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Abstract. The state-based formal methods B and TLA+ share the com-
mon base of predicate logic, arithmetic and set theory. However, there are
still considerable differences, such as the way to specify state transitions,
the different approaches to typing, and the available tool support. In this
paper, we present a translation from B to TLA+ to validate B specifications
using the model checker TLC. We provide translation rules for almost all
constructs of B, in particular for those which are not built-in in TLA+.
The translation also includes many adaptations and optimizations to allow
efficient checking by TLC. Moreover, we present a way to validate liveness
properties for B specifications under fairness conditions. Our implemented
translator, Tlc4B, automatically translates a B specification to TLA+, in-
vokes the model checker TLC, and translates the results back to B. We use
ProB to double check the counter examples produced by TLC and replay
them in the ProB animator. We also present a series of case studies and
benchmark tests comparing Tlc4B and ProB.
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1 Introduction and Motivation

B [1] and TLA+ [8] are both state-based formal methods rooted in predicate logic,
combined with arithmetic, set theory and support for mathematical functions. How-
ever, as already pointed out in [5], there are considerable differences:

– B is strongly typed, while TLA+ is untyped. For the translation, it is obviously
easier to translate from a typed to an untyped language than vice versa.

– The concepts of modularization are quite different.
– Functions in TLA+ are total, while B supports relations, partial functions,

injections, bijections, etc.
– B is limited to invariance properties, while TLA+ also allows the specification

of liveness properties.
– The structure of a B machine or development is prescribed by the B-method,

while in a TLA+ specification any formula can be considered as a system spec-
ification.

?? Part of this research has been sponsored by the EU funded FP7 project 287563 (AD-
VANCE) and the DFG funded project Gepavas.



As far as tool support is concerned, TLA+ is supported by the explicit state model
checker TLC [13] and more recently by the TLAPS prover [3]. TLC has been
used to validate a variety of distributed algorithms (e.g., [4]) and protocols. B has
extensive proof support, e.g., in the form of the commercial product AtelierB [2]
and the animator, constraint solver and model checker ProB [9, 10]. Both AtelierB
and ProB are being used by companies, mainly in the railway sector for safety
critical control software. In an earlier work [5] we have presented a translation from
TLA+ to B, which enabled applying the ProB tool to TLA+ specifications. In this
paper we present a translation from B to TLA+, this time with the main goal of
applying the model checker TLC to B specifications. Indeed, TLC is a very efficient
model checker for TLA+ with an efficient disk-based algorithm and support for
fairness. ProB has an LTL model checker, but it does not support fairness (yet)
and is entirely RAM-based. The model checking core of ProB is less tuned than
TLA+. On the other hand, ProB incorporates a constraint solver and offers several
features which are absent from TLC, in particular an interactive animator with
various visualization options. One feature of our approach is to replay the counter-
examples produced by TLC within ProB, to get access to those features but
also to validate the correctness of our translation. In this paper, we also present a
thorough empirical evaluation between TLC and ProB. The results show that for
lower-level, more explicit formal models, TLC fares better, while for certain more
high-level formal models ProB is superior to TLC because of its constraint solving
capabilities. The addition of a lower-level model checker thus opens up many new
application possibilities.

2 Translation

The complete translation process from B to TLA+ and back to B is illustrated in
Fig. 1.
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Fig. 1. The TLC4B Translation and Validation Process



Before explaining the individual phases, we will illustrate the translation with
an example and explain the various phases based on that example. Translation rules
of all data types and operators can be found in the extended version of our paper
[6]. More specific implementation details will be covered in Section 4.

2.1 Example

Below we use a specification (adapted from [10]) of a process scheduler (Fig. 2). The
specified system allows at most one process to be active. Each process can qualify
for being selected by the scheduler by entering a FIFO queue. The specification
contains two variables: a partial function state mapping each process to its state
(a process must be created before it has a state) and a FIFO queue modeled as
an injective sequence of processes. In the initial state no process is created and
the queue is empty. The specification contains various operations to create (new),
delete (del), or add a process to queue (addToQueue). Additionally, there are two
operations to load a process into the processor (enter) and to remove a process
from the processor (leave). The specification contains two safety conditions beside
the typing predicates of the variables:

– At most one process should be active.
– Each process in the FIFO queue should have the state ready .

