
Qualitative Probabilistic Modelling in Event-B?

Stefan Hallerstede and Thai Son Hoang

ETH Zurich
Switzerland

{halstefa,htson}@inf.ethz.ch

Abstract. Event-B is a notation and method for discrete systems mod-
elling by refinement. We introduce a small but very useful construction:
qualitative probabilistic choice. It extends the expressiveness of Event-B
allowing us to prove properties of systems that could not be formalised
in Event-B before. We demonstrate this by means of a small example,
part of a larger Event-B development that could not be fully proved
before. An important feature of the introduced construction is that it
does not complicate the existing Event-B notation or method, and can
be explained without referring to the underlying more complicated prob-
abilistic theory. The necessary theory [18] itself is briefly outlined in this
article to justify the soundness of the proof obligations given. We also
give a short account of alternative constructions that we explored, and
rejected.

1 Introduction

We consider modelling of software systems and more generally of complex sys-
tems to be an important development phase. We also believe that more complex
models can only be written when the method of stepwise refinement [9] is used.
Formal notation is indispensable in such a modelling activity. It provides the
foundation on which building models can be carried out. Simply writing a for-
mal text is insufficient, though, to achieve a model of high quality. The only
serious way to analyse a model is to reason about it, proving in a mathemati-
cally rigorous way that all required properties are satisfied.

Event-B [7] is a formalism and method for discrete systems modelling. It
has been developed from the B-Method [1] using many ideas of Action Systems
[8]. The semantics of an Event-B model is characterised by proof obligations.
In fact, proof obligations have a two-fold purpose. On the one hand, they show
that a model is sound with respect to some behavioural semantics. On the other
hand, they serve to verify properties of the model. This goes so far that we
only focus on the proof obligations and do not present a behavioural semantics
at all. This approach permits us to use the same proof obligations for very
different modelling domains, e.g., reactive, distributed and concurrent systems
? This research was carried out as part of the EU research project IST

511599 RODIN (Rigorous Open Development Environment for Complex Systems)
http://rodin.cs.ncl.ac.uk.



[5], sequential programs [3], electronic circuits [11], or mixed designs [2], not
being constrained to semantics tailored to a particular domain. Event-B is a
calculus for modelling that is independent of the various models of computation.

The standard reasoning in Event-B is based on (demonic) nondeterminism
which is usually sufficient for systems modelling. However, some system be-
haviours are more appropriately modelled probabilistically. Event-B is exten-
sible, that is, it can be extended when more expressiveness is needed. In this
article, we focus on extending Event-B with means for qualitative modelling of
probability. This extension grew out of the need for “almost-certain termination”
properties used in some communication protocols, e.g. [5]. We use it to demon-
strate how Event-B can be extended and discuss what problems we encountered.
The extension has been made so that the impact on the notation is minimal, and
the resulting proof obligations are as simple as possible. We also discuss some
alternatives that may appear attractive to achieve convenient notation: they
would lead, however, to more complicated proof obligations. We consider this a
serious drawback because we think reasoning is the main purpose of modelling.

Some probabilistic models can only be expressed in terms of numerical mea-
sures, e.g., certain reliability problems [21, Chapter 4.4], or performance prob-
lems [13]. Yet, there is also a large class of problems where the exact numerical
measures are not of importance, e.g., when modelling communication protocols
[16], or human behaviour [2]. When modelling these, stating exact probabilities
would be over-specific: all we need is a termination property making use of a
strong local fairness property associated with probabilistic choice [14]. In this
article we restrict our attention to this qualitative aspect of probability.

In Event-B, simplicity and efficiency are favoured over completeness and gen-
erality [7]. Generality comes at the price of intricate reasoning and, in particular,
much reduced possibilities for automated tool support [4]. The available theory
[21] for probabilistic reasoning about models is very rich but associated with in-
tricate reasoning. So, a probabilistic Event-B will have to use a simplified theory.
Our requirements on probabilistic Event-B are threefold:

(i) it should be simple, i.e., easy to understand;
(ii) it should be useful, i.e, solve a commonly encountered class of problems;
(iii) and it should permit efficient tool support.

