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Abstract

We provide a detailed description of refinement in Event-B, both as a contribution in itself and as a foundation for
the approach to simultaneous animation of multiple levels of refinement that we propose. We present an algorithm
for simultaneous multi-level animation of refinement, and show how it can be used to detect a variety of errors that
occur frequently when using refinement. The algorithm has been implemented in ProB and we applied it to several
case studies, showing that multi-level animation is tractable also on larger models. We present empirical results and
discuss how the algorithm can be combined with symmetry reduction.
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1. Introduction and Motivation

We consider formal modelling of software systems an important phase in the development process. It permits us
to reason about the system to be developed early on in the development using abstractions of the system. We believe
that this reasoning is a key to improvement of the quality of the developed software. The approach to reasoning varies
depending on what kind of problems one wants to uncover. It can reach from formal proof to just “trying out” a
model. We expect to benefit by improving our understanding of a system (by analysing models of it) and by creating
an adequate formal model that can serve as the reference for what is to be considered “correct” in later stages of the
development process. As much as possible reasoning should be supported by a software tool. The work presented in
this article is based on the Event-B modelling method [1] and the complementing software tool Rodin [2]. The core
of the Rodin tool provides automatic generation of proof obligations that can be analysed to improve understanding
of a model. Often proof obligations give good indications of how to make an improvement in case of inconsistencies
in a model. However, there are also many occasions where proof obligations do not point directly to a problem or
where a model does not contain inconsistencies but is still “incorrect” (see, e.g., the Earley parser example discussed
in [3]). In many such cases animation is a useful tool to gain further insight into a model. The Rodin plugins ProB
[4, 5], Brama1 [6], and AnimB [7] provide animation facilities for Event-B.

When dealing with complex models, refinement can be used to introduce the many details gradually, achieving
a reduced complexity at each refinement level. Proof obligations, once discharged, demonstrate correctness of a
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1Brama requires an older version (0.9.2.x) of Rodin at the time of writing.
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refinement: the more detailed model behaves within the limits set by the more abstract model. However, it can be
difficult to analyse a refinement relationship only by means of associated proof obligations. Animation can be used to
complement proof as a method of validation providing a broader view on the properties of formal models. All three
animation plugins mentioned above provide some means to animate refinements. In this article we investigate their
relative capabilities and how to advance refinement animation in order to turn it into a tool for refinement validation.
This serves as a blueprint for the evolution of ProB in terms of animation support.

Before starting the investigation we should be clear about the objectives of animation when used for validation.
What is the purpose of animating a model across multiple levels of refinement? In Event-B several concepts play a
role in refinement. Most prominently, these are invariants, guards, actions, and witnesses. If a refinement fails, any
combination of those concepts may be involved. Animation should help to locate the cause of a problem in the model,
pointing to specific invariants, guards, and so on, if possible. However, even if a refinement is formally correct,
there can still be problems with the model. This concerns, in particular, properties that have not been formalised.
Animation should make it easy to experiment with a model, visualising potential problems. We try to integrate this
aspect of animation with the first one as far as possible. Otherwise consistent tool support for both would be difficult
to realise.

In Section 2 we introduce the Event-B notation (using the syntax of the Event-B text editor “Camille” [8]) and
give a concise description of the fundamentals of Event-B refinement. As far as we are aware there is no single place
where all the essential aspects are described and motivated in such detail. All of this is needed in order to present the
basic refinement-animation algorithm in Section 3. The presentation of the algorithm is interspersed with methodical
remarks on validation. In Section 4 we present some concrete examples on how to use ProB for refinement validation
and some brief description of case studies to which it has been applied. Finally, Sections 6 and 7 contain a discussion
of related work and a conclusion.

2. Modelling and Refinement in Event-B

Event-B can be used to model complex intricate systems. To understand the system and the model of the system
we need to reason thoroughly about the model. Such reasoning is the principal purpose of Event-B. The basic concepts
of Event-B are characterised by means of proof obligations; they are the core of the Event-B method. However, they
are not an exclusive means of reasoning. Based on an operational interpretation of a model we can also animate it
to gain deeper understanding. In this section we parallel the presentation of Event-B proof obligations, in particular,
refinement, with ideas of animation. This demonstrates well how animation complements proof. Because there is no
single software tool for animation that provides all that is needed, we use the three tools ProB, Brama, and AnimB at
the same time.

2.1. Contexts

Event-B models are described in terms of the two basic constructs: contexts and machines. Contexts specify static
parts of a model, that is, carrier sets and constants that are constrained by axioms, introduced by the keywords sets,
constants, and axioms, as shown in Fig. 1. Usually, axioms are quite simple formulas; contexts are intended to be

context CofCtxt
constants full empty half level
sets FILL
axioms

@Ffhe partition(FILL, {full }, {half }, {empty })
@lvl level = (0 .. 2 × {empty }) ∪ (3 .. 7 × {half }) ∪ (8 .. 11 × {full })

end

Figure 1: Context of Coffee Dispenser Model

used to parametrise machines. We mention contexts here mainly because of the role they play in animation. For any
particular animation specific values for all constants have to be found. ProB does this automatically using constraint-
solving techniques to find proper values that satisfy all axioms. The constraint-solving also determines whether the
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axioms contain a contradiction. In order to use carrier sets, constants, and axioms of a context in a machine, the
context needs to be referenced in the machine: the machine sees the context. For instance, in Fig. 3 machine CoffeeM
sees context CofCtxt. Contexts are described in more detail in [1, 9].

2.2. Notation for Variables and Substitutions

We follow the style of [1] of expressing variables and substitution in formulas. Let v = v1, . . . , vn be a sequence
of n distinct variables, t = t1, . . . , tn a sequence of n formulas and F a formula. Then F[t/v] is obtained from F by
replacing simultaneously all free occurrences of each vi by ti.

We let F(v) denote a formula, whose free variables are among v1, . . . , vn. Once the formula F(v) has been intro-
duced, we denote by F(t) the formula F[t/v] with v replaced by t. By v′ we denote the variables v′1, . . . , v

′
n, used for

naming after-states of state transitions. For (disjoint) variable sequences v and w we denote their concatenation by
v,w. These notions could also be used with Event-B constants. But we do not do this in this article where we focus
on refinement relationships and consequently on variables.

2.3. Machines

Machines provide behavioural properties of Event-B models. Machines may contain variables, invariants, events,
and variants. Variables v define the state of a machine. They are constrained by invariants I(v). Possible state changes
are described by means of events. Each event is composed of a guard G(t, v) and an action S (t, v), where t are
parameters of the event. The guard states the necessary condition under which an event may occur, and the action
describes how the state variables evolve when the event occurs. We denote an event E(v) by one of the forms shown
in Fig. 2. Form (b) is used if event E(v) does not have parameters, and form (c) if in addition the guard equals true.

any t when
G(t, v)

then
S (t, v)

end
(a) Event (General Form)

when
G(v)

then
S (v)

end
(b) Event without Parameters

begin
S (v)

end

(c) Event without Parameters or Guard

Figure 2: Syntax of Events

A dedicated event of the third form is used for INITIALISATION. In the formal exposition below, we assume without
loss of generality that the most general first form is used.