The translated TLA+- specification is shown in Fig. 3. At the beginning of the
module some standard modules are loaded via the EXTENDS statement. These
modules contain several operators used in this specification. The enumerated set
STATE is translated as a constant definition. The definition itself is renamed (into
STATE 1 ) by the translator because STATE is keyword in TLA+. The invariant of
the B specification is divided into several definitions in the TLA+ module. This en-
ables TLC to provide better feedback about which part of the invariant is violated.
We translate each B operation as a TLA+ action. Substitutions are translated as
before-after predicates where a primed variable represents the variable in the next
state. Unchanged variables must be explicitly specified. Note that a parameterized
operation is translated as existential quantification. The quantification itself is lo-
cated in the next-state relation Next , which is a disjunction of all actions. Some of
the operations’ guards appear in the Next definition rather than in the correspond-
ing action. This is an instance of our translator optimizing the translation for the
interpretation with TLC. The whole TLA+ specification is described by the Spec
definition. A valid behavior for the system has to satisfy the Init predicate for the
initial state and then each step of the system must satisfy the next-state relation
Next .

To validate the translated TLA+ specification with TLC we have to provide
an additional configuration file (Fig 4) telling TLC the main (specification) defini-
tion and the invariant definitions. Moreover, we have to assign values to all con-



MODEL Scheduler
SETS

PROCESSES;
STATE = {idle, ready, active}

VARIABLES
state,
queue

INVARIANT
state ∈ PROCESSES 7→ STATE
& queue ∈ iseq(PROCESSES)
& card(state−1[{active}]) ≤ 1
& !x.(x ∈ ran(queue) ⇒ state(x) = ready)

INITIALISATION
state := {} || queue := [ ]

OPERATIONS
new(p) = SELECT p /∈ dom(state)

THEN state := state ∪ {(p 7→ idle)} END;

del(p) = SELECT p ∈ dom(state) ∧ state(p) = idle
THEN state := {p} �− state END;

addToQueue(p) = SELECT p ∈ dom(state) ∧ state(p) = idle
THEN state(p) := ready || queue := queue ← p END;

enter = SELECT queue 6= [ ] ∧ state−1[{active}] = {}
THEN state(first(queue)) := active || queue := tail(queue) END;

leave(p) = SELECT p ∈ dom(state) ∧ state(p) = active
THEN state(p) := idle END

END

Fig. 2. MODEL Scheduler

stants of the module.1 In this case we assign a set2 of model values to the constant
PROCESSES and single model values to the other constants. In terms of function-
ality, model values correspond to elements of a enumerated set in B. Model values
are equal to themselves and unequal to all other model values.

1 We translate a constant as variable if the axioms allow several solutions for this constant.
All possible solution values will be enumerated in the initialization and the variable will
be kept unchanged by all actions.

2 The size of the set is a default number or can be specified by the user.



module Scheduler
extends Naturals, FiniteSets, Sequences, Relations, Functions,

FunctionsAsRelations, SequencesExtended , SequencesAsRelations

constants PROCESSES , idle, ready , active

variables state, queue

STATE 1
∆
= {idle, ready , active}

Invariant1
∆
= state ∈ RelParFuncEleOf (PROCESSES , STATE 1)

Invariant2
∆
= queue ∈ ISeqEleOf (PROCESSES)

Invariant3
∆
= Cardinality(RelImage(RelInverse(state), {active})) ≤ 1

Invariant4
∆
= ∀ x ∈ Range(queue) : RelCall(state, x ) = ready

Init
∆
= ∧ state = {}
∧ queue = 〈〉

new(p)
∆
= ∧ state ′ = state ∪ {〈p, idle〉}
∧ unchanged 〈queue〉

del(p)
∆
= ∧ RelCall(state, p) = idle
∧ state ′ = RelDomSub({p}, state)
∧ unchanged 〈queue〉

addToQueue(p)
∆
= ∧ RelCall(state, p) = idle
∧ state ′ = RelOverride(state, {〈p, ready〉})
∧ queue ′ = Append(queue, p)

enter
∆
= ∧ queue 6= 〈〉
∧ RelImage(RelInverse(state), {active}) = {}
∧ state ′ = RelOverride(state, {〈Head(queue), active〉})
∧ queue ′ = Tail(queue)

leave(p)
∆
= ∧ RelCall(state, p) = active
∧ state ′ = RelOverride(state, {〈p, idle〉})
∧ unchanged 〈queue〉

