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Abstract

The creation of a consistent system description is a challenging problem of re-
quirements engineering. Formal and informal reasoning can greatly contribute
to meet this challenge. However, this demands that formal and informal rea-
soning and the system description are connected in such way that the reasoning
permits drawing conclusions about the system description.

We describe an incremental approach to requirements modelling and valida-
tion that incorporates formal and informal reasoning. Our main contribution
is an approach to requirements tracing that delivers the necessary connection
that links the reasoning to the system description. Formal refinement is used in
order to deal with large and complex system descriptions.

We discuss tool support for our approach of requirements tracing that com-
bines informal requirements modelling with formal modelling and verification
while tracing requirements among each other and into the formal model.
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1. Introduction

We describe an incremental approach for producing a system description
from an initial set of informal requirements. The system description is com-
posed of formal and informal artefacts that describe, for instance, assumptions
about the environment or requirements proper. The central aspect we are con-
cerned with is reasoning about these artefacts. We allow formal and informal
reasoning but demand firm conclusions about satisfaction of the requirements
and correctness of the specification to be part of the system description. In or-
der to achieve this we need a method to trace artefacts such that the proofs we
carry out formally and informally translate to corresponding validation state-
ments in the system description. The approach must be incremental in the sense
that changes to system descriptions and formal models should be considered fre-
quent activities. These changes certainly happen in early development phases
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of a project but will usually continue during maintenance. This article expands
on [28] and continues work that is presented in [24, 29].

Our approach to tracing is based on the WRSPM reference model [14] that
identifies common categories of artefacts and specifies soundness conditions that
they must satisfy. We extend the categories so that a mixture of formal and
informal reasoning can be handled. Using the extended reference model we
introduce different notions of traces between artefacts. These traces allow us
to relate proofs to involved artefacts and to detect artefacts that are affected
by changes to the system description or the formal model associated with it.
Usually, the elements of the system description are stated in natural language;
and some approach for structuring large collections of natural language require-
ments is used such as [21, 39]. Such structured system descriptions are still
understandable by stakeholders like customers and developers but already per-
mit informal reasoning about the requirements. We use Problem Frames [21] in
this article but other choices like [39] would be possible too.

The formal method to be used should be compatible with the predicative
reasoning style of WRSPM. We consider state-based formalisms such as ASM
[8], VDM [30], TLA™ [35] or Event-B [2] particularly suited because they permit
straightforward specification of state, state invariants and state transitions for
modelling dynamic behaviour. The formal reasoning that we present in this
article uses the Event-B method. In particular, we make use of the notion
of refinement of Event-B to handle artefacts in small increments. Successful
applications of this modelling approach are described in [5, 11], for instance.
Using refinement avoids having to trace a large number of refinements into one
monolithic formal model. We do not require that all artefacts are modelled
formally, but those that are benefit from rigorous reasoning. Once modelled
formally, artefacts can be analysed using automated verification by theorem
provers or model checkers.

For Event-B such tools are available in the form of Rodin [3] and ProB [36],
for instance. To deal with natural language requirements and requirements
tracing we use the tool ProR [23] that has been customised for use with Rodin
and ProB. This permits us to evaluate our approach by tracing informal natural
language artefacts among each other and to formal Event-B artefacts.

Our approach to requirements modelling attempts to be pragmatic and suit-
able for industry use: we accept that the initial requirements may be less then
perfect. In particular, they may be fragmented to some degree as is common in
automotive software development and elsewhere, but acknowledge that a bet-
ter style may exist. Likewise, we consider it crucial to allow only a partial
formalisation of the system description [12].

1.1. Running Fxample

Throughout the paper, we use a lift system to demonstrate our approach to
requirements modelling and validation. Fig. 1 shows a schematic drawing of the
lift system. The example is taken from [6], which provides a structured system
description. An important assumption underlying [6] is that all artefacts can
be directly represented as logical formulae, in particular, relying on a dedicated
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Figure 1: Schematic drawing of the lift system

logic for real-time modelling. In order to illustrate mixing formal and informal
reasoning we do not use such a logic but use only a formalism for discrete
modelling. The lift system is described in general terms in [6]:

“A simple, single lift system allows movement of a single lift cage
between a finite number of floors, the starting and stopping of the
lift cage and the opening and closing of floor doors — all in response
to the pressing of floor call and cage send buttons.”

We begin by treating the running example informally using Problem Frames
[21].

Example 1. Problem Frames offer a way to structure and analyse a system
description informally. They are a practical approach related to WRSPM and
the model for requirements tracing that we introduce in Section 2. Although we
do not discuss informal structuring and analysis in detail, we find it instructive
to show a concrete approach that could be used with the rather abstract model
for requirements tracing.

A problem diagram for a specific aspect of the lift system is shown in Fig. 2.
The diagram shows a machine domain called “Lift Controller” that is to be
designed and built. The given domains “Lift Cage” and “Door” are part of the
environment. Their properties are given and cannot be designed. Requirements
are drawn as dashed ovals. The requirement shown in this problem diagram
says: “The [door] shall be [closed] while the [lift cage] is [moving up] or [mov-
ing down]”. Tt describes a property that the lift cage and the door together
should satisfy. This is visually indicated by the edges to the corresponding
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Figure 2: A problem diagram describing door behaviour

given domains. Edges are decorated with sets of phenomena that the connected
domains or requirements share. For instance, the lift controller and the door
share the set b of phenomena [open door], [close door], [open] and [closed]. In
addition, a prefix indicates which phenomena are controlled by what domain.
For example, the prefix “DOR!” denotes that the phenomena [open] and [closed]
are controlled by the domain “Door”. The brackets around the phenomena are
our notation. They permit us to trace phenomena and verify their consistent
usage. This is explained in Section 2 in terms of the model for requirements
tracing that uses the term phenomenon in the same sense. We have partitioned
the different domains and the requirements into three distinct parts marked by
Q, W and R. Members of these parts are called artefacts: @) are the specifica-
tion elements, W the domain properties and R the requirements. Artefacts are
the basis for tracing requirements in our approach. Fig. 2 illustrates how the
artefacts can be related to a concrete structured system description.

The concept of a Problem Frames domain does not appear in our approach.
Instead, we subsume domains as phenomena in our approach, arguing that they
are constructs that group phenomena'.

Problem diagrams can grow very large with many requirements and many
shared phenomena. In order to keep them as small as possible they can be struc-
tured into sub-problem diagrams. The sub-problem diagrams are projections of
a larger diagram. They may describe and constrain overlapping portions of that
larger diagram.

Analysis of problem diagrams involves asking whether the right domains
are present in order to express the problems to be solved. In fact, the Problem
Frames approach has a specific kind of diagram for this sort of analysis, the con-
text diagram. Once problem diagrams have been created, we can reason about

IThis simplification does not affect the concept of traceability on which this article focuses.




them by means of frame concerns. A frame concern is an informal argument
why, given the domain properties, the specification satisfies a requirement. In
the Problem Frame approach they take the role of informal proofs. ___

The main purpose of the example is to illustrate our approach. It is not
very challenging. However, we find it advantageous to use it because it is easy
to explain and a formal model of it had been produced before [6]. Although the
problem is not very challenging the purely formal model is not fully consistent
with respect to the informal description given in [6]. This problem may affect
formal modelling in general.

1.2. Terminology

Some of the terminology we use does not have a generally agreed meaning.
We discuss them briefly in order to clarify what we mean by them in this article.

Our intention is to describe a system that interacts with an environment. A
system description describes the system and its environment. On the system a
computer program is to operate. The purpose of the system description is aid
the construction of the computer program. The system description contains do-
main properties, requirements, design decisions, specifications, implementations
and platform properties. Requirements describe how the world should behave
when the system is operating and are only one aspect of the system description.
Assumptions about the world are stated as domain properties. We also record
design decisions in the description. Design decisions often influence whether cer-
tain requirements can be satisfied. As such it is important to have a systematic
way of dealing with them. They also serve to explain those parts of a specifi-
cation to which they apply. Specifications describe possible implementations in
the form of computer programs. An implementation models a computer pro-
gram based on properties of the underlying platform. The implementation only
describes what is necessary for computer program to operate properly in the
given environment. We call the informal objects of the system description in-
formal artefacts. Objects that have been formalised in a mathematical notation
we call formal constructs.

