
The Event-B Static Checker

Laurent Voisin

ETH Zürich

Stefan Hallerstede

ETH Zürich

August 31
st

, 2005

Contents
1 Introduction 1

2 Architecture of the Static Checker 3
2.1 Parts . 3
2.2 Checked models . 4
2.3 Example . 4

3 Graph-Checker Specification 6
3.1 Minimal Requirements . 7
3.2 Well-formedness Requirements 7
3.3 Implementation of Graph-Checking 7

4 Type-Checker Specification 7
4.1 Conditions to check . 8

4.1.1 Type-Checking a Context 8
4.1.2 Type-Checking Global Clauses of a Model 10
4.1.3 Type-Checking Events of a Model 11

4.2 Error Recovery . 13

1 Introduction
All modelling items used in a formal B development are kept in the database
kernel-component. This database is analysed by the static checker with respect
to various properties the collection of modelling items must satisfy. When the
static checker has accepted the database as being consistent, its items can be
submitted to proof obligation generation and subsequent proof. In addition
to marking modelling items as consistent the static checker computes auxiliary
data structures to improve performance of all tasks that involve using items
stored in the database.

Before we discuss the static checker in more detail we introduce some nec-
essary terminology. Some of the definitions we make are left abstract here and
refined in other places.

We refer to all entities that are contained in a formal development as mod-
elling item. The following is a complete list of all modelling items.

1

simple modelling items:
identifier, predicate,
expression, substitution

complex modelling items:
elements:

model, context,
carrier set, constant,
property, variable,
invariant, variant,
event, guard,
local variable, action,
witness, theorem,

relations:
model has abstraction, context has abstraction,
model sees context, event has abstraction,
context contains carrier set, context contains constant,
context contains property, model contains variable,
model contains invariant, model contains variant,
model contains event, event contains guard,
event contains local variable, event contains substitution,
event contains witness, model contains theorem,
context contains theorem,

attributes:
new event, model name,
context name, variable name,
carrier set name, constant name,
property name, invariant name,
event name, guard name,
local variable name, theorem name
property predicate, invariant predicate,
guard predicate, theorem predicate,
variant expression, action substitution,
witness substitution

Modelling items that are atomic and self-contained are called simple modelling
items. Non-atomic modelling items whose structure is known to the database
are called complex modelling items.

Among the simple modelling items predicates, expressions, and substitutions
are also called formulas. The user enters simple items usually in textual form.
Complex modelling items are entered by creating forms that need to be filled
in subsequently. In the predicates and invariants are not the same thing: a
predicate is a piece of unformatted text and an invariant is a database item
that has a predicate and a name as attributes. In the full database complex
modelling items are further distinguished into elements, attributes, and relations.
The static checker is not aware of this distinction: it verifies all complex items
in the same manner. Hence, we only use the generic term item in this text.

All modelling items must conform with the data structures used in the
database. We call these the minimal requirements imposed on each modelling
element. For instance, a model can only have one abstraction. Minimal require-

2

ments really define B developments as data-types, e.g. tree, or more generally
hierarchical structures. A modelling item that satisfies the minimal require-
ments expressed in the meta-model is called unchecked. The term unchecked
alludes to an item not yet having been verified by the static checker. The mini-
mal requirements have a major impact on the GUI. The GUI must provide that
the user can only enter items that satisfy the minimal requirements. If some
items would not satisfy them, these items could not be stored in the database.

2 Architecture of the Static Checker
The static checker consists of three parts called parser, graph-checker, and type-
checker (see Figure 1). The parser reads formulas that are given in textual form,

parser graph−checker

type−checker
well−typed

well−formed

unchecked

ST
A

TI
C

 C
H

EC
K

IN
G

ST
A

TI
C

 C
H

EC
K

IN
G

Figure 1: Layers of the static checker

and produces corresponding abstract syntax trees. The graph-checker analyses
structural properties of, and relations of, modelling items such as models and
contexts. The parser and the graph-checker are different components although
they both check well-formedness of modelling items. Nonetheless, the partition
into two components arose naturally: the parser only analyses formulas and does
not have any knowledge of complex modelling items, and the graph-checker does
not know anything about formulas or abstract syntax trees. The corresponding
concepts are abstracted in the parts of the meta-model for the parser and the
graph-checker respectively. The type-checker analyses and computes the types
of all formulas that occur in the database. Modelling items that have passed
static-checking are well-formed and well-typed and can be used by the proof
obligation generator. Well-formedness is checked by the parser and the graph
checker, and the type-checker checks whether modelling elements are well-typed.
Initially all items are said to be unchecked. The following relationship must
be maintained by the database between well-formed and well-typed modelling
items: All well-typed modelling items are well-formed. Hence, the well-typed
items are a subset of the well-formed items, and the well-formed items are a
subset of the unchecked items.