Next
∆
= ∨ ∃ p ∈ PROCESSES \RelDomain(state) : new(p)
∨ ∃ p ∈ RelDomain(state) : del(p)
∨ ∃ p ∈ RelDomain(state) : addToQueue(p)
∨ enter
∨ ∃ p ∈ RelDomain(state) : leave(p)

vars
∆
= 〈state, queue〉

Spec
∆
= Init ∧ 2[Next ]vars

Fig. 3. Module Scheduler



SPECIFICATION Spec
INVARIANT Invariant1, Invariant2, Invariant3, Invariant4
CONSTANTS
PROCESSES = {PROCESSES1, PROCESSES2, PROCESSES3}
idle = idle
ready = ready
active = active

Fig. 4. Configuration file for module Scheduler

2.2 Translating Data Values and Functionality Inference

Due to the common base of B and TLA+, most data types exist in both languages,
such as sets, functions and numbers. As a consequence, the translation of these data
types is almost straightforward.

TLA+ has no built-in concept of Relations3, but TLA+ provides all necessary
data types to define relations based on the model of the B-Method. We represent
a relation in TLA+ as a set of tuples (e.g. {〈1,TRUE 〉, 〈1,FALSE 〉 〈2,TRUE 〉}).
The drawback of this approach is that in contrast to B, TLA+’s own functions and
sequences are not based on the relations defined is this way. As an example, we
cannot specify a TLA+ built-in function as a set of pairs; in B it is usual to do
this as well as to apply set operators (e.g. the union operator as in f ∪ {2 7→ 3})
to functions or sequences. To support such a functionality in TLA+, functions and
sequences should be translated as relations if they are used in a “relational way”. It
would be possible to always translate functions and sequences as relations. But in
contrast to relations, functions and sequences are built-in data types in TLA+ and
their evaluation is optimized by TLC (e.g. lazy evaluation). Hence we extended the
B type-system to distinguish between functions and relations. Thus we are able to
translate all kinds of relations and to deliver an optimized translation.

We use a type inference algorithm adapted to the extended B type-system to
get the required type information for the translation. Unifying a function type
with a relation type will result in a relation type (e.g. P(Z × Z) for both sides of
the equation λx .(x ∈ 1..3|x + 1) = {(1, 1)}). However, there are several relational
operators preserving a function type if they are applied to operands with a function
type (e.g. ran, front or tail). For these operators we have to deliver two translation
rules (functional vs relational). Moreover the algorithm verifies the type correctness
of the B specification (i.e. only values of the same type can be compared with each
other).

2.3 Translating Operators

In TLA+ some common operators such as arithmetic operators are not built-in
operators. They are defined in separate modules called standard modules that can
3 Relations are not mentioned in the language description of [8]. In [7] Lamport introduces

relations in TLA+ only to define the transitive closure.



be extended by a specification.4 We reuse the concept of standard modules to
include the relevant B operators. Due to the lack of relations in TLA+ we have to
provide a module containing all relational operators (Fig. 5).

module Relations
extends FiniteSets, Naturals, TLC
Relation(X , Y )

∆
= subset (X ×Y )

RelDomain(R)
∆
= {x [1] : x ∈ R}

RelRange(R)
∆
= {x [2] : x ∈ R}

RelInverse(R)
∆
= {〈x [2], x [1]〉 : x ∈ R}

RelDomRes(S , R)
∆
= {x ∈ R : x [1] ∈ S} Domain restriction

RelDomSub(S , R)
∆
= {x ∈ R : x [1] /∈ S} Domain subtraction

RelRanRes(R, S)
∆
= {x ∈ R : x [2] ∈ S} Range restriction

RelRanSub(R, S)
∆
= {x ∈ R : x [2] /∈ S} Range subtraction

RelImage(R, S)
∆
= {y [2] : y ∈ {x ∈ R : x [1] ∈ S}}

RelOverride(R1, R2)
∆
= {x ∈ R : x [1] /∈ RelDomain(R2)} ∪ R2

RelComposition(R1, R2)
∆
= {〈u[1][1], u[2][2]〉 : u ∈

{x ∈ RelRanRes(R1, RelDomain(R2))× RelDomRes(RelRange(R1), R2) :
x [1][2] = x [2][1]}}

...