The action of an event is composed of assignments of the form: x := E(t, v) or x :∈ E(t, v) or x :| Q(t, v, x′),
where x is some or all of the variables v, E(t, v) expressions, and Q(t, v, x′) a predicate. The second form assigns x to
an element of a set, and the third form assigns to x a value satisfying a predicate. The first two can be formally defined
in terms of the third form: x := E(t, v) =̂ x :| x′ = E(t, v) and x :∈ E(t, v) =̂ x :| x′ ∈ E(t, v). The effect of an
assignment is described by a before-after predicate:

before-after predicate of “x :| Q(t, v, x′)” =̂ Q(t, v, x′)

A before-after predicate describes the relationship between the state just before an assignment has occurred, x, and
the state just after the assignment has occurred, x′. All assignments of an action S (t, v) occur simultaneously which is
expressed by conjoining their before-after predicates, yielding a predicate A(t, v, x′). Variables y that do not appear on
the left-hand side of an assignment of an action are not changed by the action. Formally, this is achieved by conjoining
A(t, v, x′) with y′ = y, yielding the predicate

S(t, v, v′) =̂ A(t, v, x′) ∧ y′ = y .
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machine CoffeeM sees CofCtxt
variables alvl
invariants

@inv1 alvl ∈ FILL
variant ({full 7→ 2, half 7→ 1, empty 7→ 0})(alvl)
events

event INITIALISATION
begin

@mf alvl := empty
end

event fill mug
any x when

@g0 alvl = empty
@g1 x , alvl

then
@a1 alvl := x

end
convergent event drink

when
@g1 alvl , empty

then
@a1 alvl :∈ {empty, half} \ {alvl}

end
end

(a) Coffee Dispenser Machine

alvl = empty

alvl = full

fill_mug(full)

alvl = half

fill_mug(half)

drink

drink

drink

INITIALISATION

(b) State Space for CoffeeM (with Additional Mugshots)

Figure 3: Coffee Dispenser Model

2.3.1. Running Example
We use the coffee dispenser model in Fig. 3 (with context in Fig 1) and Fig. A.19 for illustration of refinement-

animation. In the abstract machine CoffeeM the dispenser can fill a mug half or fully; the state of the mug is repre-
sented by the variable alvl (abstract level). As a special service the dispenser can also drink the coffee.

In the first refined machine CoffeeR1 a feature is introduced for inserting an arbitrary number of coins into the
dispenser. A coin is consumed each time a mug is filled. In the second refined machine CoffeeR2, the number of
coins maximally accepted is limited and the amount of coffee contained in a mug is represented numerically by a the
variable clvl (concrete level).

2.3.2. Animation in ProB
The before-after predicate can be used to compute the state space of a machine, a graph where each node represents

a state of the machine and each arc the execution of an event. Fig. 3b contains the state space of the CoffeeM (Fig. 3a),
as computed by the ProB tool. The triangle represent a special root node, where the variables and constants of a
machine have not yet been set. An animator lets the user navigate the state space by choosing the events to be fired.
A model checker will systematically explore the state space, looking for various errors in the machine.

2.4. Machine Consistency

Invariants are supposed to hold initially and whenever variable values are changed by an event. Obviously, this
does not hold a priori and, thus, needs to be proved. The corresponding proof obligation for every event is called
invariant preservation, formally,

I(v) ∧ G(t, v) ∧ S(t, v, v′) ⇒ I(v′) . (1)
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For the INITIALISATION of a machine there is a special form of this proof obligation, without invariant and guard in
the hypothesis. By proving action feasibility for an event,

I(v) ∧ G(t, v) ⇒ (∃v′ · S(t, v, v′)) ,

as well, we achieve that S(t, v, v′) provides an after state whenever G(t, v) holds. This means that the guard indeed
represents the enabling condition of the event. For the INITIALISATION action feasibility is just (∃v′ · S(t, v, v′))
because it does not have a guard and the invariant cannot be assumed to hold before initialisation of a machine.

2.4.1. Enabledness
We can prove that machine M is deadlock-free, that is, always some event is enabled to occur. Let E1(v), E2(v), . . .,

En(v) be the events of machine M without INITIALISATION, with parameter lists t1, t2, . . . , tn, and guards G1(t1, v),
G2(t2, v), . . ., Gn(tn, v). Machine M is deadlock-free if some choice of parameter values makes one of the guards of
the events true:

I(v) ⇒ (∃t1 ·G1(t1, v)) ∨ (∃t2 ·G2(t2, v)) ∨ . . . ∨ (∃tn ·Gn(tn, v))

The Rodin tool does not support enabledness proof obligations at the moment. But ProB supports analysis of liveness
properties and animation can show a deadlock (where all events except for the initialisation are disabled).

2.5. Machine Refinement

A machine N can refine at most one other machine M. We call M the abstract machine and N a concrete machine.
The state of the abstract machine is related to the state of the concrete machine by a gluing invariant J(v,w) associated
with the concrete machine N, where v are the variables of the abstract machine and w the variables of the concrete
machine. The restriction that there is at most one abstract machine to a concrete machine permits us to store the
gluing invariant J(v,w) in the concrete machine. The full invariant of the concrete machine is the conjunction of the
(full) invariant of the abstract machine conjoined with the gluing invariant. The invariants are accumulated during
refinements. In particular, they are immediately available as hypotheses in proofs.

We call events of an abstract machine abstract events and those of a concrete machine concrete events. Abstract
events are refined by concrete events. Each abstract event must be refined by at least one concrete event. The most
common case is an abstract event E(v) refined by one concrete event F(w). Let abstract event E(v) and concrete event
F(w) be as specified in Fig. 4. Informally, concrete event F(w) refines abstract event E(v) if, whenever the gluing

event E(v)
any

t
when

G(t, v)
then

S (t, v)
end

event F(w) refines E(v)
any

u
when

H(u,w)
with

W(t, v′, u, v,w,w′)
then

T (u,w)
end

(a) Abstract Event E(v) (b) Concrete Event F(w)

Figure 4: Event Refinement

invariant J(v,w) is true:
(i) the guard of F(w) is stronger than the guard of E(v), and

(ii) for every possible execution of F(w) there is a corresponding execution of E(v) which simulates F(w) such that
the gluing invariant remains true after execution of both events.
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Superposition refinement [10] is supported explicitly by way of extending events. For instance, in Fig. A.19 some
events carry the attribute extends. This means that all parameters, guards, and actions are copied literally from the
abstract event. Note that the event F(w) contains one more component W(t, v′, u, v,w,w′) following the keyword with,
called the witnesses. We return to its rôle in Section 2.7 below.

An event can be split in a refinement. This happens if more than one concrete event refines abstract event E(v). A
concrete event can also merge several abstract events into one concrete event. This is only permitted if the parameters
of the merged abstract events agree on their types and their actions are identical. The latter restrictions have been
introduced in order to keep the associated proof obligations simple. It is not possible for such a concrete event to
extend the merged abstract events.

2.5.1. Refinement Animation
To check whether the guard of a concrete event is stronger, we also need to animate the corresponding abstract

machine. Fig. 5a shows a graphical visualisation (created with Brama) of an animation of the coffee dispenser model
described earlier.2 White boxes signal enabled events, grey boxes disabled events. As can be seen, all the refinement

INITIALISATION

fill_mug

drink

insert_coin

CoffeeR2 CoffeeR1 CoffeeM

INITIALISATION

fill_mug

drink

insert_coin

INITIALISATION

fill_mug

drink

(a) in Brama

CoffeeR2 CoffeeR1 CoffeeMInv Inv
      INITIALISATION       INITIALISATION      INITIALISATION
      fill_mug       fill_mug       fill_mug
      drink       drink      drink
      insert_coin       insert_coin

(b) Improved

Figure 5: Coffee Dispenser Refinement Animation

levels are animated concurrently. Brama’s representation also shows at a glance that whenever a refined event is
enabled, then all of its ancestor events are also enabled.

