
B 2011 June 21st, 2011, Limerick, Ireland

Finding Deadlocks of Event-B Models by
Constraint Solving

Stefan Hallerstede, Michael Leuschel

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{ halstefa, leuschel } @cs.uni-duesseldorf.de

Abstract

Establishing the absence of deadlocks is important in many applications of formal methods. The use of
model checking for finding deadlocks in formal models is limited because in many industrial applications
the state space is either infinite or much too large to be explored exhaustively. In this paper we propose
a constraint-based approach to finding deadlocks employing the ProB constraint solver to find values for
the constants and variables of formal models that describe a deadlocking state. We discuss the principles
of the technique implemented in ProB’s Prolog kernel and present some results of a larger case study to
which we have applied the approach.

1 Introduction

Constraint solving can be used to verify absence of deadlocks in Event-B [Abr10]

models where proof and model checking appear to be difficult to apply in practice.

In the industrial case study that has motivated this work, a team from Bosch at-

tempts to develop a deadlock-free formal model of a cruise control system. For this

application, constraint solving typically finds counter examples to deadlock-freedom

constraints of more than 30 A4 pages in under two seconds, while model checking

was unsuccessful. An additional benefit of the approach is that it exploits safety

properties that have been specified (having the positive side effect of encouraging

their specification) and it can be easily related to verification by formal proof. By

contrast, model checking can succeed showing absence of deadlocks even if this

cannot be verified by formal proof using all specified safety properties. Constraint

solving will only succeed if a proof can also be found: it is not based on model exe-

cution. The case study mentioned above profited from the mix of constraint solving,

model checking and proof using ProB [LB08] and Rodin [ABH+10]. For the Prolog-

inclined reader a more technical presentation of constraint-based deadlock-checking

with concrete performance measurements can be found in [HL11]. This article is

intended to provide access to the principles of constraint-based deadlock-checking

and the main results described in [HL11] from a purely methodological perspective.

Hallerstede and Leuschel

1.1 Event-B

The concept of deadlock freedom applies quite universally to state-based formal

methods such as Event-B. We briefly describe the concepts of Event-B necessary to

discuss deadlock freedom using the machine of Figure 1 as a running example. 1 The

MACHINE MinSet

CONSTANTS N

AXIOMS N ⊆ 0 .. 3 ∧N 6= ∅
VARIABLES s,min, z

INVARIANTS s ⊆ 0 .. 3 ∧min ∈ 0 .. 3 ∧ z ∈ 0 .. 4

EVENTS

INITIALISATION = s := N ∪ {3} ‖ min := 3 ‖ z := 4

acc = ANY x WHEN min ∈ s ∧ x ∈ s ∧ x < min

THEN s := s− {min} ‖ min := x END

rej = ANY x WHEN min ∈ s ∧ x ∈ s ∧ x > min THEN s := s− {x} END

get = WHEN s = ∅ THEN z := min END

END

Fig. 1. A machine for computing the minimum z of a set s

state of a machine is described in terms of constants and variables. The possible

values of the constants are constrained by axioms A = A1 ∧ . . . ∧ Ar
2 and the

possible values of the variables by invariants I = I1 ∧ . . . ∧ Is, all expressed in

first-order predicate logic augmented with arithmetic over integers and (typed) set

theory. State changes are modelled by events. Each event consists of a collection

of parameters p1, . . . , pi, of guards g = g1 ∧ . . . ∧ gj and of actions a (usually a

collection of simultaneous update statements a1 ‖ . . . ‖ ak). 3 Guards are predicates

over the constants, variables and parameters. We use the following schema to

describe events: ANY p1, . . . , pi WHEN g THEN a END. We leave out clauses of

an event that are “empty”. For instance, an event without parameters is written

WHEN g THEN a END; and an event without parameters and guards consists just

of the actions a. An event needs to be enabled to change the state as described by

its actions. An event is enabled in a state if there are values p1, . . . , pi that make

its guard g true in that state. We denote the enabling predicate (∃p1, . . . , pi ·g) of

an event e by Ge. Being enabled an event can be executed by performing all its

actions simultaneously. A special event, called the INITIALISATION is executed

(once) first to initialise the machine. The INITIALISATION event does not have

guards or parameters.