The title of this article refers to the two central artefacts of a system de-
scription: requirements and specifications. However, the methodology that we
discuss deals with all sorts of artefacts and constructs that occur in system
descriptions.

1.8. Structure of this Paper

Section 2 describes a model for tracing requirements based on WRSPM. In
Section 3 we describe the formal method Event-B which we use for formal re-
quirements validation. Section 4 describes a process of how to produce a system
description incrementally following our approach of requirements tracing. Sec-
tion 5 describes a tool chain that has been customised to support this approach.
Finally, Sections 6 and 7 discuss related work and draw some conclusions.



2. A Model for Requirements Tracing

Our approach is based on WRSPM by Gunter et. al. [14]. The objective of
our approach is to produce a system description of “high quality” by establish-
ing a traceability that allows a systematic validation of the system description
and provides robustness with respect to changes in the system description. It
further allows the mixing of formal and informal elements, thereby enabling rig-
orous reasoning where it is desired. WRSPM is a reference model for applying
formal methods to the development of user requirements and their reduction to
a behavioural system specification. The reference model distinguishes artefacts
and phenomena. Phenomena describe the state space and state transitions of
an environment and a system, while artefacts describe constraints on the state
space and the state transitions. Artefacts are distinguished into the following
categories corresponding to the WRSPM reference model described in [14]:

e domain properties (W)
describe facts about how the world behaves;

o requirement items (R) and (N)
describe how the world shall behave once the system is built;

e specification elements (Q)
describe a system whose implementation satisfies the requirements;

o implementation elements (P)
provide an implementation of the specifications;

o design decisions (U)
describe design options chosen for specification and implementation;

e platform properties (M)
provide an execution environment for the programs.

We have extended the reference model introducing design decisions U and
an additional class of requirement items N as artefacts. We also changed the
symbol for specification elements from S (used in WRSPM) to @, to avoid
ambiguities when discussion state based modelling in Section 3.

Design decisions U document the reasoning behind the introduction of spec-
ification elements ). The requirement items N are those requirements that
are validated by purely informal reasoning. These will usually include non-
functional requirements but also requirements that, intentionally, remain infor-
mal during modelling. By contrast, requirement items R are intended to be
validated by formal reasoning.

Fig. 3 illustrates the different kinds of phenomena and artefacts. Phenomena
p are distinguished by whether they are controlled by the system, belonging to
set s, or the environment, belonging to set e. They partition the set of all
phenomena, that is sNe = @ and s Ue = p. Furthermore, phenomena are
distinguished by visibility. Environmental phenomena may be visible to the
system, belonging to e,, or hidden from it, belonging to e,. Similarly, system
phenomena belonging to s, are visible to the environment, while those belonging
to sp are hidden from it. These classes of phenomena are mutually disjoint.
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Figure 3: Variant of the WRSPM reference model with design decisions

[lift cage] (en) is the cabin carrying the [passenger| (ep)

[current floor] (ew)  is the floor at which the [lift cage] (ep,) is currently located

[open] (ev) is the status of the [door] (e}) being open
[closed] (ev) is the status of the [door] (ep,) being closed
[request] (ev) is a command issued by a [passenger] (ep) to service some [floor] (ep)

Figure 4: Excerpt of the lift system glossary

Example 2. All phenomena are listed and described in a glossary. An informal
excerpt of the glossary for the lift system is shown in Fig. 4. More rigorous no-
tations like designation rules [21] could be used to add precision and to support
the formalisation process. I

The distinction between environment and system is important; omitting it
can lead to misconstrued specifications. The boundary between environment
and system is often based on the discretion of the user and may be based on
taste or convenience. Nevertheless, it has a profound impact on the problem
analysis and the obligations to be respected between environment and system.
The distinction serves to clarify the responsibilities and interfaces between the
system and the environment [14].

The artefacts W, R and U may only be expressed referring to phenomena
that are visible in the environment, that is e U s,,. Likewise, P and M may
only be expressed referring to phenomena that are visible to the system, that
is s Ue,. Artefacts @ may only be expressed referring to phenomena that are
visible to both the system and the environment, that is e, U s,,.

Example 3. Fig. 5 shows some domain properties and requirement items for
the lift system. Note that the travel time between floors, W-1, is considered a
domain property whereas the service time for a specific floor, N-1, is considered
a requirement item: we cannot influence the travel time but we are supposed to
control the service time. J




R-1  The [current floor] shall be between the [ground floor] and the [top floor]

R-2  If the [lift cage] is [moving up] or [moving down], the [door] shall be [closed)]

N-1  When a [floor] is [service]d, the [door] shall [open] for at least [ts] time units

N-2  Each [request] to [service] some [floor] shall be served within [¢.] time units

W-1  The [lift cage] takes [tf] time units to travel from one [floor] to the next

W-2  The [lift cage] may be [idle], [moving up] or [moving down]
W-3  The lift system has [N] [floors]
W-4  The [floors] are numbered from [0], the [ground floor], to [N], the [top floor]

Figure 5: Some requirement items and domain properties of the lift system

U-1  The [lift cage] switches from [moving up] to [moving down] if the [top floor]
is reached or there are no [upwards requests] but [downwards requests]

U-2  The [lift cage] switches from [moving down] to [moving up] if the [ground floor]
is reached or there are no [downwards requests] but [upwards requests|

Figure 6: Some design decisions of the lift system

2.1. Reasoning with Artefacts
Once a system is modelled following our approach, a number of properties
can be verified with regard to the model, one being adequacy with respect to Q:

Ve,s - WAQ=RAU . (1)

It says that the specification constrains the world so that the requirements
and design decisions are realised. Note that if the world is vacuous, that is,
—(Je, s, - W), the implication would be trivial to satisfy by any specification.
However, if the world W is consistent, then we expect the development method
to preserve that consistency: a specification @ must not be permitted to falsify
the premise W A Q. We expect the specification @ to be feasible assuming W,
that is (Je, s, - W) = (e, s, - W A Q). This can be achieved by construction
using dedicated notions of refinement, e.g., [1]. The specification @ is intended
to constrain the behaviour of the world. This corresponds to the control that
the machine to be built exerts on the world. All we can ask for is that if W is
consistent, then W A () is consistent too.

Example 4. Fig. 6 shows some design decisions for the lift system. The design
decisions U-1 and U-2 contribute to satisfying requirement item N-2. So do W-1
and N-1. We can argue informally that it takes minimally ¢, = (2%N—2)*(ts+ty)
time units until the lift cage reaches a specific floor. Hence, if ¢, is chosen such
that t, > tp, then N-2 is satisfied. Whether ¢, is an acceptable bound has to
be confirmed with the stakeholders. The bound ¢, is arguably the best case.
This is all we can do concerning N-2 because the travel of the cabin could be
obstructed in some way introducing unbounded delays. |




The implementation should also satisfy a condition similar to adequacy:
Ve,s - WAMANP=RAU . (2)

If we have already established adequacy (1), then condition (2) can be achieved
by refinement:
Ve,s WAMAP=Q . (3)

The latter formula (3) reflects the refinement condition of UTP for relations
presented in [17]. Additional healthiness conditions in UTP provide for consis-
tency. We use the refinement approach of [2] that permits additionally changing
the data-representation. However, for the present purposes we do not make use
of this additional concept.

Non-functional requirements depend, in particular, on design decisions. This
aspect of non-functional requirements is discussed in [9]. Design decisions in-
troduce architectural concepts or constrain the implementation, for example.

Ve,s WARANUANQ= N . (4)

We assume that often non-functional requirements will not be formal. Hence,
formula (4) will usually consist of formal and informal artefacts with the con-
clusion NV being informal.

