
Translating B to TLA+ for Validation with TLC

Dominik Hansen and Michael Leuschel

Institut für Informatik, University of Düsseldorf, {hansen, leuschel}@cs.uni-duesseldorf.de

Abstract

The state-based formal methods B and TLA+ share the common base of predicate
logic, arithmetic and set theory. However, there are still considerable differences,
such as the way to specify state transitions, the different approaches to typing,
and the available tool support. In this paper, we present a translation from B to
TLA+ to validate B specifications using the model checker TLC. The translation
includes many adaptations and optimizations to allow efficient checking by TLC.
Moreover, we present a way to validate liveness properties for B specifications under
fairness conditions. Our implemented translator, Tlc4B, automatically translates
a B specification to TLA+, invokes the model checker TLC, and translates the
results back to B. We use ProB to double check the counter examples produced
by TLC and replay them in the ProB animator. Tlc4B can also transmit con-
stant values, precalculated by ProB to TLC. This allows the user to combine the
strength of both tools, i.e. ProB’s constraint solving abilities and TLC’s highly
tuned model checking core. Furthermore, we demonstrate an approach to opti-
mize the model checking process by encoding proof information in the translated
TLA+specification. We also present a series of case studies and benchmark tests
comparing Tlc4B and ProB.
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1. Introduction and Motivation

B [1] and TLA+ [2] are both state-based formal methods rooted in predicate
logic, combined with arithmetic, set theory and support for mathematical functions.
However, as already pointed out in [3], there are considerable differences:

• B is strongly typed, while TLA+ is untyped. For the translation, it is ob-5

viously easier to translate from a typed to an untyped language than vice
versa.

• The concepts of modularization are quite different.

• Functions in TLA+ are total, while B supports relations, partial functions,
injections, bijections, etc.10
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• B is limited to invariance properties, while TLA+ also allows the specification
of liveness properties.

• The structure of a B machine or development is prescribed by the B-method,
while in a TLA+ specification any formula can be considered as a system
specification.15

As far as tool support is concerned, TLA+ is supported by the explicit state model
checker TLC [4] and more recently by the TLAPS prover [5]. TLC has been
used to validate a variety of distributed algorithms (e.g. [6]) and protocols. B has
extensive proof support, e.g., in the form of the commercial product AtelierB [7]
and the animator, constraint solver and model checker ProB [8, 9]. Both AtelierB20

and ProB are being used by companies, mainly in the railway sector for safety
critical control software. In an earlier work [3] we have presented a translation
from TLA+ to B, which enabled applying the ProB tool to TLA+ specifications.
In this paper we present a translation from B to TLA+, this time with the main
goal of applying the model checker TLC to B specifications. Indeed, TLC is a25

very efficient model checker for TLA+ with an efficient disk-based algorithm and
support for fairness. ProB has an LTL model checker, but it does not support
fairness (yet) and is entirely RAM-based. The model checking core of ProB is
less tuned than TLA+. On the other hand, ProB incorporates a constraint solver
and offers several features which are absent from TLC, in particular an interactive30

animator with various visualization options. One feature of our approach is to
replay the counter-examples produced by TLC within ProB, to get access to those
features but also to validate the correctness of our translation. In this paper, we
also present a thorough empirical evaluation between TLC and ProB. The results
show that for lower-level, more explicit formal models, TLC fares better, while35

for certain more high-level formal models ProB is superior to TLC because of its
constraint solving capabilities. The addition of a lower-level model checker thus
opens up many new B application possibilities.

This article is the extended version of the ABZ 2014 conference paper [10]. For
this article we extended our work in different aspects:40

• We use a static analysis to deduce proof information which can be used to
optimize the translation (Sect. 4). We also enable symmetry reduction.

• We demonstrate the use of temporal formulas in B with the aid of an example.
In particular, we show how to specify fairness conditions on parameterized
operations (Sect. 5).45

• We extended the interaction of ProB and TLC by running TLC on precal-
culated values of constants produced by ProB.

• We extended the empirical evaluation by several non-trivial models form the
literature (Sect. 7). Moreover, we present an evaluation of the optimization
techniques and of running TLC in parallel.50
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Figure 1: The TLC4B Translation and Validation Process

• We discuss the limitations and possible improvements in a separate section
(Sect. 8).

2. Translation

The complete translation process from B to TLA+ and back to B is depicted
in Fig. 1. Before explaining the individual phases, we will illustrate the translation55

with an example and explain the various phases based on that example. More
specific implementation details will be covered in Sect. 6.

2.1. Example

Below we use a specification (adapted from [9]) of a process scheduler (Fig. 2).
The specified system allows at most one process to be active. Each process can60

qualify for being selected by the scheduler by entering a FIFO queue. The specifi-
cation contains two variables: a partial function state mapping each process to its
state (a process must be created before it has a state) and a FIFO queue modeled
as an injective sequence of processes. In the initial state no process is created and
the queue is empty. The specification contains various operations to create (new),65

delete (del), or add a process to queue (addToQueue). Additionally, there are two
operations to load a process into the processor (enter) and to remove a process
from the processor (leave). The specification contains two safety conditions beside
the typing predicates of the variables:

• At most one process should be active.70

• Each process in the FIFO queue should have the state idle.

The translated TLA+- specification is shown in Fig. 3. At the beginning of the
module some standard modules are loaded via the EXTENDS statement. These
modules contain several operators used in this specification. The enumerated set
STATE is translated as a constant definition. The definition itself is renamed (into75

STATE 1 ) by the translator because STATE is keyword in TLA+. The invari-
ant of the B specification is divided into several definitions in the TLA+ module.