Simplicity of the notation is very important because an Event-B model is un-
derstood as a means of reasoning and communication: we must not have doubts
about the meaning of a model. We also require that we have good reason for
the extension: if we would not know of any problem that we could solve –only
or better– by means of the extended method, there would be little point in
extending Event-B.

Overview The paper is structured as follows. In Section 2, we give an overview of
the Event-B modelling notation, along with the proof obligations that give mean-
ings to Event-B constructs. In Section 3, we consider a probabilistic extension of
Event-B for almost-certain convergence. In particular, Section 3.1 discusses the

2



necessary additions to the notation and the proof obligations in order to accom-
modate the extension, and in Section 3.2, we consider the rejected alternatives.
An example of a communication protocol is given in Section 4 to illustrate our
approach. In Section 5, we give justifications of our proof obligations. Finally, a
summary and some conclusions are presented in Section 6.

2 The Event-B Modelling Notation

Event-B [7], unlike classical B [1], does not have a concrete syntax [12]. Still,
we present the basic notation for Event-B using some syntax. We proceed like
this to improve legibility and help the reader remember the different constructs
of Event-B. The syntax should be understood as a convention for presenting
Event-B models in textual form rather than defining a language.

Event-B models are described in terms of the two basic constructs: contexts
and machines. Contexts contain the static part of a model whereas machines
contain the dynamic part. Contexts may contain carrier sets, constants, axioms,
where carrier sets are similar to types [7]. In this article, we simply assume that
there is some context and do not mention it explicitly. Machines are presented
in Section 2.1, and machine refinement in Section 2.2.

2.1 Machines

Machines provide behavioural properties of Event-B models. Machines may con-
tain variables, invariants, theorems, events, and variants. Variables v define
the state of a machine. They are constrained by invariants I(v). Possible state
changes are described by means of events. Each event is composed of a guard
G(t, v) and an action S(t, v), where t are local variables the event may contain.
The guard states the necessary condition under which an event may occur, and
the action describes how the state variables evolve when the event occurs. An
event can be represented by the term

any t where G(t, v) then S(t, v) end . (1)

The short form

when G(v) then S(v) end (2)

is used if event e does not have local variables, and the form

begin S(v) end (3)

if in addition the guard equals true. A dedicated event of the form (3) is used
for initialisation. The action of an event is composed of several assignments of
the form

x := E(t, v) (4)
x :∈ E(t, v) (5)
x :| Q(t, v, x′) , (6)

3



where x are some variables, E(t, v) expressions, and Q(t, v, x′) a predicate. As-
signment form (4) is deterministic, the other two forms are nondeterministic.
Form (5) assigns x to an element of a set, and form (6) assigns to x a value
satisfying a predicate. The effect of each assignment can also be described by a
before-after predicate:

BA
(
x := E(t, v)

)
=̂ x′ = E(t, v) (7)

BA
(
x :∈ E(t, v)

)
=̂ x′ ∈ E(t, v) (8)

BA
(
x :| Q(t, v, x′)

)
=̂ Q(t, v, x′) . (9)

A before-after predicate describes the relationship between the state just be-
fore an assignment has occurred (represented by unprimed variable names x)
and the state just after the assignment has occurred (represented by primed
variable names x′). All assignments of an action S(t, v) occur simultaneously
which is expressed by conjoining their before-after predicates, yielding a pred-
icate A(t, v, x′). Variables y that do not appear on the left-hand side of an
assignment of an action are not changed by the action. Formally, this is achieved
by conjoining A(t, v, x′) with y′ = y, yielding the before-after predicate of the
action:

BA
(
S(t, v)

)
=̂ A(t, v, x′) ∧ y′ = y . (10)

In proof obligations we represent the before-after predicate BA
(
S(t, v)

)
of an

action S(t, v) directly by the predicate

S(t, v, v′) .

