
Under consideration for publication in Theory and Practice of Logic Programming 1

Constraint-Based Deadlock Checking of
High-Level Specifications

Stefan Hallerstede, Michael Leuschel
Institut für Informatik, Universität Düsseldorf

Universitätsstr. 1, D-40225 Düsseldorf

{ halstefa, leuschel } @cs.uni-duesseldorf.de

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Establishing the absence of deadlocks is important in many applications of formal meth-
ods. The use of model checking for finding deadlocks in formal models is limited because
in many industrial applications the state space is either infinite or much too large to
be explored exhaustively. In this paper we propose a constraint-based approach to find-
ing deadlocks employing the ProB constraint solver to find values for the constants and
variables of formal models that describe a deadlocking state. We present the general tech-
nique, as well as various improvements that had to be performed on ProB’s Prolog kernel,
such as reification of membership and arithmetic constraints. This work was guided by
an industrial case study, where a team from Bosch was modeling a cruise control system.
Applied to this case study ProB typically finds counter examples to deadlock-freedom
constraints, a formula of about 900 partly nested conjunctions and disjunction among
them 80 arithmetic and 150 set-theoretic predicates (in total a formula of 30 pages), in
under two seconds. We also present other successful applications of this new technique,
in particular to BPEL processes. Experiments using SAT and SMT solvers on these con-
straints were thus far unsuccessful.

1 Introduction

Formal modelling of discrete event systems is an important tool in order to verify
their correct functioning. Among others we may want to verify (a) termination of
certain components, (b) avoidance of unsafe states or (c) absence of deadlocks. In
the formal models discussed in this article property (c), absence of deadlocks, is
considered the principal property. In fact, in the industrial applications that have
motivated the work described in this paper the first two properties (a) and (b) play
only a small role.

The classic approach to locating deadlocks is model-checking. Model-checking can
provide fast feedback, but is also associated with known problems: in many appli-
cations the state space is either infinite or much too large to explore exhaustively.
Furthermore, model checking is particularly problematic when the out-degree of
certain states is very large.

In this paper we describe a successful application of constraint solving to verify
absence of deadlocks. In the industrial case study that has started this work, a team
from Bosch attempts to develop a deadlock-free formal model of a cruise control

system. For this application, constraint solving typically finds counter examples
to deadlock-freedom constraints of more than 30 A4 pages in under two seconds,
while model checking was unsuccessful. It turns out that this approach —on top of
being much less sensitive to the size of the state space— has additional benefits. It
exploits safety properties that have been specified (having the positive side effect of
encouraging their specification) and it can be easily related to verification by formal
proof. Model-checking can succeed showing absence of deadlocks even if this cannot
be verified by formal proof using all specified safety properties. Constraint solving
will only succeed if also a proof can be found: it is not based on model execution. In
Event-B (Abr10), the formal method we have used in the case studies, this helped
to achieve a more comprehensive methodology of verification. In the end, it is the
mix of constraint solving, model checking and proof that advanced the case study
of Bosch using ProB (LB08) and Rodin (ABH+10).

1.1 Deadlock-Freedom in Event-B

We discuss deadlock freedom in terms of Event-B. However, the results are not
specific to Event-B. The concept of deadlock freedom applies quite universally to
state-based formal methods. In fact, the corresponding constraint solving technique
implemented in ProB can be applied immediately to models created using the B-
Method (Abr96) and the Z specification notation (Spi92).

We only present the concepts of Event-B necessary to discuss deadlock freedom.
In particular, we ignore concepts such as refinement, theorems or witnesses as they
would distract from the core contribution of the paper.

An Event-B model is called a machine. A simple machine is shown in Figure 1.
The state of a machine is described in terms of constants and variables. The pos-

MACHINE MinSet
CONSTANTS N
AXIOMS N ⊆ 0 .. 3 ∧N 6= ∅
VARIABLES s,min, z
INVARIANTS s ⊆ 0 .. 3 ∧min ∈ 0 .. 3 ∧ z ∈ 0 .. 4
EVENTS

INITIALISATION = s := N ∪ {3} ‖ min := 3 ‖ z := 4
acc = ANY x WHEN min ∈ s ∧ x ∈ s ∧ x < min

THEN s := s− {min} ‖ min := x END
rej = ANY x WHEN min ∈ s ∧ x ∈ s ∧ x > min THEN s := s− {x} END
get = WHEN s = ∅ THEN z := min END

END

Fig. 1. A machine for computing the minimum z of a set s

sible values of the constants are constrained by axioms A = A1 ∧ . . . ∧ Ar
1 and

the possible values of the variables by invariants I = I1 ∧ . . .∧ Is, all expressed in
first-order predicate logic augmented with arithmetic over integers and (typed) set

1 All indices in this paragraph have the range “≥ 0”.

2

theory. State changes are modelled by events. Each event consists of a collection
of parameters p1, . . . , pi, of guards g = g1 ∧ . . . ∧ gj and of actions a (usually a
collection of simultaneous update statements a1 ‖ . . . ‖ ak).2 Guards are predi-
cates over the constants, variables and parameters. We use the following schema to
describe events: ANY p1, . . . , pi WHEN g THEN a END. We leave out clauses of
an event that are “empty”. For instance, an event without parameters is written
WHEN g THEN a END; and an event without parameters and guards consists just
of the actions a. An event needs to be enabled to change the state as described by
its actions. An event is enabled in a state if there are values p1, . . . , pi that make
its guard g true in that state. We denote the enabling predicate (∃p1, . . . , pi ·g) of
an event e by Ge. Being enabled an event can be executed by performing all its
actions simultaneously. A special event, called the INITIALISATION is executed
(once) first to initialise the machine. The INITIALISATION event does not have
guards or parameters.