The view underlying Fig. 5a is operational. It focuses solely on event execution. If we wanted to use it for
analysing a formal model, we would need to add information. In particular, information about gluing invariants would
be useful (Fig. 5b). For instance, it could be shown which event could violate the invariant. We have indicated more
information that could be provided by the icons used in Fig. 5b: the icon “ ” indicates that an event is enabled; the
icon “ ” indicates that an event is not enabled; the icon “ ” indicates that a convergent event decreases the variant;
the icon “ ” indicates that an anticipated event does not increase the variant. Note, that this is not a purely cosmetic
change: the animator must supply all necessary information.

2.6. Common Variables and Common Parameters

As far as animation and model checking are concerned, refinement introduces a new challenge: we no longer have
just a single machine that needs to be animated as in Fig. 3b, but a series of machines, each with its own state.3

In order to check the gluing invariant, we need to access variables from various machines. This raises a new issue.
In Section 2.5 we have simply assumed that all variables v are refined by new variables w, and all parameters t are
refined by new parameters u. The variables v and parameters t “disappear” in the refinement. In practice, variables and
parameters can be repeated in a refinement. Abstract machines and concrete machines can have variables in common,
and abstract events and concrete events parameters. By convention, when repeating variables and parameters abstract
and concrete counterparts are assumed to be equal.4

2The drawing corresponds to the output generated by Brama. The original screenshot can be found in [11].
3Earlier versions of ProB avoided this problem by animating each refinement level separately, at the cost of not being able to check the gluing

invariant and of less user feedback.
4Once a variable has disappeared in the course of several refinements it cannot reappear. The reason for this is that the equality cannot be

established by means of a machine that does not contain the variable. Furthermore, invariants are accumulated in Event-B. So it is not possible to
reintroduce a variable with a different meaning.
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2.6.1. Animation
For refinement animation of machines this means that we have basically two options: First, variables must be

renamed in each machine and gluing invariants generated. This approach would allow us to visualise machines with
deviating behaviour. A second approach would be to treat repeated variables internally as one, but we must ensure
that the algorithm will still detect the errors and find a way to visualise them. After presenting the algorithm, we will
explain in detail in Section 3.2.1 why we opt for the latter.

Figure 6: ProB Operations and State View after the Trace insert coin, fill mug, drink

2.6.2. Example
In the running example, the machine CoffeeM of Fig. 3a and its refinement CoffeeR1 of Fig. A.19a have the

variable alvl in common. Fig. 6 shows ProB animating the Coffee example. As can be seen in the newly developed
hierarchical “State View”, the variable alvl occurs twice, once in CoffeeM and once in CoffeeR1. We can also see that
the variable alvl disappears in the refinement CoffeeR2. In Fig. 7 we show how the AnimB animator displays a state
of multiple refinement-levels; each refinement level is given its own tab.

Figure 7: AnimB View after insert coin,insert coin, fill mug, drink
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2.7. Refined Events and Witnesses
The predicate W(t, v′, u, v,w,w′) denotes witnesses. Somewhat simplified, they link the abstract parameters t and

the abstract variables v′ to concrete parameters u and variables and w′ (see also Fig. 9). Witnesses describe for each
event separately how the refinement is achieved. Let K(u, v,w,w′) =̂ I(v) ∧ J(v,w) ∧ H(u,w) ∧ T(u,w,w′).

We discuss splitting of events in more detail and comment below on the differences when merging events in a
refinement. The proof obligations for concrete events are called guard strengthening:

K(u, v,w,w′) ∧ W(t, v′, u, v,w,w′) ⇒ G(t, v) , (2)

action simulation:

K(u, v,w,w′) ∧ W(t, v′, u, v,w,w′) ⇒ S(t, v, v′) , (3)

and invariant preservation:

K(u, v,w,w′) ∧ W(t, v′, u, v,w,w′) ⇒ J(v′,w′) . (4)

We have to prove witness feasibility in order to be able to add the witness predicate W(t, v′, u, v,w,w′) to the premises
in the proof obligations above:

K(u, v,w,w′) ⇒ (∃t, v′ ·W(t, v′, u, v,w,w′)) . (5)

In general, witnesses would be required for all parameters p of an event but when a parameter is repeated in a
refined event, by convention, it is assumed to be equal to the corresponding abstract parameter. If a parameter is not
repeated an explicit witness is required. (The Rodin tool creates the default witness “true” if none is specified in the
latter case. This witness does not constrain the relationship between abstract and concrete parameters and variables.
Hence, usually default witnesses are not sufficient to establish the refinement relationship.) For variables the rule
when witnesses are needed is more complicated: whenever a variable x that disappears occurs in a non-deterministic
assignment in the abstract event, in the refined event a witness for the post-state variable v′ is required.

Aside. As described in [9], in order to verify that F(w) refines E(v) we have to prove

I(v) ∧ J(v,w) ∧ H(u,w) ∧ T(u,w,w′) ⇒ ∃t, v′ ·G(t, v) ∧ S(t, v, v′) ∧ J(v′,w′) . (6)

In a proof of this statement we prefer to instantiate the existentially quantified parameters t and variables v′ by expres-
sions that can in some way be inferred from the premises. This idea is generalised to the witnesses used in Event-B.
Witnesses are predicates that provide values to satisfy the existentially quantified conclusion of the statement.

Refinement according to (6) is established by proof obligations (2) to (5):

(2) ∧ (3) ∧ (4)
⇒ { predicate logic }

K(u, v,w,w′) ∧ W(t, u, v, v′,w,w′) ⇒ G(t, v) ∧ S(t, v, v′) ∧ J(v′,w′)
⇒ { instantiate t, v′ := t, v′ in goal }

K(u, v,w,w′) ∧ W(t, u, v, v′,w,w′) ⇒ ∃t, v′ ·G(t, v) ∧ S(t, v, v′) ∧ J(v′,w′)
⇒ { t and v′ not free in K(u, v,w,w′) }

K(u, v,w,w′) ∧ (∃t, v′ ·W(t, u, v, v′,w,w′)) ⇒ ∃t, v′ ·G(t, v) ∧ S(t, v, v′) ∧ J(v′,w′)
⇒ { by (5) }

(6)

Aside. Two or more events can be merged in a refinement. In this case some restrictions apply for the abstract
events being merged. Figure 8 shows a concrete event F(w) that merges two abstract events E1(v) and E2(v). (It can
be easily generalised to any finite number of merged events.) Merging of E1(v) and E2(v) is only defined if identically
named parameters of t1 and t2 have identical types and the actions S 1(t1, v) and S 2(t2, v) are identical. Term t1∪t2
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event E1(v)
any

t1
when

G1(t1, v)
then

S 1(t1, v)
end

event E2(v)
any

t2
when

G2(t2, v)
then

S 2(t2, v)
end

event F(w) refines E1(v) E2(v)
any

u
when

H(u,w)
with

W(t1∪t2, v′, u, v,w,w′)
then

T (u,w)
end

(a) Abstract Events E1(v) And E2(v) (b) Concrete Event F(w) Merging E1(v) And E2(v)

Figure 8: Merging Two Events

denotes the “union” of the parameter lists t1 and t2. Due to the restrictions we have imposed on the abstract events,
only the guard strengthening proof obligation needs to be adapted to the merging case (with K(u, v,w,w′) as defined
above):

K(u, v,w,w′) ∧ W(t1∪t2, v′, u, v,w,w′) ⇒ G1(t1, v) ∨ G2(t2, v) .

Merging does not pose new challenges for animation, hence, we do not discuss it when presenting the animation
algorithm. The brief presentation of event merging given here should suffice as evidence for this claim (and as
justification for the omission of event merging in Section 3).

2.7.1. Example
Event fill mug in CoffeeR2 contains the witness x = level(clvl′) for the abstract parameter x of fill mug in CoffeeR1.

