
Translating TLA+ to B for Validation with ProB

Dominik Hansen and Michael Leuschel

Institut für Informatik, Universität Düsseldorf??

Universitätsstr. 1, D-40225 Düsseldorf
dominik.hansen@uni-duesseldorf.de, leuschel@cs.uni-duesseldorf.de

Abstract. TLA+ and B share the common base of predicate logic, arith-
metic and set theory. However, there are still considerable differences, such
as very different approaches to typing and modularization. There is also con-
siderable difference in the available tool support. In this paper, we present
a translation of the non-temporal part of TLA+ to B, which makes it pos-
sible to feed TLA+ specifications into existing tools for B. Part of this
translation must include a type inference algorithm, in order to produce
typed B specifications. There are many other tricky aspects, such as trans-
lating modules as well as let and if-then-else expressions. We also present
an integration of our translation into ProB. ProB thus provides a com-
plementary tool to the explicit state model checker TLC, with convenient
animation and constraint solving for TLA+. We also present a series of case
studies, highlighting the complementarity to TLC. In particular, we high-
light the sometimes dramatic difference in performance when it comes to
solving complicated constraints in TLA+.
Keywords: TLA, B-Method, Tool Support, Model Checking, Animation.

1 Introduction and Motivation

TLA+ [5] and B [1] are both state-based formal methods rooted in predicate logic,
combined with arithmetic and set theory. There are, however, considerable differ-
ences:

– TLA+ is untyped, while B is strongly typed.
– the modularization concepts are very different (as we will see later in the paper).
– TLA+ and B both support sets and functions. However, functions in TLA+

are total, while B supports relations, partial functions, injections, bijections,
etc.

– TLA+ has several constructs which are lacking in B, such as an if-then-else
for expressions and predicates1, a let construct or the choose operator. The
latter enables one to define recursive functions over sets, which are akwkard to
define in B.

?? Part of this research has been sponsored by the EU funded FP7 project 214158: DE-
PLOY (Industrial deployment of advanced system engineering methods for high pro-
ductivity and dependability).

1 B only provides an if-then-else for substitutions.

As far as tool support is concerned, TLA+ is supported by the explicit state
model checker TLC [14], and more recently by the TLAPS prover [3, 2]. B has
extensive proof support, e.g., in the form of the commercial product AtelierB [13].
The animator and model checker ProB [6] can also be applied to B specifications.
Both AtelierB and ProB are being used by companies, mainly in the railway sector
for safety critical control software. Some of the goals of our translation are to

– gain a better understanding of the common core and of the differences between
TLA+ and B

– gain an animator for TLA+

– gain a contraint solver for TLA+

Indeed, TLC is a very efficient model checker for TLA+ with an efficient disk-
based algorithm and support for fairness. ProB has an LTL model checker, but
does not support fairness (yet) and is entirely RAM-based. The model checking core
of ProB is less tuned than TLA+. However, ProB offers several features which
are absent from TLC, notably an interactive animator with various visualization
options. More importantly, the ProB kernel provides for constraint solving over
predicate logic, set theory and arithmetic. ProB can also deal quite well with
large data values. This has many applications, from constraint-based invariant or
deadlock checking [4], over to test-case generation and on to improved animation
because the user has to provide much less concrete values than with other tools. It
also makes certain specifications “executable” which are beyond the reach of other
tools such as TLC.

We suppose that the reader is familiar with either TLA+or B. Indeed, we hope
that through our translation, TLA+ constructs can be understood by B users and
vice-versa. Below, in Sect. 2 we introduce the essentials of our translation on a
simple example, while in Sect. 3 we present the translation more formally. (Some
translation rules are relegated to an Appendix for referees; as are the sources of
various examples.) In Sect. 4 we present case studies and experiments, and will
also compare the tools ProB and TLC. We conclude with more related and future
work in Sect. 5.

2 An example translation from TLA+ to B

To allow B users to become familiar with TLA+, we present a variation of the well
known HourClock example from Chapter 2 of [5]. Figure 1 shows the MyHourClock
module, which avoids the if-then-else expression of the original at this point.
The specification describes the typical behavior of a digital clock displaying only
hours. The module starts with the module clause followed by the name of the
specification. The analogous clause of a B machine is machine or model. At the
beginning of the module body, arithmetic operators such as + or “..” are loaded
via extends from the standard module Integers. These operators are not built-in
operators in TLA+and can either be defined by the user or imported with their
usual meaning as here. The declaration of constants and variables is identical in

2

module MyHourClock
extends Integers
constants c
assume c ∈ 1 . . 12
variables hr
Init

∆
= hr = c

add 1(p)
∆
= p + 1

Inc
∆
= hr < 12 ∧ hr ′ = add 1(hr)

Reset
∆
= hr = 12 ∧ hr ′ = 1

Next
∆
= Inc ∨ Reset

Fig. 1. Module MyHourClock

both languages. The assume clause in TLA+ correspondes to the properties
clause in B.