1.2 Constraint Solving of Deadlock-Freedom Proof Obligations

A state of a machine in which none of the events (except for the INITIALISATION
event) is enabled is called a deadlock. We can search for such states by model
checking, simply looking at all the states and enabled events. Another approach is
to prove absence of deadlocks. The invariant of a machine describes a superset of
the reachable states.3 So, if the invariant is “precise” enough it should imply that
always one of the events is enabled. Formally this can be expressed in terms of the
proof obligation:

A ∧ I ⇒ Ge1 ∨ . . . ∨Gen
(DLF)

where A are the axioms, I are invariants and Ge`
(` ∈ 1 ..n) the enabling predicates

of the events e`. The proof obligation is also amenable to constraint solving.
Now we have three approaches to finding out about deadlocks: model checking,

proof and constraint solving. In practice, they do not yield the same results. Model
checking finds only those deadlocks that can actually occur during execution of the
events. Proof and constraint solving signal deadlocks depending on whether the
proof obligation holds. If attempting to prove it, we may “get stuck” in a proof.
This may happen because the proof obligation cannot be proved (i.e. the invariant
is too weak or the enabling predicates are too strong) or because something is wrong
with the proof. These two causes are difficult to distinguish for complicated proof
obligations like the afore-mentioned 30 A4 pages. Constraint solving produces a
counter example if the implication does not hold. Hence, it helps distinguishing the
two causes. Although proof applies, in general, to a much larger class of formulas
(that is, proof obligations) than constraint solving we found that most models we
encountered use only a restricted class of formulas where constraint solving could
be applied, too.

2 The exact form of the update statements a` is not relevant for this article.
3 This in turn can be verified by model checking or proof.

3

Model checking the Event-B machine of Figure 1 detects a deadlock for the state
N = 0 .. 3∧ s = {0} ∧min = 0∧ z = 4: if the set s contains only one element, none
of the events is enabled. We change the guard of event get to s = {min} to correct
the problem. Now model checking succeeds – there is no deadlock. However, we
cannot prove this. Why? The deadlock-freedom proof obligation is the following:

N ⊆ 0 .. 3 ∧N 6= ∅ ∧ s ⊆ 0 .. 3 ∧min ∈ 0 .. 3 ∧ z ∈ 0 .. 4
⇒ (∃x ·min ∈ s ∧ x ∈ s ∧ x < min)∨

(∃x ·min ∈ s ∧ x ∈ s ∧ x > min) ∨ s = {min}

Constraint checking of the corrected machine yields a deadlock in the state N =
{3} ∧ s = ∅ ∧ min = 0 ∧ z = 0: neither min ∈ s nor s = {min} holds in this
state. Adding min ∈ s to the invariants of the machine solves the problem. We
have discovered a fact about our model —the minimum to be computed is always
contained in the set s— and we have specified this fact as an invariant describing
the reachable states. Doing this kind of analysis exclusively by means of proof on
large proof obligations can be very difficult. Model checking and constraint solving
make it practically feasible to analyse such proof obligations.

Due to the number of constants and variables in realistic models, model checking
also encounters a number of known problems that can be avoided using constraint
solving. For instance, there can be a practically infinite number of ways to in-
stantiate the constants of a B model. In this case, model checking will only find
deadlocks for the given constants chosen. And the number of choices is exponential
in the number of constants. Constraint checking proceeds smarter, for instance, by
propagating constant values (but remains worst-case exponential, of course).

1.3 Constraint Solving with ProB

ProB (LB08) is a validation tool for high-level specification formalisms, such as
the B-Method, Event-B, Z and CSP. ProB provides various validation techniques,
such as animation, model checking, constraint checking, refinement checking and
test-case generation. The various specification formalisms are encoded in Prolog
in the form of an interpreter, usually encoding an operational semantics of the
language. For example, CSP is embedded within ProB in the form of Roscoe’s
operational semantics (Ros99). The foundation of the B-Method, Event-B and Z
are set theory, (integer) arithmetic and predicate logic. As such, ProB provides
constraint solving over sets and derived datatypes such as relations and functions.

The basic constraint solving functionality concerns (a) checking for invariant
preservation by all or by some specific operations, (b) validating data only available
at deployment time with respect to formal properties used during development
(c) finding some state satisfying given axioms and invariants and, finally, (d) finding
a deadlock. The first (a) is similar in functionality to Alloy (Jac02) and has already
been discussed in (LB08). The second (b) has been successfully applied by Siemens
to analyse railway networks in production (LFFP09). The third (c) is useful to check
axioms and invariants for contradictions. The last (d) is described in more detail in
this article. In addition to the deadlock checking discussed in Section 1.2 a variant

4

is supported by ProB that permits specifying a predicate of interest P . Using this
we can restrict deadlock checking to a subset of states that may provide further
insight. For instance, in the example discussed above we could have taken P to be
min ∈ s first, in order to see whether it is sufficient to achieve deadlock-freedom.

2 Principles of Constraint-Based Deadlock Checking

In this section we sketch the algorithm implemented for constraint-based deadlock
checking in ProB. First we discuss the direct approach that addresses directly
proof obligation (DLF) by negating the guards (DLN). Based on a some criticism
of the direct approach we finally present the promised algorithm in Section 2.3.