This means intuitively, that every execution of fill mug in CoffeeR2 corresponds to an execution of fill mug in CoffeeR1
with parameter x set to level(clvl′). Event fill mug in CoffeeR1 must be enabled for x = level(clvl′) and the gluing
invariant alvl = level(clvl) must hold after executing the abstract and concrete event. Similarly, drink in CoffeeR2
contains a witness alvl′ = level(clvl′) for the abstract variable alvl. (Note, that it is just invariant @lvl in Fig. A.19b
with all variables primed.)

2.7.2. Animation in ProB
Witnesses are the key concept that makes refinement animation possible. Indeed, (trace) refinement animation and

refinement checking in classical B (see Section 5) require for every concrete state to keep track of the set of all abstract
states for which the gluing invariant holds. Only if this set becomes empty, have we found an error in the refinement.
The size of state space necessary for simulation grows exponentially. In Event-B, by contrast, the witnesses pinpoint
the states which have to satisfy the refinement relationship (see Fig. 9).

2.8. New Events, Convergence, and Anticipation
In the course of refinement, often new events F(w) are introduced into a model. New events must be proved to

refine the implicit abstract event “skip” that does nothing and is always enabled, that is, we have to prove invariant
preservation:

K(u, v,w,w′) ⇒ J(v,w′) .

Moreover, it may be proved that new events do not collectively diverge. This is done by means of convergence and
anticipation. Convergence is verified by proving that a specified variant W(w) is bounded from below:

I(v) ∧ J(v,w) ∧ H(u,w) ⇒ W(w) ≥ 0

and is decreased by each new event

I(v) ∧ J(v,w) ∧ H(u,w) ∧ T(u,w,w′) ⇒ W(w′) < W(w) (7)



S. Hallerstede et al. / Science of Computer Programming 00 (2010) 1–24 10

abstract
state

concrete
state clvl = 8, ...fill_mug 

clvl := 8

alvl=half, ...

alvl=full, ...

fill_mug
x=full

Witness
x=level(clvl')

gluing
invariant

alvl = level(clvl)
alvl = level(clvl)

fill_mug
x=half

...

CoffeeR1

CoffeeR2

Figure 9: Witnesses and Multi-Level Animation

where we assume that the variant is an integer expression. (Instead of an integer expression also a finite set expression
can be used.) We call events that satisfy these two proof obligations convergent.

An event is anticipated (to be convergent) if instead of (7) it satisfies the weaker condition (8):

I(v) ∧ J(v,w) ∧ H(u,w) ∧ T(u,w,w′) ⇒ W(w′) ≤ W(w) . (8)

Anticipated events can be used to prove convergence on a lexicographic order [12] or just to delay convergence proofs
[13]. Anticipated events can be refined by anticipated or convergent events, but must ultimately be refined by a
convergent event. Convergent events can only be refined by convergent events, that is, they stay convergent. Fig. 10
shows a typical scenario of the use of convergent and anticipated events.5 “Ordinary” events (events that are neither

E3 
anticipated

no 
anticipated 

events

E1

E4

E3

E2

E1 E1 E1 E1

E2 E2 E2

E3 E3 E3

E4 E4

E3 
anticipated

E3 and E4 
anticipated

machine M1

E1 is an 
“ordinary” 

event

machine M2 machine M3 machine M4 machine M5

Figure 10: Convergent and Anticipated Events

5See also Fig. 5b.
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convergent nor anticipated) are shown as boxes , anticipated events as ellipses , and convergent events as bold
ellipses . The new event E2 in machine M2 is convergent and stays convergent in machines M3 to M5. The new
event E3 in machine M2 is anticipated and becomes convergent only in machine M5. The new event E4 in machine
M3 becomes convergent in machine M4 “before” event E3. The interest of anticipated events is mostly this possibility
to carry out convergence proofs when it is most convenient, usually avoiding explicit specification of lexicographic
variants.

Roughly speaking, if V(v) is the variant of an anticipated event E(v), and W(w) a convergent event F(w) that
refines E(v), then F(w) is convergent with respect to the lexicographic variant (V(v),W(w)). For V(v) we have verified
that it is not increased by E(v), that is, V(v′) ≤ V(v). Because F(w) refines E(v) it also does not increase V(v) (modulo
the gluing invariant). In particular, if F(w) leaves V(v) unchanged, V(v′) = V(v), then W(w) is decreased, hence,
V(v′) < V(v) ∨ (V(v′) = V(v) ∧ W(w′) < W(w)).

2.8.1. Example
Event insert coin in Fig A.19a is anticipated in CoffeeR1 and is then proven convergent in CoffeeR2 (Fig A.19b)

by introducing an upper bound on the number of inserted coins.

2.9. Enabledness of Refined and New Events

The concrete machine N is relatively deadlock-free with respect to the abstract machine M if some concrete event
is enabled whenever some abstract event is enabled. That is, the disjunction of the guards of all abstract events
(without INITIALISATION) implies the disjunction of the guards of all concrete events (without INITIALISATION).
This is equivalent to the claim that each abstract event (except for INITIALISATION) implies the disjunction of the
guards of all concrete events (without INITIALISATION) . Whenever the abstract machine may continue by means of
some event E(v) with guard G(t, v), the concrete machine may continue by means of at least one of the concrete events
F1(w), F2(w), . . ., Fn(w) with parameter lists u1, u2, . . ., un, and guards H1(u1,w), H2(u2,w), . . . , Hn(un,w),

I(v) ∧ J(v,w) ∧ G(t, v) ⇒ (∃u·H(u,w)) ∨ (∃u1 ·H1(u1,w)) ∨ . . . ∨ (∃uk ·Hk(uk,w)) .

Neither the Rodin proof obligations generation nor ProB model-checking or animation support the notion of relative
deadlock-freedom at the moment. ProB animation would show a deadlock, because first the concrete events are
animated and then their abstractions if a solution is found.

3. Description of the Multi-Level Animation Algorithm

In this section we describe the validation and animation algorithm in detail. We point out in the presentation of the
algorithm how it indicates problems with particular proof obligations. We also show how feedback to the user needs
to be considered. Producing informative output from an animation with good performance is a challenge. For this
reason the algorithm makes heavy use of ProB’s existing functionality. In particular, ProB provides methods to find
values for variables that satisfy predicates occurring in Event-B models.

Below we limit the discussion to animation; but the algorithm is identical for model checking: the model checker
uses the same technique to determine the state space.

3.1. Preprocessing

The algorithm is applied to a particular refinement machine Mi of a model. In a pre-processing step, all ancestor
machines M0, . . . ,Mi−1 of Mi are loaded and all contexts seen by M0, . . . ,Mi are merged by collecting the declared
constants and joining the axioms. The invariant is obtained by conjoining all invariants of M0, . . . ,Mi.

We transform each event of Mi to an internal representation. The representation is outlined on the right hand side
of Fig. 11. Usually the list of abstract events contains just one entry. If an event refines skip or belongs to the most
abstract machine M0, the list of abstract events is empty. If the event refines several events, it will contain all of those
events.

E.g., if we animate CoffeeR1, the event drink has one abstract event, the event drink of CoffeeM, which itself has
an empty list of abstract events. insert coin would have no abstract events because it refines skip.
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Abstract Events

Name of Concrete Event
Parameters
Guard Predicate
List of Actions
List of Witness Predicates

Abstract Event
...

Abstract Event
...

1.
2.

3.

4.

CoffeeR2:drink
no parameters
guard: fill_level ≠ empty
actions: fill_level := empty
no witnesses

Abstract Events

CoffeeR1:drink
no parameters
guard: mug_level > 0
actions: mug_level := 0
no witnesses

Abstract Events
...