1.2 Constraint Solving of Deadlock-Freedom Proof Obligations

A state of a machine in which none of the events (except for the INITIALISATION

event) is enabled is called a deadlock. We can search for such states by model

checking, simply looking at all the states and enabled events. Another approach is

to prove absence of deadlocks. The invariant of a machine describes a superset of

the reachable states. 4 So, if the invariant is “precise” enough it should imply that

1 In particular, we ignore concepts such as refinement, theorems or witnesses.
2 All indices in this paragraph have the range “≥ 0”.
3 The exact form of the update statements a` is not relevant for this article.
4 This in turn can be verified by model checking or proof.

2

Hallerstede and Leuschel

always one of the events is enabled. Formally this can be expressed in terms of the

proof obligation:

A ∧ I ⇒ Ge1 ∨ . . . ∨Gen (DLF)

where A are the axioms, I are invariants and Ge` (` ∈ 1 ..n) the enabling predicates

of the events e`. The proof obligation is also amenable to constraint solving.

Now we have three approaches to finding out about deadlocks: model checking,

proof and constraint solving. In practice, they do not yield the same results. Model

checking finds only those deadlocks that can actually occur during execution of

the events. Proof and constraint solving signal deadlocks depending on whether

the proof obligation holds. Figure 2 illustrates the principle difference between

constraint solving and model checking provided by ProB. If attempting to prove

it, we may “get stuck” in a proof. This may happen because the proof obligation

cannot be proved (i.e. the invariant is too weak or the enabling predicates are

too strong) or because something is wrong with the proof. These two causes are

difficult to distinguish for complicated proof obligations like the afore-mentioned 30

A4 pages. Constraint solving produces a counter example if the implication does

not hold. Hence, it helps distinguishing the two causes. Although proof applies, in

general, to a much larger class of formulas than constraint solving we found that

most models we encountered use only a restricted class of formulas where constraint

solving could be applied, too.

Model checking the Event-B machine of Figure 1 detects a deadlock for the state

N = 0 .. 3∧ s = {0} ∧min = 0∧ z = 4: if the set s contains only one element, none

of the events is enabled. We change the guard of event get to s = {min} to correct

the problem. Now model checking succeeds —there is no deadlock. However, we

cannot prove this. Why? The deadlock-freedom proof obligation is the following:

N ⊆ 0 .. 3 ∧N 6= ∅ ∧ s ⊆ 0 .. 3 ∧min ∈ 0 .. 3 ∧ z ∈ 0 .. 4

⇒ (∃x ·min ∈ s ∧ x ∈ s ∧ x < min)∨
(∃x ·min ∈ s ∧ x ∈ s ∧ x > min) ∨ s = {min}

Constraint checking of the corrected machine yields a deadlock in the state N =

{3} ∧ s = ∅ ∧ min = 0 ∧ z = 0: neither min ∈ s nor s = {min} holds in this

state. Adding min ∈ s to the invariants of the machine solves the problem. We

have discovered a fact about our model —the minimum to be computed is always

contained in the set s— and we have specified this fact as an invariant describing

the reachable states. Doing this kind of analysis exclusively by means of proof on

large proof obligations can be very difficult. Model checking and constraint solving

make it practically feasible to analyse such proof obligations.

1.3 Constraint Solving with ProB

ProB [LB08] is a validation tool for high-level specification formalisms, one of them

being Event-B. ProB provides various validation techniques, such as animation,

model checking, constraint checking, refinement checking and test-case generation.

The foundation of Event-B is set theory, (integer) arithmetic and predicate logic.