2.1 Direct Approach

The direct approach is quite simple: construct a formula (DLN) consisting of the
conjunction of the axioms A of the model, the invariants I of the model and the
negation of the enabling predicate (¬Ge`

) for every event of the model. Formally,

A ∧ I ∧ ¬Ge1 ∧ . . . ∧ ¬Gen
(DLN)

If we find a solution for this formula, then we have found a deadlocking state.
As discussed in Section 1.2 this state is not necessarily reachable from the initial
states. However, this state is allowed by the axioms and invariants of the model.
Any attempt at proving the deadlock-freedom proof obligation (DLF) is guaranteed
to fail. (The model should thus be corrected, independently of whether this state
can actually be reached or not.)

Note that when the axioms of the model are inconsistent, the constraint solver will
not be able to find a valid valuation of the constants and thus (by monotonicity)
also not find a deadlocking state. Consistency of the axioms can be checked by
ProB, using the technique (c) of Section 1.3 “find some state satisfying. . . ” or
simply by starting an animation of the model.

2.2 Criticism of the Direct Approach

Applying the ProB constraint solver to the constraint (DLN) above yields a
counter-example to the deadlock-freedom proof obligation (DLF) if the constraint
(DLN) is satisfiable. However, the above approach suffers from a series of short-
comings that restrict its potential use:

Redundancy. ProB will find values for all variables and constants of the
model. However, it is quite common that some of the variables and constants are
not relevant for the guards of the events (e.g., they are only used in the action parts
or are sometimes only there for helping with the proof effort but do not affect the
behaviour of the model). For example, in the machine of Figure 1 variable z is not
relevant for the guards.
Solution. To solve this we partition the formula into connected sub-components.
We can ignore any sub-component not related to any guard.

5

Inaccuracy. Sometimes the user is not interested in arbitrary deadlocks, but
only in a certain class of deadlocks. For example, in when analysing the machine of
Figure 1 we may only be interested in looking for deadlocks in states where min ∈ s.
Solution. To address this requirement, we give the user the possibility to specify
an additional predicate P of interest. This predicate is added to the constraints
to be solved. In addition, we optionally filter out any event that can obviously
not fire given P ; for example, any event that has Counter=5 in its guard given
P = Counter=10. This obviously simplifies the constraint to be solved, and more
importantly, can sometimes result in a much better decomposition of the formula
into independent sub-components.

Inefficiency. Formulas may not directly fit shapes that can be treated effi-
ciently by the constraint solver. For instance, the use of the existential quantifiers
in enabling predicates complicate the constraint solving process. Indeed, the ProB

kernel will usually wait until all quantities used inside the existential quantifier are
known before evaluating it; see Section 3. However, often existential quantifiers only
refers to a subset of the guards or can be completely removed.
Solution. To solve this we run a simplifier on the enabling predicates before adding
them to the constraint store. For example, the predicate ∃x ·min ∈ s∧x ∈ s can be
simplified to min ∈ s∧ (∃x · x ∈ s) and further to min ∈ s∧ s 6= ∅. Comparing this
to the machine of Figure 1 one can see that simplification will often not produce
rewritings to this degree. However, in the case studies described later it was very
effective. Currently, the simplification process is straightforward, mainly addressing
common patterns that appear in guards, such as:

• ∃x.x ∈ S is simplified to S 6= ∅;
• S 6= ∅ is simplified to TRUE, in case S is guaranteed to be non-empty;
• ∃x.x > E is simplified to TRUE;
• ∃x.(x = E ∧ P) is simplified to P [E/x].

We have also experimented with good results with the simplifier of the theorem
prover Isabelle (Pau94) that has a large number simplifications that come with
its theories of set theory and arithmetics. Integration with a fully-fledged theorem
prover looks like a promising option for the future.

2.3 Improved (More Efficient) Algorithm

The discussion of Section 2.2 the following improved algorithm for deadlock check-
ing, the algorithm implemented in the current version of ProB (1.3.3):

1: input: predicate P of interest, list L of events of interest
2: AI := A ∧ I ∧ P ; (* axioms, invariants and predicate of interest *)
3: Deadlock := TRUE; (* only relevant enabling predicates are considered *)
4: for each event e in L do:
5: extract enabling predicate Ge of event e;
6: simplify Ge; (* as described above *)
7: if solve(AI ∧ Ge) 6= false then
8: (* otherwise the event is always disabled given P *)

6

9: Deadlock := Deadlock ∧ ¬(Ge)
10: fi
11: od
12: sort conjuncts nested inside Deadlock (move most-used conjuncts to the front)
13: 〈C1, . . . , Cn〉 := components(AI ∧ Deadlock); 4

14: return 〈solve(C1),. . . ,solve(Cn)〉

The algorithm improves on the direct approach presented earlier by addressing the
problems stated in Section 2.2. The problem of redundancy is addressed by the
partitioning in line 13; the problem of inaccuracy by the incorporation of the pred-
icate of interest; and the problem of inefficiency by the invocation of the simplifier
in line 6. Note that the latter two techniques are orthogonal to the algorithm and
could be applied to other constraint checking problems in the same way.

3 Core of the ProB Constraint Solver

In this section we present some key aspects of the ProB constraint solver and its
implementation in Prolog. We pay particular attention to the extensions that were
made in light of the Bosch application (Section 4.3).

