
How to explain mistakes

Stefan Hallerstede and Michael Leuschel

University of Düsseldorf
Germany

{halstefa,leuschel}@cs.uni-duesseldorf.de

Abstract. Usually we teach formal methods relying for a large part on one kind
of reasoning technique about a formal model. For instance, we either use formal
proof or we use model-checking. It would appear that it is already hard enough to
learn one technique and having to cope with two puts just another burden on the
students. This is not our experience. Especially model-checking is easily used to
complement formal proof. It only relies on an intuitive operational understanding
of a formal model.
In this article we show how using model-checking, animation, and formal proof
together can be used to improve understanding of formal models. We demon-
strate how animation can help finding an explanation for a failing proof. We also
demonstrate where animation or model-checking may not help and where proving
may not help. For most part use of another tool pays off. Proof obligations present
intentionally a static view of a system so that we focus on abstract properties of a
model and not on its behaviour. By contrast model-checking provides a more dy-
namic view based on an operational interpretation. Both views are valuable aids
to reasoning about a model.

1 Introduction

In Event-B [2] formal modelling serves primarily for reasoning: reasoning is an essen-
tial part of modelling because it is the key to understanding complex models. Reason-
ing about complex models should not happen accidentally but needs systematic support
within the modelling method. This thinking lies at the heart of the Event-B method.

We use refinement to manage the many details of a complex model. Refinement
is seen as a technique to introduce detail gradually at a rate that eases understanding.
The model is completed by successive refinements until we are satisfied that the model
captures all important requirements and assumptions. In this article we concern our-
selves only with what is involved in coming up with an abstract model of some system.
Note that refinement can also be used to produce implementations of abstract models,
for instance, in terms of a sequential program [1,11]. But this is not discussed in this
article.

We present a worked out example that could be used in the beginning of a course
on Event-B to help students develop a realistic picture of the use of formal methods.
The challenge is to state an example in such a way that it is easy to follow but provides
enough opportunity to make (many) mistakes. We chose to use a sized-down variant of
the access control model of [2] which we have employed for lectures at ETH Zürich



(Switzerland) and at the University of Southampton (United Kingdom). We have not
used the description of a computer program because that is too rigid to exhibit possi-
ble misunderstandings. We have tried this using linear and binary search (together) but
these are easy to formalise. So we have worked out this example for the next winter
semester at the University of Düsseldorf. We begin by stating a problem to be solved in
terms of assumptions and requirements and show how the problem can be approached
using formal methods. The process of creating the model is shown in [6]. In this arti-
cle we focus on how to understand mistakes made during modelling and the ensuing
corrections. Whereas [6] is mostly about how proof can be used to improve a model,
in this article we focus on complementary techniques based on model-checking and
animation. These are only hinted at in [6]. In this respect this article can be regarded a
sequel to [6]. (But it can be read independently.)

Rodin [3] is an extensible tool for formal modelling in Event-B. It is designed to
support an incremental style of modelling where frequent changes are made to a model.
Rodin produces proof obligations from Event-B models that subsequently are either
proved automatically by an automatic theorem prover or manually by the user of the
tool if the automatic theorem prover fails. Rodin is implemented on top of the rich
client platform Eclipse [5]. It comes with two default screen layouts that are considered
to help making the connection between formal model, proof obligations, and proof.
The Eclipse platform supplies everything that is needed to make switching between the
two layouts easy. Figure 1 shows a simplified sketch of the two default layouts. The

Error: 'x' is not a variable

event search
when f(i) = v then

k := i
end

event inc
when f(i) < v then

p := i + 1
i := (i + 1 + q)÷ 2

end
event dec

when v < f(i) then
q := i− 1
i := (p + i− 1)÷ 2

Messages

Model Editor

☑ search/i1/INV
☑ search/i2/INV
☑ inc/i1/INV
☒ inc/i2/INV
☒ dec/i1/INV
☑ dec/i2/INV

Proof
Obligations

(a) Modelling layout

p ∈ 1..N
i < N
f(i) < v

i + 1 ∈ 1..N

Conclusion

Premises

☑ search/i1/INV
☑ search/i2/INV
☑ inc/i1/INV
☒ inc/i2/INV
☒ dec/i1/INV
☑ dec/i2/INV

Proof
Obligations

(b) Proving layout

Fig. 1: Layouts of Rodin for Modelling and Proving

modelling layout (Figure 1a) provides an area for editing models, one for showing error
messages on the bottom, and another for viewing and selecting proof obligations by
name on the right. When a proof obligation is selected, the layout is changed to the one
shown in Figure 1b. The proof obligation is shown in two areas arranged vertically, the
hypothesis on top, the goal below it. On the right hand side the proof obligation names
are displayed to permit browsing proof obligations. The tool encourages editing and
experimenting with formal models. The focus is on modelling. Technicalities of proof
obligation generation of concepts such as substitution are pushed aside. We believe,

2



this is important if the tool is to be used by students having first contact with formal
methods.