Proof obligations serve to verify certain properties of a machine. All proof
obligations in this article are presented in the form of sequents: “antecedent” `
“succedent”.

For each event of a machine, feasibility must be proved:

I(v)
G(t, v)

`
(∃v′ · S(t, v, v′)) .

(11)

By proving feasibility, we achieve that S(t, v, v′) provides an after state whenever
G(t, v) holds. This means that the guard indeed represents the enabling condition
of the event.

Invariants are supposed to hold whenever variable values change. Obviously,
this does not hold a priori for any combination of events and invariants and,
thus, needs to be proved. The corresponding proof obligation is called invariant
preservation:

I(v)
G(t, v)
S(t, v, v′)

`
I(v′) .

(12)

4



Similar proof obligations are associated with the initialisation event of a machine.
The only difference is that the invariant does not appear in the antecedent of
the proof obligations (11) and (12). For brevity, we do not treat initialisation
differently from ordinary events of a machine. The required modifications of the
concerned proof obligations are obvious.

2.2 Machine Refinement

Machine refinement provides a means to introduce more details about the dy-
namic properties of a model [7]. For more on the well-known theory of refinement,
we refer to the Action System formalism that has inspired the development of
Event-B [8]. We present some important proof obligations for machine refine-
ment. As mentioned before, the user of Event-B is not presented with a be-
havioural model but only with proof obligations. The proof obligations describe
the semantics of Event-B models.

A machine CM can refine at most one other machine AM . We call AM
the abstract machine and CM a concrete machine. The state of the abstract
machine is related to the state of the concrete machine by a glueing invariant
J(v, w), where v are the variables of the abstract machine and w the variables
of the concrete machine.

Each event ea of the abstract machine is refined by one or more concrete
events ec. Let abstract event ea and concrete event ec be:

ea =̂ any t where G(t, v) then S(t, v) end (13)
ec =̂ any u where H(u, w) then T (u, w) end . (14)

Somewhat simplified, we can say that ec refines ea if the guard of ec is stronger
than the guard of ea, and the glueing invariant J(v, w) establishes a simulation
of ec by ea:

I(v)
J(v, w)
H(u, w)
T(u, w,w′)

`
(∃t, v′ ·G(t, v) ∧ S(t, v, v′) ∧ J(v′, w′)) .

(15)

In the course of refinement, often new events ec are introduced into a model.
New events must be proved to refine the implicit abstract event skip that does
nothing. Moreover, it may be proved that new events do not collectively diverge
by proving that a variant V (w) is bounded below:

I(v)
J(v, w)
H(u, w)

`
V (w) ∈ N ,

(16)

5



and is decreased by each new event. We refer to the corresponding proof obliga-
tion as progress:

I(v)
J(v, w)
H(u, w)
T(u, w,w′)

`
V (w′) < V (w) ,

(17)

where we assume that the variant is an integer expression. It can be more elab-
orate [7] but this is not relevant here. We call events that satisfy (16) and (17)
convergent.

3 Qualitative Probabilistic Event-B

The purpose of qualitative probabilistic reasoning is to provide the concept of
almost-certain convergence [14,18]1. Similarly to [14,18] qualitative probabilistic
reasoning is introduced into Event-B by means of the qualitative probabilistic
choice2:

S ⊕ T ,

where S or T are chosen with some positive probability (see Section 5). The
probabilistic extension should not depart from the existing structure of Event-
B machines. Hence, we only consider introducing probabilistic choice in places
where we already have nondeterministic choice. In Event-B nondeterministic
choice appears in three places:

(i) choice among different events,
(ii) choice of local variables of events,
(iii) nondeterministic assignments.

In each of these, we could also use probabilistic choice. We present our favoured
solution based on (iii) in Section 3.1, and discuss the alternatives based on (i)
and (ii) in Section 3.2.