3

Hallerstede and Leuschel

Constraint Solver

Axioms

Invariants

Guard g1
Guard gn

Event e1 =
any x where

Guard h1
Guard hm

¬∃ x.(g1 ∧ ... gn) ∧ ... ∧ ¬∃z.(h1 ∧ ... hm)

Event ek =
any z where

. . .

Deadlock
Counterexample

State

INITIALISATION

Actions Actions

Actions

(a) Constraint Solving

Model Checker

Axioms

Invariants

Guard g1
Guard gn

Event e1 =
any x where

Guard h1
Guard hm

Event ek =
any z where

. . .

Trace leading to
Deadlock:

Setup_Constants
INITIALISATION

Event t1
...

Event tn

INITIALISATION

Actions Actions

Actions

(b) Model Checking

Fig. 2. Two Approaches to Deadlock Checking

As such, ProB provides constraint solving over sets and derived datatypes such as

relations and functions.

Constraint solving of ProB concerns (a) checking for invariant preservation by

all or by some specific operations, (b) validating data only available at deployment

time with respect to formal properties used during development (c) finding a state

satisfying given axioms and invariants and, finally, (d) finding a deadlock. The first

(a) is similar in functionality to Alloy [Jac02] and has already been discussed in

[LB08]. The second (b) has been successfully applied by Siemens to analyse railway

networks in production [LFFP09]. The third (c) is useful to check axioms and

invariants for contradictions. The last (d) is described in more detail in this article.

2 Principles of Constraint-Based Deadlock Checking

In this section we discuss the implementation of constraint-based deadlock checking

in ProB in general terms. We begin with the direct approach that addresses directly

proof obligation (DLF) by negating the guards (DLN) and subsequently discuss

some properties of the actual implementation.

2.1 Direct Approach

The direct approach is quite simple: construct a formula (DLN) consisting of the

conjunction of the axioms A of the model, the invariants I of the model and the

negation of the enabling predicate (¬Ge`) for every event of the model. Formally,

A ∧ I ∧ ¬Ge1 ∧ . . . ∧ ¬Gen (DLN)

If we find a solution for this formula, then we have found a potentially deadlocking

state. As discussed in Section 1.2 this state is not necessarily reachable from the

initial states. However, this state is allowed by the axioms and invariants of the

model. Any attempt at proving the deadlock-freedom proof obligation (DLF) is

guaranteed to fail. Constraint solving of (DLN) can thus be used to check whether

it makes sense to attempt proving deadlock-freedom.

4

Hallerstede and Leuschel

2.2 Implementation

The actual implementation of deadlock checking solves (DLN) incrementally to

improve efficiency and provide better feedback for failed proofs. It also implements

symbolic treatment of (infinite) identity functions and detection of infinite closures

so that certain infinite models can be checked. For a given disabled Event, ProB

can also compute the minimal set of guards that are sufficient to disable the event.

This helps the user of ProB to understand counter examples produced. Without

going into detail the following three paragraphs discuss implementation features

that ease the use of ProB. The first permits the user to direct the search for a

deadlock. The next two free the user from having to write a model geared towards

the constraint solver.

Sometimes the user is not interested in arbitrary deadlocks, but only in a certain

class of deadlocks. A variant of deadlock-checking supported by ProB permits

specifying a predicate of interest P to restrict deadlock checking to a subset of

states that may provide further insight. For example, when analysing the machine

of Figure 1 we could have taken P to be min ∈ s first, in order to see whether it is

sufficient to achieve deadlock-freedom.

Formulas may not directly fit shapes that can be treated efficiently by the con-

straint solver. For instance, the use of the existential quantifiers in enabling predi-

cates complicate the constraint-solving process. Indeed, the ProB kernel will usu-

ally wait until all quantities used inside the existential quantifier are known before

evaluating it. However, often existential quantifiers only refer to a subset of the

guards or can be completely removed. To solve this we run a simplifier on the

enabling predicates before adding them to the constraint store.