PROB [7,9] is an animator for B and Event-B built using constraint-solving tech-
nology. It incorporates optimisations such as symmetry reduction (see, e.g., [14]) and
has been successfully applied to several industrial case studies. PROB is also used at
several universities for teaching the B-Method [1,12].1 In that context, the following
features of PROB are relevant:

1. automatic animation. In particular, the tool tries to automatically find suitable val-
ues for the constants of a B-model based on constraint solving techniques,

2. consistency checking, i.e., checking whether the invariant of a B model is true in
all states reachable from the initial states (called the state space of a model),

3. visualisation of counter examples or the full statespace of a model. Several reduc-
tion techniques have been implemented to compress large statespaces for visuali-
sation [10].

4. trace refinement checking [8].

Figure 2 shows a layout for ProB animation where the user can inspect the current state
and the history of events executed, choose the next event to be executed, and follow
state changes in a graphical view of the state space.

Event1
Event2

INITIALISATIONx=2

S3

S2

S1

S4

Current
State of

the Model
Enabled
Events History

Graphical View of the State(space)

Fig. 2: Animation Layout of ProB for Event-B Models

We believe the combined use of proof, model-checking, and animation contributes
highly to a better understanding of formal models.2 They make it also easier to approach
proof obligations and proof which are particularly hard to master and relate to formal
models by novices. The figures shown are edited from the output that is provided by
ProB. We have done this to improve readability of this article. The output of ProB is
intended for viewing on a computer screen. Still, as a side effect of this exercise we
have developed some ideas for improving the output of ProB.

1 For example, Besançon, Nantes in France; Southampton and Surrey in England; McMaster
University, in Canada, Uppsala University in Sweden, and of course Düsseldorf in Germany.

2 In a companion paper we also investigate the usefulness of graphical visualisation of formal
models, which makes animation sequences even easier to comprehend.

3



Overview. In Section 2 we introduce Event-B. The following sections are devoted to
solving a concrete problem in Event-B. In Section 3 the problem is stated. An abstract
model is discussed in Section 4. In Section 5 we elaborate the model by refinement.

2 Event-B

Event-B models are described in terms of the two basic constructs: contexts and ma-
chines. Contexts contain the static part of a model whereas machines contain the dy-
namic part. Contexts may contain carrier sets, constants, axioms, where carrier sets are
similar to types [4]. In this article, we simply assume that there is some context and do
not mention it explicitly. Machines are presented in Section 2.1, and proof obligations
in Section 2.2 and Section 2.3. All proof obligations in this article are presented in the
form of sequents: “premises” ` “conclusion”.

Similarly to our course based on [2], we have reduced the Event-B formalism so
that a small subset of the notation suffices and formulas are easier to comprehend. In
particular, the relationship between formal model and proof obligations is much easier
to exhibit.

2.1 Machines

Machines provide behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v = v1, . . . , vm define
the state of a machine. They are constrained by invariants I(v).3 Theorems are predi-
cates that are implied by the invariants. Possible state changes are described by means
of events E(v). Each event is composed of a guard G(t, v) and an action x := S(t, v),
where t = t1, . . . , tr are the parameters of the event and x = x1, . . . , xp are
the variables it may change4. The guard states the necessary condition under which an
event may occur, and the action describes how the state variables evolve when the event
occurs. We denote an event E(v) by

E(v) =̂ any t when

G(t, v)
then

x := S(t, v)
end

or E(v) =̂ begin

x := S(v)
end

.

The short form on the right hand side is used if the event does not have parameters and
the guard is true. A dedicated event of the latter form is used for initialisation. The
action of an event is composed of several assignments of the form

x` := B`(t, v) ,

3 Given the invariant I over the variables v, I(t1, . . . , tm) can be seen to stand for
I[t1/v1, . . . , tm/vm]. E.g., I(v) = I . We use a similar notation for other concepts, such
as events, guards and actions.