CoffeeM:drink
no parameters
guard: mug_level > 0
actions: mug_level := 0
no witnesses

No Abstract Events

Figure 11: Illustration of the Algorithm And One Particular Event Structure

3.2. The Animation Algorithm
The animator executes events depending on the current state of a model. It maintains a state consisting of all

constants of the seen contexts as well as all variables of the machines M0, . . ., Mi.
In a first step the animator tries to find values for the constants that satisfy all axioms. Subsequently, the animator

executes in each step an event of the most concrete machine Mi; then it executes the corresponding abstract events
from the concrete event to the most abstract event.

When all of this has been done, the animator is ready for the next step.
The algorithm to animate a particular event works as follows (item numbers correspond to those of Fig. 11, left

hand side):6

1. Search for possible values for the parameters by evaluating its guard. If no values are found, the event is
disabled.

2. Execute each action by evaluating the respective before-after predicate. If no solution is found, report an error.
The possible reasons for a failing action are:
a. The predicate P of an action v :| P is not satisfiable or the set S of an action v :∈ S is empty. Both cases

show violations of the event feasibility proof obligation.
b. The new value v′ of a variable v is constrained by a witness of a refined event (see step 3), but the abstract

action cannot assign a corresponding value to v′. This indicates a violation of the action simulation proof
obligation.

3. For each witness evaluate its predicate and try to find values for the witnessed variable. If no value is found for
a witness, report an error, because a witness should have at least one solution (by the witness feasibility proof
obligation).

4. a. If the list of abstract events is empty, a complete solution has been found for this event that leads to a new
state. It consists of the values newly assigned by the actions plus the variables unchanged by the actions.

b. If there are one or more abstract events, choose one non-deterministically and evaluate its guard like in
step 1. If it evaluates to true, continue recursively with step 2, otherwise try the next event.
If no guard evaluates to true, report an error, because the guard of the refinement is weaker than that of the
abstract event (violation of the guard strengthening proof obligation).

All four steps can be non-deterministic and we generate all solutions (limited to a maximum number) with back-
tracking.

6With respect to animation INITIALISATION is not treated differently from any other events (see left of Fig. 11) except that it is enforced to
occur once upon start of an animation.
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3.2.1. Common Variables and Parameters
As mentioned above we have basically two options for dealing with common variables between a model and its

refinement. One is to treat them as distinct variables xa and xc and to add the implicit gluing invariant xa = xc. If an
abstract event x := 1 is now erroneously refined by x := 2, the animator can visualise the error by showing the post
state xa = 1, xc = 2 and indicating that the invariant xa = xc is violated.

But this approach has a fundamental problem as the following example shows. Let the action of the abstract event
be x :∈ {1, 2} and the corresponding action of the refined event x := 1. Our algorithm would find two possible post
states, xa = 1, xc = 1 and xa = 1, xc = 2. The first one is valid, the second one violates the implicit gluing invariant.
Thus ProB would wrongly show an error for a correct refinement.

A solution to prevent the spurious error is to add implicit witnesses x′a = x′c for all common variables. Then after
assigning x′c = 1, the evaluation of x′a = x′c results in x′a = 1. The abstract assignment x :∈ {1, 2} is then just a check
x′a = 1 ∈ {1, 2}. We still would find an error for an invalid concrete action (like x := 3), namely a violation of the
action simulation proof obligation in step 2a. But adding the implicit witness has the effect that the algorithm never
finds solutions with different abstract and concrete values. So there is no need to distinguish between them in the
animation. The same applies to common parameters.

A slightly different solution would be to add implicit witnesses only for those variables which are assigned non-
deterministically in the abstract event. This would allow us to generate a state which violates the gluing invariant that
we could present the user in case of deterministic assignments. For non-deterministic assignments we still have to
indicate a violation of the action simulation proof obligation in the event. It is not clear to us if the presentation of
an invalid result state is easier to understand than the explanation of an error found in the event. So there is no clear
benefit of this approach, but the downside would be a less consistent algorithm and a larger representation of a state
by duplicating variables. Thus we have chosen the approach where we do not distinguish between common variables.

3.2.2. Example
Fig. 12 shows a detailed example run for the event fill mug in the refinement CoffeeR2 to demonstrate the anima-

tion algorithm. The table displays what is happening for each refinement level and step of the algorithm. The last
column contains an entry if new values for variables have been found by evaluating the predicates.

We have chosen an arbitrary state where fill mug is enabled as a starting point: alvl = empty, clvl = 0, coins = 2,
maxc = 4. The example shown leads to a new state alvl = full, clvl = 9, coins = 1, maxc = 4. The variables maxc has
not been modified by any action, so its value is just copied to the new state.

Note that the evaluation of action @ffl (CoffeeR2, step 2) chooses the value 9 of clvl′ non-deterministically, in
total there are 4 different possibilities, leading to 4 different states with clvl ∈ 8 .. 11.

Refinement Step found values
CoffeeR2 1. evaluate the guards to see whether the event is enabled:

@gc2: coins > 0 ≡ 2 > 0 ≡ >
@ml: clvl ∈ level−1[{empty}] ≡ 0 ∈ 0 .. 2 ≡ >

CoffeeR2 2. action @delc2: coins′ = coins − 1 ≡ coins′ = 2 − 1 coins′ = 1
action @ffl: clvl′ ∈ level−1[{full}] ≡ clvl′ ∈ 8 .. 11 clvl′ = 9

CoffeeR2 3. witness for the abstract parameter x: x = level(clvl′) = level(9) = full x = full
CoffeeR2 4. check the guard of the abstract event: @gc: coins > 0 ≡ >
CoffeeR1 2. action @delc: coins′ = coins − 1 ≡ 1 = 2 − 1 ≡ >
CoffeeR1 3. (no witness to check)
CoffeeR1 4. check the guards of the abstract event:

@g0: alvl = empty ≡ empty = empty ≡ >
@g1: x , alvl ≡ full , empty ≡ >

CoffeeM 2. action @a1: alvl′ = x alvl′ = full
CoffeeM 3. (no witness to check)
CoffeeM 4. no more abstract events, stop

Figure 12: Example Run of the Refinement Algorithm for Event fill mug
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3.2.3. Animation of Convergent and Anticipated Events
If we have successfully found a possible event leading from one state to another, we can easily check if the

convergence criteria are satisfied. The principle is quite simple: for each convergent event of an animated model, we
check if the variant V is decreased and non-negative by the predicates V > V ′ and V ≥ 0 resp. V ⊃ V ′ when the
variant is a set. If the event refines another convergent event, we omit the test: in the lexicographic order constructed
by refinement, events that have been shown to decrease a variant in an abstraction of some concrete machine may
increase the variant of that concrete machine. Similarly, we can check anticipated events (with V ≥ V ′ and V ≥ 0
resp. V ⊇ V ′), but we cannot omit the test if an event is a refinement of an anticipated event. Violations of specified
variants are treated by ProB similarly to guard strengthening violations as shown in Fig. 13.

3.2.4. Animating Only a Part of the Refinement Chain
Above we presumed that the user wants to animate a refinement Mi and all its ancestors M0, . . . ,Mi−1. But we also

permit the user to limit the animation to the refinements between Mi and an “upper” refinement Mk with 0 ≤ k ≤ i
instead of M0. Then variables of not animated models and parts of predicates that contain references to those variables
will be removed, resulting in weaker predicates.

Such a reduction of the animated refinement levels usually leads to smaller representation of states and allows the
user to focus on the parts of the model he is currently interested in. However, the downside is that the limitation might
hide some errors or introduce spurious errors:

• The gluing invariant can refer to abstract variables, weakening it means that some invariant violations are not
detected anymore.