Fig. 5. An extract of the Module Relations

Moreover B provides a rich set of operators on functions such as all combinations
of partial/total and injective/surjective/bijective. In TLA+ we only have total
functions. We group all operators on functions together in an additional module
(Fig. 6). Sometimes there are several ways to define an operator. We choose the
definition which can be best handled by TLC.5

Some operators exists in both languages but their definitions differ slightly. For
example, the B-Method requires that the first operand for the modulo operator
must be a natural number. In TLA+ it can be also a negative number.

Operator B-Method TLA+

a modulo b a ∈ N ∧ b ∈ N1 a ∈ Z ∧ b ∈ N1

To verify B’s well-definedness condition for modulo we use TLC’s ability to
check assertions. The special operator Assert(P , out) throws a runtime exception
with the error message out if the predicate P is false. Otherwise, Assert will be
evaluated to true. The B modulo operator can thus be expressed in TLA+ as

4 TLC supports operators of the common standard modules Integers and Sequences in a
efficient way by overwriting them with Java methods.

5 Note that some of the definitions are based on the Cardinality operator that is restricted
to finite sets.



module Functions
extends FiniteSets
Range(f )

∆
= {f [x ] : x ∈ domain f }

Image(f , S)
∆
= {f [x ] : x ∈ S}

TotalInjFunc(S , T )
∆
= {f ∈ [S → T ] :

Cardinality(domain f ) = Cardinality(Range(f ))}
ParFunc(S , T )

∆
= union {[x → T ] : x ∈ subset S}

ParInjFunc(S , T )
∆
= {f ∈ ParFunc(S , T ) :

Cardinality(domain f ) = Cardinality(Range(f ))}
...

Fig. 6. An extract of the Module Functions

follows:

Modulo(a, b) ∆= if a ≥ 0 then a % b else Assert(false, “WD ERROR”)

We also have to consider well-definedness conditions if we apply a function call
to a relation:

RelCall(r , x ) ∆= if Cardinality(r) = Cardinality(RelDom(r)) ∧ x ∈ RelDom(r)
then (choose y ∈ r : y [1] = x )[2]
else Assert(false, “WD ERROR”)

In summary, we provide the following standard modules for our translation:
– Relations
– Functions
– SequencesExtended (Some operators on sequences which are not included the

standard module Sequences)
– FunctionsAsRelations (Defines all function operators on sets of pairs ensuring

their well-definedness conditions)
– SequencesAsRelations (Defines all operators on sequences which are repre-

sented as sets of pairs.)
– BBuiltins (Miscellaneous operators e.g. modulo, min, max, sigma or pi)

2.4 Optimizations

Subtype Inference Firstly, we will describe how TLC evaluates expressions: In
general TLC evaluates an expression from left to right. Evaluating an expression
containing a bound variable such as an existential quantification (∃x ∈ S : P),
TLC enumerates all values of the associated set and then substitutes them for the
bound variable in the corresponding predicate. Due to missing constraint solving
techniques, TLC is not able to evaluate another variant of the existential quan-
tification without an associated set (∃x : P). This version is also a valid TLA+

expression and directly corresponds to the way of writing an existential quantifi-
cation in B (∃x .(P)). However, we confine our translations to the subset of TLA+



which is supported by TLC. Thus the translation is responsible for making all re-
quired adaptations to deliver an executable TLA+ specification. For the existential
quantification (or all other expressions containing bound variables), we use the in-
ferred type τ of the bound variable as the associated set (∃x ∈ τx : P .) However, in
most cases, it is not performant to let TLC enumerate over a type of a variable, in
particular TLC aborts if it has to enumerate a infinite set. Alternatively, it is often
possible to restrict the type of the bound variable based on a static analysis of the
corresponding (typing) predicate. We use a pattern matching algorithm to find the
following kind of expressions where x is a bound variable, e is an expression, and
S is ideally a subset of the type6: x = e , x ∈ S , x ⊆ S or x ⊂ S .