4 Note that, as x is a list of variables, S(t, v) is a corresponding list of expressions.

4



where x` is a variable and B`(t, v) is an expression. All assignments of an action x :=
S(t, v) occur simultaneously; variables y that do not appear on the left-hand side of
an assignment of an action are not changed by the action, yielding one simultaneous
assignment

x1, . . . , xp, y1, . . . , yq := B1(t, v), . . . , Bp(t, v), y1, . . . , yq , (1)

where x1, . . . , xp, y1, . . . , yq are the variables v of the machine. The effect of an
action x := S(t, v) of event E(v) is denoted by the formula (1), whereas in the proper
model we only specify those variables x` that may change.

2.2 Machine Consistency

Invariants are supposed to hold whenever variable values change. Obviously, this does
not hold a priori for any combination of events and invariants I(v) = I1(v)∧. . .∧ Ii(v)
and, thus, needs to be proved. The corresponding proof obligations are called invariant
preservation (` ∈ 1 .. i):

I(v)
G(t, v)
`

I` (S(t, v)) ,

(2)

for every event E(v). Similar proof obligations are associated with the initialisation
event of a machine. The only difference is that neither an invariant nor a guard appears in
the premises of proof obligation (2), that is, the only premises are axioms and theorems
of the context. We say that a machine is consistent if all events preserve all invariants.

2.3 Machine Refinement

Machine refinement provides a means to introduce more details about the dynamic
properties of a model [4]. A machine N can refine at most one other machine M .
We call M the abstract machine and N a concrete machine. The state of the ab-
stract machine is related to the state of the concrete machine by a gluing invariant
J(v, w) = J1(v, w)∧ . . .∧ Jj(v, w), where v = v1, . . . , vm are the variables of the
abstract machine and w = w1, . . . , wn the variables of the concrete machine.

Each event E(v) of the abstract machine is refined by a concrete event F (w). Let
abstract event E(v) with parameters t = t1, . . . , tr and concrete event F (w) with
parameters u = u1, . . . , us be

E(v) =̂ any t when

G(t, v)
then

v := S(t, v)
end

and F (w) =̂ any u when

H(u, w)
with

t = W (u)
then

w := T (u, w)
end .

5



Informally, concrete event F (w) refines abstract event E(v) if the guard of F (w) is
stronger than the guard of E(v), and the gluing invariant J(v, w) establishes a simu-
lation of the action of F (w) by the action of E(v). The term W (u) denotes witnesses
for the abstract parameters t, specified by the equation t = W (u) in event F (w),
linking abstract parameters to concrete parameters. Witnesses describe for each event
separately more specific how the refinement is achieved. The corresponding proof obli-
gations for refinement are called guard strengthening (` ∈ 1 .. g):

I(v)
J(v, w)
H(u, w)
`

G` (W (u), v) ,

(3)

with the abstract guard G(t, v) = G1(t, v) ∧ . . . ∧ Gg(t, v), and (again) invariant
preservation (` ∈ 1 .. j):

I(v)
J(v, w)
H(u, w)
`

J` (S(W (u), v), T (u, w)) .

(4)

Aside: Observe how the witness is used to reduce the complexity of the proof obli-
gation compared to classical B, where a double negation appears in the refinement proof
obligation [1]. Indeed, in classical B we have to prove that it is possible for the abstract
model to make a corresponding step for every concrete step, or equivalently that it is
not possible for the concrete model to make a step such that the abstract model can
not imitate it and establish the gluing invariant (hence the double negation). Here, we
require simply that for all abstract parameters having corresponding concrete parame-
ters which make the witness predicate true, that the abstract event E can be triggered
and establishes the gluing invariant. In general, Event-B contains many concepts that
have been simplified compared to classical B. As such, it is inherently better suited for
teaching formal methods.

2.4 Operational Interpretation

For the purpose of linking between Event-B to animation and model-checking it is con-
venient to give an operational interpretation to Event-B models [4]. We can observe
events occurring and the resulting state changes. No two events may occur simultane-
ously. For the progress of “execution” resulting from event occurrences there are two
possibilities:

(i) Some event guards are true: one of those events must occur.
(ii) All event guards are false: “execution” stops.

Following the informal description we can build a labelled transition system which
represents our operational interpretation. We treat events as relations on a state space.
The state space of a model is defined as the Cartesian product of the types of each of

6



the model’s variables. For convenience, we assume that every possible value can also be
written as a constant expression.5 A state in the state space is thus a vector of constant
expressions describing the values for the variables.

Let E(v) be an event with guard G(t, v) and action x := S(t, v), as defined above
in Section 2.1. The events induce a labelled transition relation on states in the state
space: state s is related to state s′ by event E(v) with parameter values a, denoted by
s→M

E.a s′, when G(a, s) holds and s′ corresponds to the left-hand side of formula (1),
that is to the successor state, with t = a and v = s.