The implications in the formulae (1) to (4) indicate relationships between
specific artefacts. For instance, a specific specification element )’ may imply a
specific requirement item R’. We can also say that we can trace requirement
R’ to specification element Q’. The reference model provides the foundation for
our approach of requirement traceability. We also cast the refinement theory
of Event-B conceptually into the reference model so that we can trace require-
ments among formal artefacts, among informal artefacts and across formal and
informal artefacts.

2.2. Tracing of Artefacts and Phenomena

In order to trace requirements we need to define relationships between arte-
facts. Currently, we are not interested in tracing implementation elements P
and platform properties M. We focus on the relationship between specification
@ and design decision U on one side and requirements items R and N, as well
as domain properties W on the other.

We are interested in tracing justifications of artefacts, equivalence between
artefacts, evolution of artefacts and tracing of phenomena used in artefacts. We
discuss the different kinds of tracing in turn.

2.2.1. Tracing Artefact Justification

We say artefact B justifies artefact A, or B « A, if B justifies the presence
of artefact A. If an artefact appears in the system description, its presence
should be justified. It should be there for a reason. If we read implications like
(1) from the right to the left we arrive at justifications for the involved artefacts.
We say RAU justify Q AW. We would like Q AW not to contain more artefacts



than necessary in order to establish (1). We call a subset SB of the artefacts
Q AW such that SB = RAU a satisfaction base [32] for RAU. We are partic-
ularly interested in small satisfaction bases to obtain as precise justifications as
possible. There may not be a unique minimal satisfaction base nor may it be
feasible to find it if a minimal set exists. A good estimate is practically suffi-
cient though. Such an estimate can be derived by looking at artefacts mentioned
in proofs —formal and informal. Satisfaction bases have been explored in the
context of relevance logic [43]. Reading a justification B < A in the reverse
direction A — B we say that A realises B. We can rephrase statements about
justification using realisation, for instance: each specification element or domain
property should be there for a reason. It should realise requirement items or
design decisions. The additional notion of realisation provides us with a tracing
concept that is similar to implication, unlike justification which is similar to
reverse implication. The similarity should not be taken too far, however. In
particular, realisation and implication are not the same. Realisation is just a
relation between artefacts. A realisation does not state that its left-hand side
logically implies its right hand side.

Example 5. The informal proof in Example 4 indicates that there should be
a corresponding justification trace.

4>
[W-l, N-1, U-1, U-2 — N-2 Q

If the informal proof associated with N-2 would mention the artefacts that realise
it, then this trace could be generated automatically by an appropriate tool. _1

2.2.2. Tracing Artefact Equivalence

In our approach some but not all artefacts may be formal. Often formal
artefacts have informal counterparts. If an artefact A is formal, we write Ar. We
write BIif B is informal. When formalising informal requirement items we often
get direct correspondences between informal items A1 and formal items BF. We
say that these items are equivalent, denoted by Al «» BF. Equivalence tracing
is particularly useful when dealing with domain properties in formal proofs.
Domain properties are on the left hand side of all implications (1) to (4). We
take the relation Al realises BF, A1 — BF, to reflect the informal implication
“A1 = BF”. If A1 and BF are only related by their informal implication,
statements about informal domain properties may not hold with respect to the
formal domain properties. For this to hold we need either BF — AI, that is
the formal assumptions about the world are at least as strong as the informal
assumptions, or equivalence Al <+ BF. The equivalence tells us that the informal
domain properties are not weaker than needed for building the system.

2.2.8. Tracing Artefact FEvolution
A system description evolves over time. This may happen due to changing
requirement items or due to improvements to the description made by modelling
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and reasoning. Evolution does not follow logical implication. The best we
can do is to record approximately how artefacts have changed over time based
on differences between different revisions of the system description. We write
A ~ B for A evolves into B. FEvolution traces are needed for the benefit
of various stakeholders to follow original requirement items into the current
revision of the system description. This is demonstrated in Example 10.

2.2.4. Tracing Used Phenomena

The partitioning of the phenomena in Fig. 3 indicates that it is important
to trace phenomena into various artefacts. We need to verify that the various
artefacts —informal and formal— only refer to allowed phenomena as outlined
in the figure; the description ought to be syntactically sound. Furthermore, we
are interested in verifying that formalised artefacts refer to those phenomena
specified in the corresponding informal artefacts, be they related by justification
or equivalence. We have only little means in our hand to achieve consistency
between formal and informal artefacts. This one appears simple and effective,
similarly, to type checking or the use of alphabets in UTP [17]. We record
references from artefacts to phenomena saying that A uses p, denoted by, p € A.
This just means that A makes some statement about p. The management of
this relationship can be handled efficiently by proper tool support, as described
in Section 5.

Example 6. Marking a word p in an artefact A specifies the trace p € A: the
artefact A makes some statement about p. For instance, the requirement item
R-1 uses the phenomena floor, ground floor and top floor.

S
[ﬂoor, ground floor, top floor € R-1 Q

Uses traces can be useful for informal proof. They allow us to search for related
phenomena, a technique that is borrowed from formal proof. |

3. Formal Modelling and Refinement

Our approach to requirements tracing could be used with a wide range of
formal methods for state-based modelling that have an associated notion of re-
finement. In this paper, we use Event-B which we introduce in Section 3.1.
Based on Event-B we also discuss limitations of formalisation: not all require-
ments can be formalised within the core Event-B formalism. For this reason,
formal and informal reasoning need to be combined in a sensible way. The
boundary of formalisation is illustrated by temporal and real-time properties;
a different formal method could allow a different boundary. There is also a
fundamental boundary between any formalism whatsoever and non-formal re-
quirements of certain kinds, for example, that the system shall offer a specified
level of comfort.

We have intentionally chosen a boundary that could be moved by using
another formal method or extending Event-B. We think the boundary is not
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fixed and may vary depending on characteristics of development projects or it
may move as a development progresses. We think of modelling and requirements
validation as an incremental process: we permit the boundary to be changed as
need arises.

We take advantage of the concept of refinement supported by Event-B. Other
notions of refinement could be used without changing the approach fundamen-
tally. Our approach of requirements tracing allows us to account for additional
requirements at later refinement stages, thereby, providing a structuring mech-
anism for the introduction of requirements into the formal model. Tracing
requirements into and within Event-B models is based on the Event-B proof
obligations described in Section 3.2. The approach to tracing requirements in
Event-B is described in the subsequent Section 3.3.

3.1. Event-B Models

Formal models in Event-B consist of contexts K and machines M. Contexts
provide their static properties while machines provide behavioural properties.
A context K can be extended by another context L. We call K an abstract
context and L a concrete context. The behaviour of a machine is expressed in
terms of events E. Events model transitions between the states of the machine.
A dedicated event models the initialisation of the machine. An invariant I
is specified for a machine property that should always hold. This must be
proved. In Section 3.2 we describe the corresponding proof obligations. Before
turning to the proof obligations we describe in the following two sections, 3.1.1
and 3.1.2, the syntax of machines and contexts is described in more detail. When
introducing constructs such as invariants or axioms we indicate in brackets the
free identifiers that may occur in them.

8.1.1. Event-B Contexts

Contexts K consist of carrier sets and constants. Carrier sets s are similar
to types in other formalisms. Constants ¢ are constrained by axioms C(s,c).
Contexts are seen by machines. All carrier sets, constants and axioms of a
context seen by a machine M are visible in M.

Context K can be extended by another context L with carrier sets ¢, con-
stants d and axioms D(s, t, ¢,d). The carrier sets s and ¢ as well as the constants
c and d must be distinct. All axioms C of K become axioms of L, too.

3.1.2. Fvent-B Machines

Machines provide behavioural properties of Event-B models. Machines con-
sist of variables, invariants, events. Variables v describe the state of a machine.
They are constrained by invariants I(s, ¢, v) where s and ¢ are carrier sets and
constants of a seen context.

Events. Possible transitions between states of the machine are described by
means of events. Each event is composed of a guard G(p,v) and an action
A(p,v), where p are parameters of the event. The guard states the necessary
condition under which an event may occur, and the action describes how the
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state variables evolve when the event occurs. We denote an event FE(v) by
any p when G(p,v) then A(p,v) end in its most general form, or when G(v) then
A(v) end if the event does not have parameters, or begin A(v) end if in ad-
dition the guard equals true. A dedicated event of the third form is used for
initialisation.

