the state of the system (e.g.
skip or call operations). These stuttering steps may cause valid counter-examples
and should not be eliminated. Hence, the translation should retain user defined
stuttering steps in the translated TLA+ specfication and should disable stuttering
steps which are implicitly included. In [12] Richards describes a way to distinguish
between these two kinds of stuttering steps in TLA+. We use his definition of “Very
Weak Fairness” applied to the next state relation (VWF (Next)) to disable implicit
stuttering steps and allow user defined stuttering steps in the TLA+ specification:

VWF (A) =̂ ∨ 23(〈A〉vars)
∨ 23(¬ENABLED(A)
∨ 23(ENABLED(A ∧UNCHANGED vars))

The definition of VWF is identical to WF except for an additional third case allow-
ing infinite stuttering steps if A is a stuttering action (A∧UNCHANGED vars). 10

We define the resulting template of the translated TLA+ specification as follows:

Init ∧2[Next]vars ∧VWF (Next)

We allow the B user to use following temporal operators to define liveness conditions
for a B specification:

– 2f (Globally)
– 3f (Finally)
– ENABLED(op) (Check if the operation op is enabled)
– ∃x .(P ∧ f) (Existential quantification)
– ∀x .(P ⇒ f) (Universal quantification)
– WF (op) (Weak Fairness will be translated to VWF)
– SF (op) (Strong Fairness will be translated to “Almost Strong Fairness”11)
– ¬, ∧, ∨, ⇒ (negation, conjunction, disjunction and implication)

10 However VWF(A) only says that infinite “unchanging” A steps are possible. It does
not say that they will occur infinitely often. In TLA+ it is not possible to express that.

11 Analogical Richards defines “Almost Strong Fairness” (ASF) as a weaker version of
strong fairness (SF) reflecting the different kinds of stuttering steps

10

Liveness conditions in B Since temporal operators are not part of the B language
we insert liveness conditions (represented in string format) as a B definitions into
the specification. As an example we revisit the scheduler specification from Sect.2.1
and specify the following liveness property:

Whenever a process is added to the queue
it will always eventually be loaded into the processor (i.e. gets the state active).

To satisfy these condition we have to require WF for the operations enter and leave.
Otherwise, there would be a infinite loop of creating a new process and deleting it
immediately as a counter example. We can formulate this liveness condition with
the aid of the newly introduced temporal operators and ordinary B predicates:

ASSERT LTL 1 == ”WF(enter) ∧ WF(leave)
⇒ 2(∀p.(p ∈ PROCESSES ∧ p ∈ ran(queue)

⇒ 3p ∈ dom(state) ∧ state(p) = active)”

The translation of the liveness condition is almost simple:

ASSERT LTL 1
∆
= VWF (enter) ∧VWF (∃ p ∈ RelDomain(state) : leave(p))

⇒ 2(∀ p ∈ PROCESSES : p ∈ Range(queue)
⇒ 3(p ∈ RelDomain(state) ∧ RelCall(state, p) = active))

All temporal operators can be directly mapped to the TLA+ operators. Only the
translation of the temporal quantification is slightly different compared to the trans-
lation of a ordinary quantification. The model checker TLC can only substitute
values of a constant set for the bounded variable p. Hence we only use the con-
stant set PROCESSES as the associated set and do not build the intersection of
PROCESSES and Range(queue) as described in the optimization section. Finally,
we have to add an entry in configuration file (PROPERTY ASSERT LTL 1) telling
TLC to verify this liveness property.

4 Implementation & Experiments

Our translator, called Tlc4B, is implemented in Java and it took about six months
to develop the initial version. Figure 1 in Sect. 2 shows the translation and vali-
dation process of Tlc4B. After parsing the specification Tlc4B performs some
static analyses (e.g. type checking or checking the scope of the variables) verifying
the semantic correctness of the B specification. Moreover, as explained in Sect. 2,
Tlc4B extracts required information from the B specification (e.g. subtype infer-
ence) to generate an optimized translation. Subsequently, Tlc4B creates a TLA+

module with a associated configuration file and invokes the model checker TLC.
We expect TLC to find the following kinds of errors in the B specification:

– Deadlocks
– Invariant violations

11

– Assertion errors
– Goal found (a desired state is reached)
– Properties violations (i.e., axioms over the B constants are false)
– Well-definedness violations
– Temporal formulas violations.

The results produced by TLC are translated back to B. For example, a goal predi-
cate is translated as a negated invariant. If this invariant is violated, a “Goal found”
message is reported. In some cases, TLC reports a trace leading to the state where
the error (e.g. deadlock or invariant violation) occur. A trace is a sequence of states
where each state is a mapping from variables to values. Tlc4B translates the trace
back to B. Tlc4B has been integrated into ProB as of version 1.3.7-beta: The
user needs no knowledge of TLA+ because the translation is completely hidden.
Counter-examples found by TLC are automatically replayed in the ProB anima-
tor to give the user an optimal feedback. As shown in figure 7 counter-examples
found by TLC are automatically replayed in the ProB animator (displayed in the
history pane) to give the user an optimal feedback.

Fig. 7. ProB animator

The following examples show some fields of application of Tlc4B. The experi-
ments were all run on a Macbook Air with Intel Core i5 1,8 GHz processor, running

12

TLC Version 2.05 and Prob version 1.3.7-beta9. The full details about the examples
can be found in the extended version of our paper [6].

Can-Bus As the first example we use a specification of the Can-Bus. The speci-
fication contains 314 lines B code, 18 variables and 21 operations. The specification
is on a low level, i.e. the operations consists of simple assignments of concrete val-
ues to variables (no constraint solving is required). Tlc4B needs 1.5 seconds12 to
translate the specification to TLA+ and less than 6 seconds for the validation of
the complete state space composed of 132,598 states. ProB needs 192 seconds to
visit the same number of states. Both model checkers report no errors. For this
specification TLC benefits from its efficient algorithm for storing big state spaces.

Invariant violations We use a defective specification of a travel agency system
(CarlaTravelAgencyErr) to test the abilities of Tlc4B detecting invariant viola-
tions. The specification consists of 295 line of B code, 11 variables and 10 opera-
tions. Most of the variables are functions (total, partial and injective) which are also
manipulated by relational operators. Tlc4B needs about 3 seconds to translate the
model and to find the invariant violation. 377 states are explored with the aid of
the breadth first search and the resulting trace has a length of 5 states. ProB needs
roughly the same time.