The syntactic constraints on the initialisation event in Event-B are such that the
outcome of the initialisation will be independent of the initial values of the variables.
This means the initialisation has the form

begin

v := E

end

(5)

where E is a constant expression. The expression E is used to define the initial state for
a machine.

Graphically, the state space of an Event-B model looks like in Figure 3. (In general,
we would have a set of initial states in a non-deterministic initialisation represented by
a predicate P . For convenience we therefore add a special state root , where we define
root →M

initialise s if s satisfies the initialisation predicate P . The root is shown here
because it is used in the general form of initialisation.)

root
State3

State2

Initial
State Event1

State4Event1

Event2

Event3

Event3

Event2

Event 3

Fig. 3: A simple state space with four states

5 This is true for booleans, integers, enumerated sets and combinations thereof. It is generally
not true for carrier sets; but in that case we can assume that a carrier set is instantiated by an
enumerated set just for the purpose of animation and model checking.

7



3 Problem Statement

In the following sections we develop a simple model of a secure building equipped with
access control. The problem statement is inspired by a similar problem used by Abrial
[2]. In [6] we have presented how the model could have been produced, especially, mak-
ing mistakes that could have been made and subsequent improvements to the model. In
this article we focus on how to comprehend mistakes made using different views on the
model, easing the formal character of modelling. In order to do this we rely heavily on
the ProB tool.

The model to be developed is to satisfy the following properties:

P1 : The system consists of persons and one building.
P2 : The building consists of rooms and doors.
P3 : Each person can be at most in one room.
P4 : Each person is authorised to be in certain rooms (but not others).
P5 : Each person is authorised to use certain doors (but not others).
P6 : Each person can only be in a room where the person is authorised to be.
P7 : Each person must be able to leave the building from any room where the person

is authorised to be.
P8 : Each person can pass from one room to another if there is a door connecting the

two rooms and the person has the proper authorisation.
P9 : Authorisations can be granted and revoked.

Properties P1, P2, P8, and P9 describe environment assumptions whereas properties
P3, P4, P5, P6, and P7 describe genuine requirements. It is natural to mix them in the
description of the system. Once we start modelling, the distinction becomes important.
We have to prove that our model satisfies P3, P4, P5, P6, and P7 assuming we have P1,
P2, P8, and P9.

4 Abstract Model

Our aim is to produce a faithful formal model of the system described by the properties
P1 to P9 of Section 3. We choose to proceed in two modelling steps:

(i) the abstract machine (this section) models room authorisations;
(ii) the concrete machine (Section 5) models room and door authorisations.

To create an abstract model we need an abstract way of representing persons and
rooms. Using these two concepts we can model property P4 as a relation between
persons and rooms and property P3 as a function from persons to rooms. We declare
two carrier sets for persons and rooms, Person and Room, and a constant O, where
O ∈ Room. Constant O models the outside of the building. We choose to describe the
state by two variables for authorised rooms and locations of persons, arm and loc, with
invariants

inv1 : arm ∈ Person ↔ Room Property P4
inv2 : Person × {O} ⊆ arm

inv3 : loc ∈ Person → Room Property P3

8



inv4 : loc ⊆ arm Property P6

The invariant inv2 states that a person is always allowed to be outside, and as such
partly formalises P7. These four invariants form the foundation of our abstract model.
Next we present the events that model the dynamic aspects of the model.

In this and the next section we encounter mistakes in the model similar to those
in [6]. However, we are mostly interested in motivating and explaining mistakes and
relating them to the formal model. Novices often have problems when presented with
more complicated formulas or proof obligations. A difficulty with formal methods, in
general, is that formulas get complicated rather quickly. By choosing different views at
the same mistakes we can make them more approachable. For students to get the most
out of this exercise, the same software tools that we use to demonstrate formal reasoning
should be available to them. This encourages use of the tools and by experimenting
with formal models the students can gain a deeper understanding of formal models they
create.

In our abstract model to satisfy inv2, inv3 and inv4 we let

initialisation

begin

act1 : arm := Person × {O}
act2 : loc := Person × {O}

end .

We model passage from one room to another by event pass,

pass

any p, r when

grd1 : p 7→ r ∈ arm p is authorised to be in r

grd2 : p 7→ r /∈ loc but not already in r

then

act1 : loc := loc C− {p 7→ r}
end .

Event pass partially models property P8 ignoring doors for the moment. Granting and
revoking authorisations for rooms is modelled by the two events

grant revoke

any p, r when

grd1 : p ∈ Person

grd2 : r ∈ Room

then

act1 : arm := arm ∪ {p 7→ r}
end

any p, r when

grd1 : p ∈ Person

grd2 : p 7→ r /∈ loc

then

act1 : arm := arm \ {p 7→ r}
end .