To understand the meaning of the other definitions in the module we need some
additional information.2 For our translation we use a configuration file, as TLC also
uses, telling us the initial state and the next-state relation of the module. For this
example we suppose Init to be the initial state predicate and Next to be the next-
state relation. Init indicates that the variable hr has the value of the constant c in
the initial state. Next is separated into two independent actions by the disjunction
operator. An action is a before-after predicate describing a transition to a next-state
with the aid of the prime operator(′). A primed variable represents the variable in
the next-state. The use of the additional add 1 operator may seem artificial here;
its purpose is to demonstrate another aspect of our translation.

Figure 2 shows the translated B Machine of the MyHourClock example. We use
the becomes/such/that substitution under the initialization clause to initialize
the variables of the B machine. It assigns a value to the variable such that the
predicate in the brackets is satisfied. The TLA+actions Inc and Reset are translated
as separate B operations. We represent the prime operator in B by adding a local
auxiliary variable for every variable.3 The auxiliary variables (with suffix “ n”)
are generated in the any part of the any/where/then substitution and get their
value in the in the where part. If the predicate in the where part is not satisfiable
the operation can not be executed. Finally, the values of the auxiliary variables are
assigned to the corresponding global variables in the then part.

Operators such as add 1 are translated using B definitions. In B, definitions are
a kind of macro and help to write frequently used expressions. Furthermore, they
can have parameters. Using B definitions avoids to replace an operator call by the
definition of the operator. The arithmetic operators are translated with the use of
B’s built-in operators. Therefore, they do not appear in the definitions clause.

2 “What those definitions represent [. . .] lies outside the scope of mathematics and there-
fore outside the scope of TLA+” (see p. 21 of [5]).

3 For technical reasons we cannot easily use the B’s $0 construct.

3

machine MyHourClock
definitions add 1(p) == p + 1
constants c
properties c ∈ 1..12
variables hr
invariant hr ∈ Z
initialisation hr :(hr = c)
operations

Inc Op = any hr n
where hr < 12 ∧ hr n = add 1(hr)
then hr := hr n
end

Reset Op = any hr n
where hr = 12 ∧ hr n = 1
then hr := hr n
end

end

Fig. 2. Machine MyHourClock

Finally, to obtain a correct B machine our translation has inferred and added the
types of the variables in the invariant clause.

3 The Translation from TLA+to B

3.1 Type system

The basis of our translation is a mapping of TLA+ values to B values. Due to the
strict type system of B, every B value has to be associated with a type. Below we
list the translations of the TLA+ values and the resulting restrictions:

– Numbers: In B real numbers are not supported. Thus, only integers can be
translated. They get the B type Z.

– The boolean values true and false are identical in both languages. They get
the B Type bool.

– The concepts of strings are different in both languages. In TLA+a string is a
tuple of characters and a single character can be accessed. However, a string
in B is atomic and has the base type string. For the translation we currently
reject strings if they are used as tuples.

– A model value is none of TLA+’s own values but one of TLC’s. But it is
established to use TLA+ together with TLC so we deliver a suitable translation.
TLC allows to assign a model value or a set of model values to a constant in
the configuration file. The equivalent of a model value is an element of an
enumerated set in B. To make different model values comparable to each other
we put them in the same enumerated set named: enumi . However if two model

4

values are never compared in the specification, we put them in different sets
(such as enum1 and enum2). The B type of a model value is the name of the
enumerated set containing it.

– There is one main difference between sets in TLA+and B. In B all elements of
a set must have the same type, i.e., a set has the B type Pτ where τ is the type
of all elements.

– In both languages functions are a mapping from a domain to a range. The B
type of a function is P(τ1× τ2), where Pτ1 is the type of the domain and Pτ2 is
the type of the range.

– In TLA+a record is a special case of a function whose domain is a set of strings
(the field names) In B records have their own type struct(h1 : τ1, . . . , hn : τn),
where h1, . . . , hn are the names of the fields and τ1, . . . , τn the corresponding
field types.

– Likewise, tuples are based on functions in TLA+. The domain is a set of num-
bers from 1 to n, where n is the count of components. We translate tuples as
sequences with the type P(Z × τ). Thereby all components of a tuples get the
same type τ .

In B only values of the same type are comparable to each other and variables as
well as constants must have fixed types. To verify these rules a type checking algo-
rithm is required. Moreover we need a type inference algorithm to add missing type
declarations to the translated B machine as shown in the example in Sect 2. Type
checking and type inference are closely related and can be handled simultaneously.

We use an inference algorithm similar to [9], adapted to the B type system,
where we add an extra type u representing an unspecified type. At the beginning
each variable and constant have this type. The algorithm is based on the recur-
sive method eval(e, ε), dealing with a TLA+ expression e and an expected type ε.
Evaluating an expression eval is applied recursively to its subexpressions. Moreover
eval tries to unify the expected type with the type of the expression and returns the
resulting type. The expected type of a subexpression is deduced from type informa-
tions of the operator calling this subexpression. Type informations of an operator
arise from the translation. As an example the TLA+ operator + is translated by
the B built-in operator + and its operands are assumed to be integers. There are
polymorphic operators such as =, which only require that both operands have the
same type. In this case the expected type for both operands is u but the resulting
types of both sides have to be unified. Due to unification, the eval method is only
once applied to each (used) expression of the TLA+ module. The algorithm fails
either if a unification of two types fails or if a variable or constant still has a variable
type u (or a type constructor containing u such as Pu) at the end of algorithm.