Benchmarks Besides the evaluation of real case studies, we use some specific
benchmark tests comparing Tlc4B and ProB. We use a specification of a simple
counter testing Tlc4B’s abilities to explore a big (linear) state space. Tlc4B needs
3 seconds to explore the state space with 1 million states. Comparatively, ProB
takes 204 seconds. In another specification the states of doors are controlled. The
specification allows the doors to be opened and closed. We use two versions: In the
first version the state of the doors are represented as a function and in the second as
a relation. The first version allows Tlc4B to use TLA+ functions for the translation
and TLC needs 2 seconds to explore 32,768 states. For the second version Tlc4B
uses the newly introduced relations and takes 10 seconds. As expected, TLC can
evaluate built-in operators faster than user defined operators. Hence the distinction
Tlc4B has between functions and relations can make a significant difference in
running times. ProB needs ca. 100 seconds to explore the state space of both
specifications. However, ProB needs less than a second using symmetry reduction.

We have successfully validated several existing models from the literature (Fig.
8). In summary, ProB is substantially better than Tlc4B when constraint solv-
ing is required (NQueens, SumAndProduct, GraphIsomorphism13) or when naive
enumeration of operation arguments is inefficient (GardnerSwitchingPuzzle). For
some specifications (not listened in the table) TLC was not able to validate the
translated TLA+ specification because TLC had to enumerate a infinite set (e.g.
∃x ∈ Int : x + x = p). On the other hand, Tlc4B is substantially better than
ProB for lower-level specifications with a large state space.

12 Mainly the time is needed to start the JVM and to parse the B specification.
13 See http://www.data-validation.fr/data-validation-reverse-engineering/ for

larger industrial application of this type of task.

13

Model Lines Result States Transitions ProB Tlc4B ProB
Tlc4B

Counter 13 No Error 1000000 1000001 186.5 3.7 50.653

Doors Functions 22 No Error 32768 983041 103.2 3.3 31.194

Can-Bus 314 No Error 132598 340265 191.8 7.2 26.624

KnightsTour(1) 28 Goal 508450 678084 817.5 34.1 23.998

USB 4Endpoints 197 NoError 16905 550418 72.5 5.7 12.632

Countdown 67 Inv. Viol. 18734 84617 31.4 2.8 11.073

Doors Relations 22 No Error 32768 983041 103.3 11.6 8.926

Simpson Four Slot 78 No Error 46657 11275 33.7 4.3 7.874

EnumSetLockups 34 No Error 4375 52495 6.5 2.1 3.105

TicTacToe(1) 16 No Error 6046 19108 7.5 3.1 2.435

Cruise finite1 604 No Error 1360 25696 6.2 3.2 1.954

CarlaTravelAgencyErr 295 Inv. Viol. 377 3163 3.3 3.1 1.069

FinalTravelAgency 331 No Error 1078 4530 4.7 4.4 1.068

CSM 64 No Error 77 210 1.4 1.6 0.859

SiemensMiniPilot Abrial(1) 51 Goal 22 122 1.5 1.7 0.849

JavaBC-Interpreter 197 Goal 52 355 1.7 2.4 0.708

Scheduler 51 No Error 68 205 1.4 2.1 0.682

RussianPostalPuzzle 72 Goal 414 1159 1.7 2.8 0.588

Teletext bench 431 No Error 13 122 1.8 3.7 0.496

WhoKilledAgatha 42 No Error 6 13 1.5 5.2 0.295

GardnerSwitchingPuzzle 59 Goal 206 502 2.5 11.7 0.213

NQueens 8 18 No Error 92 828 1.4 23.2 0.062

JobsPuzzle 66 Deadlock 2 2 1.6 29.3 0.053

SumAndProduct(1) 51 No Error 1 1 9.7 420.8 0.023

GraphIsomorphism 21 Deadlock 512 203 1.8 991.5 0.002
(1) Without Deadlock Check

Fig. 8. Empirical Results: Running times of Model Checking (times in seconds)

5 Correctness of the Translation

There are several possible cases where our validation of B models using TLC could
be unsound: there could be a bug in TLC, there could be a bug in our TLA+

library for the B operators, there could be a bug in our implementation of the
translation from B to TLA+, there could be a fundamental flaw in our translation
(e.g., related to subtle issues such as well-definedness).

We have devised several approaches to mitigate those hazards. Firstly, when
TLC finds a counter example it is replayed using ProB. In other words, every
step of the counter example is double checked by ProB and the invariant or goal
predicate is also re-checked by ProB. This does not eliminate the possibility that
ProB has a bug which prevents detection of an unsound counter example, but
this makes it very unlikely. Indeed, ProB, TLC, and our translator have been
developed completely independently of each other and rely on different technology.

14

Fig. 9. Empirical Results: Ratio of running ProB vs TLC4B

Such an independent double chain is often state-of-the-art in industry for safety
critical developments and is, for example, employed for code generation.

The more tricky case is when TLC finds no counter example and claims to have
checked the full state space. Here we have the additional difficulty that, contrary to
ProB, TLC stores just fingerprints of states and that there is a small probability
that not all states have been checked (TLC provides an estimation of this prob-
ability). Validating specifications containing mathematical laws have proven to be
very useful to detect bugs in our translation and libraries (mainly bugs involving
operator precedences). In addition, we have uncovered a bug in TLC relating to
the cartesian product.14 Moreover, we use a wide variety of benchmarks, checking
that ProB and TLC producing the same result and generate the same number of
states.

6 More Related Work, Discussion and Conclusion

Mosbahi et al. [11] were the first who provided an approach of a translation from
B to TLA+. Their intention was to verify liveness conditions on B specifications
using TLC. Some of their translation rules are similar to the rules presented in this
paper. For example, they also translate B operations as TLA+ actions and provide
obvious translation rules for operators which exist in both languages. Otherwise,
there are significant differences:

14 TLC erroneously evaluates the expression {1} × {} = {} × {1} to FALSE .

15

– Our main contribution is that we deliver translation rules for almost all B
operators and in particular for those which are missing in TLA+. For example,
we specified the missing concept of relations including all relational operators.