2.1 Parts
We have specified the different parts of the static checker in formalisms that
seemed best suited to express required properties, reason about them, and pro-
vide models that have an appropriate level for implementing the corresponding
part of RODIN platform kernel-component.

3

The parser is modelled using the EBNF notation as is customary. There
are standard implementation techniques and parser generators that can be used
directly with EBNF notation. The parser also contains a feature to compute
free and bound identifiers. This is expressed by means of an attributed grammar
that can be used with the same standard tools as the EBNF notation.

The graph-checker is modelled in EventB. This has proven to be advanta-
geous for expressing well-formedness properties and derivation of dependencies
among the modelling items.

Scoping rules for identifiers are checked across the boundary between the
parser and the graph-checker. The parser checks scoping rules within, say, a
predicate, computing the sets of free and bound identifiers. The graph-checker
uses the set of free identifiers computed by the parser to check if the correspond-
ing item declarations are in the scope of the predicate.

The type-checker is also modelled by means of an attributed grammar. As
opposed to the parser and the graph-checker, the type-checker uses all items of
the database, i.e. simple modelling items and complex modelling items.

The static checker has two layers that group the three components parser,
graph-checker, and type-checker. The boundaries of the layers describe the state
of modelling items. Figure 1 shows the layers of the static checker. We identify
the possible states of a modelling item with the boundaries in the layer schema
of Figure 1. We say:

• An item that has not been parsed or graph-checked is in state unchecked ;
• an item that has been parsed or graph-checked but not yet type-checked

is in state well-formed ;
• an item that has been type-checked is in state well-typed.

Hence, in the database each modelling item can be in one of three states:
unchecked, well-formed, or well-typed. Remember, that being in state unchecked
means, in fact, satisfying the minimal requirements. The boundaries shown in
Figure 1 are only conceptual. It is possible (and intended) that different mod-
elling items are in different states. However, each modelling item can only be
in one state at a time. For this purpose modelling items are tagged with their
state. Although different modelling items may carry different tags (but each
item only one), the tags can not be attached arbitrarily marking progression of
single modelling items through the three layers. The reason is that there are
structural dependencies between modelling items. Structural dependencies are
described in the minimal requirements, the well-formedness requirements, and
well-typedness requirements of the meta-model.

2.2 Checked models
The file describing the checked model contains copies of invariants and theorems
of abstractions and properties and theorems seen contexts and abstractions. In
addition, it contains typing information produced by the type-checker together
with the variables, carrier sets, and constants being typed.

2.3 Example
We give a simple example where modelling items are hierarchical, i.e. contain
other modelling items. We use the following items: predicates “P”, invariants

4

“I”, events “E”, and guards “G”. The capital letters are used in the figure to
represent items of the corresponding type. The state tags are represented by
“u” for unchecked, “f” for well-formed, and “t” for well-typed. In the small
example database of predicates, invariants, events, and guards we assume the
following dependencies: invariant contains predicate, event contains guard, and
guard contains a predicate. We read “contains” as “depends on”.

We require that a modelling item X may only pass from one state
to the next state if all modelling items that X depends on have at
least reached the next state.

I1
u P1

u
��

Eu G1
u

�� P11
u

��

G2
u

�����

P21
u

��

I2
u P2

u
��

Figure 2: Items tagged unchecked and dependencies

In the database of items shown in Figure 2 the tags are shown as subscripts
of the database items. We have given numbers to the items as superscripts
in order to be able to distinguish them. The arrows signify “is contained in”.
Modelling items that are checked by the parser are enclosed by dotted boxes,
and items that are checked by the graph-checker by solid boxes.