The two events do not yet model all of P9 which refers to authorisations in general,
including authorisations for doors. Events grant and revoke appear easy enough to

9



get right. However, a simple oversight can lead to a mistake. Event revoke violates
invariant inv2,

Person × {O} ⊆ arm Invariant inv2
p ∈ Person Guard grd1
p 7→ r /∈ loc Guard grd2
`

Person × {O} ⊆ arm \ {p 7→ r} Modified invariant inv2

We could find out what is wrong only by inspecting the proof obligation. This would
require carrying out some proof steps and understanding where it fails. Alternatively
we can model-check our abstract model based on the operational interpretation. In an
instance of the model with two different rooms I and O and one person P the model-
checker yields the counter example in the form of a state trace shown in Figure 4. The

Fig. 4: A state trace leading to an inconsistent state

state

arm = {P 7→ I, P 7→ O}, loc = {P 7→ I}

is reachable in three steps. Letting parameter r = O in revoke, a state violating inv2
is reached. We see that we must not remove O from the set of authorised rooms of any
person. To achieve this, we add a third guard to event revoke:

grd3 : r 6= O .

10



The counter example provides valuable information based on what the model “does”.
We can look at event revoke to see what needs to be changed, or better, feed the finding
into the proof obligation. With the new information at hand we can see clearly that the
conclusion Person × {O} ⊆ arm \ {p 7→ r} does not hold if r = O.

The model we have obtained thus far is easy to understand. Ignoring the doors in
the building, it is quite simple but already incorporates properties P3, P4, and P6. Its
simplicity permits us to judge more readily whether the model is reasonable. We can
inspect it or animate it and can expect to get a fairly complete picture of its behaviour.
We may ask: Is it possible to achieve a state where some person can move around
in the building? A simplified state-transition graph can summarise such information
comprehensively.

Figure 5 shows a slice of the model constructed by PROB for two persons and two
rooms I and O where only the ranges of loc and of arm are considered. The states have

Fig. 5: Transitions on a simpler state space, showing ran(loc) 7→ ran(arm)

been aggregated in sets according to the expression ran(loc) 7→ ran(arm). We can
see how the two persons can pass between the rooms. It is not possible to tell which
person is in which room but we can see that event pass can occur and that locations
change.

5 Concrete Model

We are satisfied with the abstract model of the secure building for now and turn to
the refinement where doors are introduced into the model. A door will be represented
as a pair consisting of two rooms. In the refined model we employ two variables adr
for authorised doors and loc for the locations of persons in the building (as before).
Variable adr is a function which indicates for every person the set of doors he is allowed
to use. The intention is to keep the information contained in the abstract variable arm
implicitly in the concrete variable adr. That is, in the refined model variable arm would
be redundant. We specify

inv5 : adr ∈ Person → (Room ↔ Room) Property P5

11



inv6 : ∀ q · ran(adr(q)) ⊆ arm[{q}] Property P4

Any problem we can have with initialisation we can have with any other event,
too; but in an initialisation they look less interesting because nothing can happen if an
initialisation is wrong. (This is not an argument for ignoring initialisation when teaching
modelling but for presenting interesting problems. And those usually do not appear in
initialisations.) However, we need to know what the initialisation is in order to analyse
other events. We reason: In the abstract model all persons can only be outside initially.
This corresponds to them not being authorised to use any doors,

initialisation

begin

act1 : adr := Person × {∅}
act2 : loc := Person × {O}

end .

5.1 Moving between rooms

Let us first look at event pass. Only a few changes are necessary to model property P8,

pass

any p, r when

grd1 : loc(p) 7→ r ∈ adr(p) person p is authorised to enter room r from current location

then

act1 : loc := loc C− {p 7→ r}
end .

We only have to show guard strengthening, because loc does not occur in inv5 and
inv6. The abstract guard grd1 is strengthened by the concrete guards because r ∈
ran(adr(p)) and by inv6, ran(adr(p)) ⊆ arm[{p}]. The second guard strengthening
proof obligation of event pass is:

loc ∈ Person → Room Invariant inv3
loc(p) 7→ r ∈ adr(p) Concrete guard grd1
`

p 7→ r /∈ loc Abstract guard grd2

Using inv3 we can rephrase the goal,

p 7→ r /∈ loc { inv3 }
⇔ loc(p) 6= r

Neither concrete guard grd1 nor the invariants inv1 to inv6 imply this. If we animate
the abstract and the concrete machine simultaneously, we find that in the concrete ma-
chine a person can pass from some room into the same room. In the abstract machine
this is not possible as can be seen in Figure 6. We could add a guard loc(p) 6= r to