3.2 Translation Rules

In this section we present translation rules for concepts which are different in
TLA+and B, or even missing in B. Translation rules for concepts which are al-
most identical can be found in Appendix B.

5

In contrast to TLA+, B distinguishes between boolean values and predicates.
The difference is already present at the syntactical level. Logical operators such as
∧ or ∨ cannot be applied to boolean values. Similarly, variables or constants can not
take a predicate as a value. Though, there is a way to convert from a predicate to
boolean and vice versa. A predicate can be converted to a boolean value using the
bool operator. The other way around, we can turn a boolean value into a predicate
by comparing it with true. The translation of the TLA+ predicate

true = (true ∨ false)

demonstrates both conversions:

true = bool((true = true) ∨ (false = true))

The if/then/else construct can be used in variety of ways in TLA+. The
two branches can consist of arbitrary expressions with or without primed variables.
There is no general way to translate this construct with the if/then/else substi-
tution of B. In order to make a translation to B possible, we first have to restrict
both branches to the same type. In case the branches are predicates the construct

if P then e1 else e2

can be translated using two implications as

(P ⇒ e1) ∧ (¬(P)⇒ e2)

If e1 and e2 are expressions, we cannot use this scheme. Our solution is to create
for both branches a lambda function, with respectively e1 and e2 as result expres-
sion. Moreover we choose true as the sole dummy element of the domains. The
“trick” is to add the condition P respectively its negation ¬(P) to the correspond-
ing function. As a consequence, one of the functions is always empty. As already
mentioned, B functions are sets and we can apply ∪ to combine them (the result
is still a function here). To get the value of the if/then/else construct, we just
have to call the function with the value true as argument:

(λt .(t ∈ {true} ∧ P |e1) ∪ λt .(t ∈ {true} ∧ ¬P |e2)) (true)

The translation of the case construct is based on the same principle. However,
every case is treated as single branch and only one case can be true at the same
time.

The LET d
∆
= f IN e construct allows to define a “local” operator d which can

only be used in the expression e. This operator is treated as an ordinary operator
and translated with the aid of a B definition; conserving the scope of the operator.
In TLA+ operators of different LET/IN constructs could have the same name. We
compensate this case by adding consecutive numbers as suffixes to multiple used
names.

In TLA+ the choose operator is used to choose an arbitrary value of a set.
The operator works in a deterministic way and chooses always the same value for

6

a given set. It is often combined with a recursive function such as determining
the sum of a set. In B there is no way to express the general functionality of the
choose operator4 and recursive functions are still not (well) supported by B tools.
Hence, we developed a way to handle frequently used operators which are based
on the choose operator or on recursive functions. The principle is inspired by
the way TLC overrides operators by its Java implementation: we create a new
TLA+ standard module (see Figure 3.2) with some useful operators, and during
the translation these operators will be overridden by B built-in operators.

module TLA2B
extends Integers, Sequences
MinOfSet(S)

∆
= choose p ∈ S : ∀n ∈ S : p ≤ n

MaxOfSet(S)
∆
= choose p ∈ S : ∀n ∈ S : p ≥ n

SetProduct(p)
∆
=

let prod [S ∈ subset Int]
∆
=

if S = {} then 1
else let q

∆
= choose pr ∈ S : true

in q ∗ prod [S \ {q}]
in prod [p]

SetSummation(p)
∆
=

let sum[S ∈ subset Int]
∆
=

if S = {} then 0
else let q

∆
= choose pr ∈ S : true

in q + sum[S \ {q}]
in sum[p]

PermutedSequences(S)
∆
=

let perms[ss ∈ subset S]
∆
=

if ss = {} then {〈〉}
else let ps

∆
= [x ∈ ss 7→

{Append(sq , x) : sq ∈ perms[ss \ {x}]}]
in union {ps[x] : x ∈ ss}

in perms[S]

The concepts of modularization are different in TLA+ and B. In B a machine
is a closed system. Indeed, a machine can be included by another machine but
variables can only be modified by its operations. As a result, a single machine of
a compound system can be verified individually. A TLA+ module does not need
to satisfy this property. Hence, we translate a compound of TLA+ modules as a
single B machine:

– A module extending another module will be treated as a single module con-
taining declarations and definitions (including local definitions of the extended
module) of both modules. Otherwise, there are no further differences in com-
parison to a translation of a single module.

4 Even though the operator does appear inside mathematical constructions of [1].

7

– The statement

I
∆
= INSTANCE M WITH vM ← v , cM ← c

allows the specifier to use the definitions of the module M. Thereby, all vari-
ables and constants of M have to be overridden by variables and constants (or
constant expressions) of the module instancing M. A definition dM of Module
M can be accessed via I !dM . Also multiple instantiations of the same module
are possible. We translate every definition dM of M as an ordinary definition by
only renaming it to I dM and by overriding variables and constants as described
in the statement.