If more than one of these patterns can be found for one variable, we build the
intersection to keep the associated set as small as possible:

B-Method TLA+

∃x .(x = e ∧ x ∈ S1 ∧ x ⊆ S2 ∧ P) ∃x ∈ ({e} ∩ S1 ∩ SUBSET S2) : P

This reduces the number of times TLC has to evaluate the predicate P . 7

Lazy Evaluation Sometimes TLC can use heuristics to evaluate an expression.
For example TLC can evaluate 〈1, 2, 1〉 ∈ Seq({1, 2}) to true without evaluating the
infinite set of sequences. We will show how we can use these heuristics to generate
an optimized translation. As mentioned before functions have to be translated as
relations if they are used in a relational way in the B specification. How then should
we translate the set of all total functions (S → T )? The easiest way is to convert
each function to a relation in TLA+:

MakeRel(f ) ∆= {〈x , f [x ]〉 : x ∈ DOMAIN f }

The resulting operator for the set of all total functions is:

RelTotalFunctions(S ,T ) ∆= {MakeRel(f ) : f ∈ [S → T ]}

However this definition has a disadvantage, if we just want to check if a single
function is in this set the whole set will be evaluated by TLC. Using the following
definition TLC avoids the evaluation of the whole set:

RelTotalFunctionsEleOf (S ,T ) ∆= {f ∈ SUBSET (S × T ) :
∧ Cardinality(RelDomain(f )) = Cardinality(f )
∧ RelDomain(f ) = S}

In this case, TLC only checks if a function is a subset of the cartesian product
(the whole Cartesian product will not be evaluated) and the conditions are checked

6 The B language description in [2] requires that each (bound) variable must be typed
by one of these patterns before use.

7 In some cases, the associated set is still infinite and the user has to restrict the set to
be finite.



only once. Moreover this definition fares well even if S or T are sets of functions
(e.g. S → V → W in B). The advantage of the first definition is that it is faster
when the whole set must be evaluated. As a consequence, we use both definitions
for our translation and choose the first if TLC has to enumerate the set (e.g.
∃x ∈ RelTotalFunctions(S ,T ) : P) and the second testing if a function belongs to
the set (e.g. f ∈ RelTotalFunctionsEleOf (S ,T ) as an invariant).

3 Checking Temporal Formulas

One of the main advantages of TLA+ is that temporal properties can be specified
directly in the language itself. Moreover the model checker TLC can be used to
verify such formulas. But before we show how to write temporal formulas for a B
specification we first have to describe a main distinction between the two formal
methods. In contrast to B, the standard template of a TLA+ specification (Init ∧
2[Next ]vars) allows stuttering steps at any time.8 This means that a regular step
of a TLA+ specification is either a step satisfying one of the actions or a stuttering
step leaving all variables unchanged. When checking a specification for errors such
as invariant violations it is not necessary to consider stuttering steps, because such
an error will be detected in a state and stuttering steps only allow self transitions
and do not add additional states. For deadlock checking stuttering steps are also
not regarded by TLC, but verifying a temporal formula with TLC often ends in a
counter-example caused by stuttering steps. For example, assuming we have a very
simple specification of a counter in TLA+ with a single variable c

Spec ∆= c = 1 ∧2[c′ = c + 1]c

We would expect that the counter will eventually reach 10 (3(c = 10)). However
TLC will report a counter-example, saying that at a certain state (before reaching
10), an infinite number of stuttering steps occurs and 10 will never reached. From
the B side we do not want to deal with these stuttering steps. TLA+ allows to add
fairness conditions to the specification to avoid infinite stuttering steps. Adding
weak fairness for the next-state relation (WFvars(Next)) would prohibit an infinite
number of stuttering steps if a step of the next-state relation is possible (i.e. Next
is always enabled):