3 The Bosch Cruise Control Application

This work was mainly motivated by a case study of Bosch [LGG+10] where absence

of deadlocks is considered crucial. In the cruise control system that was studied,

a deadlock would mean that the system can be in a state for which no action was

foreseen by the engineers. The final model of the cruise control system contains

many levels of refinement and the particular machine to be verified is very big:

it contains 78 constants with 121 axioms, 62 variables with 59 invariants and has

80 events with 855 guards. Of the 140 variables and constants one has 252 =

4,503,599,627,370,496, another one has 265 = 36,893,488,147,419,103,232; and 79

variables or constants have infinitely many possible values (or so many that they

cannot be represented as a floating number). The resulting deadlock-freedom proof

obligation is very big, too: when printed it takes 34 pages of A4 using 9-point

Courier. It is very tedious for a user to try discharging the proof obligation and the

information obtained from the failed proof attempt is not very useful. Constraint-

checking can provide more helpful feedback: counterexamples to failed proofs that

can be used to improve the model accordingly. ProB can be run iteratively on

the improved model, until no further deadlock can be found. Eventually the Rodin

theorem provers can be used to discharge the corresponding proof obligation.

We found that on sub-models with about 20 events constraint checking was very

effective in helping to find a correct deadlock-free model. But on the large proof

5

Hallerstede and Leuschel

obligation mentioned above it did not help to resolve all problems. Constraint

solving computed counterexamples but eventually it became too difficult to see how

the model could be corrected. No improvement to ProB could have solved this

problem. We believe that refinement can be used to address the inherent complexity

of the model. This way deadlock-freedom could be analysed for models whose size

is increased in smaller increments: we have already seen that dealing with about

20 events at once is effectively possible. The latest version of ProB takes a few

seconds for finding deadlocks for various versions of the 80 event system. Model

checking of these largest models was not really successful in the later stages of

the development. When searching for corresponding deadlocks, the model checker

failed to find a counter example after running for almost 4 hours (with a maximum

out-degree of 20; for the latest version of the system).

4 Conclusion

We have presented an approach to deadlock checking by constraint solving and

provided some evidence of its use in a larger case study. The result of this case

study has been encouraging. We have solved big deadlock constraints of more

than 30 A4 pages of a real industrial application. The obtained deadlock counter

examples have been very useful to the involved engineers for improving the model.

Acknowledgements

We are grateful for the fruitful interactions with Rainer Gmehlich, Katrin Grau and

Felix Lösch from Bosch. Thanks to Daniel Plagge for implementing record detection

in ProB that produced a decisive performance improvement. Finally, part of this

research has been funded by the EU FP7 project 214158: DEPLOY.

References

[ABH+10] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta,
and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in Event-B. STTT,
12(6):447–466, 2010.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

[HL11] Stefan Hallerstede and Michael Leuschel. Constraint-Based Deadlock Checking of High-Level
Specifications. Theory and Practice of Logic Programming. Proceedings ICLP’2011, 2011.

[Jac02] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions on Software
Engineering and Methodology, 11:256–290, 2002.

[LB08] Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for the B method.
STTT, 10(2):185–203, 2008.

[LFFP09] Michael Leuschel, Jérôme Falampin, Fabian Fritz, and Daniel Plagge. Automated property
verification for large scale B models. In A. Cavalcanti and D. Dams, editors, Proceedings FM
2009, LNCS 5850, pages 708–723. Springer-Verlag, 2009.

[LGG+10] Felix Loesch, Rainer Gmehlich, Katrin Grau, Manuel Mazzara, and Cliff Jones. DEPLOY
Deliverable D19, D1.1 Pilot Deployment in the Automotive Sector (WP1), 2010.

6

	Introduction
	Event-B
	Constraint Solving of Deadlock-Freedom Proof Obligations
	Constraint Solving with ProB

	Principles of Constraint-Based Deadlock Checking
	Direct Approach
	Implementation

	The Bosch Cruise Control Application
	Conclusion
	References