In Sect. 2 we translated a TLA+action from Fig. 1 to a B operation in Fig. 2, but
we did not exactly define what TLA+ actions are and how they are extracted. An
action is defined to be “an ordinary mathematical formula, except that it contains
primed as well as unprimed variables”(see p. 16 of [5]). Following this definition we
could handle the whole next state relation as a single action. However, this is not
advisable, amongst others because of poor user feedback for animation, proof and
model checking. Consequently we separate actions with the aid of the disjunction
operator. If a disjunction of two actions occurs in a subdefinition of the next state
relation, we also will treat them as separate actions unless the subdefinition has
no parameter. Parameters indicate that a subdefinition can be used in different
variations and multiple times; the translation should not dissolve this structure of
a module. In this case the subdefinition is translated with a B definition.

A special translation is possible if an action contains an existential quantifier:

act
∆
= ∃x ∈ S : P(x)

The bounded variables of the quantification are handled as parameters of the re-
sulting B operation:

act op(x) = any . . .where x ∈ S ∧ P(x) then . . .end

The advantage is that a user can choose a possible value for the parameter x during
the animation process (values for x satisfying P(x) are generated by ProB).

4 Implementation and Experiments

The translator is implemented in Java and is called TLA2B. The frontend of TLA2B
is based on SANY (cf., Chapter 12 of [5]) for parsing the module and performing
a semantic analysis. Likewise, SANY serves as the frontend of the modelchecker
TLC. Moreover, we reuse the configuration file parser of TLC. But the semantic
analysis of the configuration file ist different: TLC requires a value for every con-
stant of the corresponding module. In our case, a constant only has to be given a
value if the type of the constant cannot be inferred from the module. Otherwise,
values of constants can be chosen at a later point in time (ProB infers values for a

8

constant satisfying possible restrictions of the assume clause). TLA2B can handle
the clauses specification (temporal description of the specification), invariant
(an invariant holding in every state) and overriding of constants and definitions
beside the already mentioned init (initial state) and next (next state relation).
Before inferring and checking types, we conduct a further analysis phase discard-
ing the unused definitions of a module. As an example, temporal definitions are
excluded from the translation. The remaining part of the TLA2B consists of imple-
mentations of the algorithms described in Sections 2 and 3. Finally, TLA2B creates
a B machine file (.mch) containing the translated B machine.

TLA2B has been integrated into ProB as of version 1.3.5: opening a TLA+

module ProB invokes TLA2B to translate the module. As can bee seen in Fig. 3,
the TLA+ module is displayed in the editor while ProB runs the translated B
machine in the background. The editor offers syntax highlighting and gives an easy
way to modify the module.

Fig. 3. ProB animator for the SimpleAllocator specification

The following examples show some fields of application of TLA2B in combina-
tion with ProB. It is not our intention to present a complete comparison between
ProB and TLC. The experiments were all run on a system with Intel Core2 Duo 2
GHz processor, running Windows Vista 32 Bit, TLC2 2.03 and ProB 1.3.5-beta1.

9

Note that both ProB and TLC support symmetry, but in different ways. In
TLC symmetries are provided by the user (e.g., in a configuration file) and do not
seem to be checked, ProB identifies symmetries over given sets automatically.

SimpleAllocator As the first example we use the resource allocator case study
from [8]. The purpose of the system is to manage a set of resources that are shared
among a number of client processes. The first abstract specification of the system
is the SimpleAllocator. TLA2B translates the module without the need for any
modification (the TLA+ module and the translated B machine are shown in Ap-
pendix A). Clients and resources are specified as sets of model values and allow
TLC as well as ProB to use symmetry. Table 2 summarises the runtimes of model
checking produced by TLC and ProB. Without symmetry TLC is superior to
ProB, but for larger set sizes ProB’s symmetry outperforms TLC. It seems that
TLC’s symmetry reduction cannot deal well with larger base set sizes and a lot of
symmetrical states exist (incidentally, a situation where symmetry reduction could
be particularly useful). This is actually to be expected, given the description of the
symmetry reduction algorithm in [5]: when a state is added TLC checks for every
permutation of it whether it already exists. This is expensive when there are many
such permutations.

Login To specifically test this aspect of symmetry reduction, we have writ-
ten the TLA specification Login which simply allows users to login and logout
and deadlocks if all users have logged in (in Appendix C.4). Here, for 9 Users,
TLC without symmetry reduction takes 1 second to find the deadlock, but did not
terminate within 105 minutes with symmetry enabled. ProB takes 0.73 seconds
without symmetry, and 0.04 using hash symmetry reduction [7]. For 21 users, TLC
requires 141 seconds to find the deadlock without symmetry, and with symmetry
an error message is generated.5 ProB with hash symmetry takes 0.29 seconds to
find the deadlock for 21 users. The constraint-based deadlock checking algorithm
[4] finds a deadlock in less than 0.01 seconds for 21 users.