– Moreover we also consider tiny differences between B and TLA+ such as dif-
ferent well-definedness conditions and provide an appropriate translation.

– Regarding temporal formulas we provide a way that a B user does not have to
care about stuttering steps in TLA+.

– We restrict our translation to the subset of TLA+ which is supported by the
model checker TLC. Furthermore we made many adaptions and optimizations
allowing TLC to validate B specification efficiently.

– The implemented translator is fully automatic and does not require the user to
know TLA+.

In future, we would like to improve our automatic translator:

– Providing better feedback to the user when TLC can not validate a translated
specification (e.g. if TLC has to enumerate a infinite set).

– Extending our static analyses to make some specifications executable by TLC
which are currently not supported.

– Supporting modularization and refinement techniques of B.15

The experimental results imply that it would be suitable to apply Tlc4B to
more low level refinement specifications. Normally, the state space increases and the
needed constraint solving abilities decrease during a refinement process. We are also
interested in further strategies to test the correctness of our translation. A formal
correctness proof is probably not feasible, but a strong point of our approach is
the replaying of counter examples using ProB. In addition, we plan to re-translate
the TLA+ specification back to B using our TLA2B translator [5] and comparing
the state spaces with ProB. Indeed, we have now constructed a two-way bridge
between TLA+ and B, and also hope that this will bring both communities closer
together.

In conclusion, by making TLC available to B models, we have closed a gap in the
tool support and now have a range of complimentary tools to validate B models:
Atelier-B (or Rodin) providing automatic and interactive proof support, ProB
being able to animate and model check high-level B specifications and providing
constraint-based validation, and now TLC providing very efficient model checking
of lower-level B specifications. The latter opens up many new possibilities, such as
exhaustive checking of hardware models or sophisticated protocols.

Acknowledgements We are grateful to Ivaylo Dobrikov for various discussions and

support. We also would like to thank Leslie Lamport and Stephan Merz for very useful

feedback concerning TLA+ and TLC.

15 ProB is able to transform a compound of models to a single model which can be
validated by Tlc4B. However our approach is to support modularization independent
from ProB.

16

A Translation rules

A.1 Operations

B-Method TLA+

Mosbahi et al. Tlc4B

Op = Sub Op =̂ Sub ∧ unchanged vars Op =̂ Sub ∧ unchanged vars
Op(p) = Sub - Op =̂ ∃p ∈ τ : Sub ∧ unchanged vars
q ← Op = Sub - Op =̂ ∃q ∈ τ : Sub ∧ unchanged vars

A.2 Substitutionen

B-Method TLA+

Mosbahi et al. Tlc4B

BEGIN Sub END Sub Sub
SELECT P THEN Sub END P ∧ Sub P ∧ Sub
ANY t WHERE P THEN Sub END ∃t : P ∧ Sub ∃t ∈ τp : P ∧ Sub
PRE P THEN Sub END - P ∧ Sub
skip - unchanged vars
v := e v ′ = e v ′ = e
Sub1 ‖ Sub2 Sub1 ∧ Sub2 Sub1 ∧ Sub2
ASSERT P THEN Sub END - P ∧ Sub
CHOICE Sub1 OR Sub1 END - Sub1 ∨ Sub2
IF P THEN Sub END - P ∧ Sub
IF P THEN Sub1 ELSE Sub2 END - if P then Sub1 else Sub2
IF P1 THEN Sub1

-
if P1 then Sub1

ELSIF P2 THEN Sub2 else if P2 then Sub2
ELSE Sub3 else Sub3
CASE e OF

-

case
EITHER e11,. . .,e1n THEN Sub1 e11 = e ∨ . . . ∨ e1n = e → Sub12
OR e21,. . .,e2n THEN Sub2 e21 = e ∨ . . . ∨ e2n = e → Sub22
ELSE Sub3 END END other → Sub3
LET t1,. . ., tn

-
∃ t1 ∈ {e1}, . . . , tn ∈ {en} : Sub

BE t1 = e1, . . ., tn = en
IN Sub END
v :∈ S v ′ ∈ S v ′ ∈ S
v:(P(v$0, v)) P(v , v ′) P(v , v ′)

f (e1) := e2 f ′ = [f EXCEPT ![e1] = e2] f ′ = FuncAssign(f , e1, e2) (1)

(1) Defined by the Functions module.

17

A.3 Logic

B-Method TLA+

Mosbahi et al. Tlc4B

P ∧Q P ∧Q P ∧Q
P ∨Q P ∨Q P ∨Q
P ⇒ Q P ⇒ Q P ⇒ Q
P ⇔ Q P ⇔ Q P ⇔ Q
¬P ¬P ¬P
bool(P) - P
∀x .(P ⇒ Q) ∀x : P ⇒ Q ∀x ∈ τx : P ⇒ Q
∃x .(P ∧Q) ∃x : P ∧Q ∃x ∈ τx : P ∧Q

A.4 Sets

B-Method TLA+

Mosbahi et al. Tlc4B

{} {} {}
{e1, . . . , en} {e1, . . . , en} {e1, . . . , en}
{x |P} - {x ∈ τx |P}
{x |x : S ∧ P} {x ∈ S |P} {x ∈ S |P}
P(S) SUBSET S SUBSET S

P1(S) - Pow1(S) (1)

FIN (S) - Fin(S) (1)

FIN1(S) - Fin1(S) (1)

card(S) - Cardinality(S)
S × T S × T S × T
S ∪ T - S ∪ T
S ∩ T - S ∪ T
S − T - S\T
S ∈ T - S ∈ T
S /∈ T - S /∈ T
S ⊆ T - S ⊆ T

S 6⊆ T - NotStrictSubset(S ,T) (1)

S ⊂ T - S ⊂ T (1)

S 6⊂ T - NotSubset(S ,T) (1)

union(S) union(S) union(S)

inter(S) - Inter(S) (1)⋃
x .(P |S) - union ({S : x ∈ {y ∈ τx : P})⋂
x .(P |S) - Inter({S : x ∈ {y ∈ τx : P}) (1)

(1) Defined by the BBuiltins module.