Actions. The action component of an event is composed of assignments. Let
x be variables, a subset of v. Assignments in Event-B are either deterministic,
x := e where e(p,v) are expressions, or non-deterministic: either it is a non-
deterministic choice from a set, x :€ e, where e(p,v) is an expression, or it is a
non-deterministic choice of a z’ satisfying a predicate, z :| @, where Q(¢,v, ")
is a predicate. The first two forms of assignment can be expressed in terms of
the third: the deterministic assignment x := e is the equivalent of z :| 2’ = e
and the non-deterministic assignment x :€ e the equivalent of v :| v’ € e.

Transitions. The effect of an assignment can also be described by a before-after
predicate: the before-after predicate of = :| @ is @ by definition. A before-after
predicate is used to describe the relationship between the state just before an
assignment has occurred (unprimed variable names 2 within v) and the state just
after the assignment has occurred (primed variable names a’). All assignments
of an action A occur simultaneously which is expressed by conjoining their
before-after predicates, yielding a single predicate P. Variables y that do not
appear on the left-hand side of an assignment of an action are not changed by
the action. Formally, this is achieved by conjoining P with ¢y = v, yielding
the before-after predicate S(p,v,v’) of the action: S = P Ay = y. Note that
the guards are not part of the before-after predicate. In the presentation of the
proof obligations below we use events with actions specified in terms of their
before-after predicate, that is, events F of the form any p when G then v :| S end.

Refinement. A machine M with variables v and invariant I(v) can be refined
by another machine N with variables w and invariant J(v,w); we also say that
M is an abstraction of N. We call M an abstract machine and N a concrete
machine. Invariant J is called a gluing invariant. It relates the states of the
abstract machine to those of the concrete machine. A concrete machine N can
refine at most one abstract machine M. The reason for this is that the concrete
machine N contains the predicate J that links N to the abstract machine M.
Invariants are built up incrementally during refinement, preserving invariants
from abstractions: the invariant I of the abstract machine M is joined with the
invariant J of the concrete machine N in machine N. So the full invariant of
NisINJ.

Machine N refines M if N behaves similarly to M. This is expressed more
precisely by relating abstract and concrete events by event refinement: each
abstract event E(v) = any p when G(p,v) then v :| S(p,v,v") end is refined by
one or more concrete events F'(w) = any ¢ when H(q,w) with Z(p, q,v,v’, w,w")
then w :| T'(¢, w,w’) end. Informally, concrete event F' refines abstract event
FE if the guard H of F is at least as strong as the guard G of FE, and the
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gluing invariant J establishes a simulation of the action of F' by the action
of E. The concrete event F' contains an additional predicate Z following the
keyword with, called the witnesses for p and v'. Somewhat simplified, they link
the abstract parameters p and the abstract variables v’ to concrete parameters g
and concrete variables and w’. Witnesses describe for each event separately how
the refinement is achieved. It is possible to introduce new events in a refinement.
They are required to refine the implicit abstract event skip = begin v := v end.
Refinement permits us to verify a large number of properties piecemeal.
This is particularly important when dealing with complex systems consisting of
many properties to be modelled and verified. We also exploit this for tracing
requirements by disentangling intricate properties into simpler ones [15].

Remark on Convergence and Deadlock-Freedom. Event-B also has the notions
of convergence and deadlock freedom [2]. Proving convergence we show that
events introduced newly in a refinement do not take control forever. Among
other things this can be used to prove loop termination [2]. Deadlock freedom
in Event-B means that some concrete event may occur whenever some abstract
event could occur. This property ensures that we cannot remove behaviour in
a refinement. In our approach this property could be interesting for showing
that domain properties modelled by events are not accidentally strengthened in
a refinement. For the purpose of this article we do not discuss convergence and
deadlock freedom further because they do not contribute new insights.

3.2. Event-B Proof Obligations

We present proof obligations for machine consistency in Section 3.2.1 and
proof obligations for machine refinement in Section 3.2.2. During the presen-
tation of the proof obligations we comment on some issues concerning the ref-
erence model discussed in Section 2 before explaining our approach of tracing
requirements into formal models in Section 3.3.

3.2.1. Consistency Proof Obligations

Transition Proof Obligations. For an event E = any p where G then v :| S end
we have to prove feasiblity of the event: CAIAG = Fv'-S. Feasibility expresses
that S describes an after state whenever the guard G holds. This means that
the guard indeed represents an enabling condition of the event.

Invariants should hold whenever an event possibly changes the values of some
variable. The corresponding proof obligation is called invariant preservation:
CAINGAS = I[v:=']. This proof obligation verifies that if the invariant
I holds before the event E occurs, then it also holds after it has occurred. In
other words, the invariant I is preserved by event F.

The two consistency proof obligations address the problem of the feasibility
of domain properties and specification elements discussed in Section 2.1. For
those domain properties modelled by events and invariants we also verify fea-
sibility. There remain those domain properties modelled by the axioms C' for
which feasibility is not verified. The software tool ProB provides some means
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to check axioms for consistency and gives feedback, that is, a counterexample,
if checking for consistency fails [37].

Example 7. Let us formalise the domain properties W-3 and W-4.

axiom axml: floors=0.. N
azm?2: card(floors) = N

The corresponding traces are: azml < W-4 and azm?2 < W-3. (W-4 should
be split into three different domain properties. Therefore, the trace between
arml and W-4 is not an equivalence. We have not done this to save space.)
Unfortunately, azm! and axm2 contradict each other. We have to correct the
domain properties and decide to number the floors from 0 to N — 1. We change
W-4 to

W-4  The [floors] are numbered from [0], the [ground floor], to [N-1], the [top floor]

and keep an evolution trace to the old version of the domain property. The
inconsistency between W-3 and W-4 is already contained in [6]. This just shows
how tempting it is to formalise a model without tracing artefacts. It is all too
easy not to spot problems in informal descriptions and ignore inconsistencies
building by mistake the “right model” but for “wrong artefacts”. We would
have a consistent formal model but the formal artefacts would not be consistent
with respect to the informal artefacts. |

Initialisation Proof Obligations. For an initialisation we have to prove feasibility
and invariant establishment. These two proof obligations together imply that
the state space of the machine is not vacuous provided the axioms C' are free
of contradictions. The proof obligations of invariant establishment and invari-
ant preservation together manifest an inductive proof that the invariant always
holds. So we could also say that the machine M satisfies the temporal property
“always I”.

8.2.2. Refinement Proof Obligations

We only discuss transition proof obligations. Initialisation proof obligations
are similar. For abstract event E = any p where G then v :| S end and concrete
event F' = any q where H with Z then w :| T end where F' refines E' we have
to prove feasibility of F. It is similar to feasibility of the abstract event except
that we additionally assume D and J in the premise.

The proof obligations (5) to (8) verify that the abstract event F can sim-
ulate the concrete event F'. A consequence of this simulation is that invariant
preservation proved for the abstract event also holds for the concrete event.

Guard strengthening establishes that the concrete event cannot occur more
often than the abstract event:

CADANINJANZANHAT =G . (5)
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Action simulation demonstrates that the action S of the abstract event can
simulate the action T of the concrete event:

CADANININZNHANT =S . (6)
Invariant preservation verifies that the gluing invariant J is preserved:
CADANINIANZANHAT = Ju,w:=v",w'] . (7)

Note that in the formulae (5) and (7) the witness Z constrains w’ to satisfy S.
The existence of the witness must be established by a separate proof obligation,
called, witness feasibility:

CADANINJANHANT = 3Jw',q- Z . (8)

In combination the proof obligations (5) to (8) serve to verify the following
property:

CADANINJANHAT = 3q,w" - GASAJv,w:=v" 0] . (9)

It is a standard proof technique for refinement called forward simulation (e.g.
[45]). The introduction of witnesses Z has the methodical advantage of explicat-
ing the relationship between the abstract and the concrete event. But it makes
requirements tracing easier, too. The proof obligations (5) to (8) provide a much
better and robust basis for tracing. We can record which premises have been
used in the proof per proof obligation. If forward simulation was proved directly
by means of (9), used premises would be much more difficult to determine for
the constructs occurring in the conclusion.