Clients Resources TLC TLC ProB ProB
(no symmetry) (symmetry) (no symmetry) (symmetry)

3 2 <1 <1 <2 <1

4 3 28 2 678 8

5 3 450 29 - 28

6 3 >4200 573 - 90

Table 1. SimpleAllocator: Runtimes of Model Checking (times in seconds)

SchedulingAllocator This is n advanced version of the SimpleAllocator from
[8]. However, this time a small modification is required to be able to validate the
specification using our tool. Indeed, the SchedulingAllocator contains the defini-
tion PermSeqs(S) that is based on a recursive function and computes the set of

5 “Attempted to construct a set with too many elements (>1000000)”. This error message
already appears with 15 Users.

10

permutation sequences of the set S. To translate this to the B built-in operator,
we have to override PermSeqs with the PermutedSequences definition pro-
vided by our TLA2B module. For this, we simply have to create a new module
MCSchedulingAllocator (shown in Fig.4) and then add the override state-
ment PermSeqs <- PermutedSequences to the configuration file. The results of model
checking are comparable to the SimpleAllocator specification, and can be found in
Table 2.

module McSchedulingAllocator
extends SchedulingAllocator , TLA2B

Fig. 4. Module MCSchedulingAllocator

Clients Resources TLC ProB
(symmetry) (symmetry)

3 2 1 2

4 3 70 165

5 3 >3600 1579

Table 2. McSchedulingAllocator: Runtimes of Model Checking (times in seconds)

Producer-Consumer Another example is the specification of a multi-threaded
program by Charpentier taken from http://www.cs.unh.edu/%7Echarpov/Teaching/TLA/. The
specification describes a system of threads working on a buffer. In case of a criti-
cal ratio between consumer and producer threads, the system can deadlock. After
translation ProB reproduces the various deadlocks by model checking. For exam-
ple, for 11 producers and 10 consumers a deadlock can be reached after 431 steps.
Using the AtelierB provers we have also managed to prove the invariant of that
model, i.e., that the buffer capacity is never exceeded and that the waitSet only
contains valid participants. This required 8 interactive proofs and 5 automatic ones.

Constraint Solving: GraphIso and N-Queens One of the distinguishing
features of ProB is its ability to solve complicated high-level constraints. For ex-
ample, to find an isomorphism between two graphs (of out-degree exactly one) using
the TLA+ specification in Appendix C.3, ProB requires less than a second to find
all solutions, while TLC requires over two hours to find the first solution.

As another example, consider the well-known N-Queens puzzle. We have experi-
mented with two encodings of the puzzle (cf., Appendices C.1 and C.2): one6 where
we use the model checker to search for all valid placements of N queens on an N×N
chessboard and a more declarative encoding where we directly write a predicate
describing all valid solutions (i.e., all solutions are generated in single set-builder
rather than through an iterative algorithm). As can be seen in Table 3, the model
checking approach can only deal with very small values of N. In contrast, ProB can

6 The specification was written by S. Merz and is included in the TLA+ Tools Distribu-
tion.

11

handle values of N up to 13 for the declarative version of N-Queens. Furthermore,
when one is interested in only one solution, ProB can, e.g., find a solution for
N=50 in less than a second. (Restricting to single solutions does not make much of
a performance difference for TLC however.)

N Solutions N-Queens (imperative) N-Queens (declarative)
TLC ProB TLC7 ProB

4 2 1 <2 <1 <1

5 10 >3600 >3600 <1 <1

6 4 - - 1 <1

7 40 - - 16 <1

8 92 - - 375 <1

9 352 - - 2970 <1

10 724 - - - <1

11 2,680 - - - <1

12 14,200 - - - 9

13 73,712 - - - 41

Table 3. Finding all solutions for N-Queens (times in seconds)

We have also successfully animated several other existing models from the lit-
erature, and we are continuously extending the scope of our translation and the
application of ProB to TLA+ specifications. Otherwise, it should be emphasised
that several specifications are rejected by TLA2B due to type conflicts or unsup-
ported concepts such as real numbers. In summary, we are already able to animate
a wide variety of TLA+ specifications from the literature. The ProB constraint
solving capabilities open up the way to animate and validate new kinds of specifi-
cations, which are outside the reach of TLC. TLC on the other hand is extremely
valuable when it comes to explicit state model checking for large state spaces. How-
ever, ProB’s symmetry reduction techniques seem to scale better than TLC’s.

5 Discussion and Conclusion

The paper by Mokhtari and Merz [10] presents an animator and model checker
for an executable subset of TLA+. The article clearly outlines the needs for an
animator for TLA+; unfortunately the tool seems no longer to be available.

Mosbahi et al. [11] describe an approach of a translation from B to TLA+.
In contrast to our translation they have to deal with concepts which are missing
in TLA+ such as partial functions. Moreover their main intention is to let TLC
verify liveness properties on the translated TLA+ specification, to overcome the
restriction of the B-Method to invariance properties. Otherwise, [12] presents a LTL
model checker, implemented inside ProB, that can verify liveness properties. So

7 To display the trace leading to a deadlock TLC calculates each state of the trace again:
this leads to a doubling of runtimes for this version of N-Queens in the table.

12

far, this model checker does not support fairness conditions, but an extension would
give us the possibility to enlarge TLA2B to support the temporal part of TLA+.