3.1 Overview

The ProB kernel provides a constraint-solver for the basic datatypes of B (and
Z) and the various operations on it. As such, it supports booleans, integers, user-
defined base types, pairs, records and inductively: sets, relations, functions and se-
quences. These datatypes and operations are embedded inside B (and Z) predicates,
which can make use of the usual connectives (∧,∨,⇒,⇔,¬) and typed universal
(∀x.P ⇒ Q) and existential (∃x.P ∧Q) quantification.

An overview of the ProB kernel is shown in Figure 2. As can be seen, ProB

integrates various constraint solvers in its kernel:
• Integers are represented using Prolog integers. To implement arithmetic con-

straints, ProB uses the SICStus CLP(FD) finite-domain library (CO97).5

• Elements of basic sets are represented internally as terms of the form fd(Nr,T),
where T is the type name and Nr is the number of the element. Equality is then
implemented simply using unification. Disequality is generally implemented using
the disequality operator of CLP(FD). Thus, disequality can also sometimes deter-
ministically instantiate its arguments. E.g., given the user-defined type S={a,b},
the predicate x /= a will force the value of x to be b.

• The constraints for the more complicated types have been written in Prolog
with co-routines. Note that ProB employs various set-representations: AVL-
trees for fully known sets (to be able to deal with large sets arising in industrial
applications, cf. (LFFP09)), closures to represent certain sets symbolically and

4 Optionally: remove all components Ci not relevant for Deadlock.
5 For efficiency reasons, ProB tries to use CLP(FD) only where necessary. There is also always

a pure Prolog backup version available; see below.

7

Formula ProB Boolean
Predicate Solver

ProB
Integer
Solver

SICStus
CLP(FD)

ProB Base
Sets Solver

ProB Pairs,
Sets,

Relations,
Records
Solver

ProB
Waitflags StoreEnumeration

ProB
Kernel

Fig. 2. A view of the ProB kernel

Prolog lists for partially known sets. A feature that distinguishes ProB is that
it not only deals with simple sets, but also allows sets of sets, relations, etc.
Generally, co-routines are used to block non-deterministic computations. A non-
deterministic computation provides an estimate of the number of solutions to the
ProB waitflags store and obtains a Prolog variable on which it can block (called
a waitflag). This waitflag will be instantiated by the enumeration process, which
will unblock computations with the least number of solutions first and will also
take care of labeling the CLP(FD) variables.

• Finally, the boolean predicate solver is also written in Prolog using co-routines.
We describe some aspects of its implementation in more detail below. We did
not reuse the SICStus boolean constraint solver mainly due to the treatment of
undefined predicates and in order to link the labeling with our other solvers.

3.2 Challenges in Reusing CLP(FD)

Initially ProB did not use CLP(FD): up until version 4.0.8, SICS advised against
combining co-routines and CLP(FD) in the same program. With the arrival of
SICStus 4.1, we started to integrate CLP(FD) into the ProB kernel. Still, we
encountered segmentation faults in the first versions (SICStus 4.1.1). These issues
have been fixed in 4.1.2.

In B and Z, integers are unbounded but B also provides the implementable in-
tegers, which in typical industrial applications fall in the range −232 .. 232 − 1.
Unfortunately, the CLP(FD) library by SICStus can only represent integers from
228 .. 228 − 1 in 32-bit mode. Hence, ProB always has a Prolog “backup” solution
(without interval propagation) available and tries to catch overflows when posting
CLP(FD) constraints. Still, overflows can happen outside of the control of the ker-
nel, simply by instantiating a variable. Hence, ProB can also be run completely
without CLP(FD). Another solution is using the 64-bit version of SICStus Prolog,
where we can handle integers in the range −260 .. 260 − 1.6

Some difficulties arise when the models contain unbounded mathematical inte-
gers. In the Bosch application, we have several mathematical integers (e.g., to rep-

6 This is only a solution as long as the industrial applications themselves do not require 64-bit
integers in the models.

8

resent time) and the constraint solver may be asked to solve a constraint x>y and
y>=x. This situation actually arises very frequently in constraint-based deadlock
checking, when events have common guards or complementary guards. Unfortu-
nately, CLP(FD) does not deal very well with such constraints. First, it does not
detect an inconsistency after posting X#>Y,Y#>=X. Second, if we later add another
constraint, such as Y#>200 we get an integer overflow error.7 Our solution is to add
a time-out when posting individual constraints, and revert to the Prolog backup if
a time-out occurs. Furthermore, we have extended our boolean constraint solver to
detect identical atomic predicates. Basically, every atomic predicate is normalised
and then checked if it occurs at another place in the same formula: if it does, the
predicate is evaluated only once. As a special case, it detects the inconsistency
above.

Finally, CLP(FD) does not deal with undefinedness (FS09) the same way that B
does : X in 1..10, X/0#=10 simply fails, while in B this is an erroneous formula.
ProB tries to catch those errors. This is reflected inside the boolean constraint
solver and the fact that we do not use CLP(FD) for division and modulo.