3.3. Tracing Requirements in Event-B

Event-B models consist of formal constructs such as axioms, invariants and
events. These should be related to informal artefacts such as domain proper-
ties, specification elements and requirements. We assume that non-functional
requirements are left to informal reasoning. Hence, when tracing requirements
from a formal model we always refer to functional requirements R. In the fol-
lowing we denote by XT an informal artefact and by XF a formal construct. The
decorations I and F are only used for emphasis: we keep the letters as employed
in the Sections 2.1 and 3.2 above. We also distinguish strictly between informal
artefacts and formal constructs for emphasis.

8.8.1. Tracing and Correctness
In the formal model we must not strengthen the assumptions we make by
means of the domain properties. That is domain properties W1 must realise
formal constructs AF:
W1 — AF . (10)
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The formal constructs AF will typically be formalised domain properties. For re-
quirements RI we have the opposite. They must be realised by formal constructs
BF:

BF — RI . (11)

We must not weaken the requirements. The formal constructs B¥ will typically
be formalised requirements or formalised specification elements. The latter will,
in particular, occur when the specification notation is not rich enough to for-
malise some given requirements. Whenever possible (10) and (11) should be
equivalence traces, W1 <> AF and BF <> RI. That is, we do not want to imple-
ment more than necessary, either because we have weakened the assumptions
or because we have strengthened the requirements. Note, however, that neither
weaker assumptions nor stronger requirements will cause a correctness problem.
This is a well-known fact in program verification [4]. The formulas (10) and (11)
form a bridge between formal and informal reasoning. In Section 2.1 we did not
distinguish between formal and informal, effectively, considering everything in-
formal. Formal modelling involves some duplication. Many informal artefacts
have formal constructs as their counterparts.

8.8.2. Tracing Artefacts into Formal Models

The proof obligations for an Event-B machine M are produced by mildly
rewriting and composing its constructs (and the constructs of seen contexts).
The motivation for this approach is that it should be easy to relate constructs
in a formal model with proof obligations [3]. In particular, if proving a proof
obligation fails, it should be clear where in the formal model to look for an
error. Exploiting the proximity between proof obligations and formal model, we
can trace requirements into the proof obligations —as a side effect marking the
corresponding constructs in the formal model. In practice, the tracing informa-
tion is attached to the constructs of the formal model. However, the reference
model described in Section 2.1 is formulated predicatively on the level of the
proof obligations.

We focus on specification adequacy (1) first: Ve,s-WIA Q1 = RIAUL Tt
deals with domain properties W1, specification elements QI1, requirements RI
and design decisions UI. To show specification adequacy, the domain properties
W and specification elements Q1 must realise the constructs AF of the formal
model,

WIA QI — AF (12)

and the constructs AF must realise the requirements RI and design decisions
Ur,
AF - RIAUTL. (13)

Here we consider those artefacts that can be traced into the formal model.
We do not assume, however, that satisfaction of all the requirements is proved
formally. Some proof or argumentation may be informal involving only informal
artefacts as illustrated by Example 4.

Based on (12) we can identify constructs of the formal model that are realised
by W1 and Q1. Assumptions are modelled in Event-B by axioms, hence some
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static domain properties W1 C W realise the axioms: W1’ — CF.2 Dynamic
domain properties W17 C W1 realise a subset of the events and invariants of a
model: W1” — I¥ A GF A SF. Distinct events and invariants IF A GF A SF are
realised by specification elements QU C Q1: QU — IF A GF A SF. This permits
the formal specification to be weaker than the informal specification. Note that
there is a qualitative difference between domain properties W1 and specification
elements Q1: the W1 are assumed to be given in advance whereas the QI are
produced during the modelling. As a consequence, QI can be strengthened
during the modelling turning the realisation into an equivalence. This would be
necessary if Q1 would be used as basis for implementation.

Based on (13) we can identify constructs of the formal model that realise RI
and Ul. Both of them are realised by events and invariants: Ir A GF A SF —
R1 AUl Note how artefacts that relate to invariants that make a claim of the
form “it is always true that ...” correspond to the temporal statement “always
I”. This is not proved directly by the proof obligations for machines but implied
by them. This is not formalised in Event-B. So we rely on an informal proof for
the claim.

Example 8. In the abstract Event-B model of the lift system we introduce the
movement of the lift cage. In order to formalise the current floor at which the
lift cage is located with respect to requirement item R-1, we introduce a variable
position and the invariant invi:

invariant invl: position € ground_floor .. top_floor

Figure 9 shows the new identified phenomenon position which is marked as a
synonym for the phenomenon current floor. The management of synonyms is
important as they often occur in system descriptions. An appropriate tool could
support managing this task. We defer the management of synonyms to future
work (see Section 7).

We keep track of the relationship between R-1 and inv! using an equivalence
trace.

<~
mvl < R-1

Once we have proved preservation of invariant inv by all events, R-1 is formally
validated. It remains formally validated in all further refinements. Equivalence
is a strong form of justification. Requirement item R-1 justifies the presence of
the invariant énv! in the formal model. |

Example 9. We formalise the domain property W-2 by introducing another
variable move that describes the direction of the lift cage or whether the lift
cage is idle.

2Informal artefacts can realise more than one formal construct. To simplify the presentation
we assume that such artefacts are duplicated.
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Q-1 If the [lift cage] is [idle] at some [floor]| below the [top floor], it may proceed by
[moving up]. Having reached the [top floor] it does not proceed by [moving up]

Q-2 If the [lift cage] is [idle] at some [floor], the [door] may be [open]ed

Figure 7: Some specification elements of the lift system

Q-1.1  If the [motor] is [stopped] and the [position] is below the [top floor], it may
proceed by [turning left]

Q-1.2  If the [motor] is [stopped] and the [position] is the [top floor], it does not
proceed by [turning left]

Figure 8: Specification element Q-1 split into Q-1.1 and Q-1.2

invariant inv2:  move € {up, down,idle}

We have the following trace.

<
mv2 +— W-2

Some invariants can be traced to requirement items others to domain properties.
Tracing artefacts makes this explicit for each invariant. |

Example 10. As a consequence of R-1 specification elements have to be added
to enforce that the lift will not move above the top floor and not below the
ground floor. Fig. 7 shows the specification element Q-1 for the lift system. We
could argue, informally, that Q-1 should contribute to satisfying R-1 given the
domain property W-2 about possible lift cage movements.

Considering Fig. 3, Q-1 is no valid artefact, since it uses phenomena that are
not visible to the system like lift cage and floor. It needs to be rewritten in some
way that it only uses phenomena which are visible to the system. Furthermore,
Q-1 is too complex and should be split into two separate specification elements.
The new specification elements Q-1.1 and Q-1.2 to replace Q-1 are shown in
Fig. 8. We identify some new phenomena as shown in Fig. 9.

An evolution trace for Q-1 keeps track of this modifications.