3.1 Almost Certain Convergence in Event-B

In this section, we introduce step by step the proof obligations for almost-certain
convergence in Event-B. Although we treat probability on the level of assign-
ments, we actually do not mix probabilistic assignments and nondeterministic
assignments in the same event. This saves us from having to define the meaning
of their simultaneous joint effect. Hence, we say the action of an event is either
1 The authors of [14,18] use the term “almost-certain termination”.
2 We do not use the term “abstract probabilistic choice” to avoid clashes with other

refinement terminology, e.g., “concrete abstract probabilistic choice”.

6



probabilistic or nondeterministic. Still, for better readability, we introduce some
notation for qualitative probabilistic assignments corresponding to (6):

x ⊕| Q(t, v, x′) . (18)

With respect to invariant preservation a probabilistic action behaves identi-
cally to a nondeterministic action, i.e., demonically (see Section 5). However, it
behaves angelically with respect to progress. We can rephrase the progress proof
obligation (17) as follows:

I(v)
J(v, w)
H(u, w)

`
(∀w′ ·T(u, w,w′) ⇒ V (w′) < V (w)) ,

i.e. the action must decrease the variant V (w). The corresponding proof obliga-
tion for a new event with a probabilistic action follows from the angelic inter-
pretation of the action. This means it may decrease the variant V (w):

I(v)
J(v, w)
H(u, w)

`
(∃w′ ·T(u, w,w′) ∧ V (w′) < V (w)) .

(19)

Note, that proof obligation (19) subsumes feasibility (11).
For convergence of an event, (16) and (17) are sufficient. For almost-certain

convergence of an event, on the other hand, the corresponding proof obligations
(16) and (19) are not sufficient. An upper bound U(w) is required that dominates
the variant V (w):

I(v)
J(v, w)
H(u, w)

`
V (w) ≤ U(w) ,

(20)

for all new events.
Figure 1 shows the evolution of the variant V (w) and the upper bound U(w)

in a concrete machine for a new nondeterministic event nd and a new probabilis-
tic event pr: event nd must decrease the variant V (w) whereas pr may decrease
it. However, the possible variation of V (w) by event pr is limited below by the
constant 0 –proved by means of (16)– and above by U(w). The upper bound
U(w) itself is bound below by 0 as a consequence of (16) and (20). Given that
U(w) is constant or, at least, not increasing, this is sufficient for almost-certain
convergence of nd and pr. For all new events of the concrete machine we have
to prove:

I(v)
J(v, w)
H(u, w)
T(u, w,w′)

`
U(w′) ≤ U(w) ,

(21)

7



0

U(w)

V(w)

pr prndnd

Fig. 1: Almost-certain convergence

Note, that proof obligation (21) is based on the demonic interpretation of the
actions of all new events, i.e. all new events must not increase the upper bound.
Hence, the following fact makes the difference to “certain” convergence: new
events with probabilistic actions may decrease the variant but must not increase
the upper bound.

The infimum probability associated with the probabilistic action T(u, w,w′)
must be greater than zero [18]. Using qualitative probabilistic assignment (18),
we can only achieve this by requiring finiteness of the possible choices for w′ of
the probabilistic action T(u, w,w′):

I(v)
J(v, w)
H(u, w)

`
finite({w′ | T(u, w,w′)}) .

(22)

Events with probabilistic actions that satisfy (19) to (22) are called almost-
certainly convergent. Note, that almost-certain convergence also imposes proof
obligations (20) and (21) on new nondeterministic events, and that if we have new
events with nondeterministic actions and new events with probabilistic actions,
we prove their joint almost-certain convergence.

3.2 The Rejected Alternatives

In order to see the advantages of the approach to almost-certain convergence
presented in the Section 3.1, we discuss the two alternatives: probabilistic choice
among different events or probabilistic choice of local variables of events. We
begin with the discussion with the latter.

It seems natural to introduce probabilistic choice at the level of local vari-
ables, say:

ec =̂ prob any u where H(u, w) then T (u, w) end

However, treating probabilistic choice on this level would lead to unneces-
sarily complicated proof obligations while our aim is to keep them simple. In

8



particular, probabilistic progress proof obligations would be difficult compared
to (19):

I(v)
J(v, w)

`
(∃u ·H(u, w) ∧ (∀w′ ·T(u, w,w′) ⇒ V (w′) < V (w))) .