We present a sequence of valid states (leaving out some intermediate states)
and comment on activities performed by the static checker. In state shown in

I1
u P1

u
��

Eu G1
u

�� P11
f

��

G2
u

�����

P21
f

��

I2
u P2

f
��

Figure 3: Predicates P11, P21, and
P2 are well-formed

I1
u P1

u
��

Eu G1
f

�� P11
f

��

G2
f

�����

P21
f

��

I2
u P2

f
��

Figure 4: Guards G1 and G2 are
well-formed

Figure 2 only the parser can be active because all predicates are unchecked and
all other items depend on them directly or transitively. In Figure 3 the parser
has succeeded checking predicates P11, P21, and P2. The parser also creates
abstract syntax trees for these predicates. But this is not shown in the figure.
We assume parsing P1 would fail. As a consequence the parser would produce
a corresponding error message.

The graph-checker can now check the guards G1 and G2, and the invariant
I2. We assume checking I2 would fail (and the graph-checker would produce an
error message). Figure 4 shows the state of the database where checking G1

and G2 has succeeded.

5

In the next state (shown in Figure 5) we assume that graph-checking event
E would have failed (and an error message would have been produced). Fur-
thermore, we assume type-checking P21 and P2 would have succeeded, and
type-checking P11 failed (and an error message produced). Finally the type-

I1
u P1

u
��

Eu G1
f

�� P11
f

��

G2
f

�����

P21
t

��

I2
u P2

t
��

Figure 5: Predicates P21 and P2 are
well-typed

I1
u P1

u
��

Eu G1
f

�� P11
f

��

G2
t

�����

P21
t

��

I2
u P2

t
��

Figure 6: Guard G2 is well-typed

checker marks also the guard G2 as type-checked. This is all that is possible in
this state because parsing predicate P1 has failed, graph-checking event E and
invariant I2 has failed, and type-checking predicate P11 has failed. Figure 6
shows the final state. Note, that marking database items like guards, events, or
even models as type-checked free us from searching through the database when
this information is required. E.g. to find out whether all items in a model have
passed type-checking, we need only look at the modelling item representing the
model.

The proof obligation generator can only generate proof obligations for in-
variants and events that carry the subscript “t”, i.e. none in the database shown
in Figure 6.

3 Graph-Checker Specification
EventB developments, i.e. all items contained in it, form an acyclic graph-
structure. This an properties related to the graph structure like use of variable
names is verified by the graph-checker. The graph-checker takes into account
formulas that have been parsed. Type-checking takes place after graph-checking
has finished.

The graph-checker is specified in EventB. The graph structure is described in
the invariant of the EventB model. The graph-checking is described by means of
events commit that attempt to add items to a database DBwf of well-formed ele-
ments, where items that satisfy the minimal requirements are kept in a database
DBun of unchecked items. We require that DBwf is a subset of DBun. That
is, the graph-checker only works with items entered by the user; it does not add
items or change the contents of DBun. All failures to add an item to DBwf

result in error messages to the user. The error messages are described in the
guards of the events commit that attempt to insert items into DBwf . Depen-
dencies between items in DBwf are described by events retract that attempt
to remove items from DBwf maintaining well-formedness of DBwf . The graph-
checker works incrementally, i.e. it permits parts of a model to be unchecked
while others are well-formed. The user interacts with DBun being able to add
or remove items to or from it.

6

3.1 Minimal Requirements
We state the minimal requirements for contexts and models as an example.

MIN 1 (CTX) The contexts form a directed graph without self-loops where
each node has exactly one outgoing edge.

MIN 2 (MDL) The models form a directed graph without self-loops where each
node has exactly one outgoing edge.

MIN 3 (MDL) Models are related to contexts by the sees relationship. A
model sees at most one context.

...

3.2 Well-formedness Requirements
WFD 1 (CTX) The contexts form a collection of disjoint trees.

DEF 1 (CTX) The child of a context C in a context tree is called a refinement
of C. The parent of a context C in a context tree is called an abstraction of C.

WFD 2 (MDL) The models form a collection of disjoint trees.

DEF 2 (MDL) The child of a model M in a context tree is called a refinement
of M . The parent of a model M in a context tree is called an abstraction of M .

Contexts seen by models must be related to each other properly, i.e. have a
similar the tree structure to the seeing models:

WFD 3 (MDL) If a model sees some context C then the abstraction of the
model must see the same context C or some abstraction of C.

...

3.3 Implementation of Graph-Checking
The EventB model is used to implement the graph-checker. However, instead of
manipulating a database shared by all models and contexts, it simply constructs
a local copy of all necessary items (see Section 2.2) and inserts them into the
well-formed database for the particular model or context. The advantage of
this is that subsequent kernel components like the proof obligation generator
can work concurrently on different models and contexts without interference.