3



MODEL Scheduler
SETS

PROCESSES;
STATE = {idle, active}

VARIABLES
state,
queue

INVARIANT
state ∈ PROCESSES 7→ STATE
& queue ∈ iseq(PROCESSES)
& card(state−1[{active}]) ≤ 1
& !x.(x ∈ ran(queue) ⇒ state(x) = idle)

INITIALISATION
state := {} || queue := [ ]

OPERATIONS
new(p) =

SELECT p /∈ dom(state)
THEN state := state ∪ {(p 7→ idle)}
END;

del(p) =
SELECT p ∈ dom(state) ∧ state(p) = idle ∧ p /∈ ran(queue)
THEN state := {p} �− state
END;

addToQueue(p) =
SELECT p ∈ dom(state) ∧ state(p) = idle
THEN queue := queue ← p
END;

enter =
SELECT queue 6= [ ] ∧ state−1[{active}] = {}
THEN state(first(queue)) := active || queue := tail(queue)
END;

leave(p) =
SELECT p ∈ dom(state) ∧ state(p) = active
THEN state(p) := idle
END

END

Figure 2: MODEL Scheduler
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This enables TLC to provide better feedback about which part of the invariant
is violated. We translate each B operation as a TLA+ action. Substitutions are
translated as before-after predicates where a primed variable represents the variable80

in the next state. Unchanged variables must be explicitly specified. Note that a
parameterized operation is translated as existential quantification. The quantifi-
cation itself is located in the next-state relation Next , which is a disjunction of
all actions. Some of the operations’ guards appear in the Next definition rather
than in the corresponding action. This is an instance of our translator optimizing85

the translation for the interpretation with TLC (described in Sect. 3). The whole
TLA+ specification is described by the Spec definition. A valid behavior for the
system has to satisfy the Init predicate for the initial state and then each step of
the system must satisfy the next-state relation Next .

To validate the translated TLA+ specification with TLC we have to provide an90

additional configuration file (Fig 4) telling TLC the main (specification) definition
and the invariant definitions. Moreover, we have to assign values to all constants
of the module. If the axioms allow several solutions for a constant we will trans-
late a constant as variable. All possible solution values will be enumerated in the
initialization and the variable will be kept unchanged by all actions. In this case95

we assign a set1 of model values to the constant PROCESSES and single model
values to the other constants. In terms of functionality, model values correspond
to elements of a enumerated set in B. Model values are equal to themselves and
unequal to all other model values.

2.2. Translating Data Values and Functionality Inference100

Due to the common base of B and TLA+, most data types exist in both lan-
guages, such as sets, functions and numbers. As a consequence, the translation of
these data types is almost straightforward.

TLA+ has no built-in concept of Relations2, but TLA+ provides all necessary
data types to define relations based on the model of the B-Method. We represent105

a relation in TLA+ as a set of tuples (e.g. {〈1,TRUE 〉, 〈1,FALSE 〉 〈2,TRUE 〉}).
The drawback of this approach is that in contrast to B, TLA+’s own functions and
sequences are not based on the relations defined is this way. As an example, we
cannot specify a TLA+ built-in function as a set of pairs; in B it is usual to do
this as well as to apply set operators (e.g. the union operator as in f ∪{2 7→ 3}) to110

functions or sequences. To support such a functionality in TLA+, functions and
sequences should be translated as relations if they are used in a “relational way”. It
would be possible to always translate functions and sequences as relations. But in
contrast to relations, functions and sequences are built-in data types in TLA+ and
their evaluation is optimized by TLC (e.g. lazy evaluation). Hence we extended115

the B type-system to distinguish between functions and relations. Thus we are able
to translate all kinds of relations and to deliver an optimized translation.

1The size of the set is a default number or can be specified by the user.
2 Relations are not mentioned in the language description of [2]. In [11] Lamport introduces

relations in TLA+ only to define the transitive closure.

5



module Scheduler
extends Naturals, FiniteSets, Sequences, TLC , Relations, Functions,
FunctionsAsRelations, SequencesExtended

constants PROCESSES , idle, active

variables state, queue

STATE 1
∆
= {idle, active}

Invariant1
∆
= state ∈ RelParFuncEleOf (PROCESSES , STATE 1)

Invariant2
∆
= queue ∈ ISeqEleOf (PROCESSES )

Invariant3
∆
= Cardinality(RelImage(RelInverse(state), {active})) ≤ 1

Invariant4
∆
= ∀ x ∈ Range(queue) : RelCall(state, x ) = idle

Init
∆
= ∧ state = {}
∧ queue = 〈〉

new(p)
∆
= ∧ state ′ = state ∪ {〈p, idle〉}

∧ unchanged 〈queue〉

del(p)
∆
= ∧ RelCall(state, p) = idle

∧ state ′ = RelDomSub({p}, state)
∧ unchanged 〈queue〉

addToQueue(p)
∆
= ∧ RelCall(state, p) = idle

∧ queue ′ = Append(queue, p)
∧ unchanged 〈state〉

enter
∆
= ∧ queue 6= 〈〉

∧ RelImage(RelInverse(state), {active}) = {}
∧ state ′ = RelOverride(state, {〈Head(queue), active〉})
∧ queue ′ = Tail(queue)

leave(p)
∆
= ∧ RelCall(state, p) = active
∧ state ′ = RelOverride(state, {〈p, idle〉})
∧ unchanged 〈queue〉

Next
∆
= ∨ ∃ p ∈ PROCESSES \RelDomain(state) : new(p)
∨ ∃ p ∈ RelDomain(state) \Range(queue) : del(p)
∨ enter
∨ ∃ p ∈ RelDomain(state) : leave(p)
∨ ∃ p ∈ RelDomain(state) \Range(queue) : addToQueue(p)

Figure 3: Module Scheduler
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SPECIFICATION Spec
INVARIANT Invariant1, Invariant2, Invariant3, Invariant4
CONSTANTS
PROCESSES = {PROCESSES1, PROCESSES2, PROCESSES3}
idle = idle
active = active

Figure 4: Configuration file for the module Scheduler

We use a type inference algorithm adapted to the extended B type-system to
get the required type information for the translation. Unifying a function type
with a relation type will result in a relation type (e.g. P(Z × Z) for both sides of120

the equation λx .(x ∈ 1..3|x + 1) = {(1, 1)}). However, there are several relational
operators preserving a function type if they are applied to operands with a function
type (e.g. ran, front or tail). For these operators we have to deliver two translation
rules (functional vs relational). Moreover the algorithm verifies the type correctness
of the B specification (i.e. only values of the same type can be compared with each125

other).

2.3. Translating Operators

In TLA+ some common operators such as arithmetic operators are not built-
in operators. They are defined in separate modules called standard modules that
can be extended by a specification.3 We reuse the concept of standard modules to130

include the relevant B operators. Due to the lack of relations in TLA+ we have to
provide a module containing all relational operators (Fig. 5).

Moreover B provides a rich set of operators on functions such as all combinations
of partial/total and injective/surjective/bijective. In TLA+ we only have total
functions. We group all operators on functions together in an additional module135

(Fig. 6). Sometimes there are several ways to define an operator. We choose the
definition which can be best handled by TLC.4

Some operators exists in both languages but their definitions differ slightly. For
example, the B-Method requires that the first operand for the modulo operator
must be a natural number. In TLA+ it can be also a negative number.140

Operator B-Method TLA+

a modulo b a ∈ N ∧ b ∈ N1 a ∈ Z ∧ b ∈ N1

To verify B’s well-definedness condition for modulo we use TLC’s ability to check
assertions. The special operator Assert(P , out) throws a runtime exception with

3TLC supports operators of the common standard modules Integers and Sequences in a efficient
way by overwriting them with Java methods.