[Q—l ~ Q-1.1, Q-1.2 @

We formalize the specification elements Q-1.1 and Q-1.2 by introducing an-
other variable motor that describes the current state of the motor which is
responsible for moving the lift cage.

invariant inv3:  motor € {left, right, stopped}
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[motor] (sv) is either [turning left] (sv) or [turning right] (s.) or is [stopped] (sv)

[position] (e,) is a synonym for [current floor] (ev)

Figure 9: New identified phenomena

Further, we introduce a new event ctl_switch-move_up:

event ctl_switch_move_up
when
grdl: motor = stopped
grd2: position < top_floor
then
actl: motor := left
end

Finally, we add the corresponding realisation traces grdi,grd2,actl — Q-1.1
and Q-1.1, Q-1.2 — R-1. |

3.8.8. Tracing Artefacts into Formal Refinements

If a model is developed by formal refinement, a sequence of machines MF,
M¥,, ..., MF, is obtained where MF;; refines MF;. Each MF; captures some
informal artefacts. For instance, we have a corresponding sequence of subsets
of the requirements R that are realised in each model RIy, Ris, ..., Rl,, where
R1; C R1;11. We rephrase the refinement condition (3) of the reference model
to deal with series of specifications:

Ve,s- WIAQI = Q1. (14)

Specification QT is a step towards an implementation of specification Q1. We
do not talk about platform properties yet because Q1 is not an implementation.
Condition (14) is matched by the refinement notion of Event-B. Formulae (5)
and (6) imply:

CFADFAIFANJFAZFANHFATF = GF A SF . (15)

So we can argue that if GF A SF realises some requirement, so does HF A TF.
(We assume that the remaining constructs occurring in the hypothesis formalise
other informal artefacts.) However, HF A TF may be stronger. In particular,
it may realise more requirements RI' than GF A SF where RI' C Ri;41\RY;
if HF A'TF is an event from machine MF;;;. Hence, HF A TF realises all
requirements that GF A SF does plus the requirements RI’. We have already
outlined at the end of Section 3.2.2 how invariants are accumulated along a series
of formal refinements. A similar argument holds for design decisions U1. Thus
formal refinement permits us to introduce and trace requirements gradually,
alleviating a major difficulty when dealing with complex requirements.
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Additional axioms DF can be introduced in a refinement. So in the refine-
ment the axioms justify additional domain properties. Concerning events that
justify domain properties, proving only (15) is not sufficient because the con-
crete event may be stronger than the abstract event. But correctness is only
maintained if this does not happen. There are several possibilities to deal with
this situation. We could argue why the concrete event is still weak enough to
realise the domain properties; or a formal proof technique could establish that
both events are equivalent.?> One could also start with the first approach and
switch to the second when all relevant domain properties have been justified.
On the other hand we are allowed to strengthen the formal constructs realis-
ing the specification elements Q1. With it, however, we have to strengthen the
specification elements of Q1. As discussed above, Q1 is being developed and not
assumed to be exclusively under control of the environment. This is a funda-
mental difference to domain properties we have to observe. For increasing sets
of domain properties W1; and specification elements Q1; where 7 € 1,...,n as
above, we have thus

Wliv1 AQLiv1r = Wi AQI; . (16)

All in all, respecting the precaution about domain properties of the preceding
paragraph, formal refinement preserves (12) and (13). Each refinement step can
be used to verify adequacy of the specification gradually:

Wi AQL = R, ANUT; . (17)

Refinement steps dealing with implementing elements P1 will usually realise
fewer additional requirements. The refinement method, however, does not make
a particular distinction between the two uses of refinement. Refinement the-
ory guarantees that adequacy validated in earlier refinement steps is preserved.
When the end of the series refinements is reached specification adequacy (1) is
fully verified.

Example 11. In the first refinement of the Event-B model of the lift system
we introduce the door status. Furthermore, we formalise requirement item R-2.
It is formally modelled by means of an invariant inv4:

invariant invf: move € {up, down} = door_state = closed

We consider this to capture precisely the informal meaning of the requirement.
Hence, we create an equivalence trace inv4 <> R-2 from invj to R-2. As a
consequence of R-2 specification elements have to be added to enforce that
no lift movements occur when the door is open. The formal Event-B model
highlights the needed specification elements by corresponding proof obligations.
Often guards like grd3 in event ctl_switch-move_up have to be added to events
in order to prevent behaviour that would violate the invariants.

3In Event-B this can be achieved by declaring an event as external.
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event ctl_switch_move_up
when
grd1l: motor = stopped
grd2: position < top_floor
grd3: door_state = closed
then
actl: motor := left
end

The guards have to be translated into a specification element Q-4, say, and
corresponding realisation traces be provided: grd3 — Q-4 and Q-4 — R-2. __

3.8.4. Informal Proofs about Formal Models

Often requirements can be identified with invariants, event guards or actions.
In this case (17) holds trivially for the concerned requirements. Sometimes
theorems can be stated that that realise the requirements and are implied by
the invariants [15]. However, our approach is not limited to verification by
formal proof exclusively. We also permit (and encourage) informal proof. We
have already seen the property “always I” that is only proved informally. Other
temporal properties could be used similarly. However, for this article we content
ourselves with a less expressive notation relying only on the core constructs of
Event-B. Our aim here is not to formalise everything but to show how formal
and informal reasoning can be used together for complex models.

3.8.5. Informal Proofs about Informal Models

We mentioned in Section 3.3.3 that with respect to the formal model “we
consider those artefacts that can be traced into the formal model”. Those arte-
facts that are not traced into the formal model can also not be verified formally.
There are various ways to verify them informally. We should certainly not sim-
ply ignore them if they do not fit into the current formal scheme. To name a
few forms of informal verification we mention the following. In Example 4 we
have sketched an informal mathematical proof. The Problem Frames approach
employs frame concerns to argue whether requirements are satisfied. When re-
ferring to temporal formulae we may rely on background theory [16] to infer the
required temporal properties.

3.3.6. From Informal Premises to Informal Conclusions

At the end of Section 3.3.3 we have only discussed informal conclusions.
The reason for this is that our objective is requirements validation and the
premise W1 A QI and conclusion RI A UT of (1) are both informal. If this is
so and we additionally allow for informal proof, what is the formal model with
its formal proof worth? This is a question we have to ask with respect to any
formal model not just our approach. All we have done is to make the tracing
information to informal artefacts explicit. Any formal model that we create will
be located between informal domain properties and informal requirements. It
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Figure 10: The Iterative Requirements Development Process

is tempting in such formal models to identify formal constructs with domain
properties and requirements. In our experience (e.g. [12]) this is not always
achievable. For instance, some of the verification is done by specialist engineers
and their work is not to be replicated. We can formally prove important system
properties. However, we will always begin with an informal premise and end
with an informal conclusion. Our approach makes this explicit while giving a
dominant role to formal modelling in the requirements process. Doing this is a
conscious decision, and arguably, the focus could be on the reasoning over the
informal structure, supported by the formal model. But in contrast to informal
reasoning, the formal reasoning can be performed by theorem provers or model
checking, thereby allowing for rigour and automation.

4. A Process for Requirements Modelling and Validation

In the requirements engineering process we distinguish the different activ-
ities of requirements elicitation, requirements specification, system modelling,
requirements validation and requirements management [44]. We focus on mod-
elling and validation. Common approaches of requirements elicitation could be
used to gather requirements in early phases during the process. We do not
consider this aspect of the requirements process because it has little influence
on modelling and validation. Figure 10 shows an overview of the requirements
process using iterations of modelling and validation.

Specification. During the requirements specification phase requirements and do-
main properties are first identified. The resulting classification into correspond-
ing artefacts and phenomena (following the reference model of Section 4.1) is
the starting point for modelling and validation.

Modelling and Validation. The objective of system modelling is the formal mod-
elling of a subset of the system description as well as the elaboration of the
specification elements. Artefacts can be incorporated gradually into the formal
model using refinement as described in Section 3.
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The objective of requirements validation is to validate the relationship be-
tween informal artefacts and formal constructs and to validate the adequacy
of the specification elements. The validation relies on our model for tracing
artefacts and phenomena and its use for tracing artefacts into formal model and
refinements.

Usually there will be many iterations of modelling and validation. This has
already been observed when using Event-B to produce formal models where
dealing with requirements often plays a subordinate role [15]. Note that we do
not aim at producing a formal model as opposed to [15] for instance. The aim
of the requirements process is to produce a consistent and complete system de-
scription. The formal model that is produced on the way is only a tool towards
that end. For this reason, constructs of formal models are hardly mentioned
in the process description for modelling and validation in Section 4.1 below.
Formal models are particularly useful for analysing consistency. Completeness
of requirements is more a concern of informal approaches to requirements mod-
elling such as Problem Frames.