In terms of features, we also plan to provide the graphical visualization features
of ProB (available for B,Z and Event-B models) for TLA+ as well. More work
on translating various constructs effectively to B, such as the choose operator or
recursive functions, is planned. Another important avenue of further work lies in
improving our translation to B. In particular, we aim to generate various B style
substitutions such as assignments or if-then-else constructs, rather than generic
any substitutions. This makes the B translation more readable, but would also
lead to noticeable performance improvements with ProB. E.g., in our experiments,
this would lead, to a further 20 % runtime improvement for the SimpleAllocator
example and up to a factor 2 for other examples.

We would also like to better exploit the symmetry reduction provided by ProB.
While the SimpleAllocator, SchedulingAllocator and Login example worked well,
the symmetry in the Producer-Consumer example could only be exploited by man-
ually tweaking the B translation. We would like to automate this as much as possi-
ble, as it can lead to a considerable performance boost (after tweaking ProB with
symmetry requires about a minute to find the 413 step counter example for the
Producer-Consumer example; TLC requires more than three and a half hours to
to find a deadlock8). We are also interested in validation of our translation, maybe
by exporting the state space computed by ProB to TLC and use TLC to check
that it conforms to the original specification.

In conclusion, we have presented a translation from TLA+ to B, which makes
use of a type inference algorithm and effectively translates a large subset of TLA+

to B. The complicated aspects of the translation are linked to the different modular-
ization concepts, as well as to various operators which are not obvious to translate
to B. The translation also identifies operations and parameters within the TLA+

specification formula, in order to make the translation more readable as well as to
enable effective application of B tools. In particular, by integrating our translation
into the ProB validation tool, we obtain a new tool for TLA+ specifications which
is complementary to TLC, providing convenient animation, constraint solving and
improved symmetry reduction. As our experiments show, TLC remains more effec-
tive for brute force explicit state model checking, at least for those specifications
which do not require solving complicated constraints. As such it is very useful that
both these tools can be applied to TLA+ specifications. The translation itself is
also human readable, and we hope that the paper also provides a bridge between
the TLA+ and B communities.

Acknowledgements We are grateful to Daniel Plagge for various discussions and

helpful comments that helped in developing the translator. We also would like to thank

Leslie Lamport and Stephan Merz for very useful feedback concerning TLA+ and TLC

and for giving us access to various specifications.

8 When trying to use symmetry, the same error message occurs as in the Login example.

13

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. The TLA+ proof system: Build-

ing a heterogeneous verification platform. In A. Cavalcanti, D. Déharbe, M.-C. Gaudel,
and J. Woodcock, editors, Proceedings ICTAC 2010, LNCS 6255, page 44, 2010.

3. K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. Verifying safety properties with
the TLA+ proof system. In J. Giesl and R. Hähnle, editors, Proceedings IJCAR 2010,
LNCS 6173, pages 142–148, 2010.

4. S. Hallerstede and M. Leuschel. Constraint-based deadlock checking of high-level
specifications. TPLP, 11(4–5):767–782, 2011.

5. L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

6. M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 2003.

7. M. Leuschel and T. Massart. Efficient approximate verification of B via symmetry
markers. Annals of Mathematics and Artificial Intelligence, 59(1):81–106, 2010.

8. S. Merz. TLA+ Case Study: A Resource Allocator. Interne A04-R-101 —— merz04a,
2004. Rapport interne.

9. S. Merz and H. Vanzetto. Automatic verification of tla+ proof obligations with smt
solvers. In N. Bjørner and A. Voronkov, editors, Proceedings LPAR-18, LNCS, Mérida,
Venezuela, 2012. Springer.

10. Y. Mokhtari and S. Merz. Animating TLA specifications. In H. Ganzinger, D. A.
McAllester, and A. Voronkov, editors, Proceedings LPAR’99, LNCS 1705, pages 92–
110, 1999.

11. O. Mosbahi, L. Jemni, and J. Jaray. A formal approach for the development of
automated systems. In J. Filipe, B. Shishkov, and M. Helfert, editors, ICSOFT (SE),
pages 304–310. INSTICC Press, 2007.

12. D. Plagge and M. Leuschel. Seven at a stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. STTT, 11:9–21, 2010.

13. F. Steria, Aix-en-Provence. Atelier B, User and Reference Manuals, 2009. Available
at http://www.atelierb.eu/.

14. Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifications. In L. Pierre
and T. Kropf, editors, Proceedings CHARME’99, LNCS 1703, pages 54–66. Springer-
Verlag, 1999.