• Weakened witnesses can result in finding values for abstract parameters or variables that were not possible with
the original predicates. Those values might cause other errors (e.g. violation of the simulation proof obligation).

If we limit the animation to a single refinement (k = i) the animation behaves like that of ProB without multi-level
support.

4. Refinement-Validation with ProB

Refinement animation can be used to validate models. We present some specific problems that can be analysed by
animation and discuss a selection of case studies to which it has been applied.

4.1. Detection of Specific Problems
Below we show on various modified versions of the coffee model (Fig. 3a) and its refinements (Fig. A.19), how

the new multi-level animation algorithm allows ProB to detect a variety of refinement errors. Note that in contrast to
AnimB and Brama, ProB is also a model checker that can systematically detect refinement errors.

4.1.1. Guard Weakening
If we remove the guard @ml from the event fill mug in CoffeeR2, we violate the guard strengthening proof obli-

gation. As can be seen in Fig. 13, ProB’s model checker using our new algorithm detects this problem straightaway
(case 4a of our algorithm), leading us to a state where fill mug is enabled in CoffeeR2 but not in the abstract machines.

4.1.2. Witness Disables Abstract Guard
A similar error message appears if we keep the guards as they are, but inject an error in the witness. E.g, when

using x = empty as witness for fill mug, ProB detects that there is a solution for the witness, but that the witness does
not enable the abstract event.

4.1.3. Witness Not Feasible
Next, let us use the witness x = level(clvl′) ∧ x = empty for event fill mug. Here case (3) of our algorithm

detects an error for fill mug (after executing insert coin), and ProB displays the error message: “No solution found
for witness of the abstract parameter x in event CoffeeR2:fill mug”. The animator AnimB does not detect this error
(but it did detect the previous two errors).
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Figure 13: Violation of Guard Strengthening (ProB)

4.1.4. Witness Violates Invariant
Finally, we try to specify the witness alvl′ ∈ {empty, half } − {alvl} for the event drink, which does not guarantee

that the abstract event will satisfy the gluing invariant. As can be seen in Fig. 14, ProB finds an invariant violation

Figure 14: Violation of Gluing Invariant (ProB)

error (alvl = level(clvl) is false) directly after the drink event.
Note that, AnimB detects an error in the model, but only later when trying to execute the fill mug event after the

erroneous drink event.
In practice, validation by animation complements the proof-based methodology of core Event-B. Corresponding

methodological benefits of using animation of Event-B models are discussed in more detail in [14].
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4.2. Application to Case Studies

We have successfully applied the new multi-level animation of ProB on a two-level model of SAP service chore-
ographies [15]. We have also tested the tool on the CDIS air traffic control case study carried out in the EU project
Rodin. Figure 15 contains a screenshot of the first two levels; we have successfully animated all 7 levels of the full
model concurrently.

Figure 15: Animating the Rodin CDIS Case Study

Another case study was a complete development of the quicksort algorithm in Event-B, consisting of ten machines
and two contexts. We have successfully animated and model-checked all the ten levels concurrently. Animation
showed how the algorithm “works” at different abstraction levels. This is valuable for explaining an otherwise static
model of an algorithm.

We have also successfully animated concurrently 14 levels of an elevator model solution by ETH Zürich. This
has uncovered a potential problem in the model, namely that starting at a certain refinement level, the lift is no longer
able to move (but the doors can be opened and closed and the buttons can be pressed; so there is no deadlock in the
conventional sense).

5. Comparison with Trace Refinement and Empirical Evaluation

5.1. Comparing with Trace Refinement Checking

An important related work is the refinement checking algorithm in [16]. This algorithm checks trace refinement
between the abstract model and the refined model, i.e., it checks that every trace of events of the refined model is also
a valid trace of the abstract model.
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For example, for our running Coffee example, all the possible traces of the abstract model can be deduced from
the state space in Figure 3. If the refined model can perform the trace INITIALISATION, drink, then the algorithm
from [16] would detect an error, as this trace cannot be performed by the abstract model CoffeeM.

The main differences between our new multi-level validation algorithm and [16] can be summarised as follows:

• As the algorithm from [16] works on the level of traces, it can be applied to other formalisms, such as CSP [17].
It can even be used to check refinement relations between CSP and classical B [18] models.

• The tools for classical B and Event-B generate proof obligations for forward refinement, which is not complete.
I.e., there are systems which are related by trace refinement but where no forward refinement can be established
[19]. The new algorithm in this paper adheres to the forward refinement methodology of Event-B, whereas [16]
checks trace refinement.

• The algorithm of [16] checks the refinement relation between two models; our new algorithm checks an entire
refinement chain in one go (but restricted by the state space of the most concrete model).

• The algorithm of [16] computes the state space of the refined model on-the-fly, but it has to compute the entire
state space of the abstract model before starting the refinement checking (for the running Coffee example, this
corresponds to Figure 3). The new algorithm in this paper performs the entire validation on-the-fly. In particular,
only the relevant parts of the state space of the abstract model(s) are computed. We will illustrate this in the
empirical results below.

• The algorithm of [16] performs the refinement checking depth-first; the new algorithm can use any of ProB’s
search methods (depth-first, breadth-first and the default mixed depth-first/breadth-first search). Especially for
large state spaces, this increases the likelihood of detecting errors; see [20].

• The algorithm of [16] computes the state space of the abstract model independently of the refined model and
thus does not check the gluing invariant. Furthermore, in its current form, it cannot make use of Event-B’s
witnesses and hence has to keep track of sets of states in the abstract model. Our algorithm makes use of the
witnesses, which often allows us to only relate a single abstract state to a refined state. It also allows us to relate
parameters of the refined event to parameters of the abstract event. E.g., in our running example, fill mug has
no parameter in CoffeeR2, while it has the parameter x in CoffeeR1 and CoffeeM; the witness x = level(clvl′) in
CoffeeR2 tells us which parameter value to use in the abstract models. The algorithm of [16] was devised in a
setting of CSP and classical B, where parameters of events or operations cannot be refined. E.g., in the running
example it would report a counter-example (INITIALISATION, fill mug) for CoffeeR2, unless we tell it to ignore
all parameters in traces.

To evaluate the practical performance difference between the two algorithms, we have adapted the scheduler
example from [16] (and originally from [21]) for Event-B. The abstract model Scheduler0 schedules a certain number
of processes (which we have fixed to 6 in the experiments), and keeps them in the sets waiting, ready and active. At
most one process can be active at any one time. In the refinement Scheduler1 there is a queue for the ready processes
(the abstract model just keeps them in a set). We have also generated two incorrect refinements: in Scheduler1 err the
event swap ready is not shifting the indexes in the queue and in Scheduler1 terr there is a missing guard in the event
new.

The experimental results are summarised in Table 1. The times are in milliseconds, and do not include the time to
load the models. The experiments were run on a MacBook Pro with a 3.06 GHz Core2Duo processor, and ProB 1.3.2
compiled with SICStus Prolog 4.1.2. In essence, we can draw the following conclusions.

Scheduler1: there is no big performance difference here between the multilevel validation and the trace checking.
However, the multilevel validation also checks the gluing invariant. Furthermore, symmetry reduction [22, 23]
can be applied; which in this case dramatically reduces the model checking time by a factor of 38.6. We explain
why symmetry can be more easily exploited with our multi-level algorithm further below in subsection 5.3.