4Note that some of the definitions are based on the Cardinality operator that is restricted to
finite sets.
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module Relations
extends FiniteSets, Naturals, TLC
Relation(X , Y )

∆
= subset (X ×Y )

RelDomain(R)
∆
= {x [1] : x ∈ R}

RelRange(R)
∆
= {x [2] : x ∈ R}

RelInverse(R)
∆
= {〈x [2], x [1]〉 : x ∈ R}

RelDomRes(S , R)
∆
= {x ∈ R : x [1] ∈ S} Domain restriction

RelDomSub(S , R)
∆
= {x ∈ R : x [1] /∈ S} Domain subtraction

RelRanRes(R, S )
∆
= {x ∈ R : x [2] ∈ S} Range restriction

RelRanSub(R, S )
∆
= {x ∈ R : x [2] /∈ S} Range subtraction

RelImage(R, S )
∆
= {y [2] : y ∈ {x ∈ R : x [1] ∈ S}}

RelOverride(R1, R2)
∆
= {x ∈ R : x [1] /∈ RelDomain(R2)} ∪ R2

RelComposition(R1, R2)
∆
= {〈u[1][1], u[2][2]〉 : u ∈

{x ∈ RelRanRes(R1, RelDomain(R2))× RelDomRes(RelRange(R1), R2) :
x [1][2] = x [2][1]}}

...

Figure 5: An extract of the Module Relations

module Functions
extends FiniteSets
Range(f )

∆
= {f [x ] : x ∈ domain f }

Image(f , S )
∆
= {f [x ] : x ∈ S}

TotalInjFunc(S , T )
∆
= {f ∈ [S → T ] :

Cardinality(domain f ) = Cardinality(Range(f ))}
ParFunc(S , T )

∆
= union {[x → T ] : x ∈ subset S}

ParInjFunc(S , T )
∆
= {f ∈ ParFunc(S , T ) :

Cardinality(domain f ) = Cardinality(Range(f ))}
...

Figure 6: An extract of the Module Functions

the error message out if the predicate P is false. Otherwise, Assert will be evaluated
to true. The B modulo operator can thus be expressed in TLA+ as follows:145

Modulo(a, b)
∆
= if a ≥ 0 then a % b else Assert(false, “WD ERROR”)

We also have to consider well-definedness conditions if we apply a function call to
a relation:

RelCall(r , x )
∆
= if Cardinality(r) = Cardinality(RelDom(r)) ∧ x ∈ RelDom(r)

then (choose y ∈ r : y [1] = x )[2]
else Assert(false, “WD ERROR”)

In summary, we provide the following standard modules for our translation:
8



• Relations150

• Functions

• SequencesExtended (Some operators on sequences which are not included
the standard module Sequences)

• FunctionsAsRelations (Defines all function operators on sets of pairs ensuring
their well-definedness conditions)155

• SequencesAsRelations (Defines all operators on sequences which are repre-
sented as sets of pairs.)

• BBuiltins (Miscellaneous operators e.g. modulo, min and max)

The complete translation rules of all data types and operators can be found in the
technical report [12].160

3. Optimizations

3.1. Subtype Inference

Firstly, we will describe how TLC evaluates expressions: In general TLC evalu-
ates an expression from left to right. Evaluating an expression containing a bound
variable such as an existential quantification (∃x ∈ S : P), TLC enumerates all165

values of the associated set and then substitutes them for the bound variable in
the corresponding predicate. Due to missing constraint solving techniques, TLC
is not able to evaluate another variant of the existential quantification without an
associated set (∃x : P). This version is also a valid TLA+ expression and directly
corresponds to the way of writing an existential quantification in B (∃x .(P)). How-170

ever, we confine our translations to the subset of TLA+ which is supported by
TLC. Thus the translation is responsible for making all required adaptations to
deliver an executable TLA+ specification. For the existential quantification (or all
other expressions containing bound variables), we use the inferred type τ of the
bound variable as the associated set (∃x ∈ τx : P .) However, in most cases, it is175

not performant to let TLC enumerate over a type of a variable, in particular TLC
aborts if it has to enumerate an infinite set. Alternatively, it is often possible to
restrict the type of the bound variable based on a static analysis of the correspond-
ing (typing) predicate. We use a pattern matching algorithm to find the following
kind of expressions5 where x is a bound variable, e is an expression, and S is ideally180

a subset of the type: x = e , x ∈ S , x ⊆ S , x ⊂ S or x /∈ S . In case of the last
pattern we build the set difference of the type of the variable x and the set S :

B-Method TLA+

∃x .(x /∈ S ∧ P) ∃x ∈ (τx \ S ) : P

5The B language description in [7] requires that each (bound) variable must be typed by one
of these patterns before use.
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If more than one of the patterns can be found for one variable, we build the inter-
section to keep the associated set as small as possible:185

B-Method TLA+

∃x .(x = e ∧ x ∈ S1 ∧ x ⊆ S2 ∧ P) ∃x ∈ ({e} ∩ S1 ∩ SUBSET S2) : P

This reduces the number of times TLC has to evaluate the predicate P .

3.1.1. Lazy Evaluation

Sometimes TLC can use heuristics to evaluate an expression. For example
TLC can evaluate 〈1, 2, 1〉 ∈ Seq({1, 2}) to true without evaluating the infinite set190

of sequences. We will show how we can use these heuristics to generate an optimized
translation. As mentioned before functions have to be translated as relations if they
are used in a relational way in the B specification. How then should we translate
the set of all total functions (S → T )? The easiest way is to convert each function
to a relation in TLA+:195

MakeRel(f )
∆
= {〈x , f [x ]〉 : x ∈ DOMAIN f }

The resulting operator for the set of all total functions is:

RelTotalFunctions(S ,T )
∆
= {MakeRel(f ) : f ∈ [S → T ]}

However this definition has a disadvantage, if we just want to check if a single
function is in this set the whole set will be evaluated by TLC. Using the following
definition TLC avoids the evaluation of the whole set:

200

RelTotalFunctionsEleOf (S ,T )
∆
= {f ∈ SUBSET (S × T ) :
∧ Cardinality(RelDomain(f )) = Cardinality(f )
∧ RelDomain(f ) = S}

In this case, TLC only checks if a function is a subset of the cartesian product
(the whole Cartesian product will not be evaluated) and the conditions are checked
only once. Moreover this definition fares well even if S or T are sets of functions
(e.g. S → V → W in B). The advantage of the first definition is that it is faster205

when the whole set must be evaluated. As a consequence, we use both definitions
for our translation and choose the first if TLC has to enumerate the set (e.g.
∃x ∈ RelTotalFunctions(S ,T ) : P) and the second testing if a function belongs to
the set (e.g. f ∈ RelTotalFunctionsEleOf (S ,T ) as an invariant).