WFvars(A) ∆= ∨ 23(〈A〉vars)
∨ 23(¬ enabled 〈A〉vars)

However this fairness condition is too strong: It asserts that either the action A
will be executed infinitely often changing the state of the system (A must not be a
stuttering step)

〈A〉vars
∆= A ∧ vars ′ 6= vars

or A will be disabled infinitely often. Assuming weak fairness for the next state
relation will also eliminate user defined stuttering steps. User defined stuttering
8 [Next ]vars

∆
= Next ∨UNCHANGED vars



steps result from B operations which do not change the state of the system (e.g.
skip or call operations). These stuttering steps may cause valid counter-examples
and should not be eliminated. Hence, the translation should retain user defined
stuttering steps in the translated TLA+ specfication and should disable stuttering
steps which are implicitly included. In [12], Richards describes a way to distinguish
between these two kinds of stuttering steps in TLA+. We use his definition of
“Very Weak Fairness” applied to the next state relation (VWFvars(Next)) to dis-
able implicit stuttering steps and allow user defined stuttering steps in the TLA+

specification:

VWFvars(A) ∆= ∨ 23(〈A〉vars)
∨ 23(¬ enabled 〈A〉vars)
∨ 23(enabled (A ∧ unchanged vars))

The definition of VWF (A) is identical to WF (A) except for an additional third case
allowing infinite stuttering steps if A is a stuttering action (A∧unchanged vars).
We define the resulting template of the translated TLA+ specification as follows:

Init ∧2[Next ]vars ∧VWFvars(Next)

We allow the B user to use following temporal operators to define liveness conditions
for a B specification:9

– 2f (Globally)
– 3f (Finally)
– ENABLED(op) (Check if the operation op is enabled)
– ∃x .(P ∧ f ) (Existential quantification)
– ∀x .(P ⇒ f ) (Universal quantification)
– WF (op) (Weak Fairness will be translated to VWF)
– SF (op) (Strong Fairness will be translated to “Almost Strong Fairness”10)

4 Implementation & Experiments

Our translator, called Tlc4B, is implemented in Java and it took about six months
to develop the initial version. Figure 1 in Section 2 shows the translation and val-
idation process of Tlc4B. After parsing the specification Tlc4B performs some
static analyses (e.g. type checking or checking the scope of the variables) verifying
the semantic correctness of the B specification. Moreover, as explained in Section 2,
Tlc4B extracts required information from the B specification (e.g. subtype infer-
ence) to generate an optimized translation. Subsequently, Tlc4B creates a TLA+

module with an associated configuration file and invokes the model checker TLC.
The results produced by TLC are translated back to B. For example, a goal predi-
cate is translated as a negated invariant. If this invariant is violated, a “Goal found”
9 We demonstrate the translation of a liveness condition with a concrete example in the

extended version of this paper [6].
10 Analogically Richards defines “Almost Strong Fairness” (ASF) as a weaker version of

strong fairness (SF) reflecting the different kinds of stuttering steps



Fig. 7. ProB animator

message is reported. We expect TLC to find the following kinds of errors in the B
specification:

– Deadlocks
– Invariant violations
– Assertion errors
– Violations of constants properties (i.e., axioms over the B constants are false)
– Well-definedness violations
– Violations of temporal formulas

For certain kinds of errors such as a deadlock or an invariant violation, TLC
reports a trace leading to the state where the error occurs. A trace is a sequence of
states where each state is a mapping from variables to values. Tlc4B translates the
trace back to B (as a list of B state predicates). Tlc4B has been integrated into
ProB as of version 1.3.7-beta10: The user needs no knowledge of TLA+ because
the translation is completely hidden. As shown in figure 7 counter-examples found
by TLC are automatically replayed in the ProB animator (displayed in the history
pane) to give the user an optimal feedback.



We have successfully validated several existing models from the literature (Fig.
8). The following examples show some fields of application of Tlc4B. The experi-
ments were all run on a Macbook Air with Intel Core i5 1,8 GHz processor, running
TLC Version 2.05 and Prob version 1.3.7-beta9.