4 Type-Checker Specification
Deliverable D3.2 specifies the notion of a well-typed formula [1, part VI, sec. 4.3]
and states that a ill-typed formula is meaningless. As a consequence, we want
that all the proof obligations that are generated from a model or a context are
well-typed. Then, every generated proof obligation could be type-checked at
generation time.

7

However, that would be very inefficient, as proof obligations usually share
a lot of common sub-formulae. For instance, all proof obligations of a model
contain the properties and theorems of seen contexts in hypothesis. Therefore,
it seems wiser to check that the elements of a context (or model) satisfy some
sufficient conditions to ensure that, later on, proof obligations generated there-
from are well-typed. It is the essence of the type-checker to check these sufficient
conditions.

In the sequel, we first give these sufficient type-checking conditions, explain-
ing from which proof obligation they are derived. We then expose the behavior
of the type-checker when errors are encountered while type-checking.

4.1 Conditions to check
Firstly, as stated in the static-checker specification, type-checking is only at-
tempted on well-formed models and contexts. That means that, when specify-
ing type-checking conditions, one can rely on the model or context satisfying
well-formedness conditions.

Secondly, as stated in [1], formula type-checking takes as input a typing envi-
ronment (a function that maps identifiers to types). Its output is an indication of
success or failure. In case of success, formula type-checking also produces a new
typing environment which is a superset of the input typing environment. This
output typing environment then contains type mapping for all identifiers that
occur (free or bound) in the formula. In the sequel, we will call resulting typing
environment the typing environment synthesized by formula type-checking, but
with all bound variable types removed.

We will first define the type-checking conditions for a context. Then, we
will examine models, looking first at global clauses (invariants, theorems and
variant) and then at events.

4.1.1 Type-Checking a Context

Let’s start with the simplest proof obligation (the one that contains the least
number of predicates). This proof obligation is the well-definedness (WD) of
the first property of a top-level context (labeled CTX_PRP_WD in the Proof
Obligation Generator Specification). It contains no hypothesis and the goal is
the WD lemma of the property.

As the property is well-formed, we know that the only identifiers that can oc-
cur free in it are carrier sets and constants declared in the same context. Then,
in the worst case, its WD proof obligation contains the same free identifiers.
Hence, to ensure that this proof obligation is well-typed, a sufficient condition
is that the property is well-typed. That entails that the input typing environ-
ment for type-checking the property must contain the carrier sets defined in
the context (each set is mapped to its powerset) and that the resulting typing
environment contains the types for all constants that occur free in the property.

When examining the WD proof obligation of the second property, a similar
reasoning leads us to use the previous resulting typing environment as input
(because the first property appears in the hypothesis of the proof obligation) and
then to apply formula type-checking to the second property, obtaining a maybe
new typing environment as result. Applying the same scheme to successive
properties of the context, we build incrementally larger typing environment.

8

Then, as the context is well-formed, we know that all constants occur free
in some property. Hence, when the last property has been type-checked, our
resulting typing environment will map all constants to a type.

As concerns theorems of a context, things are much simpler. In every proof
obligation related to a theorem (CTX_THM_WD and CTX_THM), all prop-
erties occur in hypothesis. As a consequence, these properties define through
type-checking the types of sets and constants, which are the only identifiers that
can occur free in the theorem proof obligations. So, to ensure that the theorem
proof obligations are well-typed, one just needs to type-check every theorem,
using as input typing environment the one produced by the type-checking of
the last properties.

Now, let’s examine the case of a non top-level context, that is a context that
refines another (abstract) context. Then, all properties and theorems of the
abstract context (and its abstractions) will occur in hypothesis in our current
context proof obligations. As a consequence, we will use for type-checking the
full typing environment of the abstract context (that is the one obtained after
type-checking all properties and theorems of the abstraction). This is the only
change that we have to the above reasoning for specifying type-checking in a
context.

We now have all what is needed to specify type-checking of a context, so
let’s formalize it. Assume we have a context Cn which refines a context Cn−1.
For a top-level context, we denote it as C1, assuming that it refines a dummy
empty context C0 to streamline things. Also, let’s use TE (Cn) to denote the
typing environment obtained as the result of type-checking context Cn.