Requirements Management. We see requirements management as a continua-
tion of modelling and validation in a later phase of a project lifecycle. The
underlying assumption is that the development of a system description is never
fully finished. The ongoing work includes change management and requirement
evolution.

4.1. Incremental Modelling and Validation

The phase of modelling and validation consists usually of many iterations
between modelling and validation where the collection of all artefacts is validated
incrementally. Figure 11 shows the steps of the modelling and validation process
involved for each artefact (based on [29]). The small clouds attached to some of
the steps indicate the kind of traces that are modified in the those steps. The
modelling and validation process typically starts with a collection of informal
artefacts that have been produced during the requirements specification phase.
In the following Sections 4.1.1 to 4.1.8 we describe the steps in the process in
more detail. The section numbers are also indicated near the corresponding
steps in Figure 11.

4.1.1. Choose Artefact

The first step in the process consists in choosing an arbitrary artefact. We
do not distinguish “creating a new artefact” but include this for simplicity under
the heading “choosing an artefact”. Depending on the quality of the artefact, it
may have to evolve by being rewritten or split, typically by checking it against
quality criteria [18]. Often this rewriting of an artefact will also be a consequence
of insights gained during formal modelling. New artefacts created during the
process will, in particular, be specification elements and design decisions. But
also missing domain properties are often found by formal modelling and need
then to be added to the system description.
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Figure 11: The Requirements Modelling and Validation Process

4.1.2. Rewrite Artefact

Changing the artefact results in one or more evolution traces and the process
has to start over with an evolved artefact. (The evolved artefacts must be
checked with the stakeholders to ensure that they still reflect their needs.)

4.1.3. Classify Artefact

The artefact is identified as belonging to one of the classes R, N, W, @
or U. This in turn will determine the kinds of phenomena that are allowed
to be used by the artefact: ey, e,, s, or s;. Here the boundary between the
environment and the system as discussed in Section 2 is crucial. The distinction
of the artefacts requires the boundary to be fixed.

4.1.4. Identify Phenomena

All phenomena used by the artefact are identified. All phenomena need to
be declared in order to achieve consistent usage across the collection of artefacts.
The phenomena that that are allowed to occur in the artefact are determined
by the class of the artefact. Phenomena that have not yet been declared must
be declared before we can continue by tracing the phenomena.
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4.1.5. Declare Phenomena

Missing phenomena are declared by introducing a designation. This can be
as simple as adding the designation to a glossary and classifying it as belonging
to one of ey, €, or s,. It may be described further by other artefacts. For
formalised phenomena, for instance, a specific artefact with typing information
may be necessary.

A designation typically has a designation rule that identifies it with an in-
formal description [21]. For brevity, and as the reader should be familiar with
the designations of the running example, designation rules are omitted.

4.1.6. Trace Phenomena

The association “€” between artefact and the used phenomena is deter-
mined. A phenomenon is considered declared, once a formal element with the
same designation has been created. Tracing between phenomena and formal
artefacts is done implicitly by building a syntax tree of the formal model.

4.1.7. Trace Artefact

Realisation “—” or equivalence “4»” traces are attached to the artefact.
These as well as traces that were attached to the artefact before must be vali-
dated afterwards. Until then they are marked as suspect, denoted “—” or “»”.
The traces are constrained by the formulae (1) to (4). As artefacts and phe-
nomena change, existing traces are marked as suspect and must be validated
anew.

4.1.8. Validate Traces

All traces of the artefact must be validated eventually. This requires review-
ing the artefacts and related formal constructs in order to judge whether the
formal construct properly stand in the claimed relationship “—” or “<~”. In
line with the incremental approach to modelling and validation it is also possi-
ble for traces of an artefact to remain suspect, e.g., “-»” or “»”. For a system
description to be consistent, though, all traces must have been validated.

Example 12. If a new trace is added or the source or target of a trace changes
the trace is marked as suspect. For instance, if we change inv4 or R-2, the trace
needs to be validated

e
[inw <+ R-2 Q

After having reviewed inv4 and R-2 the trace can be validated and the marking
removed. For this task it is important to have not (many) more traces than
necessary. The effort of reviewing should be kept as small as possible. A small
satisfaction base (see Section 2.2.1) can limit the impact of changes. — |
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4.2. The Fully Validated System Description

When all traces have been validated and claims in the formal model have
been verified the system description is considered consistent with respect to

e the allowed references of phenomena by the different artefacts (Figure 3);
e the use of phenomena across different artefacts;

e the traces respecting formulae (1) to (4)

e the relationship of informal artefacts to formal constructs;

e the verified formal properties of the formal model.

Our approach only classifies artefacts and their relationships. There is no
provision for structuring the collection of artefacts as a whole. We acknowl-
edge that the structuring is a crucial issue in practice and rely on approaches
complementary to ours to carry this out. For instance, [33] argues that a list
of requirements is much easier to understand if they are given a meaningful
order. Furthermore, additional structure such as sections or headlines improves
readability and scalability of a system description.

A lot of practical advice with respect to structuring is available, e.g., [18,
40, 42]. Some of this advice is manifested in the form of process templates, e.g.,
[34], or in the form of standards such as IEEE standard 830 [19]. The IEEE
standard 830 describes a document-centred approach. It provides standardised
document outlines for different types of system descriptions combined with some
quality criteria and checklists for completeness. The standard hardly constrains
the actual contents. While this makes it easy to combine it with our approach,
which is primarily concerned with the contents in the form artefacts and their
relationships, it may be too superficial to truly make the requirements compre-
hensible. A remedy may be a requirements model that allows the creation of
different views for the various stakeholders.The Problem Frames notation [21],
which is employed in Example 1, provides some structuring based on a graphical
notation (see Figure 2 above), and addresses some of the concerns stated.

5. Tool Support

Building system descriptions of even moderate size is not feasible without
tool support. An adequate tool must support managing requirements, the for-
mal model, as well as traces between all model elements. This suggest the use
of an integration platform that brings the various existing tools together, rather
than building a monolithic tool that is tied to a specific formalism.

The tool chain described here is based on Eclipse, a platform for general
purpose applications with an extensible plug-in mechanism. It employs plug-ins
in order to provide all of its functionality on top of a run-time system. Eclipse
is well-suited for the task at hand, as it allows the integration of independent
Eclipse-based applications in a unified user interface.

The tool chain consists of ProR, an application for text-based requirements
and Rodin, a development environment for Event-B. Both applications are
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Eclipse-based. An integration plug-in provides seamless integration of the tools
and provides additional functionality, like the traceability of model elements to
requirements.

5.1. Requirements Management with ProR

Keeping track manually of large sets of requirements and their relationships
is not feasible. For this reason it is mandatory that the method for requirements
modelling that we suggest be supported by a software tool. The tool ProR can
be extended to achieve this. The generic method-independent characteristics of
the tool are discussed in [23].

The genericity of ProR is achieved by means of the Eclipse Requirement
Modeling Framework (RMF, http://eclipse.org/rmf) [27], which consists of a
generic data model for requirements. A requirement in the model is simply
an element with an arbitrary number of typed attributes, where the actual
“requirement” is typically just one attribute holding a plain or formatted text.
Despite its genericity, a key objective in the development of ProR has been to
support the approach described in this paper.

The generic ProR supports tracing natural language requirements in the
form of hierarchical tables. A dedicated column of each table summarises the
incoming and outgoing traces.

ProR allows the customisation of its meta-model for concrete notions of
requirements. Such a customisation may, for example, consist of adding a new
type of requirement with a specified number of typed attributes.

Example 13. An artefact, as represented in ProR, would at least consist of
the following attributes:

e Description — the actual text of the (informal) artefact;

e Type — a value from a dropdown, being one of W, R, N, U, @, P or M.
Depending on the needs of the project, additional attributes would be added:

e ID — a unique number, identifying the artefact;

e Author — the creator of the artefact;

and whatever the project standards require. |

The display of the requirements models can also be customised, for example,
by showing only selected attributes.

5.2. Fvent-B Modelling with Rodin

Rodin [3] is a modelling environment for Event-B modelling, consisting of
an editor and theorem prover. It is mature and is being actively developed. As
it is based on Eclipse, it is well-suited for our approach.