Can-Bus One example is a 314 line B specification of the Controller Area
Network (CAN) Bus, containing 18 variables and 21 operations. The specification
is rather low level, i.e., the operations consist of simple assignments of concrete
values to variables (no constraint solving is required). Tlc4B needs 1.5 seconds11

to translate the specification to TLA+ and less than 6 seconds for the validation
of the complete state space composed of 132,598 states. ProB needs 192 seconds
to visit the same number of states. Both model checkers report no errors. For this
specification TLC benefits from its efficient algorithm for storing big state spaces.

Invariant violations We use a defective specification of a travel agency system
(CarlaTravelAgencyErr) to test the abilities of Tlc4B detecting invariant viola-
tions. The specification consists of 295 line of B code, 11 variables and 10 opera-
tions. Most of the variables are functions (total, partial and injective) which are also
manipulated by relational operators. Tlc4B needs about 3 seconds to translate the
model and to find the invariant violation. 377 states are explored with the aid of
the breadth first search and the resulting trace has a length of 5 states. ProB needs
roughly the same time.

Benchmarks Besides the evaluation of real case studies, we use some specific
benchmark tests comparing Tlc4B and ProB. We use a specification of a simple
counter testing Tlc4B’s abilities to explore a big (linear) state space. Tlc4B needs
3 seconds to explore the state space with 1 million states. Comparatively, ProB
takes 204 seconds. In another specification, the states of doors are controlled. The
specification allows the doors to be opened and closed. We use two versions: In the
first version the state of the doors are represented as a function (Doors Functions)
and in the second as a relation (Doors Relations). The first version allows Tlc4B
to use TLA+ functions for the translation and TLC needs 2 seconds to explore
32,768 states. For the second version Tlc4B uses the newly introduced relations
and takes 10 seconds. As expected, TLC can evaluate built-in operators faster
than user defined operators. Hence the distinction Tlc4B has between functions
and relations can make a significant difference in running times. ProB needs about
100 seconds to explore the state space of both specifications. However, ProB needs
less than a second using symmetry reduction.12

In summary, ProB is substantially better than Tlc4B when constraint solving
is required (NQueens, SumAndProduct, GraphIsomorphism13) or when naive enu-
meration of operation arguments is inefficient (GardnerSwitchingPuzzle). For some
specifications (not listed in the table) TLC was not able to validate the translated
TLA+ specification because TLC had to enumerate an infinite set. On the other

11 Most of this time is required to start the JVM and to parse the B specification.
12 TLC’s symmetry reduction does not scale for large symmetric sets.
13 See http://www.data-validation.fr/data-validation-reverse-engineering/ for

larger industrial application of this type of task.