18

module BBuiltIns
extends Integers, FiniteSets, TLC

Max (S)
∆
= choose x ∈ S : ∀ p ∈ S : x ≥ p

The largest element of the set S

Min(S)
∆
= choose x ∈ S : ∀ p ∈ S : x ≤ p

The smallest element of the set S

succ[x ∈ Int]
∆
= x + 1

The successor function

pred [x ∈ Int]
∆
= x − 1

The predecessor function

recursive Sigma()
Sigma(S)

∆
= let e

∆
= choose e ∈ S : true

in if S = {} then 0 else e[2] + Sigma(S \ {e})
The sum of all second components of pairs which are elements of S

recursive Pi()
Pi(S)

∆
= let e

∆
= choose e ∈ S : true

in if S = {} then 0 else e[2] + Pi(S \ {e})
The product of all second components of pairs which are elements of S

Pow1(S)
∆
= (subset S) \ {{}}

The set of non-empty subsets

Fin(S)
∆
= {x ∈ subset S : IsFiniteSet(x)}

The set of all finite subsets.

Fin1(S)
∆
= {x ∈ subset S : IsFiniteSet(x) ∧ x 6= {}}

The set of all non-empty finite subsets

S ⊂ T
∆
= S ⊆ T ∧ S 6= T

The predicate becomes true if S is a strict subset of T

NotSubset(S , T)
∆
= ¬(S ⊆ T)

The predicate becomes true if S is not a subset of T

NotStrictSubset(S , T)
∆
= ¬(S ⊂ T)

The predicate becomes true if S is not a strict subset of T

recursive Inter()
Inter(S)

∆
= if S = {}

then Assert(false, “Error: Applied the inter operator to an empty set.”)
else let e

∆
= (choose e ∈ S : true)

in if Cardinality(S) = 1
then e

19

else e ∩ Inter(S \ {e})

The intersection of all elements of S .

A.5 Numbers

B-Method TLA+

Mosbahi et al. Tlc4B

NATURALS - Nat (1)

INTEGER - Int (2)

INT - MinInt ..MaxInt (3)

NAT - 0..MaxInt (3)

NAT1 - 1..MaxInt (3)

−m - −m (2)

m..n - m..n (1)

m > n - m > n (1)

m < n - m < n (1)

m ≥ n - m ≥ n (1)

m ≤ n - m ≤ n (1)

min(S) - Min(S) (4)

max (S) - Max (S) (4)

m + n - m + n (1)

m − n - m − n (1)

m ∗ n - m ∗ n (1)

m ÷ n - m ÷ n (1)

mn - mn (1)

m mod n - m % n (1)∏
x .(P |E) - Pi({E : x ∈ {y ∈ τx : P}}) (4)∑
x .(P |e) - Sigma({〈x , e〉 : x ∈ {y ∈ τx : P}}) (4)

succ(x) - Succ(x) (4)

pred(x) - Pred(x) (4)

(1) Defined by the Naturals standard module.
(2) Defined by the Integers standard module.
(3) Default values are used for MinInt and MaxInt.
(4) Defined by the BBuiltins module.

20

A.6 Functions

B-Method TLA+

Mosbahi et al. Tlc4B

f (e) f [e] f [e]
λx .(P |e) - [x ∈ {t ∈ τx : P}|e]
λx .(x ∈ S |e) [x ∈ S |e] [x ∈ S |e]
dom(f) DOMAIN f DOMAIN f

ran(f) - Range(f) (1)

f [S] {f [x] : x ∈ S} Image(f ,S) (1)

card(f) - Card(f) (1)

id(S) - Id(S) (1)

S � f - DomRes(S , r) (1)

S �− f - DomSub(S , r) (1)

S � f - RanRes(S , r) (1)

S �− f - RanSub(S , r) (1)

f −1 - Inverse(r) (1)

f1 �− f2 - Override(r1, r2) (1)

S → T [S → T] [S → T]

S � T [S → T] TotalSurFunc(S ,T) (1)

S � T [S → T] TotalInjFunc(S ,T) (1)

S �� T - BijFunc(S ,T) (1)

S 7→ T [S → T ∪ undef] (2) ParFunc(S ,T) (1)

S 7� T [S → T ∪ undef] (2) ParInjFunc(S ,T) (1)

S 7� T [S → T ∪ undef] (2) ParSurFunc(S ,T) (1)

(1) Defined by the Functions module.
(2) Mosbahi et al. define partial functions as total functions and

associate the value undef to the elements where the function is
not defined.

module Functions
extends FiniteSets

Range(f)
∆
= {f [x] : x ∈ domain f }

The range of the function f

Image(f , S)
∆
= {f [x] : x ∈ S ∩ domain f }

The image of the set S for the function f

Card(f)
∆
= Cardinality(domain f)

The Cardinality of the function f

Id(S)
∆
= [x ∈ S 7→ x]

The identity function on set S

21

DomRes(S , f)
∆
= [x ∈ (S ∩ domain f) 7→ f [x]]

The restriction on the domain of f for set S

DomSub(S , f)
∆
= [x ∈ domain f \S 7→ f [x]]

The subtraction on the domain of f for set S

RanRes(f , S)
∆
= [x ∈ {y ∈ domain f : f [y] ∈ S} 7→ f [x]]

The restriction on the range of f for set S

RanSub(f , S)
∆
= [x ∈ {y ∈ domain f : f [y] /∈ S} 7→ f [x]]

The subtraction on the range of f for set S

Inverse(f)
∆
= {〈f [x], x 〉 : x ∈ domain f }

The inverser relation of the function f

Override(f , g)
∆
= [x ∈ (domain f) ∪ domain g 7→ if x ∈ domain g then g [x] else f [x]]

Overwriting of the function f with the function g

FuncAssign(f , d , e)
∆
= Override(f , [x ∈ {d} 7→ e])

Overwriting the function f at index d with value e

TotalInjFunc(S , T)
∆
= {f ∈ [S → T] :

Cardinality(domain f) = Cardinality(Range(f))}
The set of all total injective functions

TotalSurFunc(S , T)
∆
= {f ∈ [S → T] : T = Range(f)}

The set of all total surjective functions

TotalBijFunc(S , T)
∆
= {f ∈ [S → T] : T = Range(f) ∧

Cardinality(domain f) = Cardinality(Range(f))}
The set of all total bijective functions