4. Proof guided model checking210

The article [13] shows how to use proof information to optimize the consistency
check of a model, i.e., checking whether the invariants of the model hold in all
reachable states. The crucial idea is to deduce from the proof information that
certain B operations (or events) are guaranteed to preserve the correctness of spe-
cific parts of the invariant. By keeping track of the operations leading to a certain215
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state in the state space within the model checker, one can avoid evaluating the
corresponding parts of the invariant. In contrast to their approach, we will not
implement this optimization in the verification tool, but will rather directly encode
it in the generated TLA+ model.

Deducing proof information. As a first approach we limit ourselves to use proof220

information which can be easily obtained by a simple static analysis:6 A certain
TLA+ action preserves the correctness of an invariant if it only contains variables
which are kept unchanged by the action. By revisiting the scheduler model (Fig. 3),
we can deduce that the actions new , del and leave all preserve the correctness of
the invariants Invariant2, and the action addToQueue preserves the correctness of225

Invariant1 and Invariant3 .

Encoding. To use this information, we specify an additional variable (last action)
to keep track of the action leading to each state. Each action assigns a specific
value to this variable. The invariants are extended by a disjunction checking if the
last action preserves the corresponding invariant. The extended scheduler module230

including proof informations is shown in Fig. 7 As already mentioned, TLC will
evaluate a disjunction from left to right. If the left subformula is true, the right
(possibly complex) subformula will not be evaluated. When successful, we replace
evaluating a complex invariant by a simple membership test.

Evaluation. Using model with the additional state variable last action can induce a235

significant overhead, i.e., the number of generated distinct states may be increased.
Whenever two different actions lead to the same state in the original state space,
two different states will now be produced for this state in the new state space.
However, it is possible to preserve the original state space by modifying TLC’s
state function called the view7 The default view is the tuple of all variables and two240

states are treated to be equal if they have the same view. Hence, we can instruct
TLC to exclude the last action variable from the view. This causes TLC to omit
the evaluation of a state if another state with the same view has been evaluated
previously.

Despite this, our optimization can sometimes still produce a small overhead245

due to more complex formulas. Moreover, its effectiveness depends on the order of
executed actions. Still, for many larger models it produces a measurable benefit of
about 20%.

5. Checking Temporal Formulas

One of the main advantages of TLA+ is that temporal properties can be spec-250

ified directly in the language itself. Moreover the model checker TLC can be used
to verify such formulas. But before we show how to write temporal formulas for

6In future work, we plan to use more elaborate proof information in the style of [13].
7The view is described in the tool section (14.3.3) of [2].
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module Scheduler
...

constants . . . , Init action, new action, del action, enter action,
leave action, addToQueue action
variables state, queue, last action
myView

∆
= 〈state, queue〉

Invariant1
∆
= ∨ last action ∈ {addToQueue action}
∨ state ∈ RelParFuncEleOf (PROCESSES , STATE 1)

Invariant2
∆
= ∨ last action ∈ {new action, leave action, del action}
∨ queue ∈ ISeqEleOf (PROCESSES )

Invariant3
∆
= ∨ last action ∈ {addToQueue action}
∨ Cardinality(RelImage(RelInverse(state), {active})) ≤ 1

Invariant4
∆
= ∀ x ∈ Range(queue) : RelCall(state, x ) = idle

Init
∆
= ∧ state = {}
∧ queue = 〈〉
∧ last action = Init action

new(p)
∆
= ∧ state ′ = state ∪ {〈p, idle〉}

∧ unchanged 〈queue〉
∧ last action ′ = new action

...

Figure 7: Module Scheduler extended by proof informations

a B specification we first have to describe a main distinction between the two for-
mal methods. In contrast to B, the standard template of a TLA+ specification
(Init ∧ 2[Next ]vars) allows stuttering steps at any time.8 This means that a regu-255

lar step of a TLA+ specification is either a step satisfying one of the actions or a
stuttering step leaving all variables unchanged. When checking a specification for
errors such as invariant violations it is not necessary to consider stuttering steps,
because such an error will be detected in a state and stuttering steps only allow
self transitions and do not add additional states. For deadlock checking stuttering260

steps are also not regarded by TLC, but verifying a temporal formula with TLC
often ends in a counter-example caused by stuttering steps. For example, assuming
we have a very simple specification of a counter in TLA+ with a single variable c:

Spec
∆
= c = 1 ∧2[c < 10 ∧ c′ = c + 1]c

We would expect that the counter will eventually reach 10 (3(c = 10)). However
TLC will report a counter-example, saying that at a certain state (before reaching265

10), an infinite number of stuttering steps occurs and 10 will never reached.

8[Next ]vars
∆
= Next ∨UNCHANGED vars

12



From the B side we do not want to deal with these stuttering steps. TLA+ al-
lows to add fairness conditions to the specification to avoid infinite stuttering steps.
Adding weak fairness for the next-state relation (WFvars(Next)) would prohibit an
infinite number of stuttering steps if a step of the next-state relation is possible (i.e.270

Next is always enabled):

WFvars(A)
∆
= ∨ 23(〈A〉vars)

∨ 23(¬ enabled 〈A〉vars)

However this fairness condition is too strong: It asserts that either the action A
will be executed infinitely often changing the state of the system (A must not be a
stuttering step)275

〈A〉vars
∆
= A ∧ vars ′ 6= vars

or A will be disabled infinitely often. Assuming weak fairness for the next state re-
lation will also eliminate user defined stuttering steps. User defined stuttering steps
result from B operations which do not change the state of the system (e.g. skip
or query operations). These stuttering steps may cause valid counter-examples
and should not be eliminated. Hence, the translation should retain user defined280

stuttering steps in the translated TLA+ specfication and should disable stuttering
steps which are implicitly included. In [14], Richards describes a way to distinguish
between these two kinds of stuttering steps in TLA+. We use his definition of
“Very Weak Fairness” applied to the next state relation (VWFvars(Next)) to dis-
able implicit stuttering steps and allow user defined stuttering steps in the TLA+