3.3 The ProB Boolean Constraint Solver

The boolean constraint solver uses reifications of the basic atomic predicates to com-
municate with the other solvers of Figure 2. More precisely, given a basic atomic
predicate P , we associate with it a Prolog variable RP . If another solver can deter-
mine that P must be true, then it sets RP to pred true. If it can determine that P

must be false, then it sets RP to pred false. Similarly, if RP is set to pred true

(resp. pred false) by the boolean constraint solver, the other solver should add P

(resp. ¬P) to its constraint store.
The boolean constraint solver also uses reification internally to treat more com-

plex subformulas. Figure 3 shows, e.g., how the equivalence connective is imple-
mented inside the b check boolean expression2 predicate. The variable LR is the
reification of the left-hand side predicate LHS. Similarly, RR is the reification of the
right-hand side predicate RHS. Finally, Res is the reification of the equivalence LHS

<=> RHS. The equiv procedure will ensure consistency of the three reification states
and ensure propagation of information: it blocks until at least one of the reifica-
tion variables is instantiated and then propagates the information, possibly using
the auxiliary negate procedure. For example, if Res and LR are known to be false
(pred false), then LL will be forced to pred true. This will trigger further infor-
mation propagation inside the call b check boolean expression for LHS. E.g., if
LHS is x=2 then the Prolog variable representing the B identifier x would be forced
to 2 (actually int(2)).

The code for the other connectives in b check boolean expression2 is a bit
more complicated, due to the treatment of undefinedness.

ProB does not yet provide reifications for all atomic predicates. E.g., the subset

7 Using the hardware configuration of Section 4 this happens after about 40 seconds.

9

b_check_boolean_expression2(equivalence(LHS,RHS),_,LState,State,WF,Res,Ai,Ao) :- !,
equiv(LR,RR,Res),
b_check_boolean_expression(LHS,LState,State,WF,LR,Ai,Aii),
b_check_boolean_expression(RHS,LState,State,WF,RR,Aii,Ao).

:- block equiv(-,-,-).
equiv(X,Y,Res) :-

(X==pred_false -> negate(Y,Res)
; X==pred_true -> Res=Y
; Y==pred_true -> Res=X
; Y==pred_false -> negate(X,Res)
; Res==pred_true -> X=Y
; Res==pred_false -> negate(X,Y)
; add_error_fail(equiv,’Illegal values: ’,equiv(X,Y,Res))

).
:- block negate(-,-).
negate(pred_true,pred_false).
negate(pred_false,pred_true).

Fig. 3. Implementation of the Equivalence Connective in ProB

relation ⊆ is not yet reified. However, all basic predicates that appear in the Bosch
application have been reified, in particular:

• E ∈ P ; there are optimized reifications available for x ∈ {C1, . . . , Cn} where
C1, . . . , Cn belong to an enumerated set or are integers,
• E1 = E2, E1 6= E2, and E1 � E2 where � is one of <, ≥, >, ≤,
• Universal and existential quantifiers with small scope, which are expanded

into conjunctions and disjunctions respectively.

Example 3.1
Figure 4 shows a small example, which is inspired by the deadlock constraint of
the Bosch case study. In step 1, we start by asserting that the top-level formula
¬(x ∈ {0, 1, 2} ∧ z 6= 0 ∧ y ∈ A) ∧ ¬(x > 2 ∧ y ∈ A) ∧ ¬(y 6∈ A) is true. We assume
that an invariant x ≥ 0 has already been asserted. In steps 2, 4, 6, we then assert
that all three sub-conjuncts must themselves be true. In Steps 3, 5, 7 we deal with
the negation. Note that at step 7, we assert that y 6∈ A is false. Due to predicate
sharing, this immediately triggers that y ∈ A must be true, thus forcing x > 2 to
be false in step 9. At step 10, reification comes into play. Here, given the invariant
x ≥ 0, the ProB solver infers that x ∈ {0, 1, 2} is true, which then forces z 6= 0 to
be false. In summary, the ProB kernel finds the solution z = 0 deterministically
without enumeration.

4 Case Studies

All experiments were run on a MacBook Pro with a 3.06 GHz Core2 Duo processor,
ProB 1.3.3 compiled with the 32-bit version of SICStus 4.1.3.8

8 The 64-bit version is faster; but the SICStus Tcl/Tk integration does not work yet on Mac OS.

10

98

7

6

5

4

3

2

1
¬(x∈{0,1,2} ∧ z≠0 ∧ y∈A) ∧ ¬(x>2 ∧ y∈A) ∧ ¬(y∉A)

¬(x∈{0,1,2} ∧ z≠0 ∧ y∈A) ¬(x>2 ∧ y∈A) ¬(y∉A)

(x∈{0,1,2} ∧ z≠0 y∈A)

x∈{0,1,2} y∈A

(x>2 ∧ y∈A)

x>2

(y∉A)

 True

 True True True

 False False False

 True False z≠0

Reification

¬

10

Fig. 4. Illustrating the ProB Boolean Constraint Solver and the importance of
Reification (given invariant x ≥ 0)