(23)

We would have to think about two quantifiers, whereas in (19) only one existen-
tial quantification needs to be discarded.

Probabilistic choice among different events has been discussed in [20]. This
approach does only require little modification to the Event-B notation. It requires
the introduction of additional variables to group probabilistic choices, say:

ec1 =̂ prob a any u1 where H1(u1, w) then T1(u1, w) end

ec2 =̂ prob a any u2 where H2(u2, w) then T2(u2, w) end ,

denoting the abstract probabilistic choice ec1 ⊕ ec2. For probabilistic progress
we would obtain a proof obligation with two disjuncts (i = 1, 2):

(∃ui ·Hi(ui, w) ∧ (∀w′ ·Ti(ui, w, w′) ⇒ V (w′) < V (w)))

in its succedent.
More problems may appear when trying to specify more general probabilistic

choices, say, between n components where n is a positive number, e.g., in the
dining philosophers [21, Chapter 3]. We also need to determine the order in which
probabilistic choices and nondeterministic choices are resolved: there are still
nondeterministic choices among events and of local variables. Given the intricate
relationship of probabilistic and nondeterministic choice this could potentially
lead to models very difficult to comprehend. Then perhaps, the best would be to
restrict the body of the event to being entirely deterministic. It appears that we
would have to make decisions that may seem arbitrary or introduce restrictions
that make the notation more complex.

3.3 Preliminary Study of Refinement

As mentioned in the introduction, we consider refinement to be crucial in the
development of complex systems. A theory of probabilistic refinement is available
[21], but it is intricate too. Hence, to use it with Event-B, we need to simplify
it first. We do not want to complicate the reasoning associated with Event-B
refinement.

In qualitative probabilistic Event-B we have to address refinement of events
with non-deterministic actions and events with probabilistic actions. As usual,
it should be possible to refine a nondeterministic action by a probabilistic action
[19]. Concerning refinement of events with probabilistic actions, we have two
major possibilities: either we permit probabilistic choice to be refined or we do
not permit it.

The second alternative appears attractive because we could reason about
probabilistic models with minimal extra effort. We would have to learn less proof

9



obligations, and we could use standard Event-B refinement. We could ignore
probability most of the time, avoiding data-refinement of probabilistic actions,
for instance. Probabilistic proofs would only occur where they are necessary, not
complicating entire developments. To achieve this, some techniques presented
in [6] could be used to delay probabilistic proofs. Only at a very late stage
probabilistic concerns would enter the scene, at a stage where refinement of
probabilistic actions would no longer be necessary.

By contrast, if we need to refine probabilistic actions, we have to take into ac-
count the angelic interpretation for probabilistic progress (19). We are uncertain
whether refinement of probabilistic actions is needed in practice, or whether the
techniques discussed in the preceding paragraph would suffice. This remains to
be investigated. Which techniques are more appropriate only (more) experience
will show.

4 Example: Contention Resolution in the Firewire
Protocol

The Contention problem in the Firewire tree identify protocol [16,17] is one
example of a use of probability to break symmetry. The example has been treated
in classical B [14,18]. In this section, we will look at how we can achieve a similar
result in Event-B.

We use the contention problem in the Firewire protocol to demonstrate the
usefulness of qualitative probabilistic modelling in a practical problem [5]. In
our presentation, we do not deal with the full model but focus on almost-certain
convergence which allows us to prove a probabilistic termination property of the
Firewire protocol left open in [5].

In this section, we first give an overview of the Firewire protocol. Then we
give the specification of the contention problem in Event-B. We show the failure
of an attempt to use nondeterministic resolution and how to solve the problem
by the approach proposed in Section 3.1.