285

specification:

VWFvars(A)
∆
= ∨ 23(〈A〉vars)

∨ 23(¬ enabled 〈A〉vars)
∨ 23(enabled (A ∧ unchanged vars))

The definition of VWFvars(A) is identical to WFvars(A) except for an additional
third case allowing infinite stuttering steps if A is a stuttering action. We define
the resulting template of the translated TLA+ specification as follows:290

Init ∧2[Next ]vars ∧VWFvars(Next)

We allow the B user to use following temporal operators to define liveness con-
ditions for a B specification:

• 2f (Globally)

• 3f (Finally)

• ENABLED(op) (Check if the operation op is enabled)295

• ∃x .(P ∧ f ) (Existential quantification)

• ∀x .(P ⇒ f ) (Universal quantification)

• WF (op) (Weak Fairness will be translated to VWF)
13



• SF (op) (Strong Fairness will be translated to “Almost Strong Fairness”9)

Liveness conditions in B. Since temporal operators are not part of the B300

language, we insert liveness conditions (represented in string format) into the spec-
ification under the DEFINITIONS clause. As an example, we revisit the scheduler
specification from Section 2.1 and specify the following liveness property:

Whenever a process is added to the queue it will always eventually
be loaded into the processor (i.e. gets the state active).305

To satisfy this condition, we have to require WF for the operations enter and leave.
Otherwise, there would be a infinite loop of creating a new process and deleting it
immediately as a counter example. We can formulate this liveness condition with
the aid of the newly introduced temporal operators and ordinary B predicates:

ASSERT LTL 1 == ”WF(enter) ∧ WF(leave)
⇒ 2(∀p.(p ∈ PROCESSES ∧ p ∈ ran(queue)

⇒ 3p ∈ dom(state) ∧ state(p) = active)”
310

The translation of the liveness condition is almost straight forward:

ASSERT LTL 1
∆
=

VWFvars(enter) ∧VWFvars(∃ p ∈ RelDomain(state) : leave(p))
⇒ 2(∀ p ∈ PROCESSES : p ∈ Range(queue)

⇒ 3(p ∈ RelDomain(state) ∧ RelCall(state, p) = active))

All temporal operators can be directly mapped to the existing TLA+ operators.
The translation of the temporal quantification is slightly different compared to
the translation of a ordinary quantification. The model checker TLC can only315

substitute values of a constant set for the bound variable p. Hence, we only use the
constant set PROCESSES as the associated set and do not build the intersection of
PROCESSES and Range(queue) as described in the optimization section. If there
are no assumptions on the parameters of an operation that is considered to be fair
(here the leave operation) we will create an existential quantification in the fairness320

condition in order to get a valid TLA+ expression. This will force TLC to ignore
the parameter when it evaluates this fairness condition. Alternatively, the user can
explicitly specify the parameter:

∀p.(p ∈ PROCESSES ⇒WF (leave(p))

The semantic meaning of the last formula is that the model should be fair with325

respect to the leave operation and all processes. The other fairness condition
could allow to neglect a certain process by favouring other processes. However,
for the scheduler model both conditions are equivalent because there is only one
active process. Finally, we have to add an entry in configuration file (PROPERTY
ASSERT LTL 1) telling TLC to verify this liveness property.330

9Analogically Richards defines “Almost Strong Fairness” (ASF) as a weaker version of strong
fairness (SF) reflecting the different kinds of stuttering steps
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6. Implementation

Our translator, called Tlc4B, is implemented in Java and it took about six
months to develop the initial version. Tlc4B has been integrated into the ProB
Tcl/Tk UI as of version 1.3.7-beta10. It can now also be called from the command-
line version (probcli). Figure 1 in Section 2 shows the translation and validation335

process of Tlc4B. After parsing the specificationTlc4B performs some static anal-
yses (e.g. type checking or checking the scope of the variables) verifying the seman-
tic correctness of the B specification. Moreover, as explained in Section 2, Tlc4B
extracts required information from the B specification (e.g. subtype inference) to
generate an optimized translation. Subsequently, Tlc4B creates a TLA+ module340

with an associated configuration file and invokes the model checker TLC. The re-
sults produced by TLC are translated back to B. For example, a goal predicate
is translated as a negated invariant. If this invariant is violated, a “Goal found”
message is reported. We expect TLC to find the following kinds of errors in the B
specification:345

• Deadlocks

• Invariant violations

• Assertion errors

• Violations of constants properties (i.e., axioms over the B constants are false)

• Well-definedness violations350

• Violations of temporal formulas

For certain kinds of errors such as a deadlock or an invariant violation, TLC
reports a trace leading to the state where the error occurs. A trace is a sequence
of states where each state is a mapping from variables to values. Tlc4B trans-
lates the trace back to B (as a list of B state predicates). As shown in figure 8355

counter-examples found by TLC are automatically replayed in the ProB animator
(displayed in the history pane) to give the user an optimal feedback. The user needs
no knowledge of TLA+ because the translation is completely hidden.

6.1. Constant Setup

ProB allows the user to partially validate infinite models. For example, assume360

we have a B specification containing a constant c and the only assumption is that
c is a natural number (c ∈ N). The ProB animator will provide the user various
possible values for c satisfying the assumption. Moreover, we can run the ProB
model checker which constrains the model to this selection. Otherwise, in order
to run the TLC model checker on a TLA+ specification, the user has to specify365

values for all constants oneself. Hence, we combine both tools by allowing the user
to select a constant setup using ProB’s convenient animation feature and then
the translator Tlc4B encodes the constant setup in the translated TLA+ module.
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Figure 8: ProB animator

Note that the assumptions are still checked by TLC. Thus an invalid constants
setup produced by ProB would be rejected by TLC, and the validation process370

of both tools is still independent. The combination of both tools opens up some
new possibilities even for finite models. Assuming we have a model with a complex
constants setup where constraint solving abilities are required. We can first use the
strengths of ProB to setup the constants and then use TLC abilities to explore
large state spaces.375

Moreover, Tlc4B provides several further features in order to run TLC. For
example, the user can choose the number of parallel workers and can make use
of TLC’s abilities for symmetry reduction. For the latter, Tlc4B automatically
detects suitable sets (e.g. deferred sets) and instructs TLC.10 All features can be
easily accessed in the graphical user interface of ProB.380

10Symmetry reduction is described in the tool section (14.3.4) of [2].
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6.2. Correctness of the Translation

There are several possible cases where our validation of B models using TLC
could be unsound. There could be

• a bug in TLC

• a bug in our TLA+ libraries for the B operators,385

• a bug in our implementation of the translation from B to TLA+,

• a fundamental flaw in our translation.