Finally, let’s denote the objects of our Cn context as follows:

Sets: S1, S2, . . . , Sk

Constants: c1, c2, . . . , cl

Properties: P1, P2, . . . , Pm

Theorems: T1, T2, . . . , Tp

Then, type-checking of context Cn looks like the following:

τ0 = TE (Cn−1)
τ1 = τ0 ∪ {x �→ P(x) | x : {S1, S2, . . . , Sk}}
τ2 = result of type-checking P1 with τ1

τ3 = result of type-checking P2 with τ2

...
TE (Cn) = result of type-checking Pm with τm

type-check T1 with TE (Cn)
type-check T2 with TE (Cn)
...
type-check Tp with TE (Cn)

9

The formulae above read as follows:

• First start with the typing environment of this context abstraction (τ0).

• Then add the types for the carrier sets defined in this context, this gives
τ1.

• Then, type-check each property, collecting new types while proceeding
(τ2, . . . , τm).

• The typing environment obtained after type-checking the last property is
the typing environment of this context (TE (Cn)).

• Finally, type-check each theorem with the typing environment of this con-
text.

4.1.2 Type-Checking Global Clauses of a Model

type-checking of global clauses (invariants, theorems, and variant) of a model
is pretty similar to type-checking of properties and theorems of a context. The
reasoning for proof obligations only related to global clauses is exactly the same.
The proof obligations considered are:

MDL_INV_WD MDL_THM_WD MDL_THM
REF_INV_WD REF_THM_WD REF_THM REF_VAR_WD

We denote a model to type-check by Mm. It supposedly refines another
model Mm−1 (with the convention that an initial model is denoted M1 and
refines a dummy empty model M0). Furthermore, model Mm sees a context Cn

(with the convention that it sees C0 in case of the absence of a SEES clause).
Finally, we denote by TEMm the typing environment obtained as the result of
type-checking model Mm.

The contents of model Mm are:

Variables: v1, v2, . . . , vk

Invariants: I1, I2, . . . , Il

Theorems: U1, U2, . . . , Up

Variant: V

Events: E1, E2, . . . , Eq

10

Then, the type-checking of global clauses of model Mm is formalized as
follows:

τ0 = TE (Mm−1)
τ1 = τ0 ∪ TE (Cn)
τ2 = result of type-checking I1 with τ1

τ3 = result of type-checking I2 with τ2

...
TE (Mm) = result of type-checking Il with τl

type-check U1 with TE (Mm)
type-check U2 with TE (Mm)
...
type-check Up with TE (Mm)
type-check V with TE (Mm)

Note: Typing environment τ1 is well-formed (i.e., a function) due to the well-
formedness restrictions on the architectural links between models and contexts,
and to the way typing environments are incrementally built for models and
contexts.

4.1.3 Type-Checking Events of a Model

Events do not share common identifiers beyond those introduced at the model
level (i.e., sets, constants and variables). As a consequence, every event can be
type-checked in isolation. Also, the proof obligations for the model initialization
are a subset of the proof obligations of regular events. Hence, in this section,
we will consider the initialization to be a special kind of event and do not treat
it specially.

The simplest proof obligations of an event concern well-definedness of guards
(MDL_GRD_WD and REF_GRD_WD). Using the same reasoning as before,
we induce that guards must be type-checked in their order of appearance and
that, when all guards have been type-checked, the resulting typing environ-
ment shall contain the type of all local variables of the event (because the
well-formedness of the event implies that every local variable appears in at least
one guard).

Another kind of proof obligations that concerns guards is guard refinement
(REF_GRD_REF). In these proof obligations, both the guards of the concrete
event and those of the abstract event(s) appear. Moreover, the abstract and
concrete events can declare local variables with the same name. In that case,
these common variables are considered to represent the same data. As a con-
sequence, they should have the same type. So, to ensure that relationship, the
type-checking of concrete guards shall be started using the typing environment
of the abstract event.

In the case of a merging of events (REF_GRD_MRG), well-formedness
ensures that all abstract events declare the same local variables. However, one
needs to check that the typing environment of the abstract events are compatible

11

(that is every local variable has the same type in all abstract events). Then, the
common abstract typing environment is used when type-checking the concrete
guards.

Then, to ensure that proof obligations about substitution well-definedness
(MDL_EVT_WD and REF_EVT_WD) are well-typed, one needs to type-
check every substitution using the typing environment obtained after type-
checking all guards (as the latter appear in hypothesis of these proof obliga-
tions). Type-checking of a substitution consists in type-checking its before-after
predicate. For that, one needs to add to the typing environment the type of the
after variables (primed variables). Their type is the same as the type of their
corresponding before variable (the unprimed one).