Scheduler1 err: Here we see that the trace refinement checking does not catch the error introduced in the model, as
the error only manifests itself in the violation of the gluing invariant. In this case, this leads to a big difference
in performance, as both the abstract and refined state space are fully explored by the trace refinement check.
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Benchmark Multi-level Multi-level Trace-Refinement [16]
with symmetry [22]

Consistency Checking Scheduler0 1930 ms 50 ms 1930 ms

Refinement Checking Scheduler1 8760 ms 70 ms 1930 ms + 7260 ms
Scheduler1 err 360 ms 30 ms 1930 ms + *16090 ms
Scheduler1 terr 10 ms 20 ms 1930 ms + 60 ms

*: no error found, as gluing invariant not checked

Table 1: Comparing Trace-Refinement Checking and Multi-Level Validation

Scheduler1 terr: Here, the trace refinement checking does catch the error, as this time it does result in a trace of the
refined model which cannot be mimicked by the abstract model. Note, however, that there is a big performance
difference, as the algorithm from [16] has to explore the full state space of the abstract model (even though only
a small part of it was needed to find the counterexample).

5.2. Application to other Formalisms

In general we think the algorithm can be adapted to formalisms which support a concept of refinement similar to
that of Event-B. In the following we have a closer look at classical B and ASM which have many concepts in common
with Event-B.

5.2.1. Classical B
An obvious candidate for adapting the presented algorithm is classical B [18]. Like Event-B, classical B has

machines with variables and invariants on them. Operations can change the values of variables by generalised substi-
tutions. Unlike events in Event-B operations can have preconditions.

Lets assume an abstract B machine with invariant I and an operation with precondition PA and substitution SA. It’s
refinement has a gluing invariant J and an operation with precondition PR and substitution SR. Let [S ]P denote the
weakest precondition that ensures that an execution of S results in a state satisfying P. A refinement must fulfil two
conditions:
- Starting from a state where I, J and PA hold, for each execution of SR there must exists a corresponding execution

of SA such that J holds in the resulting state. Formally this is expressed by I ∧ J ∧ PA ⇒ [SR]¬[SA]¬J.
- The precondition of the refined operation must be weaker than the abstract operation’s precondition, formally I ∧

J ∧ PA ⇒ PR.
Whereas the presented algorithm follows a strict bottom-up (from refinement to abstract machine) approach,

animating classical B could probably require a combination of a top-down and bottom-up approach: First we evaluate
PA on a state, then we check if PR also holds. Then we can execute SR to find the concrete values of a new state.
Afterwards we check if there is a corresponding abstract substitution that fulfils J.

In future work we will further investigate this approach. There are still several outstanding technical issues (e.g.,
how to give the user helpful feedback in case of errors) as well as fundamental issues (e.g., have we thought of all
possible situations regarding preconditions?). We expect that witnesses or a similar concept will have to be introduced
in classical B as well. Preconditions could be handled similarly to guards, except for the order in which preconditions
have to be evaluated, as indicated above.

5.2.2. ASM
ASM provides a very generic framework for refinement [24]. Unlike Event-B, it allows the refinement of an

arbitrary number of abstract operations by an arbitrary number of concrete operations. Thus we do not see how we
could apply this algorithm to that liberal form of refinement.

Of course, using a restricted form of ASM refinement could make our approach applicable with only small mod-
ifications. The only difference would be that ASM rules can be enabled simultaneously whereas Event-B events
cannot.
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5.3. Symmetry Reduction for Multi-Level Validation

The reason symmetry reduction cannot be (easily) applied when using the refinement checking algorithm from
[16], is that the abstract and refined model are explored separately. Hence, symmetry reduction would have to be
applied to these two steps separately as well. A big problem now is that the canonical form chosen for the abstract
model may be incompatible with the one chosen for the refined model, leading to erroneous counterexamples and/or
to real counterexamples not being found.

Let us look at the example in Figure 16. The abstract model ProcSet contains a variable x, which stores process
identifiers taken from the carrier set Proc, declared in the context PCtxt. The event new can be used to add elements
to x, and the event del to remove elements from x. In the refined model ProcSeq the process identifiers are stored
in a sequence q. The model also stores the size of the sequence as a separate variable. Observe that the elements
of Proc can be interchanged, leading to symmetries in the state space. Notably, all successor states of the initial
state x = ∅ are symmetric in the abstract model. Similarly, all successor states of the initial state q = ∅, n = 0 are
symmetric in the refined model. Let us assume that we have two process identifiers: Proc = {P1, P2}. The top of
Figure 17 contains the initial state and the successor states for the abstract and refined model. The symmetry reduction
algorithm from [23] will now chose one representative per equivalence class. Say the symmetry reduction chooses
the successor of new(P1) for the canonical representative for the abstract model, but for some reason (e.g., due to the
other data structure used) chooses the successor of new(P2) in the refined model. As we can see in the bottom of
Fig. 17, in this case new(P1), del(P2) or new(P2), del(P2) are traces of the symmetry reduced refined model, which
cannot be mimicked by the symmetry reduced abstract model.7 Hence, the trace refinement checking algorithm would
erroneously report that refinement fails. In multilevel animation, the canonical form is computed on the combined
state of the abstract and refined model, and as such respects the relationship between them. This is illustrated in
Fig. 18, where one representative is chosen for the combined abstract and refined state.

context PCtxt
sets Proc
end

machine ProcSet
sees PCtxt
variables x
invariants

@xproc x ⊆ Proc

events
event INITIALISATION

begin
@i x := ∅

end
event new

any p when
@newp p < x

then
@incx x := x ∪ {p}

end
event del

any p when
@pinx p ∈ x

then
@subx x := x \ {p}

end
end

machine ProcSeq refines ProcSet
sees PCtxt
variables q n
invariants

@nnat n ∈ N
@qinj q ∈ 1 .. n � Proc
@glue ran(q) = x

events
event INITIALISATION

begin
@iq q, n := ∅, 0

end
event new refines new

any p when
@newp p < ran(q)

then
@incq q, n := q �− {n+1 7→ p}, n+1

end
event del refines del

any p when
@pinq q[{n}] = {p}

then
@subq q, n := n �− q, n−1

end
end

Figure 16: A Model Symmetric in the Set of Processes Proc

7The permutation flooding technique [25] could probably be made to work more easily, as it explicitly adds “permutation” actions to the state
space.
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Cardinality States Validation Time States Validation Time
of Proc (without symmetry) (with symmetry)

1 3 0.001 s 3 0.002 s
2 6 0.004 s 4 0.003 s
3 17 0.012 s 5 0.006 s
4 66 0.049 s 6 0.009 s
5 327 0.278 s 7 0.013 s
6 1,958 1.618 s 8 0.018 s
7 13,701 11.325 s 9 0.025 s
8 100,001 90.930 s 10 0.033 s

Table 2: Experimental Results for Multi-level Validation with Symmetry Reduction

In Table 2 we show how effective symmetry reduction can be for multi-level validation. We have run exhaustive
multi-level model checking for the refined ProcSeq model of Fig. 16 with and without symmetry reduction. We have
used the symmetry reduction technique from [23].
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Figure 17: Illustration of Symmetry Reduction for Trace Refinement Checking

5.4. More Experimental Results
The experiments below were again run on a MacBook Pro with a 3.06 GHz Core2Duo processor, and ProB 1.3.2

compiled with SICStus Prolog 4.1.2.
To evaluate the cost of treating multiple levels at once we have run our algorithm on an Event-B model for an

elevator by ETH Zürich with an abstract machine and 13 refinements. We have measured the time to check 100 states
for each of the 14 machines. The results are summarised in Table 3a. Note that the state spaces for levels 0 to 4
have less than 100 nodes each, hence the full state space was explored in the given time. Starting at level 5, the state
space has more than 100 states; we have stopped the algorithm at 100 nodes to be able to compare the time required
to treat the same number of nodes. Also note that, we have always animated all levels above the given level (i.e.,
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Figure 18: Illustration of Symmetry Reduction for Multi-Level Validation