4.1 Standard Benchmarks

Figure 5 shows that the constraint-based deadlock checker (CBC) is capable of
quickly finding deadlocks for a variety of B models (mainly taken from (BL09);
more details about the models can be found in that paper). mondex m2 is the
second refinement of a model of the Mondex Electronic Purse (BY08); it con-
tains 5 constants, 10 variables and 6 events. CXCC0 is a model of the Cooperative
Crosslayer Congestion Control protocol with 6 constants, 8 axioms, 5 variables, 20
invariants and 3 events. The Siemens Mini Pilot was developed within the Deploy
Project. It is a specification of a fault-tolerant automatic train protection system,
with 15 variables, 28 invariants and 10 events. The model has an unbounded time
variable and is hence infinite state. earley 2 is the third refinement of a model of
the Earley parsing algorithm as developed by Abrial. It contains 6 constants, 18
axioms, 5 variables, 7 invariants, and 4 complicated events. earley 3 is the fourth
refinement of the same model. platoon1 and platoon2 are levels formal model of a
platooning system by Mashkoor and Jacquot. The second refinement contains 11
constants, 18 axioms, 4 variables, 6 invariants and 7 events. FMCH02 is the second
refinement of the formalisation of a file system with 6 constants, 8 axioms, 7 vari-
ables, 12 invariants, and 9 events. We examine the system with carrier set sizes 1
and 2. scheduler is an Event-B translation of the scheduler from (LPU02), which
we analyse for a varying number of processes. Volvo is the (B-Method) model of a
cruise control system described in (LB08), containing 15 variables and 26 events.

4.2 Evolution: A BPEL Development

We go into more detail of one case study, a business process for a purchase order,
and examine how the feedback of the constraint-based deadlock checker has been
used to improve the model and how the performance evolves as the model evolves.

The Event-B model is obtained via an automatic translation from BPEL (ASA09).
Initially the model was believed to be free of deadlocks. However, ProB managed
to find a deadlock and it took 5 iterations to finally obtain a deadlock free version
of the business process. The last model has 15 events with 59 guards. Note that the

11

Model CBC (s) Result MC (s) Result
CXCC0 0.00 deadlock 0.01 deadlock
earley 2 0.01 deadlock 403.68 no deadlock found *
earley 3 0.01 deadlock 0.14 deadlock
Eco Mch 4 0.02 deadlock 580.28 no deadlock found**
FMCH02 (1) 0.00 deadlock 0.01 deadlock
FMCH02 (2) 0.53 no deadlock 0.13 no deadlock
mondex m2 0.00 deadlock 0.01 deadlock
platoon1 0.01 deadlock 0.00 deadlock
platoon2 0.06 deadlock 0.03 deadlock
scheduler (2) 0.00 no deadlock 0.00 no deadlock
scheduler (5) 0.00 no deadlock 0.49 no deadlock
scheduler (9) 0.00 no deadlock 107.18 no deadlock***
Siemens 0.00 no deadlock 211.28 no deadlock**
Volvo 0.20 no deadlock 5.16 no deadlock

*: no deadlock found after visiting 10,000 states.

**: no deadlock found after visiting 100,000 states; the system is infinite state.

***: with hash symmetry it only takes 0.120 s to model check the system.

Fig. 5. Constraint-Based Deadlock Checking (CBC) vs Model Checking (MC)

model has also driven the development of the constraint-solver; initially ProB was
unable to quickly find a deadlock for the fifth version of the model. This helped
uncover an inefficiency in ProB’s constraint solver. After solving it, ProB now
finds the deadlock almost instantaneously for the first five models (see Figure 6).
Finally, for the sixth model, ProB confirms that no counter example exists for
default deferred set sizes 1,2,3.

One can see in Figure 6 that the constraint checking time increases as the model
evolves: as the model is improved, deadlocks get harder and harder to find. (It
is interesting that deadlock freedom of the fifth model was proved; however, it
turned out that the wrong proof obligation was generated.) One can also see that
in the first four models, the model checker manages to find deadlocks also very
quickly. However, starting with the fifth version, the model checker is no longer able
to provide interesting feedback. The out-degree for the initialisation and constant
setup is just too big.

4.3 The Bosch Cruise Control Application

The main motivation for this work was the deadlock checking for a cruise control
system modelled by Bosch within the Deploy project. Indeed, proving absence of
deadlocks is crucial in this case study (LGG+10), as it means that the engineers
have thought of every possible scenario. In other words, a deadlock means that the
system can be in a state for which no action was foreseen by the engineers.

The model contains many levels of refinement and the particular machine of
interest (CrCtrl Comb2Final) is very big: it contains 78 constants with 121 axioms,
62 variables with 59 invariants and has 80 events with 855 guards (39 of them are
disjunctions, containing 17 more conjuncts nested inside). Of the 140 variables and
constants, 4 have 213 = 8,192 possible values, 11 have 232 possible values, one has

12

Version CBC (s) Result MC (s) Result
BPEL v1 0.05 deadlock - no INITIALISATION
BPEL v2 0.05 deadlock 0.09 deadlock
BPEL v3 0.04 deadlock 0.09 deadlock
BPEL v4 0.03 deadlock 0.09 deadlock
BPEL v5 0.13 deadlock 5.62 no error found*(10)

140.82 no error found*(100)
1423.56 no error found*(1000)

BPEL v6 0.37 no deadlock 5.61 no error found*(10)
140.89 no error found*(100)

*(X): not all transitions computed; maximum out-degree X

Fig. 6. Comparing Constraint-Based Deadlock Checking (CBC) and Model Checking
(MC) on Multiple Versions of the same System

252 = 4,503,599,627,370,496, another one has 265 = 36,893,488,147,419,103,232 and
79 variables or constants have infinitely many possible values (or so many that they
cannot be represented as a floating number). The resulting deadlock-freedom proof
obligation is very big: when printed it takes 34 pages of A4 using 9-point Courier.
Initially, the Rodin toolset also had trouble loading this proof obligation resulting
in a ”Java Heap Space Error”. However, even after successfully loading the proof
obligation into the Rodin proving environment, it is very tedious for a user to try
discharging the proof obligation and the information obtained from the failed proof
attempt is not very useful.