A A more complicated translation: SimpleAllocator

module SimpleAllocator
extends FiniteSets, TLC
constants Clients, Resources
assume IsFiniteSet(Resources)
variables unsat , alloc
TypeInvariant

∆
= ∧ unsat ∈ [Clients → subset Resources]

∧ alloc ∈ [Clients → subset Resources]
available

∆
= Resources \ (union {alloc[c] : c ∈ Clients})

Init
∆
= ∧ unsat = [c ∈ Clients 7→ {}] ∧ alloc = [c ∈ Clients 7→ {}]

14

Request(c, S)
∆
= ∧ unsat [c] = {} ∧ alloc[c] = {}

∧ S 6= {} ∧ unsat ′ = [unsat except ! [c] = S] ∧ unchanged alloc
Allocate(c, S)

∆
= ∧ S 6= {} ∧ S ⊆ available ∩ unsat [c]

∧ alloc′ = [alloc except ! [c] = @ ∪ S] ∧ unsat ′ = [unsat except ! [c] = @ \S]
Return(c, S)

∆
= ∧ S 6= {} ∧ S ⊆ alloc[c]

∧ alloc′ = [alloc except ! [c] = @ \S] ∧ unchanged unsat
Next

∆
= ∃ c ∈ Clients, S ∈ subset Resources :

Request(c, S) ∨Allocate(c, S) ∨ Return(c, S)
vars

∆
= 〈unsat , alloc〉

SimpleAllocator
∆
= ∧ Init ∧ 2[Next]vars

∧ ∀ c ∈ Clients : WFvars(Return(c, alloc[c]))
∧ ∀ c ∈ Clients : SFvars(∃S ∈ subset Resources : Allocate(c, S))

ResourceMutex
∆
= ∀ c1, c2 ∈ Clients : c1 6= c2⇒ alloc[c1] ∩ alloc[c2] = {}

Symmetry
∆
= Permutations(Clients) ∪ Permutations(Resources)

15

MACHINE SimpleAllocator
SETS enum1 = {r1, r2}; enum2 = {c1, c2, c3}
CONSTANTS Clients, Resources
PROPERTIES Clients = enum2 ∧ Resources = enum1

∧ ∃seq .(seq ∈ seq(Resources) ∧ ∀s.(s ∈ Resources ⇒
∃n.(n ∈ 1 .. size(seq) ∧ seq (n) = s)))

DEFINITIONS
TypeInvariant == unsat ∈ Clients ⇒ P(Resources)

∧ alloc ∈ Clients ⇒ P(Resources);
available == Resources - union(t |∃c.(c ∈ Clients ∧ t = alloc(c)));
Init == unsat = λc.(c ∈ Clients| {}) ∧ alloc = λc.(c ∈ Clients| {});
Request(c,S) == unsat(c) = {} ∧ alloc(c) = {}

∧ (S 6= {} ∧ unsat n = unsat / {c 7→ S});
Allocate(c,S) == S 6= {} ∧ S ⊆ available ∩ unsat(c)

∧ alloc n = alloc / {c 7→ (alloc(c) ∪ S)}
∧ unsat n = unsat / {c 7→ (unsat(c) - S)};

Return(c,S) == S 6= {} ∧ S ⊆ alloc(c) ∧ alloc n = alloc / {c 7→ (alloc(c) - S)};
ResourceMutex == ∀c1,c2.(c1 ∈ Clients ∧ c2 ∈ Clients ⇒

(c1 6= c2 ⇒ alloc(c1) ∧ alloc(c2) = {}));
VARIABLES unsat, alloc
INVARIANT unsat ∈ P(enum2×P(enum1))
∧ alloc ∈ P(enum2×P(enum1)) ∧ TypeInvariant ∧ ResourceMutex

INITIALISATION unsat, alloc ∈ (Init)
OPERATIONS

Request Op(c, S) = ANY unsat n
WHERE c ∈ Clients ∧ S ∈ P(Resources) ∧ Request(c, S)
THEN unsat := unsat n END;

Allocate Op(c, S) = ANY unsat n, alloc n
WHERE c ∈ Clients ∧ S ∈ P(Resources) ∧ Allocate(c, S)
THEN unsat, alloc := unsat n, alloc n END;

Return Op(c, S) = ANY alloc n
WHERE c ∈ Clients ∧ S ∈ P(Resources) ∧ Return(c, S)
THEN alloc := alloc n END;

END

16

B Translations Rules (for referees)

B.1 Logic

TLA+ B-Method

TRUE TRUE

FALSE FALSE

BOOLEAN BOOL

P ∧Q P ∧Q

P ∨Q P ∨Q

P ⇒ Q P ⇒ Q

P ≡ Q P ⇔ Q

¬P ¬P

∀x ∈ S : P ∀x .(x ∈ S ⇒ P)

∃x ∈ S : P ∃x .(x ∈ S ∧ P)

B.2 Sets

TLA+ B-Method

{x1, . . . , xn} {x1, . . . , xn}
{x ∈ S : P} {x |x ∈ S ∧ P}
{e : x ∈ S} {t |∃x .(x ∈ S ∧ t = e)}
M1 ⊗M2 M1 ⊗M2

for ⊗ ∈ {=, 6=,∪,∩,⊆}
e ∈ M e ∈ M

e /∈ M e /∈ M

e1\e2 e1 − e2
SUBSET S P(S)

UNION S union(S)

Cardinality(S) card(S)

B.3 Functions

TLA+ B-Method

[x ∈ S 7→ e] λx .(x ∈ S |e)

f [e] f (e)

DOMAIN f dom(f)

[S → T] S → T

[f EXCEPT ![c1] = e1, . . . , ![cn] = en] f / {c1 7→ e1, . . . , cn 7→ en}

B.4 Records

TLA+ B-Method

r .h r ′h

[h1 7→ e1, . . . , hn 7→ en] rec(h1 : e1, . . . , hn : en)