12



Fig. 6: Simultaneous animation of concrete (left) and abstract (right) machine

the concrete model but this would make event pass express a person can pass through
a door if it connects two different rooms. However, the model should not contain doors
that connect rooms to themselves in the first place. The invariant is too weak. We do not
specify that doors connect different rooms. In fact, our model of the building is rather
weak. We decide to model the building by the doors that connect the rooms in it. They
are modelled by a constant Door. We make the following two assumptions about doors:

axm1 : Door ∈ Room ↔ Room Each door connects two rooms.

axm2 : Door ∩ idRoom = ∅ No door connects a room to itself.

A new invariant inv7 prevents doors connecting rooms to themselves. We realise that it
captures much better property P5 than invariant inv5,

inv7 : ∀ q · adr(q) ⊆ Door . Property P5

Using inv7 and axm2, we can prove loc(p) 7→ r ∈ adr(p) ⇒ loc(p) 6= r allowing
to discharge the guard strengthening proof obligation above.

5.2 Leaving the building

It may be necessary to pass though various rooms in order to leave the building. Hence,
we need to specify a property about the transitive relationship of the doors. Property P7
is more involved.

A relation x is called transitive if x ; x ⊆ x. In other words, any composition of
elements of x is in x. The transitive closure of a relation x is the least relation that
contains x and is transitive. We define the transitive closure x+ of a relation x by

∀x · x ⊆ x+ (6)

∀x · x+ ; x ⊆ x+ (7)

∀x, z · x ⊆ z ∧ z ; x ⊆ z ⇒ x+ ⊆ z . (8)

13



That is, x+ is the least relation z satisfying x ∪ z ; x ⊆ z.
Using the transitive closure of authorised rooms we can express that every person

can at least reach the authorised rooms from the outside,

inv8 : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} .

This invariant does not quite correspond to property P7. However, by the end of Sec-
tion 5 we will be able to prove that all invariants jointly imply property P7 which we
formalise as a theorem,

thm1 : ∀ q · (arm[{q}] \ {O})× {O} ⊆ adr(q)+ . Property P7

We proceed like this because we expect that proving inv8 to be preserved would be
much easier than doing the same with thm1. Note, that being able to leave the building
has little to do with moving between rooms but with granting and revoking authori-
sations. We do not formalise leaving the building only ability to do so. And this can
appropriately done by means of an invariant or a theorem such as the above.

5.3 Granting door authorisations

A new door authorisation can be granted to a person if (a) it has not been granted yet
and (b) authorisation for one of the connected rooms has been granted to the person.
We introduce constraint (a) to focus on the interesting case and constraint (b) to satisfy
invariant inv8. Thus,

grant

any p, s, r when

grd1 : {s 7→ r, r 7→ s} ⊆ Door \ adr(p)
grd2 : s ∈ dom(adr(p)) ∪ {O}

then

act1 : adr := adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}} 6

end

In our model a door connecting a room r to another room s is modelled by the set of
pairs {s 7→ r, r 7→ s}. Doors are modelled by their property of connecting two rooms
in both directions. Each door D is a symmetric relation, that is, D ⊆ D−1.

Unfortunately, we have introduced a deadlock. Figure 7 shows an example of a
state trace leading to a deadlock. The guard of event grant seems to be too strong. The
problem is caused by the set of doors. It satisfies Door ∩ Door−1 = ∅. We have
not specified symmetry as a property of the set Door. Hence, there may not be any
door {s 7→ r, r 7→ s} contained in that set. Symmetry of the set Door needs to be
specified, too:

axm3 : Door ⊆ Door−1 Each door can be used in both directions

6 Event-B has the shorter (and more legible) notation adr(p) := adr(p) ∪ {s 7→ r, r 7→ s}
for this. We do not use it because we can use the formula above directly in proof obligations.
We also try as much as possible to avoid introducing more notation than necessary.

14



Fig. 7: State trace leading to a deadlock

It is another assumption we have taken into account when modelling the building. It
was not the guard of event grant that was too strong, rather the assumptions about the
building were too weak.