Here ProB’s constraint-checking feedback has been very valuable: it provides the
Bosch engineers with a concrete scenario which has not yet been anticipated and
allows them to modify the model accordingly. ProB can then be run again on the
modified model, until no more deadlock can be found. One can then switch to the
Rodin provers to discharge the proof obligation. (For a smaller version of the model
this was actually very successful: the newPP prover was then able to automatically
discharge the proof obligation).

The latest version of ProB takes from 1.07 to 2.32 seconds for finding dead-
locks for various versions of the Bosch model for a particular predicate of interest
(Counter=10). Indeed, the model is conjoined with a simple controller (which is
not encoded in Event-B), meaning that not all sequences of operations are actually
feasible. In this application, the engineers were only interested in deadlocks that
could appear when the Counter variable was set to 10.

Also note that loading and type checking the model takes a considerable amount
of time. For example, the Prolog representation of the abstract syntax tree takes
about 7.5 MB on disk. The total time for finding a deadlock, including loading, type-
checking, building the constraint and constraint solving, hence takes from 9.98 to
11.92 seconds.

Note that model checking of these models was not really successful. E.g., for the
latest version of the model the model checker requires 50.41 seconds in total to find
a deadlock. Unfortunately, this is not a deadlock that is of interest to the Bosch
engineers (we have Counter=1 for the deadlock state). When searching specifically

13

for deadlocks with Counter=10, the model checker failed to find a counter example
after running for almost 4 hours (with a maximum out-degree of 20).

In summary, the result of this case study has been very encouraging. We have
managed to solve big deadlock constraints, spanning 34 pages of A4, of a real in-
dustrial application. The obtained deadlock counter examples have been extremely
useful to the engineers, helping them to improve the model.

5 Related Work and Conclusion

As far as constraint solving for sets is concerned we would like to mention setlog
(DPPR00), which is unfortunately no longer maintained. Setlog has certain restric-
tions (e.g., interval bounds must be known values, x ∈ y..6 is not accepted) and
does not seem to cater for reification, which we used for effective integration into
a boolean constraint solver. We conducted one comparison, solving the N-Queens
problem for n = 14: setlog 4.6.14 took about 40 seconds to find the first solution,
compared with 0.03 seconds for ProB. Another tool of interest is BZ-TT (ABC+02)
(building on CLPS-B (BLP02)). This tool can also be used for constraint solving,
and has been used for test-case generation, but its support for B is much more
limited than that of ProB (e.g., it does not support set comprehensions or lambda
abstractions nor refinement). In particular, we were unable to load and solve the
BPEL deadlock constraints (Sect. 4.2) with BZ-TT.9 Two more animation tools
for B are AnimB and Brama. As we have shown in (LFFP09), none of them are
capable of dealing with more sophisticated constraints. The same is true of the
TLC model checker (YML99) for TLA+. Alloy (Jac02) on the other hand can be
used for constraint solving and has been used in at least one instance for deadlock
checking (DSSsF06).

Our deadlock constraint (DLN) is often already very close to being in conjunctive
normal form (CNF). As such, one may wonder whether SAT or SMT technology
could have been employed for our application.

SAT In (HK10) Howe and King present a Prolog SAT solver which uses co-
routines to implement unit propagation efficiently and elegantly. The ProB boolean
constraint solver also achieves unit-propagation, but is not optimized for CNF. In
particular, ProB creates a variable for every subformula and attaches co-routines
to it, whereas (HK10) uses a clever scheme tailored for CNF to wait only on two
variables per clause. Still, ProB can solve some non-trivial SAT problems when en-
coded in B. E.g., for the most complicated SATLIB example in (HK10) (flat200-90
with 600 Boolean variables and 2237 Clauses) ProB takes 3.27 seconds to find the
first solution (successive solutions are then found very quickly). The Prolog SAT
solver from (HK10) takes only 0.13 seconds to solve this example and minisat is
even faster (about 0.01 seconds). Still, ProB is working directly on a high-level for-
malism: for the usual applications of ProB, the number of clauses is much smaller
than for SAT encodings.10 ProB also has to deal with issues such as potentially

9 Nor did we manage to solve an N-Queens puzzle.
10 As we have seen in Section 4.3, ProB is capabable of dealing with 30 page high-level formulas.

14

undefined expressions, which leads to performance penalties and makes a CNF en-
coding less appealing. Granted, better encodings are available to solve pure SAT
problems, but in the setting of B and Z it is unclear whether an approach such as
(HK10) would pay off.

SMT Compared to SMT solving our constraint-solving approach uses static or-
dering and is capable of theory propagation via reification (see Example 3.1), but
is lacking one important feature: clause learning. However, to apply SMT solvers to
our deadlock formulas we need support for set theory, relations and functions. Such
support is not yet openly available. The company Systerel is currently developing a
translator from B to SMTLIB based on (Déh10). We have used a beta version of the
translator on the BPEL examples from Sect 4.2. Unfortunately, we were not able
to use the VeriT SMT solver due to a bug in the translator, related to existential
quantification. We were able to run CVC3-2.2 on the deadlock constraint of v4:
it ran for 30 seconds without displaying a result, after which the Rodin time-out
aborted the process. Note that ProB takes 0.03 seconds to find a counter example.
So far we have also not been able to use Kodkod (TJ07) (a high-level interface
to SAT used by Alloy) to solve the deadlock constraints for this example. By and
large, currently we have not been able to apply SAT or SMT technology to solve
the deadlock constraints in our applications. Nonetheless, we are still investigating
this research avenue further and are developing a translator from B to Kodkod.