4.1 Overview of the Firewire Protocol

Purpose A set of devices is linked by a network of bidirectional connections.
The network is an acyclic graph with devices as nodes (Figure 2a). The protocol
provides a symmetric and distributed solution for finding a node that will be
the leader of the network in a finite amount of time. All devices run the same
algorithm to find the leader of the network. Figure 2b shows a possible state
of the network of Figure 2a after a leader has been elected. The Firewire tree
identify protocol for achieving this is described below.

Protocol Any node with only one connection can send the message “req” via
that connection requesting the neighbouring node to be leader. Also, any node
that has already received the message “req” via all its connections except one,

10



(a) Initial state of network

*

(b) State of network after leader
election (leader marked with a “*”)

Fig. 2: Abstraction of leader election protocol

can send the message “req” via that last remaining connection. Message sending
happens distributed and nondeterministically, i.e., there is no supervisory coor-
dination. Eventually, there will be one node that received the message “req” via
all its connections: that node will become the leader of the network. An example
of the initial state and possible final state is shown in Figure 2.

Contention At the final stage of the protocol, there are two nodes left that are
linked to each other and have not yet sent the message “req”. If both nodes try
to send the message “req” via that (bidirectional) connection, a livelock occurs
where it cannot be decided which node should become the leader. Each node

req

req

Fig. 3: Contention

detects the problem by receiving the message “req” from the node to which
it has just sent the same message. We identify this as the contention problem
illustrated in Figure 3.

Fortunately, there exists a probabilistic protocol to resolve the contention
within finite time; this is proved in Event-B by means of almost-certain con-
vergence in Section 4.4 below. Before it is proved, we present the protocol and
show that (demonic) nondeterminism is unsuitable to model the probabilistic
behaviour. The protocol works as follows:

Each node independently chooses with the same non-zero probability, either
to send the message after a short delay or after a long delay (the assumption
for the long delay being that it is long enough for the message to be transferred
from one node to another). Eventually, it is “almost certain” that one of them
will choose to send the message after a short delay, while the other node will
choose to send the message after a long delay. The message that was sent after

11



a short delay will then be received before the other is sent (according to the
assumption). An example for solving contention can be seen in Figure 4, where
one process has chosen to send a message after a short delay and the other after
a long delay.

req

(a) Message sent after short wait is
received, the other message not sent

*

(b) State after contention resolution
(leader marked with a “*”)

Fig. 4: Probabilistic contention resolution

4.2 Event-B Model of the Contention Problem

An Event-B model of the Firewire tree identify protocol has already been de-
veloped in [5]. We do not repeat the model but focus only on the contention
problem that is only partially modelled in [5] leaving the termination prop-
erty of the protocol unproved. In this sense, we complete the model within the
Event-B framework. We take the abstract view of the contention problem only
presenting what is essential. We define a carrier set WAIT containing the two
constants: short and long.

sets: WAIT = {short, long}

Two variables x and y represent the state of the two nodes in contention:
either sending the message after a short or long delay.

variables: x, y
invariants:

x ∈ WAIT
y ∈ WAIT

There is only one event which resolves the contention (in one shot) by as-
signing different values to x and y. This only specifies that the problem is to be
resolved but not how.

(abstract_)resolve
when

x = y
then

x, y :| x′ 6= y′

end

12



4.3 Attempting Nondeterministic Contention Resolution

We attempt to achieve contention resolution by nondeterminism. We will see
why it fails and see better what is gained by probabilistic reasoning. We refine
the abstract model, introducing two new variables, namely u and v, in the refine-
ment. They represent the intermediate states of the two nodes during contention
resolution.

variables: x, y, u, v
invariants:

u ∈ WAIT
v ∈ WAIT

A new event draw models (nondeterministically) the effect of randomly choos-
ing for both of the two nodes either sending messages after a long or a short
delay. The new event is enabled while the values of u and v are the same. It
draws new values until they are different.