ParFunc(S , T)
∆
= union {[x → T] : x ∈ subset S}

The set of all partial functions

isEleOfParFunc(f , S , T)
∆
= domain f ⊆ S ∧ Range(f) ⊆ T

Test if the function f is a partial function

ParInjFunc(S , T)
∆
= {f ∈ ParFunc(S , T) :

Cardinality(domain f) = Cardinality(Range(f))}
The set of all partial injective functions

ParSurFunc(S , T)
∆
= {f ∈ ParFunc(S , T) : T = Range(f)}

The set of all partial surjective function

ParBijFunc(S , T)
∆
= {f ∈ ParFunc(S , T) : T = Range(f) ∧

Cardinality(domain f) = Cardinality(Range(f))}
The set of all partial bijective functions

22

A.7 Sequences

B-Method TLA+

Mosbahi et al. Tlc4B

[e1, e2, e3] - 〈e1, e2, e3〉
[] - 〈〉
seq(S) - Seq(S) (1)

seq1(S) - Seq1(S) (2)

iseq(S)
-

ISeq(S) (2)

ISeqEleOf (S) (2)

iseq1(S)
-

ISeq1(S) (2)

ISeq1EleOf (S) (2)

perm(S) - Perm(S) (2)

size(s) - Len(s) (1)

first(s) - Head(s) (1)

last(s) - Last(s) (2)

tail(s) - Tail(s) (1)

rev(s) - Reverse(s) (2)

ŝt - s ◦ t (1)

e → s - Prepend(e, s) (2)

s ← e - Append(s, e) (1)

conc(s) - Conc(s) (2)

s ↑ n - TakeFirstElements(s,n) (2)

s ↓ n - DropFirstElements(s,n) (2)

(1) Defined by the Sequences standard module.
(2) Defined by the SequencesExtended module.

module SequencesExtended
extends Naturals, FiniteSets, Sequences, TLC

local Range(f)
∆
= {f [x] : x ∈ domain f }

Last(s)
∆
= s[Len(s)]

The last element of the sequence s

Front(s)
∆
= [i ∈ 1 . . (Len(s)− 1) 7→ s[i]]

The sequence s without its last element.

Prepend(e, s)
∆
= [i ∈ 1 . . (Len(s) + 1) 7→ if i = 1 then e else s[i − 1]]

The Sequence obtained by inserting e at the front of sequence s

Reverse(s)
∆
= let l

∆
= Len(s)

23

in [i ∈ 1 . . l 7→ s[l − i + 1]]
Sequence s in reverse order

BoundedSeq(S , n)
∆
= union {[1 . . x → S] : x ∈ 0 . . n}

The set of sequences with maximum length n

Seq1(S)
∆
= Seq(S) \ {〈〉}

The set of sequences without the empty sequence

ISeq(S)
∆
=

union {{x ∈ [(1 . . n)→ S] : Cardinality(Range(x)) = Cardinality(domain x)}
: n ∈ 0 . . Cardinality(S)}

The set of injective sequences

ISeqEleOf (S)
∆
= {x ∈ Seq(S) : Len(x) = Cardinality(Range(x))}

The set of injective sequences

optimized to test if a certain sequence is in this set.

ISeq1(S)
∆
= ISeq(S) \ {〈〉}

The set of injective sequences without the empty sequence

ISeq1EleOf (S)
∆
= {x ∈ Seq(S) : x 6= 〈〉 ∧ Len(x) = Cardinality(Range(x))}

The set of injective sequences without the empty sequence

optimized to test if a certain sequence is in this set.

recursive Perm()
Perm(S)

∆
= if S = {}

then {〈〉}
else let ps

∆
= [x ∈ S 7→ {Append(s, x) : s ∈ Perm(S \ {x})}]

in union {ps[x] : x ∈ S}
The set of permutations (bijective sequences)

recursive Conc()
Conc(S)

∆
= if S = 〈〉

then 〈〉
else Head(S) ◦ Conc(Tail(S))

The sequence obtained by concatenating all sequences

which are elements of the sequence S .

TakeFirstElements(s, n)
∆
=

if n ∈ 0 . . Len(s)
then [i ∈ 1 . . n 7→ s[i]]
else Assert(n ∈ 0 . . Cardinality(s),

“The second argument of the take-first-operator is an invalid number.”)
Taking the first n elements of the sequence s.

DropFirstElements(s, n)
∆
=

if n ∈ 0 . . Len(s)

24

then [i ∈ 1 . . (Len(s)− n) 7→ s[n + i]]
else Assert(n ∈ 0 . . Cardinality(s),

“The second argument of the drop-first-operator is an invalid number.”)
Dropping the first n elements of the sequence s

A.8 Relations

B-Method TLA+

Mosbahi et al. Tlc4B

e 7→ f - 〈e, f 〉
S ↔ T - Relations(S ,T) (1)

dom(r) - RelDomain(r) (1)

ran(r) - RelRange(r) (1)

id(S) - RelId(S) (1)

S � r - RelDomRes(S , r) (1)

S �− r - RelDomSub(S , r) (1)

S � r - RelRanRes(S , r) (1)

S �− r - RelRanSub(S , r) (1)

r−1 - RelInverse(r) (1)

r [S] - RelImage(r ,S) (1)

r1 �− r2 - RelOverride(r1, r2) (1)

r1 ⊗ r2 - RelDirectProduct(r1, r2) (1)

r1; r2 - RelComposition(r1, r2) (1)

r1 ‖ r2 - RelParallelProd(r1, r2) (1)

prj1(S ,T) - RelPrj1(S ,T) (1)

prj2(S ,T) - RelPrj2(S ,T) (1)

r+ - RelClosure1(r) (1)

r∗ - RelClosure(r) (1)

rn - RelIterate(r ,n) (1)

fnc(r) - RelFnc(r) (1)

rel(r) - RelRel(r) (1)

(1) Defined by the Relations module.

module Relations
extends FiniteSets, Naturals, Sequences, TLC

Relations(S , T)
∆
= subset (S × T)