A large number of plug-ins is available for Rodin. We found the ProB valida-
tion platform [36] particularly useful. The tools Rodin and ProB in combination
provide support for proof, model checking and animation of formal models spec-
ified in the Event-B notation.
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Figure 12: Integration of ProR with Rodin and ProB

5.8. Integrating ProR with Rodin

The integration of ProR and Rodin provides support for the central aspect
of our approach to exploit formal reasoning as much as possible modelling and
analysing informal requirements. A screenshot of the integrated tool is shown
in Fig. 12.

Currently, the integration plug-in only supports some aspects of our ap-
proach, mainly with respect to managing traces between artefacts, phenomena
and the formal model.

Tool Support for Tracing Justification in ProR. Tool support for justification
traces needs, in particular, to deal with creation and modification of traces, as
described in Section 2.2.1. We describe briefly how ProR realises this.

e Creation

Traces between artefacts can be created via drag and drop. This includes
traces between informal artefacts, as well as informal and formal ones.
The tool visualises the resulting traces in the table view that shows the
artefacts, as shown in Fig. 13. The column “Trace” summarises the num-
ber of incoming and outgoing links, and the trace information itself can
be revealed by clicking on the triangle beneath that is also shown in the
figure. Traces can be annotated if additional information is necessary.

e Modification
If the source or target of a trace changes, then the trace is marked as “sus-
pect” by showing a small icon in a dedicated column. This is also shown
in Fig. 13. Having validated a trace, double-clicking the corresponding
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Figure 13: The ProR editor for artefacts and traces. This view represents a detail from Fig. 12.

marker removes the “suspect” icon. This is described in more detail in
Section 4.1.8.

Tool Support for Tracing Used Phenomena in ProR. Tracing of phenomena is
supported by highlighting text passages in the natural language artefacts that
refer to phenomena, as shown in Figure 13 and described in Section 2.2.4. If
a passage is found that is textually identical to a declared phenomenon, ProR
underlines it. A phenomenon is declared by including it in a glossary. In order
to add a uses-trace for an phenomenon to an artefact, the corresponding text
passage is put in square brackets. If the phenomena has been declared, the text
passage is rendered in blue, otherwise it is rendered in red, reminding the user
that an undeclared phenomenon is used. Underlining text passages that are
found in the glossary serves to remind the user that this passage may represent
an untraced phenomenon.

Classification of Artefacts and Phenomena. The tool allows users to classify
artefacts according to the modified WRSPM by selecting the type from a drop-
down menu. Similarly, support for classifying phenomena is planned. In the
future, this will allow the tool to perform consistency checks, such as, whether
the phenomena used are permitted in a given artefact.

6. Related Work

Central to this paper is the WRSPM reference model [14]. Earlier work by
the authors on expanding the reference model is published in [29] and [28].

In [31] Problem Frames are used for an approach to derive formal specifica-
tions from a description of the problem world. Rely and guarantee conditions
are used to represent environment and controller, respectively. The authors do
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not discuss traceability, however, the discussion of informal Problem Frames
and formal models and their relationship also applies to our approach.

The issue of traceability has been analysed in depth by Gotel et. al. [13],
according to which our research falls into the area of post-requirements specifi-
cation traceability. Traceability has been recognised as a difficult problem, e.g.
[7].

In this article we use the Event-B formalism [2]. While not directly con-
cerned with requirements traceability, [2] recognises the problem of the transi-
tion from informal user requirements to a formal specification. However, there
is no mention of how this could be achieved.

There have been successful attempts in applying Problem Frames and Event-
B together. In [38], the authors show how these are being applied to an industrial
case study. In contrast to our approach, only requirements that were actually
modelled formally were included in the specification in the first place.

A more philosophical stance can be found in [22], where the author dis-
cusses the fundamental aspects when abstracting software systems. Some of
those aspects are addressed in this paper. In particular, the author discusses
the limitations of the Event-B formalism, like the fact that Event-B does not
distinguish system and domain properties. The approach described here ad-
dresses some of these shortcomings by imposing the WRSPM classification on
model elements.

The work presented in [46] and [47] proposes some guidelines for require-
ments structuring with the aim to facilitate refinement-based formalisation of
control systems. The aim of our approach is the creation of an informal system
description of high quality. That is, the (partial) formalisation of the system de-
scription only serves as a tool for the rigorous validation of the informal system
description or parts thereof.

There are other approaches for requirements traceability between formal and
informal artefacts. KAOS [10] is a well-known approach. Rather than allowing
informal elements that are omitted from the formal model, it provides so-called
“soft-goals” that are broken down into requirements that can still be modelled
formally. KAOS does not demand the whole model to be formalised, but does
not clearly state the implications of a partial formalisation.

Reveal [41] is an approach that is driven by an industrial company. It is based
on Michael Jackson’s “World and the Machine” model [20]. There are a lot of
similarities to our approach, including the acknowledgement of requirements
that are not part of the formal model. Reveal does not define a traceability
approach, however. It merely demands that one is defined and followed.

The case study used in this article is described in [6] using a different formal-
ism. In that article a real-time specification method is used and it is assumed
that all requirements can be formalised as formulas in that formalism.

This paper is also concerned with tool support. The ProR tool [23] has been
used for this purpose. Other approaches to requirements tracing have been
realised with ProR [26] or proposed [25]. The tool itself is not closely tied to
Problem Frames, WRSPM or Event-B.
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7. Conclusion

We have presented an incremental approach for building a system description
consisting of formal and informal artefacts. The resulting system description is
complemented by traces between those artefacts that support systematic vali-
dation and change management. We have illustrated the approach by means of
a small case study.

The main objective of our approach is the validation of the informal system
description. Consequently, the formal model is no end in itself, but only serves
as a tool for the rigorous validation of the system description or parts thereof.
Specifically, any formal model that we create is located between informal do-
main properties and informal requirements. The aim of the formal modelling is
to ensure consistency of the informal system description. The approach of re-
quirements tracing that we have developed plays a crucial role in this providing
a framework in which to cast logical arguments.

The role of the formal model in the overall system development process can
vary and depends on a number of factors, including the problem to be solved,
the formalism that is chosen, the experience of the team, to name a few. In the
case study, a state-based Event-B model was built, which resulted in a subset
of the artefacts to be formalised. For instance, out of the 8 informal artefacts
shown in Table 5, only 5 were formalised. The formal model was then used to
show that the formal counterparts of the requirements are satisfied, by proving
that corresponding invariants are preserved.

This work has a strong focus on traceability. Tracing is supported between
and kind of artefact, formal or informal. We classify each trace as a justifica-
tion (or its inverse, realisation) or its stronger form, equivalence. This allows
us to construct a closed system description that is consistent with respect to
the purpose of its artefacts. While such an approach cannot identify missing
requirements or assumptions, it can ensure that all recorded requirements are
realised. Further, the introduction of phenomena allows the systematic creation
and maintenance of a glossary, and allows for some rudimentary consistency
checks as well.

Finally, the work described here is supported by a tool integrating require-
ments modelling, ProR, formal verification by proof, Rodin, and by model-
checking an animation, ProB. In this specific configuration ProR is tied closely
to Event-B.

Future Work. The approach introduced here provides little guidance with re-
spect to the macroscopic structure of the system description. We used Problem
Frames in the case study to provide some structure, and it would be interesting
to develop this further. In particular, the concept of domains has been left out,
to focus on the aspect of traceability in the arguably simple running example.
Scaleability will be the focus of some of our future activities, and we expect
domains to play an important role to achieve it.

The tool chain was helpful and automated a number of tasks required by
our approach. But there is more potential for automation, especially in the
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area of issue reporting. We plan on creating a catalogue of properties that a
consistent system description should have, and a reporting tool that lists all
violations of those properties. This is already done, to a degree, through the
colour highlighting, but could be taken much further.

The management of artefacts and phenomena also offers many possibilities
for automation. Synonyms could be treated systematically by the glossary and
a tool could support the user or even automate this task.
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