There is yet another problem. The guard of concrete event grant is to weak to prove
preservation of invariant inv6. (We could also look for problem with the action but this
does not appear promising given all it does is to add the door {s 7→ r, r 7→ s} to
the authorisations of person p.) In fact, this cannot be spotted by animation or model-
checking. The state of the system always satisfies the invariant and cannot reach an
inconsistent state. However, the invariant does not provide enough information to prove
this. We have a look at the corresponding proof obligation. For invariant inv6 we have
to prove:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
{s 7→ r, r 7→ s} ⊆ Door \ adr(p) Concrete guard grd1
s ∈ dom(adr(p)) Concrete guard grd2
`

ran((adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}})(q))
⊆ (arm ∪ {p 7→ r})[{q}] Modified invariant inv6

for all q. For q 6= p the proof is easy. For the other case q = p we prove,

ran(adr(p) ∪ {s 7→ r, r 7→ s}) ⊆ (arm ∪ {p 7→ r})[{p}]
⇐ . . .

⇐ s ∈ ran(adr(p))

We would expect s ∈ ran(adr(p)) to hold because doors are symmetric and because by
concrete guard grd2 we have s ∈ dom(adr(p)). Although only symmetric relations
{s 7→ r, r 7→ s} are added to adr(p) it is recorded nowhere that adr(p) itself is
therefore a symmetric relation. We have to specify it explicitly,

inv9 : ∀ q · adr(q) ⊆ adr(q)−1 . (see axiom axm3)

15



We can continue the proof where we left off

s ∈ ran(adr(p)) { inv9 with “q := p” }
⇐ s ∈ dom(adr(p))

By adding invariant inv9 we have stated a property of the model that was already true. It
just was not mentioned explicitly in the model. This property could only be discovered
by proof [7].

5.4 Revoking door authorisations

We model revoking of door authorisations symmetrically to granting door authorisa-
tions. A door authorisation can be revoked if (a) there is an authorisation for the door,
(b) the corresponding person is not in the room that could be removed, (c) the room
is not the outside, and (d) all rooms except for the room to be removed must still be
reachable from the outside after revoking the authorisation for a door leading to that
room. Condition (a) is just chosen symmetrically to grd1 of refined event revoke (for
the same reason). The other two conditions (b) and (c) are already present in the ab-
straction. The refined events grant and revoke together model property P9.

revoke

any p, s, r when

grd1 : s 7→ r ∈ adr(p)
grd2 : p 7→ r /∈ loc

grd3 : r 6= O
grd4 : ran(adr(p)) \ {r} ⊆ (adr(p) \ {s 7→ r, r 7→ s})+[{O}] ∪ {O}

then

act1 : adr := adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}}
end

We succeed proving guard strengthening of the abstract guards grd1 to grd3 and preser-
vation of inv5, inv6, inv7, and inv9. But preservation of inv6 cannot be proved:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r ∈ adr(p) Concrete guard grd1
p 7→ r /∈ loc Concrete guard grd2
r 6= O Concrete guard grd3
`

ran((adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q))
⊆ (arm \ {p 7→ r})[{q}] Modified invariant inv6

for all q. For q = p we have to prove ran(adr(p) \ {s 7→ r, r 7→ s}) ⊆ arm[{p}] \
{r}, thus, r /∈ ran(adr(p) \ {s 7→ r, r 7→ s}). This does not look right. Model-
checking yields a counter example in form of a state trace; see Figure 8. (ProB permits
to search directly for a violation of invariant inv6.) We find a counter example with one

16



Fig. 8: Simultaneous state trace leading to an invariant violation

person P and three different rooms H, I, O. We can reach the state:

adr = {P 7→ {O 7→ H, H 7→ O, O 7→ I, I 7→ O, I 7→ H, H 7→ I}}
arm = {P 7→ H, P 7→ I, P 7→ O}
loc = {P 7→ O} .

Revoking a door authorisation with parameters

p = P s = I r = H

leads to a state violating invariant inv6. In order to resolve this problem we could
remove all doors connecting to r. But this seems not acceptable: we grant door autho-
risations one by one and we should revoke them one by one. We have to look at the
problem from another angle. Figure 9 shows a continuation of the simultaneous trace
of the abstract and the concrete machine. We cannot say anymore what happens in the
abstract machine because the gluing invariant inv6 is violated. But we can still see
what the concrete machine could “do” next. Concrete revoke may occur again remov-
ing a door to H. We could strengthen the guard of the concrete event requiring, say,
adr(p)[{r}] = {s}. But then we would not be able to revoke authorisations once there
are two or more doors for the same room. The problem is in the abstraction! We should
allow abstract event revoke to occur more often. It should not always remove r when
it occurs. We weaken the guard of the abstract event using a set R of at most one room

17



Fig. 9: The concrete trace continued

instead of r. If R = ∅, then {p} × R = ∅. So, for R = ∅ event revoke does not
change arm and for R = {r} the effect of the event corresponds to the first attempt at
abstract event revoke:

revoke

any p, R when

grd1 : p ∈ Person

grd2 : loc(p) /∈ R

grd3 : R ∈ S(Room \ {O})
then

act1 : arm := arm \ ({p} × R)
end ,

where for a set X by S(X) we denote all subsets of X with at most one element:

Y ∈ S(X) =̂ Y ⊆ X ∧ (∀x, y · x ∈ Y ∧ y ∈ Y ⇒ x = y) .