The set of all relations

RelDomain(R)
∆
= {x [1] : x ∈ R}

The domain of the relation R

25

RelRange(R)
∆
= {x [2] : x ∈ R}

The range of the relation R

RelId(S)
∆
= {〈x , x 〉 : x ∈ S}

The identity relation of set S

RelDomRes(S , R)
∆
= {x ∈ R : x [1] ∈ S}

The restriction on the domain of R for set S

RelDomSub(S , R)
∆
= {x ∈ R : x [1] /∈ S}

The subtraction on the domain of R for set S

RelRanRes(R, S)
∆
= {x ∈ R : x [2] ∈ S}

The restriction on the range of R for set S

RelRanSub(R, S)
∆
= {x ∈ R : x [2] /∈ S}

The subtraction on the range of R for set S

RelInverse(R)
∆
= {〈x [2], x [1]〉 : x ∈ R}

The reverse relation of R

RelImage(R, S)
∆
= {y [2] : y ∈ {x ∈ R : x [1] ∈ S}}

The image of R for set S

RelOverride(R1, R2)
∆
= {x ∈ R1 : x [1] /∈ RelDomain(R2)} ∪ R2

Overwriting relation R1 with R2

RelComposition(R1, R2)
∆
= {〈u[1][1], u[2][2]〉 : u ∈

{x ∈ RelRanRes(R1, RelDomain(R2))× RelDomRes(RelRange(R1), R2) :
x [1][2] = x [2][1]}}

The relational composition of R1 and R2

RelDirectProduct(R1, R2)
∆
= {〈x , u〉 ∈ RelDomain(R1)× (RelRange(R1)× RelRange(R2)) :

∧ 〈x , u[1]〉 ∈ R1
∧ 〈x , u[2]〉 ∈ R2}

The direct product of relation R1 and R2

RelParallelProduct(R1, R2)
∆
= {〈a, b〉 ∈ (RelDomain(R1)× RelDomain(R2))

× (RelRange(R1)× RelRange(R2))
: 〈a[1], b[1]〉 ∈ R1 ∧ 〈a[2], b[2]〉 ∈ R2}

The parallel product of R1 and R2

RelPrj 1(S , T)
∆
= {〈〈a, b〉, a〉 : a ∈ S , b ∈ T}

The first projection relation

RelPrj 2(S , T)
∆
= {〈〈a, b〉, b〉 : a ∈ S , b ∈ T}

The second projection relation

recursive RelIterate(,)

26

RelIterate(R, n)
∆
= case n < 0→ Assert(false, “”)

2n = 0 → RelId(RelDomain(R) ∪ RelRange(R))

2n = 1 → R

2other → RelComposition(R, RelIterate(R, n − 1))

The relation R iterated n times in relation to the composition operator

RelClosure1(R)
∆
= Warshall algorithm from Leslie Lamport ’s Hyperbook

let NR
∆
= {r [1] : r ∈ R} ∪ {r [2] : r ∈ R}

recursive W ()

W (L)
∆
= if L = {}

then R

else let n
∆
= choose node ∈ L : true

WM
∆
= W (L \ {n})

in TLCEval(WM ∪ {rs ∈ NR ×NR :

(〈rs[1], n〉 ∈ WM) ∧ (〈n, rs[2]〉 ∈ WM)})

in W (NR)

The transitive closure of R

RelClosure(R)
∆
= RelClosure1(R ∪ {〈x [1], x [1]〉 : x ∈ R} ∪ RelIterate(R, 0))

The transitive and reflexive closure of R.

RelFnc(R)
∆
= {〈x , RelImage(R, {x})〉 : x ∈ RelDomain(R)}

The transformation of R into a function

e.g . RelFnc({(0, 1), (0, 2), (1, 1)}) = {(0, {1, 2}), (1, {1})}

recursive RelRel()

RelRel(Fct)
∆
= if Fct = {}

then {}

else let e
∆
= choose x ∈ Fct : true

in {〈e[1], y〉 : y ∈ e[2]} ∪ RelRel(Fct \ {e})

The transformation of the function Fct into a relation

e.g . RelRel({(0, {1, 2}), (1, {1})}) = {(0, 1), (0, 2), (1, 1)})

27

A.9 Functions as Relations

B-Method TLA+

Mosbahi et al. Tlc4B

f (e) - RelCall(f , e) (1)

λx .(P |e) - {〈x , e〉 : x ∈ {t ∈ τx : P}
λx .(x ∈ S |e) - {〈x , e〉 : x ∈ S}
S → T

-
RelTotalFunc(S ,T) (1)

RelTotalFuncEleOf (S ,T) (1)

S � T
-

RelTotalSurFunc(S ,T) (1)

RelTotalSurFuncEleOf (S ,T) (1)

S � T
-

RelTotalInjFunc(S ,T) (1)

RelTotalInjFuncEleOf (S ,T) (1)

S �� T
-

RelTotalBijFunc(S ,T) (1)

RelTotalBijFuncEleOf (S ,T) (1)

S 7→ T
-

RelParFunc(S ,T) (1)

RelParFuncEleOf (S ,T) (1)

S 7� T
-

RelParInjFunc(S ,T) (1)

RelParInjFuncEleOf (S ,T) (1)

S 7� T
-

RelParSurFunc(S ,T) (1)

RelParSurFuncEleOf (S ,T) (1)

S 7� T
-

RelParBijFunc(S ,T) (1)

RelParBijFuncEleOf (S ,T) (1)

(1) Defined by the FunctionsAsRelations module.

module FunctionsAsRelations
extends FiniteSets, Functions, TLC , Sequences

local RelDom(f)
∆
= {x [1] : x ∈ f } The domain of the function

local RelRan(f)
∆
= {x [2] : x ∈ f } The range of the function

local MakeRel(f)
∆
= {〈x , f [x]〉 : x ∈ domain f }

Converting a TLA+ function to a set of pairs

local Rel(S , T)
∆
= subset (S × T) The set of relations

local IsFunc(f)
∆
= Cardinality(RelDom(f)) = Cardinality(f)

Testing if f is a function

local IsTotal(f , dom)
∆
= RelDom(f) = dom

Testing if f is a total function

local IsInj (f)
∆
= Cardinality(RelRan(f)) = Cardinality(f)

Testing if f is a injective function

local IsSurj (f , ran)
∆
= RelRan(f) = ran

Testing if f is a surjective function

RelCall(f , x)
∆
= if Cardinality(f) = Cardinality(RelDom(f)) ∧ x ∈ RelDom(f)

28

then (choose y ∈ f : y [1] = x)[2]
else PrintT (“Error: Invalid function call to relation ”

◦ ToString(f) ◦ “ and value ” ◦ ToString(x) ◦ “.”)
∧Assert(Cardinality(f) 6= Cardinality(RelDom(f)), “Applied a function call to a relation.”)
∧Assert(x /∈ RelDom(f), “Function applied outside domain.”)