Event resolve has an additional guard u 6= v (compared to the initial model
of Section 4.2) indicating that two different delay times u and v have been
successfully drawn. In this case, x and y will be assigned to u and v, respectively,
and the contention is resolved.

draw
when

u = v
then

u :∈ WAIT
v :∈ WAIT

end

(concrete_)resolve
when

u 6= v
x = y

then
x, y := u, v

end

The concrete event resolve refines the abstract event resolve because the con-
crete event contains the guard u 6= v. We obtain the following proof obligation,
see (15), that is trivially discharged:

x′ = u
y′ = v
u 6= v

`
x′ 6= y′ .

Failure of Demonic Nondeterminism We are left to prove that the new
event draw does not take control of the system forever. However, we cannot
state a variant that would satisfy proof obligation (17). The problem is that the
new event draw may behave like skip, doing nothing: the new event draw can
be always enabled: the nondeterministic choice in event draw can always set u
and v to their old values leaving draw always enabled. Using nondeterminism,
we stuck and the termination property of the protocol cannot be proved.

13



4.4 Probabilistic Contention Resolution

Probabilistic choice (18) is appropriate to model contention resolution and prove
(almost-certain) termination of the protocol, thus, fully solving the problem of
contention. Using probabilistic choice, we can model the event draw as follows:

draw
when

u = v
then

u ⊕| u′ ∈ WAIT
v ⊕| v′ ∈ WAIT

end

The meaning of the new event draw is that u and v are chosen from the set
WAIT probabilistically. The choices must be proper (see [18]), in other words,
the probability should not be 0 or 1.

Based on the probabilistic draw, we can prove that the event draw converges
almost-certainly. According to Section 3.1, we have to show (19), (20), and (21).
We take as variant the embedded predicate 〈u = v〉, where 〈P 〉 is defined to
have value 1 if P holds and 0 if P does not hold. A suitable upper bound is the
constant 1.

variant: 〈u = v〉
bound: 1

For (21) there is nothing to prove. The proof that the variant is dominated
by the bound (20) follows from the definition of the embedded predicate above:

. . .
`
〈u = v〉 ≤ 1 .

Finally, one has to prove (probabilistic) progress (19). This is where nonde-
terminism failed: we were not able to prove progress by means of (17). We have
to prove that event draw may decrease the variant 〈u = v〉:

u ∈ WAIT
v ∈ WAIT
u = v

`
∃u′, v′ · u′ ∈ WAIT ∧ v′ ∈ WAIT ∧ 〈u′ = v′〉 < 〈u = v〉 .

This is easy: we instantiate u′ to short and v′ to long, yielding for the left hand
side of the inequation

〈u′ = v′〉 = 〈long = short〉 = 0

14



by definition of the embedded predicate. Also, from u = v, we infer for the right
hand side

〈u = v〉 = 1 .

Hence, the claim follows from 0 < 1. Note, that the possible instantiations for
u′ and v′ just correspond to the solutions of the contention resolution.

5 Soundness

In this section, we give justifications for the proof obligations of Section 3.1. We
sketch the derivation of the proof obligations from the underlying theory. The
theory is based on predicate and expectation transformers [21]. The gap left to
the relational model used can be bridged by the well-known relationship between
predicate transformers and before-after predicates, see e.g. [1].

The probabilistic reasoning presented in this article is based on qualitative
probabilistic choice ⊕ (see [14, Chapter 3.2]). It is characterised by the following
demonic and angelic distribution laws:

bbS ⊕ T ccP =̂ [S]P ∧ [T ]P (24)

ddS ⊕ T eeP =̂ [S]P ∨ [T ]P . (25)

The first law, called demonic distribution, is used when proving invariant preser-
vation and the second, called angelic distribution, is used when proving almost-
certain termination. The above can be easily extended to qualitative probabilistic
choice with multiple branches

S1 ⊕ . . . ⊕ Sn .

It is interpreted similarly to qualitative probabilistic choice: it is a probabilistic
choice between substitutions S1, . . . , Sn where the probability of each branch
is “proper”. The definition of “proper” can be found in [14, Chapter 3.2]. Note,
that it is essential that the choice is between a finite number of branches. The
reason for this is to get “definite” probabilistic predicate transformers (see [18,
Definition 3]).