[h1 : S1, . . . , hn : Sn] struct(h1 : S1, . . . , h1 : Sn)

[r EXCEPT !.b = e] rec(a : r ′a, b : e, c : r ′c)
for r ∈ [a : S1, b : S2, c : S3]

17

B.5 Integers

TLA+ B-Method

e1 ⊗ e2 e1 ⊗ e2
for ⊗ ∈ {+,−, ∗,÷,≤,≥, <,>}
be be

−e −e

e1..e2 e1..e2
Nat NATURAL

Int INTEGER

B.6 Tuple

TLA+ B-Method

〈e1, e2, e3〉 [e1, e2, e3]

Seq(S) seq(S)

Len(s) size(s)

s ◦ t ŝt

Append(s, e) s ← e

Head(s) first(s)

Tail(s) tail(s)

SubSeq(s,m,n) (s ↑ n) ↓ (m − 1)

C Examples (for referees)

C.1 N-Queens (imperative for model checking)

module Queens
extends Naturals, Sequences
constant N
assume N ∈ Nat \ {0}

Attacks(queens, i , j)
∆
=

∨ queens[i] = queens[j]
∨ queens[i] − queens[j] = i − j
∨ queens[j]− queens[i] = i − j

IsSolution(queens)
∆
=

∀ i ∈ 1 . . Len(queens)− 1 : ∀ j ∈ i + 1 . . Len(queens) :
¬Attacks(queens, i , j)

Solutions
∆
= {queens ∈ [1 . . N → 1 . . N] : IsSolution(queens)}

variables todo, sols

Init
∆
= ∧ todo = {〈〉}
∧ sols = {}

PlaceQueen
∆
= ∃ queens ∈ todo :

let nxtQ
∆
= Len(queens) + 1

18

cols
∆
= {c ∈ 1 . . N : ¬∃ i ∈ 1 . . Len(queens) :

Attacks(Append(queens, c), i , nxtQ)}
exts

∆
= {Append(queens, c) : c ∈ cols}

in if nxtQ = N
then ∧ todo′ = todo \ {queens}

∧ sols ′ = sols ∪ exts
else ∧ todo′ = (todo \ {queens}) ∪ exts

∧ sols ′ = sols

vars
∆
= 〈todo, sols〉

Spec
∆
= Init ∧ 2[PlaceQueen]vars ∧WFvars(PlaceQueen)

TypeInvariant
∆
=

∧ todo ∈ subset Seq(1 . . N) ∧ ∀ s ∈ todo : Len(s) < N
∧ sols ∈ subset Seq(1 . . N) ∧ ∀ s ∈ sols : Len(s) = N

Invariant
∆
=

∧ sols ⊆ Solutions
∧ todo = {} ⇒ Solutions ⊆ sols

Termination
∆
= 3(todo = {})

NoSolutions
∆
= sols = {}

C.2 N-Queens (declarative encoding)

module QueensV 2
extends Naturals, FiniteSets
constants N
variable solutions

Init
∆
= solutions = {}

Solve
∆
= solutions = {} ∧ solutions ′ = {sol ∈ [1 . . N → 1 . . N] :

(∀ i ∈ 1 . . N : ∀ j ∈ 2 . . N : i < j ⇒
∧ sol [i] 6= sol [j]
∧ sol [i] + i − j 6= sol [j]
∧ sol [i]− i + j 6= sol [j])}

Spec
∆
= Init ∧ 2[Solve]〈solutions〉

C.3 Simple Graph Isomorphism

module GraphIso
extends Naturals
variable p, solved
n

∆
= 9

g1
∆
= [[i ∈ 1 . . n 7→ i] except ! [1] = 3, ! [2] = 3,

19

! [3] = 6, ! [4] = 6, ! [5] = 6, ! [8] = 9, ! [9] = 8]

g2
∆
= [[i ∈ 1 . . n 7→ i] except ! [2] = 5, ! [3] = 5,

! [4] = 5, ! [6] = 4, ! [7] = 4, ! [1] = 9, ! [9] = 1]

Init
∆
= ∧ p = [i ∈ 1 . . n 7→ 0]
∧ solved = 0

Solve
∆
= ∧ solved = 0
∧ p′ ∈ [1 . . n → 1 . . n]
∧ ∀ i ∈ 1 . . n : (∃ j ∈ 1 . . n : p′[j] = i)
∧ ∀ i ∈ 1 . . n : (p′[g1[i]] = g2[p′[i]])
∧ solved ′ = 1

Spec
∆
= Init ∧ 2[Solve]〈p, solved〉

C.4 Login

module Login Deadlock
extends TLC
constant Users
variables logged in
Init

∆
= logged in = {}

Login
∆
= ∃ u ∈ Users \ logged in : logged in ′ = logged in ∪ {u}

Logout
∆
= ∃ u ∈ logged in :
∧ logged in 6= Users this causes a deadlock when logged in = Users
∧ logged in ′ = logged in \ {logged in}

Next
∆
= Login ∨ Logout

Spec
∆
= Init ∧ 2[Next]logged in

Symmetry
∆
= Permutations(User)

20