The function call applied to function f and argument x

RelTotalFunc(S , T)
∆
= {MakeRel(f) : f ∈ [S → T]}

The set of total function

RelTotalFuncEleOf (S , T)
∆
= {f ∈ Rel(S , T) : IsFunc(f) ∧ IsTotal(f , S)}

The set of total functions

(Optimized to test if a certain function is a element of this set.)

RelTotalInjFunc(S , T)
∆
= {MakeRel(f) : f ∈ TotalInjFunc(S , T)}

The set of total injective functions

RelTotalInjFuncEleOf (S , T)
∆
= {f ∈ Rel(S , T) : IsFunc(f) ∧ IsTotal(f , S) ∧ IsInj (f)}

The set of total injective functions

(Optimized to test if a certain function is a element of this set.)

RelTotalSurFunc(S , T)
∆
= {MakeRel(f) : f ∈ TotalSurFunc(S , T)}

The set of total surjective functions

RelTotalSurFuncEleOf (S , T)
∆
= {f ∈ Rel(S , T) :

∧ IsFunc(f) ∧ IsTotal(f , S) ∧ IsSurj (f , T)}
The set of total surjective functions

(Optimized to test if a certain function is a element of this set.)

RelTotalBijFunc(S , T)
∆
= {MakeRel(f) : f ∈ TotalBijFunc(S , T)}

The set of total bijective functions

RelTotalBijFuncEleOf (S , T)
∆
= {f ∈ (subset (S × T)) :

∧ IsFunc(f) ∧ IsTotal(f , S) ∧ IsInj (f) ∧ IsSurj (f , T)}
The set of total bijective functions

(Optimized to test if a certain function is a element of this set.)

RelParFunc(S , T)
∆
= {MakeRel(f) : f ∈ ParFunc(S , T)}

The set of partial functions

RelParFuncEleOf (S , T)
∆
= {f ∈ Rel(S , T) : IsFunc(f)}

The set of partial functions

(Optimized to test if a certain function is a element of this set.)

RelParInjFunc(S , T)
∆
= {MakeRel(f) : f ∈ ParInjFunc(S , T)}

The set of partial injective functions.

RelParInjFuncEleOf (S , T)
∆
= {f ∈ Rel(S , T) : IsFunc(f) ∧ IsInj (f)}

29

The set of partial injective functions

(Optimized to test if a certain function is a element of this set.)

RelParSurFunc(S , T)
∆
= {MakeRel(f) : f ∈ ParSurFunc(S , T)}

The set of partial surjective functions

RelParSurFuncEleOf (S , T)
∆
= {f ∈ Rel(S , T) : IsFunc(f) ∧ IsSurj (f , T)}

The set of partial surjective functions.

(Optimized to test if a certain function is a element of this set.)

RelParBijFunc(S , T)
∆
= {MakeRel(f) : f ∈ ParBijFunc(S , T)}

The set of partial bijective functions

RelParBijFuncEleOf (S , T)
∆
= {f ∈ Rel(S , T) : IsFunc(f) ∧ IsSurj (f , T) ∧ IsInj (f)}

The set of partial bijective functions

(Optimized to test if a certain function is a element of this set.)

30

A.10 Sequences as Relations

B-Method TLA+

Mosbahi et al. Tlc4B

[e1, e2, e3] - {〈1, e1〉, 〈2, e2〉, 〈3, e3〉}
[] - {}
s ∈ seq(T) - IsRelSeq(s,T) (1)

s ∈ seq1(S) - IsRelSeq1(s,T) (1)

iseq(S) - RelISeq(S) (1)

iseq1(S) - RelISeq1(S) (1)

perm(S) - RelSeqPerm(S) (1)

size(s) - Cardinality(s) (2)

first(s) - RelSeqFirst(s) (1)

last(s) - RelSeqLast(s) (1)

tail(s) - RelSeqTail(s) (1)

rev(s) - RelSeqReverse(s) (1)

ŝt - ReSeqConcat(s, t) (1)

e → s - RelSeqPrepend(e, s) (1)

s ← e - RelSeqAppend(s, e) (1)

conc(s) - RelSeqConc(s) (1)

s ↑ n - RelSeqTakeFirstElements(s,n) (1)

s ↓ n - RelSeqDropFirstElements(s,n) (1)

(1) Defined by the SequencesAsRelations module.
(2) Defined by the standard module FiniteSets module.

module SequencesAsRelations
extends FiniteSets, Naturals, Relations, FunctionsAsRelations

IsRelSeq(x , S)
∆
= ∀n ∈ 1 . . Cardinality(x) : RelCall(x , n) ∈ S

Testing if x is a sequence with elements of the set S

RelSeqSet(x , S)
∆
= if IsRelSeq(x , S) then {x} else {}

IsRelSeq1(x , S)
∆
= x 6= {} ∧ IsRelSeq(x , S)

Testing if x is a non-empty sequence with elements of the set S

RelSeqSet1(x , S)
∆
= if IsRelSeq1(x , S) then {x} else {}

local ISeq(S)
∆
= union {{x ∈ [(1 . . n)→ S] : Cardinality(Range(x)) = Cardinality(domain x)}

: n ∈ 0 . . Cardinality(S)}

RelISeq(S)
∆
= {{〈n, x [n]〉 : n ∈ 1 . . Len(x)} : x ∈ ISeq(S)}

The set of all injective sequences with elements of S

RelISeq1(S)
∆
= RelISeq(S) \ {{}}

31

The set of all non-empty injective sequences with elements of S

local SeqTest(s)
∆
= RelDomain(s) = 1 . . Cardinality(s)

Testing if s is a sequence

RelSeqFirst(s)
∆
= if SeqTest(s)

then RelCall(s, 1)
else Assert(false, “Error: The argument of the first-operator should be a sequence.”)