We have devised several approaches to mitigate those hazards. Firstly, when
TLC finds a counter example it is replayed using ProB. In other words, every
step of the counter example is double checked by ProB and the invariant or goal390

predicate is also re-checked by ProB. This makes it very unlikely that we produce
incorrect counter examples. Indeed, ProB, TLC, and our translator have been
developed completely independently of each other and rely on different technology.
Such independently developed double chains are often used in industry for safety
critical tools.395

The more tricky case is when TLC finds no counter example and claims to have
checked the full state space. Here we cannot replay any counter example and we
have the added difficulty that, contrary to ProB, TLC stores just fingerprints of
states and that there is a small probability that not all states have been checked
(TLC provides an estimation of this probability). We have no simple solution in400

this case, apart from re-checking the model using either ProB or formal proof. In
addition, we have conducted extensive tests to validate our approach. For example,
we use a range of models encoding mathematical laws to stress test our transla-
tion. These have proven to be very useful for detecting bugs in our translation
and libraries (mainly bugs involving operator precedences). In addition, we have405

uncovered a bug in TLC relating to the cartesian product.11 Moreover, we use
a wide variety of benchmarks, checking that ProB and TLC produce the same
result and generate the same number of states.

7. Experiments

7.1. Model Checking Experiments410

The following examples12 show some fields of application of Tlc4B. The ex-
periments were all run on a Macbook Air with Intel Core i5 1,8 GHz processor,
running TLC Version 2.05 and ProB version 1.3.7-beta9. The examples contains
several smaller benchmark models, industrial models and models from the litera-
ture (Table 1 contains citations, e.g., the library model is the information system415

11TLC erroneously evaluates the expression {1} × {} = {} × {1} to FALSE .
12The source code of the examples can be found at http://www.stups.uni-duesseldorf.de/w/

Pub:TLC4B_Benchmarks.
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example from [15] and the flight model is the system from [16]). Below we discuss
some of the models and results from Table 1 in more detail.

Can-Bus. This example is a 314 line B specification of the Controller Area
Network (CAN) Bus, containing 18 variables and 21 operations. The specification
is rather low level, i.e., the operations consist of simple assignments of concrete420

values to variables (no constraint solving is required to animate the model). Tlc4B
needs 1.5 seconds13 to translate the specification to TLA+ and less than 6 seconds
for the validation of the complete state space composed of 132,598 states. ProB
needs 192 seconds to visit the same number of states. Both model checkers report
no errors. For this specification TLC benefits from its efficient algorithm for storing425

large state spaces.
Defective Specification. We use a defective specification of a travel agency

system (CarlaTravelAgencyErr) to test the abilities of Tlc4B detecting invariant
violations. The specification consists of 295 line of B code, 11 variables and 10
operations. Most of the variables are functions (total, partial and injective) which430

are also manipulated by relational operators. Tlc4B needs about 3 seconds to
translate the model and to find the invariant violation. 377 states are explored
with the aid of the breadth first search and the resulting trace has a length of 5
states. ProB needs roughly the same time.

Specification with Complex Events We use Tlc4B to find a solution for435

the GardnerSwitchingPuzzle. Tlc4B needs about 12 seconds to find the trace
leading to the desired state. ProB only needs 2.5 seconds to confirm the result.
Both tools are instructed to use breadth first search. Hence, the reported traces is
the same. The different running times result form different capacities to evaluate
complex state transitions. The specifications contains parametric operations/events440

and ProB benefits from its constraints solving abilities in order to find valid values
for the parameters satisfying the guards. TLC has to iterate over all possible values
of the parameters and then has to check the guards for each combination. The static
subtype inference presented in Sect. 3 can here assist TLC only to certain degree.

Benchmarks. Besides the evaluation of real case studies, we use some specific445

benchmark tests comparing Tlc4B and ProB. We use a specification of a simple
counter testing Tlc4B’s abilities to explore a big (linear) state space. Tlc4B needs
4 seconds to explore the state space with 1 million states. Comparatively, ProB
takes 187 seconds. In another specification, the states of doors are controlled. The
specification allows the doors to be opened and closed. We use two versions: In the450

first version the state of the doors are represented as a function (Doors Functions)
and in the second as a relation (Doors Relations). The first version allows Tlc4B
to use TLA+ functions for the translation and TLC needs 3 seconds to explore
32,768 states. For the second version Tlc4B uses the newly introduced relations
and takes 12 seconds. As expected, TLC can evaluate built-in operators faster than455

user defined operators. Hence, the distinction Tlc4B has between functions and
relations can make a significant difference in running times. ProB needs about 100

13Most of this time is required to start the JVM and to parse the B specification.
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Table 1: Empirical Results: Running times of Single-Core Model Checking (times in seconds)

Model Lines Result States Transitions ProB Tlc4B ProB
Tlc4B

Counter 13 No Error 1,000,000 1,000,001 186.5 3.7 50.653

Doors Functions(4) 22 No Error 32,768 983,041 103.2 3.3 31.194
Can-Bus 314 No Error 132,598 340,265 191.8 7.2 26.624

KnightsTour(1) 28 Goal 508,450 678,084 817.5 34.1 23.998
FlightSystem [16] 112 No Error 28,561 263,641 345.5 22.8 15.154
Library [15] 201 No Error 35,542 390,697 187.5 13.1 14.313
USB 4Endpoints 197 NoError 16,905 550,418 72.5 5.7 12.632
Countdown 67 Inv. Viol. 18,734 84,617 31.4 2.8 11.073

Doors Relations(4) 22 No Error 32,768 983,041 103.3 11.6 8.926
Simpson Four Slot 78 No Error 46,657 11,275 33.7 4.3 7.874

Interlocking(2)[17] 187 No Error 672,173 2,244,109 4,995.2 1,456.7 3.429
EnumSetLockups 34 No Error 4,375 52,495 6.5 2.1 3.105
GSM revue [18] 220 No Error 1,848 53,593 10.4 3.6 2.888

TicTacToe(2) 16 No Error 6,046 19,108 7.5 3.1 2.435
Cruise Control 604 No Error 1,360 25,696 6.2 3.2 1.954
CarlaTravelAgencyErr 295 Inv. Viol. 377 3,163 3.3 3.1 1.069
FinalTravelAgency 331 No Error 1,078 4,530 4.7 4.4 1.068