Level Validation Cost for Time
Time extra level per level

(100 states)
0 0 ms
1 0 ms
2 20 ms
3 30 ms
4 80 ms
5 100 ms
6 130 ms 30.0% 18.57
7 160 ms 23.1% 20.00
8 190 ms 18.8% 21.11
9 840 ms 342.1% 84.00
10 1110 ms 32.1% 100.91
11 1550 ms 39.6% 129.17
12 1790 ms 15.5% 137.69
13 2160 ms 20.7% 154.29

(a) ETH Elevator (Levels 0–4 have less than 100 states)

Level Validation Nodes Cost for Time
Time extra level per node

(complete) and level
0 300 ms 34 8.82
1 60 ms 18 -80.0% 1.67
2 110 ms 18 83.3% 2.04
3 170 ms 44 54.5% 0.97
4 190 ms 65 11.8% 0.58
5 260 ms 65 36.8% 0.67
6 310 ms 66 19.2% 0.67
7 360 ms 66 16.1% 0.68
8 410 ms 66 13.9% 0.69
9 460 ms 66 12.2% 0.70

(b) Quicksort Model

Table 3: Experimental Results for Multi-level Validation

when validating the level 13 model, we have also validated levels 0–12). As we can see, there is no simple linear
dependence between the validation time and the number of levels animated. However, up to level 8 the runtime seems
to increase linearly with the number of levels animated. Then there is a big jump at level 9 (which introduces 6 new
variables of type total function), after which the runtime seems to increase again linearly (albeit with a steeper slope).

We have conducted a similar experiment for the Quicksort model from [26], for a particular array to be sorted.
The results are summarised in Table 3b. Here, we can see that between level 0 and 1 the number of nodes and the
validation time actually decreases: the refined model is more deterministic and has, hence, a reduced state space.
The non-deterministic choice of a sorting permutation in the abstraction is implemented by a deterministic algorithm
computing such a permutation. The validation time per node and level actually goes down until level 4, and then
remains relatively stable from level 5 onwards.

We have also applied our algorithm on industrial models from SAP, Bosch and Siemens within the Deploy project.
In all instances, the multi-level algorithm dealt very well with large number of refinement levels.

6. More Related Work

As already indicated above, the tools Brama and AnimB are also capable of performing multi-level animation of
Event-B models, and have partially inspired this work. Unfortunately there is little scientific or technical documenta-
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tion available for either of these tools. A few notable differences are
- Both Brama and AnimB require the user to specify explicitly values for constants; that is, we had to “calculate” the

Cartesian products for the level constant in Fig. 1 by hand.
- ProB can be driven by a model checker to systematically search for errors, and to validate LTL formulas.
- ProB uses a constraint-solving approach to find solutions for predicates, while AnimB and Brama seem to rely

on pure enumeration. As such, ProB can evaluate much more complicated guards and predicates than AnimB or
Brama.

Another animator for Event-B is [27]; but it does not yet seem to support refinement animation. The same is true for
the animator in [28] for classical B.

Animation was already considered valuable in the tools supporting the B Method, Atelier B [29] and the B-Toolkit
[30]. Both contain support for animating formal models. However, the support is very rudimentary. It relies on the
user to supply parameter values to carry out a step of the simulation engine. If the supplied values do not satisfy the
guard, this is shown to the user but the simulation continues.

Abstract State Machines [31] have traditionally an operational conception of modelling. The tool CoreASM [32]
support animation of Abstract State Machines based on an executable core of the notation. Refinement [24] is not
supported yet. The refinement notion of Abstract State Machines is very general. Thus, it may be difficult to achieve
efficient animation without introducing restrictions on permissible refinements. We also believe that the concept of
witnesses could be a key for Abstract State Machine refinement animation, too.

Tools for VDM [33] have also provided animation features. VDMTools [34] provides animation but not of re-
finements. An early attempt on animation of VDM models has been made in [35]. However, the approach relies on
the user to compare simulation traces of abstract and concrete models. We think automation of this is indispensable,
because relying on the user for trace inspection the approach appears error-prone.

We have not considered animation of formalisms based on automata or Petri nets here because the challenges in
their animation are quite different from those we face in Event-B, a state-based formalism with forward refinement at
its core, where the model is described in terms of first-order predicate formulas.

7. Conclusion

We have presented a description of refinement in Event-B and have shown how a suitable animation and validation
algorithm can be developed. The key ingredient that makes the algorithm tractable are the witnesses of Event-B. We
have implemented the algorithm within ProB, and have shown how a variety of refinement errors can now be detected
effectively. We have applied the technique to various case studies, and have animated up to 14 levels simultaneously.
The algorithm presented in the article also achieves further performance improvements over previous work based on
trace refinement, for instance, by applying symmetry reduction to multiple levels of refinement at once. It would be
interesting to see how the new ideas apply to classical B, in particular. We leave this for future work.

We consider proof and animation complementary techniques of validation. Hence, animation does not need to
provide all capabilities that formal proof provides. For instance, for finding candidates of invariants formal proof
appears superior; for checking whether they are always satisfied, i.e., finding counter examples, animation appears
superior. Moreover, animation can be used to reason about properties that have not (yet) been formalised.

We would like to incorporate some improvements into the animator. We would like to be able to better visualise
relative deadlocks, i.e., states where all concrete events are disabled but some abstract event is enabled. For now,
animation shows in case of a relative deadlock that all concrete events are disabled and does not analyse the abstract
events further. Moreover, Event-B types and definitions would be needed that support animation better. For instance,
transitive closures are defined as sets of all transitive closures of all relations of a certain type. For animation, it would
be sufficient to compute only the closures of the relations actually appearing in a model. We would like to link the
animator closer to the other components of the Rodin tool. We would also like to indicate certain errors found in
Event-B models by ProB in associated proof obligations, for instance, so that the violated proof obligations can be
marked as “not provable.”
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Appendix A. Refinements of the Coffee Model

machine CoffeeR1 refines CoffeeM
sees CofCtxt
variables alvl coins
invariants

@ci coins ∈ N
events

event INITIALISATION
extends INITIALISATION
begin

@ai coins := 0
end

event fill mug
extends fill mug
when

@gc coins > 0
then

@delc coins := coins − 1
end

convergent event drink
extends drink

end
anticipated event insert coin

begin
@insc coins := coins + 1

end
end

context ImpCtxt
constants maxc
axioms @amc maxc ∈ N1

end

machine CoffeeR2 refines CoffeeR1
sees CofCtxt ImpCtxt
variables clvl coins
invariants

@ifl clvl ∈ 0 .. 11
@lvl alvl = level(clvl)

variant maxc − coins
events

event INITIALISATION
begin

@cci coins := 0
@fli clvl := 0

end
event fill mug refines fill mug

when
@gc2 coins > 0
@ml clvl ∈ level−1[{empty }]

with
@x x = level(clvl′)

then
@delc2 coins := coins − 1
@ffl clvl :∈ level−1[{full }]

end
convergent event drink refines drink

when
@dgfl clvl < level−1[{empty}]

with
@alvl’ alvl′ = level(clvl′)

then
@dfl clvl :∈ level−1[{empty, half} \ {level(clvl)}]

end
convergent event insert coin extends insert coin

when
@gmc coins < maxc

end
end

(a) First Refinement CoffeeR1 (b) Second Refinement CoffeeR2

Figure A.19: Refinements of Coffee Dispenser Machine