The head of the sequence

RelSeqLast(s)
∆
= if SeqTest(s)

then RelCall(s, Cardinality(s))
else Assert(false, “Error: The argument of the last-operator should be a sequence.”)

The last element of the sequence

RelSeqSize(s)
∆
= if SeqTest(s)

then Cardinality(s)
else Assert(false, “Error: The argument of the size-operator should be a sequence.”)

The size of the sequence s

RelSeqTail(s)
∆
= if SeqTest(s)

then {〈x [1]− 1, x [2]〉 : x ∈ {x ∈ s : x [1] 6= 1}}
else Assert(false, “Error: The argument of the tail-operator should be a sequence.”)

The tail of the sequence s

RelSeqConcat(s1, s2)
∆
= if SeqTest(s1) ∧ SeqTest(s2)

then s1 ∪ {〈x [1] + Cardinality(s1), x [2]〉 : x ∈ s2}
else Assert(false, “Error: The arguments of the concatenation-operator should be sequences.”)

The concatenation of sequence s1 and sequence s2

RelSeqPrepand(e, s)
∆
= if SeqTest(s)

then {〈1, e〉} ∪ {〈x [1] + 1, x [2]〉 : x ∈ s}
else Assert(false, “Error: The second argument of the prepend-operator should be a sequence.”)

The sequence obtained by inserting e at the front of sequence s.

RelSeqAppend(s, e)
∆
= if SeqTest(s)

then s ∪ {〈Cardinality(s) + 1, e〉}
else Assert(false, “Error: The first argument of the append-operator should be a sequence.”)

The sequence obtained by appending e to the end of sequence s.

RelSeqReverse(s)
∆
= if SeqTest(s)

then {〈Cardinality(s)− x [1] + 1, x [2]〉 : x ∈ s}
else Assert(false, “Error: The argument of the reverse-operator should be a sequence.”)

The sequence obtained by reversing the order of the elements.

RelSeqFront(s)
∆
= if SeqTest(s)

then {x ∈ s : x [1] 6= Cardinality(s)}
else Assert(false, “Error: The argument of the front-operator should be a sequence.”)

32

The front of the sequence s (all but last element)

recursive RelSeqPerm()

RelSeqPerm(S)
∆
= if S = {}

then {{}}
else let ps

∆
= [x ∈ S 7→ {RelSeqAppend(s, x) : s ∈ RelSeqPerm(S \ {x})}]

in union {ps[x] : x ∈ S}
The set of bijective sequences (permutations)

e.g . {〈1, 2, 3〉, 〈2, 1, 3〉, 〈2, 3, 1〉, 〈3, 1, 2〉, 〈3, 2, 1〉} for S = {1, 2, 3}

recursive RelSeqConc()

RelSeqConc(S)
∆
=

if S = {}
then {}
else RelSeqConcat(RelSeqFirst(S), RelSeqConc(RelSeqTail(S)))

The sequence obtained by concatenating all sequences

which are elements of the sequence S .

RelSeqTakeFirstElements(s, n)
∆
=

if SeqTest(s) ∧ n ∈ 0 . . Cardinality(s)

then {x ∈ s : x [1] ≤ n}
else ∧Assert(n ∈ 0 . . Cardinality(s),

“The second argument of the take-first-operator is an invalid number.”)

∧Assert(false, “Error: The first argument of the take-first-operator should be a sequence.”)

The first n elements of s as a sequence

RelSeqDropFirstElements(s, n)
∆
=

if SeqTest(s) ∧ n ∈ 0 . . Cardinality(s)

then {〈x [1]− n, x [2]〉 : x ∈ {x ∈ s : x [1] > n}}
else ∧Assert(n ∈ 0 . . Cardinality(s),

“The second argument of the drop-first-operator is an invalid number.”)

∧Assert(false, “Error: The first argument of the drop-first-operator should be a sequence.”)

The last n elements of s as a sequence

A.11 Strings

B-Method TLA+

Mosbahi et al. Tlc4B

“abc” - “abc”
STRING - STRING

33

A.12 Records

B-Method TLA+

Mosbahi et al. Tlc4B

r ′h - r .h
rec(h1 : e1, . . . , hn : en) - [h1 7→ e1, . . . , hn 7→ en]
struct(h1 : S1, . . . , h1 : Sn) - [h1 : S1, . . . , hn : Sn]

34

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. The TLA+ proof system: Build-

ing a heterogeneous verification platform. In A. Cavalcanti, D. Déharbe, M.-C. Gaudel,
and J. Woodcock, editors, Proceedings ICTAC 2010, LNCS 6255, page 44, 2010.

3. ClearSy. B language reference manual. http://www.tools.clearsy.com/resources/
Manrefb_en.pdf. Accessed: 2013-11-10.

4. E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1):1–20, 2003.
5. D. Hansen and M. Leuschel. Translating TLA+ to B for validation with ProB. In

Proceedings iFM’2012, LNCS 7321, pages 24–38. Springer, 2012.
6. D. Hansen and M. Leuschel. Translating B to TLA+ for validation with TLC: There

and back again. http://www.stups.uni-duesseldorf.de/w/Special:Publication/

HansenLeuschel_TLC4B_techreport, 2013.

7. L. Lamport. The TLA+ hyperbook. http://research.microsoft.com/en-us/um/

people/lamport/tla/hyperbook.html. Accessed: 2013-10-30.
8. L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley, 2002.
9. M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,

and D. Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 2003.

10. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B method.
STTT, 10(2):185–203, 2008.

11. O. Mosbahi, L. Jemni, and J. Jaray. A formal approach for the development of
automated systems. In J. Filipe, B. Shishkov, and M. Helfert, editors, ICSOFT (SE),
pages 304–310. INSTICC Press, 2007.

12. M. Reynolds. Changing nothing is sometimes doing something. Technical Report
TR-98-02, Department of Computer Science, King’s College London, February 1998.

13. Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifications. In L. Pierre
and T. Kropf, editors, Proceedings CHARME’99, LNCS 1703, pages 54–66. Springer-
Verlag, 1999.

35