CSM 64 No Error 77 210 1.4 1.6 0.859

SiemensMiniPilot Abrial(1) 51 Goal 22 122 1.5 1.7 0.849

Satellite Mode Protocol(3) 201 No Error 62,616 185,287 288.1 402.7 0.715
JavaBC-Interpreter 197 Goal 52 355 1.7 2.4 0.708
Scheduler 51 No Error 68 205 1.4 2.1 0.682
RussianPostalPuzzle 72 Goal 414 1,159 1.7 2.8 0.588
Teletext bench 431 No Error 13 122 1.8 3.7 0.496
WhoKilledAgatha 42 No Error 6 13 1.5 5.2 0.295
GardnerSwitchingPuzzle 59 Goal 206 502 2.5 11.7 0.213
NQueens 8 18 No Error 92 828 1.4 23.2 0.062
JobsPuzzle [19] 66 Deadlock 2 2 1.6 29.3 0.053

SumAndProduct(1) 51 No Error 1 1 9.7 420.8 0.023
GraphIsomorphism 21 Deadlock 512 203 1.8 991.5 0.002
(1) Without Deadlock Check
(2) Optimized Model (reduced state space)
(3) Without Assertion Check
(4) 15 Doors

seconds to explore the state space of both specifications. However, ProB needs
less than a second using symmetry reduction; see Sect. 7.2 below.

We have successfully validated several existing models from the literature (Ta-460

ble 1).

7.2. Symmetry Reduction

Both ProB and TLC provide symmetry reduction. In B, symmetry can be
exploited for deferred sets, which are sets defined by the user but whose elements
are not named (their exact composition is “deferred” until later in the refinement).465

Hence, any element of a deferred set can be substituted for another element, leading
to symmetries in the state space. In Tlc4B we have implemented the possibility to
provide annotations for TLC so as to enable its symmetry reduction. For example,
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for the FlightSystem example Tlc4B would (optionally) generate the following
annotation in the TLA+ translation, based on the two deferred sets MEMBERID470

and BOOKID :

Symmetry == Permutations(MEMBERID) \cup Permutations(BOOKID)

In the following table, we compare this new feature with ProB’s approximate
hash symmetry method [20] (the other symmetry methods lead to slower times).
We use three of the specifications with deferred sets: Doors, Library [15] and Flight-475

System [16].

Model Def. Set States ProB ProB Tlc4B Tlc4B
Size(s) (not reduced) Hash Symm + Symm

Doors Relations 7 128 1.9 s 1.7 s 2.7 s 7.9 s
15 32,768 103.2 s 1.8 s 11.6 s -

Library 3, 3 35,542 192.2 s 8.8 s 12.84 s 5.0 s
3, 4 1,035,314 - 70.7 s 297.6 s 26.6 s

FlightSystem 3, 4 28,561 298.7 5.6 s 21.2 s 4.6 s
4, 4 194,481 - 8.4 s 223.0 s 8.3 s

As we can see in the first example, TLC’s symmetry reduction technique does
not scale for large symmetry sets (i.e., deferred sets), and the runtime actually
deterioriates here with a deferred set of size 7. If a symmetry set has actually480

more than 8 elements TLC will throw an exception (“Attempted to construct a
set with too many elements (>1000000)”). Hence, our translator will automatically
prevent symmetry for deferred set sizes of 9 or larger. The other two examples show
that both TLC and ProB can gain from the symmetry reduction. The reduction
achieved by TLC is less marked than for ProB, but the effect is still considerable485

and the symmetry reduction feature of Tlc4B and TLC can be of practical use.

7.3. Parallel and Proof-Guided Model Checking of an Interlocking

In his book on Event-B [17], Abrial presents a model of a railway interlocking
system. While this model is an academic model intended for teaching Event-B,
it has a lot of features in common with real-life interlockings and formal models490

thereof.
Model checking cannot be used in an exhaustive fashion on the general inter-

locking model from [17], as there are infinitely many different topologies. However,
model checking is an obvious candidate to verify the formal interlocking model for
a particular topology. At first glance, the original topology from page 524 of [17]495

(with 5 signals, 5 points, one crossing and 14 tracks segments) looks quite small
and one would hope that exhaustive model checking should quite quickly be able to
check all possible states for the absence of deadlocks. However, the first refinement
of the model has over 61 million distinct states and over 445 million transitions
(aka events), and defied our initial efforts to exhaustively validate the model for500

this topology.
Using Tlc4B we are able to explore the whole state spaces and to validate all

invariants in about 5 hours on a six core 3.33 GHz Mac Pro with 16 GB of RAM and
12 workers (the experiments in this sub-section were thus run on another computer
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than above). The proof guided model checking introduced in Sect. 4 reduces the505

model checking time to under 4 hours. Note, that only proof information deduced by
the static analysis described in Sect. 4 is used. Since, Abrial’s model is completely
proven we omitted the invariant check in a further run for which Tlc4B needs 55
minutes.

More recently, ProB can be run in a parallel and distributed fashion [21].510

ProB needs about 30 hours to check the same state space along with the invariants
compared to the respectively 4 and 5 hours with Tlc4B; the proof directed model
checking from the single core version of ProB is not yet available in this parallel
version of ProB.

515

States Workers Invariant Check Proof Guided MC Running time
Tlc4B 61 mio 1 No - 191 min
Tlc4B 61 mio 12 No - 55 min
Tlc4B 61 mio 12 Yes No 297 min
Tlc4B 61 mio 12 Yes Yes 227 min
ProB 61 mio 12 Yes No 1787 min

This example nicely illustrates the potential of Tlc4B. ProB’s features were,
however, also useful in uncovering one cause for the somewhat unexpected state
explosion (routes were not freed as soon as possible, leading to additional inter-
leavings; this was detected by using ProB’s features to inspect the state space); a520

hand optimized model has a considerably smaller statespace (672,174 states) and
is the model we used in Table 1. This case study shows the advantage of having a
variety of tools at our disposal.

7.4. Summary of Experiments

In summary, ProB is substantially better than Tlc4B when constraint solv-525

ing is required (NQueens, SumAndProduct, GraphIsomorphism14) or when naive
enumeration of operation arguments is inefficient (GardnerSwitchingPuzzle). On
the other hand, Tlc4B is substantially better than ProB for lower-level specifi-
cations with a large state space. We have also shown that the symmetry detection
of Tlc4B can be beneficial, as is our new partial invariant evaluation feature and530

the capability of running model checks in parallel.