In conclusion, we have presented a way to validate deadlock freedom of B and
Event-B models using a constraint-solving approach. We have shown an algorithm
for constraint-based deadlock checking and have highlighted the potential of com-
bining constraint-solving with theorem proving. We have compared the approach
with model checking. The implementation of the ProB constraint solver has been
presented and its performance has been evaluated on a series of benchmarks and
one industrial application. Summing up, the ProB constraint solver written in
Prolog manages to solve very large deadlock constraints in practical examples. The
feedback obtained by our new technique has been very useful to engineers. Thus
far, we have been unable to apply SAT, SMT or model checking technology on the
industrial application.

Acknowledgements

We are grateful for the fruitful interactions with Rainer Gmehlich, Katrin Grau
and Felix Lösch from Bosch. Thanks to David Deharbe, Yoann Guyot and Laurent
Voisin for giving us access to the B to SMT plugin. We thank Yamine Aı̈t Ameur
and Idir Aı̈t-Sadoune for the BPEL case study and the prolific interactions. Thanks
to Daniel Plagge for implementing the record detection. Finally, part of this research
has been funded by the EU FP7 project 214158: DEPLOY.

References

F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, M. Utting,
and N. Vacelet. BZ-testing-tools: A tool-set for test generation from Z and B using

15

constraint logic programming. In Proceedings of FATES’02, pages 105–120, August
2002. Technical Report, INRIA.

Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in
event-B. STTT, 12(6):447–466, 2010.

Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. CUP, 1996.

Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, 2010.

Idir Aı̈t-Sadoune and Yamine Aı̈t Ameur. A proof based approach for modelling and
verifyingweb services compositions. In ICECCS, pages 1–10. IEEE Computer Society,
2009.

Jens Bendisposto and Michael Leuschel. Proof assisted model checking for B. In Karin
Breitman and Ana Cavalcanti, editors, Proceedings ICFEM’09, LNCS 5885, pages 504–
520. Springer-Verlag, 2009.

F. Bouquet, B. Legeard, and F. Peureux. CLPS-B - a constraint solver for B. In J.-P.
Katoen and P. Stevens, editors, Tools and Algorithms for the Construction and Analysis
of Systems, LNCS 2280, pages 188–204. Springer-Verlag, 2002.

M Butler and D Yadav. An incremental development of the Mondex system in Event-B.
Formal Aspects of Computing, 20(1):61–77, 2008.

M. Carlsson and G. Ottosson. An open-ended finite domain constraint solver. In
Hugh Glaser Glaser, Pieter H. Hartel, and Herbert Kuchen, editors, Proc. PLILP’97,
LNCS 1292, pages 191–206. Springer-Verlag, 1997.

David Déharbe. Automatic verification for a class of proof obligations with smt-solvers.
In Proceedings ASM 2010, pages 217–230, 2010.

Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gianfranco Rossi. Sets and con-
straint logic programming. ACM Transactions on Programming Languages and Systems
(TOPLAS), 22(5):861–931, 2000.

L. K. Dillon, R. E. K. Stirewalt, B. Sarna-starosta, and S. D. Fleming. Developing an
alloy framework akin to oo frameworks. In In Proc. of the First Alloy Workshop, 2006.

Alan M. Frisch and Peter J. Stuckey. The proper treatment of undefinedness in constraint
languages. In Ian P. Gent, editor, Proceedings CP 2009, LNCS 5732, pages 367–382.
Springer, 2009.

Jacob M. Howe and Andy King. A pearl on sat solving in Prolog. In Matthias Blume,
Naoki Kobayashi, and Germán Vidal, editors, Proceedings FLOPS’10, LNCS 6009, pages
165–174. Springer, 2010.

Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology, 11:256–290, 2002.

Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185–203, 2008.

Michael Leuschel, Jérôme Falampin, Fabian Fritz, and Daniel Plagge. Automated property
verification for large scale B models. In A. Cavalcanti and D. Dams, editors, Proceedings
FM 2009, LNCS 5850, pages 708–723. Springer-Verlag, 2009.

Felix Loesch, Rainer Gmehlich, Katrin Grau, Manuel Mazzara, and Cliff Jones. DEPLOY
Deliverable D19, D1.1 Pilot Deployment in the Automotive Sector (WP1), 2010.

B. Legeard, F. Peureux, and Mark Utting. Automated boundary testing from Z and B. In
L.-H. Eriksson and P. Lindsay, editors, Proceedings FME’02, LNCS 2391, pages 21–40.
Springer-Verlag, 2002.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes
in Computer Science. Springer-Verlag, 1994.

16

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1999.

J. M. Spivey. The Z Notation: a reference manual. Prentice-Hall, 1992.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Orna Grum-
berg and Michael Huth, editors, Proceedings TACAS’07, LNCS 4424, pages 632–647.
Springer-Verlag, 2007.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifications.
In Laurence Pierre and Thomas Kropf, editors, Proceedings CHARME’99, LNCS 1703,
pages 54–66. Springer-Verlag, 1999.

Appendix A Deadlock Counter Example (For Referees)

Below is a graphical visualization of the core of the deadlock constraint for the ninth
version of the Bosch model. It only shows the constraints related to the guards of
the events and their truth values in the counter example found by ProB.

17