With this the proof obligation for invariant preservation of inv6 becomes:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r ∈ adr(p) Concrete guard grd1
p 7→ r /∈ loc Concrete guard grd2
r 6= O Concrete guard grd3
`

ran((adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q))
⊆ (arm \ ({p} × R))[{q}] Modified invariant inv6

for all q. For q = p we have to prove,

ran(adr(p) \ {s 7→ r, r 7→ s}) ⊆ arm[{p}] \ R . (9)

We need to make a connection between r and R. We need a witness for R. After some
reflection we decide for

R = {r} \ ran(adr(p) \ {s 7→ r, r 7→ s}) . (10)

18



Witness (10) explains how the concrete and the abstract event are related. If there is only
one door s connecting to room r, then R = {r} and the authorisation for room r is
revoked. Otherwise, R = ∅ and the authorisation for room r is kept. The simultaneous
trace (Figure 10) now confirms the correct behaviour and the proof succeeds too.

Fig. 10: Simultaneous trace of corrected model

6 Conclusion

We have shown how different techniques of formal reasoning can be used jointly to
understand and improve a formal model. In this article we have included formal proof,
model-checking, and animation. This intended to be an open list. Sometimes we have
used the result of model-checking or animation of a model to understand better prob-
lems that appeared in proof obligations. We have also seen cases where only model-
checking showed that there was a problem. In the fragment of Event-B defined in Sec-
tion 2 there is no mention of deadlock freedom, but the model-checker of ProB checks

19



for it based on the operational interpretation. In all cases we have used the informa-
tion gained as evidence from where to investigate and explain errors. We also saw that
not all problems are found by model-checking or animation. Neither formal proof nor
model-checking are complete in this sense.

A danger of using the operational interpretation is that students only think in terms
of it, making it difficult to convey at the same time the usefulness of abstract reasoning
by formal proof. But we think this is a very limited risk and the benefits outweigh it
by far. In particular, comparing refinements by simultaneous traces helps greatly under-
standing particular refinements. An improved implementation of simultaneous model-
checking and animation in PROB, using ideas of Brama [13], is under way.

Acknowledgement. This research was carried out as part of the EU research project
DEPLOY (Industrial deployment of system engineering methods providing high de-
pendability and productivity) http://www.deploy-project.eu/.

References

1. Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. CUP, 1996.
2. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge

University Press, 2008. To appear.
3. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An open

extensible tool environment for Event-B. In Z. Liu and J. He, editors, ICFEM 2006, volume
4260, pages 588–605. Springer, 2006.

4. Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition and Instantiation
of Discrete Models: Application to Event-B. Fundamentae Informatica, 77(1-2), 2007.

5. Eclipse platform homepage. http://www.eclipse.org/.
6. Stefan Hallerstede. How to make mistakes. In TFM B, 2009. To appear.
7. Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro Araki, Ste-

fania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages
855–874. Springer-Verlag, 2003.

8. Michael Leuschel and Michael Butler. Automatic refinement checking for B. In Kung-
Kiu Lau and Richard Banach, editors, Proceedings ICFEM’05, LNCS 3785, pages 345–359.
Springer-Verlag, 2005.

9. Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185–203, 2008.

10. Michael Leuschel and Edward Turner. Visualizing larger states spaces in ProB. In Helen
Treharne, Steve King, Martin Henson, and Steve Schneider, editors, Proceedings ZB’2005,
LNCS 3455, pages 6–23. Springer-Verlag, April 2005.

11. Carroll C. Morgan. Programming from Specifications: Second Edition. Prentice Hall, 1994.
12. Steve Schneider. The B-Method: An Introduction. Palgrave, 2002.
13. Thierry Servat. BRAMA: A new graphic animation tool for B models. In J. Julliand and

O. Kouchnarenko, editors, B 2007, volume 4355 of LNCS, pages 274–276. Springer, 2007.
14. Corinna Spermann and Michael Leuschel. ProB gets nauty: Effective symmetry reduction

for B and Z models. In Proceedings Symposium TASE 2008, pages 15–22, Nanjing, China,
June 2008. IEEE.

20


	How to explain mistakes