Model Lines Result States Transitions ProB Tlc4B ProB
Tlc4B

Counter 13 No Error 1000000 1000001 186.5 3.7 50.653

Doors Functions 22 No Error 32768 983041 103.2 3.3 31.194

Can-Bus 314 No Error 132598 340265 191.8 7.2 26.624

KnightsTour(1) 28 Goal 508450 678084 817.5 34.1 23.998

USB 4Endpoints 197 NoError 16905 550418 72.5 5.7 12.632

Countdown 67 Inv. Viol. 18734 84617 31.4 2.8 11.073

Doors Relations 22 No Error 32768 983041 103.3 11.6 8.926

Simpson Four Slot 78 No Error 46657 11275 33.7 4.3 7.874

EnumSetLockups 34 No Error 4375 52495 6.5 2.1 3.105

TicTacToe(1) 16 No Error 6046 19108 7.5 3.1 2.435

Cruise finite1 604 No Error 1360 25696 6.2 3.2 1.954

CarlaTravelAgencyErr 295 Inv. Viol. 377 3163 3.3 3.1 1.069

FinalTravelAgency 331 No Error 1078 4530 4.7 4.4 1.068

CSM 64 No Error 77 210 1.4 1.6 0.859

SiemensMiniPilot Abrial(1) 51 Goal 22 122 1.5 1.7 0.849

JavaBC-Interpreter 197 Goal 52 355 1.7 2.4 0.708

Scheduler 51 No Error 68 205 1.4 2.1 0.682

RussianPostalPuzzle 72 Goal 414 1159 1.7 2.8 0.588

Teletext bench 431 No Error 13 122 1.8 3.7 0.496

WhoKilledAgatha 42 No Error 6 13 1.5 5.2 0.295

GardnerSwitchingPuzzle 59 Goal 206 502 2.5 11.7 0.213

NQueens 8 18 No Error 92 828 1.4 23.2 0.062

JobsPuzzle 66 Deadlock 2 2 1.6 29.3 0.053

SumAndProduct(1) 51 No Error 1 1 9.7 420.8 0.023

GraphIsomorphism 21 Deadlock 512 203 1.8 991.5 0.002
(1) Without Deadlock Check

Fig. 8. Empirical Results: Running times of Model Checking (times in seconds)

hand, Tlc4B is substantially better than ProB for lower-level specifications with
a large state space.

5 Correctness of the Translation

There are several possible cases where our validation of B models using TLC could
be unsound: there could be a bug in TLC, there could be a bug in our TLA+

library for the B operators, there could be a bug in our implementation of the
translation from B to TLA+, there could be a fundamental flaw in our translation.

We have devised several approaches to mitigate those hazards. Firstly, when
TLC finds a counter example it is replayed using ProB. In other words, every
step of the counter example is double checked by ProB and the invariant or goal
predicate is also re-checked by ProB. This makes it very unlikely that we produce
incorrect counter examples. Indeed, ProB, TLC, and our translator have been



developed completely independently of each other and rely on different technology.
Such independently developed double chains are often used in industry for safety
critical tools.

The more tricky case is when TLC finds no counter example and claims to have
checked the full state space. Here we cannot replay any counter example and we
have the added difficulty that, contrary to ProB, TLC stores just fingerprints of
states and that there is a small probability that not all states have been checked. We
have no simple solution in this case, apart from re-checking the model using either
ProB or formal proof. In addition, we have conducted extensive tests to validate
our approach. For example, we use a range of models encoding mathematical laws
to stress test our translation. These have proven to be very useful for detecting
bugs in our translation and libraries (mainly bugs involving operator precedences).
In addition, we have uncovered a bug in TLC relating to the cartesian product.14

Moreover, we use a wide variety of benchmarks, checking that ProB and TLC
produce the same result and generate the same number of states.

6 More Related Work, Discussion and Conclusion

Mosbahi et al. [11] were the first to provide a translation from B to TLA+. Their
goal was to verify liveness conditions on B specifications using TLC. Some of their
translation rules are similar to the rules presented in this paper. For example, they
also translate B operations into TLA+ actions and provide straightforward rules
for operators which exist in both languages. However, there are also significant
differences:

– Our main contribution is that we deliver translation rules for almost all B
operators and in particular for those which are not build-in operators in TLA+.
E.g., we specified the concept of relations including all operators on relations.

– Moreover, we also consider subtle differences between B and TLA+ such as
different well-definedness conditions and provide an appropriate translation.

– Regarding temporal formulas, we provide a way that a B user does not have to
care about stuttering steps in TLA+.

– We restrict our translation to the subset of TLA+ which is supported by the
model checker TLC. Furthermore, we made many adaptations and optimiza-
tions allowing TLC to validate B specification efficiently.

– The implemented translator is fully automatic and does not require the user to
know TLA+.

In the future, we would like to improve our automatic translator:

– Supporting modularization and the refinement techniques of B.
– Improving the performance of TLC by implementing Java modules for the new

standard modules.
– Integrating Tlc4B into Rodin and supporting Event-B specifications.

14 TLC erroneously evaluates the expression {1} × {} = {} × {1} to FALSE .



In conclusion, by making TLC available to B models, we have closed a gap in the
tool support and now have a range of complementary tools to validate B models:
Atelier-B (or Rodin) providing automatic and interactive proof support, ProB
being able to animate and model check high-level B specifications and providing
constraint-based validation, and now TLC providing very efficient model checking
of lower-level B specifications. The latter opens up many new possibilities, such as
exhaustive checking of hardware models or sophisticated protocols. A strong point
of our approach is the replaying of counter examples using ProB. Together with
the work in [5] we have now constructed a two-way bridge between TLA+ and B,
and also hope that this will bring both communities closer together.
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