Finally, one needs also to type-check the witnesses provided within an event.
Each witness is made of two parts. Its left-hand side contains the name of a local
variable of the abstract event(s) or a double primed variable which corresponds
to the after value of a variable in the abstract event(s). Its right-hand side is
an expression the free identifiers of which are sets, constants, concrete global
and local variables. So, to type-check witnesses one needs to build a typing
environment made of the concrete and abstract events typing environment plus a
typing environment that associates double primed variable to their type. Under
this typing environment, a simple equality between the left-hand side and right-
hand side is type-checked.

Now, let’s formalize all that. Assume we have in model Mm an event F which
refines abstract events E1, E2, . . . , Ep. We denote by L the set which contains
all the local variables of the abstract events Ei (well-formedness ensures that
they all declare the same local variables) and by K the set of the local variables
of the concrete event. The set of global variables of model Mi is denoted by Vi.
The guards of event F are denoted as G1, G2, . . . , Gg, its substitutions by S1,
S2, . . . , Ss and its witnesses have left-hand side l1, l2, . . . , ll and right-hand side
r1, r2, . . . , rl. Finally, we denote by TE (F) the typing environment of event F .

12

The type-checking of event F is formalized as:

τ0 = TE (Mm)
check that ∀i, j · TE (Ei) = TE (Ej)

τ1 = τ0 ∪ ((K ∩ L) � TE (E1))
τ2 = result of type-checking G1 with τ1

τ3 = result of type-checking G2 with τ2

...
TE (F) = result of type-checking Gg with τg

θ = TE (F) ∪ (prime−1 ; (Vm � TE (Mm)))
type-check BA(S1) with θ

type-check BA(S2) with θ

...
type-check BA(Ss) with θ

ζ = TE (F) ∪ (K � TE (E1)) ∪ (dprime−1 ; (Vm−1 � TE (Mm−1)))
type-check l1 = r1 with ζ

type-check l2 = r2 with ζ

...
type-check ll = rl with ζ

where BA maps a substitution to its before-after predicate, prime (resp. dprime)
is a relation that maps an unprimed identifier to its primed (resp. double primed)
variant.

4.2 Error Recovery
In the previous sections, we described type-checking with the implicit assump-
tions that all elements were found correct. But, it can happen that some element
produce a type-check error. We examine here the consequence of such an error.

When looking to the calls to the formula type-checker that appear above, one
can easily see two kinds of calls. In one kind, type-checking produces an output
typing environment which is used later on (e.g., type-checking of a context
property). In the other kind, one only checks a formula but no new typing
environment is produced (e.g., type-checking of a theorem). Let’s first examine
the second case, as it is the easier one to tackle with.

When no new typing environment is expected, the output of formula type
checking is either success or failure. In case of success, the type-checked element
is added to the type-checked database. In case of failure, the element is just
ignored. It is thus not added to the type-checked database. This approach is
sound, as there is no dependence on this element in proof obligations generated
afterwards.

When a new typing environment is expected, the output of formula type-
checking is twofold. Firstly, it can be either success or failure. Secondly, and
only in case of success, an output typing environment is also produced. So, if

13

type-check succeeds, the checked element is added to the type-checked database
and type-checking proceeds on with the new typing environment just obtained.
In case of failure, the element is ignored and not added to the type-checked
database.

However, if a single failure is encountered when type-checking a set of el-
ements like the properties of a context, the final typing environment (the one
obtained after type-checking the last property) must be checked for complete-
ness (all constants must occur in it): Because of that failure, relying on the
well-formedness of the context to ensure that all constants have a type doesn’t
work anymore, so an additional check is needed. In addition, the untyped con-
stants are marked with an error flag and not added to the type-checked database.
Subsequently, any element in which an erroneous constant occurs is considered
to fail type-check. It will not be added to the type-checked database.

In fact, what was described for constants (whose typed are inferred from
properties), applies as well to global variables (typed by invariants) and local
variables (typed by guards). In the specification above, everywhere the TE
operator is defined for some element, this typing environment must be checked
for completeness and all data names which should occur in it but do not are
flagged as erroneous.

This approach allows for generating as many well-typed proof obligations as
possible, despite some type errors. Most of the times, these proof obligations
will be incomplete, lacking some hypothesis, but, hopefully, they will contain
enough information to be discharged by the prover.

References
[1] Rodin Deliverable D3.2 Event-B Language.

14