8. Discussion, Future and Related Work

While Tlc4B covers almost all operators of an abstract B machine, TLC is
not able to validate all of the translated TLA+ specifications because sometimes
TLC has to enumerate an infinite set. For example, assume we have an existential535

quantification ∃x .(x ∈ Z ∧ x + x = p) in B. Tlc4B will not be able to further
restrict the type (Z) of the bound variable x and TLC will abort to evaluate the

14See http://www.data-validation.fr/data-validation-reverse-engineering/ for larger in-
dustrial application of this type of task.
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translated TLA+ expression ∃x ∈ Z : x + x = p. However, this issue would be
indicated to the user and it should mostly be possible to rewrite the formula.

The experimental results from Sect. 7 imply that it would be suitable to ap-540

ply Tlc4B to specifications at lower refinement levels. Normally, the state space
increases and the needed constraint solving abilities decrease during a refinement
process. Unfortunately, it is not easy to translate the operator for the sequential
composition of operations (op1;op2) which is usually used in these specifications.
Although there is a corresponding operator for the composition of actions in TLA+,545

the operator is not supported by TLC. It seems to be possible to translate this op-
erator using a program counter as an additional variable and to adjust the guards of
consecutive actions. The imperative algorithm language PlusCal [22] is translated
to TLA+ in this way. However, this approach would create additional states and
would make it much harder to verify the correctness of our translation.550

The current version of the translator does not yet inherently support the mod-
ularization and refinement constructs of B. ProB’s pretty-printing feature can be
used to transform a compound set of models into a single model which can be val-
idated by Tlc4B. We have also used this feature in Sect. 7.3 to be able to model
check the Event-B interlocking model. However, our approach should not rely on555

ProB in order to ensure an independent validation.
When we started to implement Tlc4B the model checker TLC was not yet an

open source project. In order to improve the performance of TLC, one can now
modify the implementation of TLC. For example, one could now try to implement
the optimization of Sect. 4 within the Java code of the model checker. Also, we can560

implement optimized Java modules for the new library modules (e.g. Relations).
Such Java modules already exist for most standard modules (e.g. Naturals and
Sequences). While this example is on top on our work list we have avoided modify-
ing the implementation of TLC thus far for various reasons. The core of the TLC
model checker is a finalized system; other TLA+ tools confine themselves to the565

provided interface (e.g. the Toolbox IDE). While our translation is optimized for
a validation with TLC, the translated TLA+ modules are independent from TLC
and could be used by other validation tools. It seems to be much harder to detect
errors in the implementation than in a TLA+ module.15 Finally, the encoding of
optimizations directly in TLA+ seems to be transparent and comprehensible to the570

user.
Mosbahi et al. [23] were the first to provide a translation from B to TLA+.

Their goal was to verify liveness conditions on B specifications using TLC. Stutter-
ing steps as a subtle difference between B and TLA+ are not considered by their
translation. Some of their translation rules are similar to the rules presented in575

this paper. For example, they also translate B operations into TLA+ actions and
provide straightforward rules for operators which exist in both languages. However,
we provide translation rules for almost all constructs of B, in particular for those

15TLC (or, more precisely, the parser Sany) checks a TLA+ formula for syntactic correctness.
Moreover, various semantic conditions are also checked. These checks revealed some subtle bugs
in our library modules.
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which are not built-in in TLA+. Moreover, we detected several issues in their trans-
lation rules, which seems be unsound (e.g. they translate a total injective function580

(S � T ) in B to a total function S → T in TLA+) or not suitable for a generic
translation tool. Another difference is that we have restricted our translation to
the subset of TLA+ which is executable by TLC. We have contrasted their and
our translation rules in a technical report [12].

There have been various other works which translate B to other formalisms: B585

to the Express language [24], B to the Kodkod library [25, 26], B to SMTLib for
proving [27]. It is interesting to see how these various technologies and translations
interact and can be of benefit to the current B user: the SMTLib translation [27]
is useful for proving, the proof information in turn can benefit ProB via proof-
directed model checking [13], the Kodkod translation [26] is beneficial for constant590

finding and constraint-based checking, while the translation to TLA+ can achieve
efficient explicit state model checking, benefitting from ProB for constant finding
and trace replay. In this context it may also be relevant to mention the works that
translate the Z language to other formalisms: Z to Alloy [28], Z to SAL [29].

Leuschel et al. [30] presented a LTL model checker, implemented inside ProB595

that can verify liveness properties on B specification. The LTL model checker
also supports Past-LTL and propositions on transitions such as that an certain
operation have to be executed next. Currently the model checker does not support
fairness and temporal quantifications. The way to inject a temporal formula into a
B specification presented in this paper is derived from the LTL model checker. We600

use the same parser for temporal formulas and TLC as an alternative back end.
However, the intersection of supported temporal formulas of both model checkers
is currently too small to present a comprehensive comparison.

9. Conclusion

We presented a translation from B to TLA+, which make use of a (sub) type605

inference algorithm and translates a large subset of B to TLA+. Our main contribu-
tion is that we deliver translation rules for almost all B operators and in particular
for those which are not built-in operators in TLA+. For example, we specified the
concept of relations including all operators on relations. Moreover, we also consider
subtle differences between B and TLA+ such as different well-definedness condi-610

tions and provide an appropriate translation. We restrict our translation to the
subset of TLA+ which is supported by the model checker TLC. Furthermore, we
made many adaptations and optimizations allowing TLC to validate B specifica-
tion efficiently. We provide a way that a B user can specify and validate temporal
properties including fairness conditions on B specifications and does not have to615

care about stuttering steps in TLA+.
The implemented translator Tlc4B is fully automatic and does not require

the user to know TLA+. By integrating Tlc4B into the ProB UI we provide a
convenient way to use TLC to validate B specification. The interaction of ProB
and TLC allows the user to benefit from the strength of both tools by preserving620
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an independent validation. The empirical evaluation shows that our approach fares
well not only for toy examples.

By making TLC available to B models, we have closed a gap in the tool support
and now have a range of complementary tools to validate B models: Atelier-B (or
Rodin) providing automatic and interactive proof support, ProB being able to625

animate and model check high-level B specifications and providing constraint-based
validation, and now TLC providing very efficient model checking of lower-level B
specifications. The latter opens up many new possibilities, such as exhaustive
checking of hardware models or sophisticated protocols. A strong point of our
approach is the replaying of counter examples using ProB. Together with the630

work in [3] we have now constructed a two-way bridge between TLA+ and B, and
we also hope that this will bring both communities closer together.
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