In Section 3.1, we introduce the notion of probabilistic choice x ⊕| P (x, x′),
which is interpreted similarly to the qualitative multiple probabilistic choice.
However, we use the choice between all possible values x′ satisfying P (x, x′).
To achieve definiteness, we require finite({x′ | P (x, x′)}). The corresponding
demonic and angelic distribution laws are:

bbx ⊕| P (x, x′)ccQ(x) =̂ (∀x′ · P (x, x′) ⇒ Q(x′)) (26)

ddx ⊕| P (x, x′)eeQ(x) =̂ (∃x′ · P (x, x′) ∧ Q(x′)) (27)

15



Almost-certain convergence We derive almost certain convergence for Event-
B using the standard model of a generalised loop [10,21] as a basis. For ease of
presentation we consider a simple Event-B machine with two new events of the
form

when G(v) then S(v) end

when H(v) then T (v) end ,

where S(v) is probabilistic and T (v) is nondeterministic (and non-probabilistic).
The loop consisting of the new events is defined by:

loop =̂ do
G(v) =⇒ S(v)

[]
H(v) =⇒ T (v)

end

We state without proof the zero-one law for probabilistic loops (Lemma 2 in
[14]) adapted to our needs:

Lemma 1. Let I(v) be the invariant of the construct. Let δ be a number strictly
greater than zero. If we have that

I(v) ⇒ bbG(v) =⇒ S(v) [] H(v) =⇒ T (v)cc I , (28)

and

δ × 〈I〉 V [loop]〈true〉 (29)

both hold, then in fact 〈I〉 ⇒ [loop]〈I〉 .

Since bb·cc distributes through [], the first condition (28) can be decomposed
as follows:

I(v) ⇒ bbG(v) =⇒ S(v) [] H(v) =⇒ T (v)cc I(v)

⇔ Distribution of bb·cc through []

I(v) ⇒ (bbG(v) =⇒ S(v)cc I(v) ∧ bbH(v) =⇒ T (v)cc I(v))

⇔ Distribution of bb·cc through =⇒

I(v) ⇒ (G(v) ⇒ bbS(v)cc I(v) ∧ H(v) ⇒ bbT (v)cc I(v))

⇔ Logic

(I(v) ∧G(v) ⇒ bbS(v)cc I(v)) ∧ (I(v) ∧H(v) ⇒ bbT (v)cc I(v))

⇔ T (v) is standard

(I(v) ∧G(v) ⇒ bbS(v)cc I(v)) ∧ (I(v) ∧H(v) ⇒ [T (v)]I(v))

16



From this calculation, we can see that the standard simulation proof obligation
(15) applies to events with nondeterministic and probabilistic actions. Proba-
bilistic actions are interpreted demonically using (26). The need for definiteness
stems from condition (29). With the precautions we have taken, the whole con-
struct loop is definite.

Probabilistic Progress For the second condition (29) in Lemma 1, we intro-
duce the notion of variant. Let V (v) and U(v) be two natural number expressions
over the state v. It can be proved that, as a consequence of Lemma 5 in [14],
condition (29) is equivalent to the following conditions (30) to (32):

I(v) ∧ (G(v) ∨H(v))
⇒

V (v) ≤ U(v) ,
(30)

I(v) ∧ V (v) = N
⇒

ddG(v) =⇒ S(v) [] H(v) =⇒ T (v)ee (V (v) < N) ,
(31)

I(v) ∧ U(v) = N
⇒

ddG(v) =⇒ S(v) [] H(v) =⇒ T (v)ee (U(v) ≤ N) ,
(32)

where N is a logical constant.
The condition (30) can be decomposed as follows:

I(v) ∧ (G(v) ∨H(v)) ⇒ V (v) ≤ U(v)
⇔ Logic

(I(v) ∧ G(v) ⇒ V (v) ≤ U(v)) ∧ (I(v) ∧ H(v) ⇒ V (v) ≤ U(v))

The two conjuncts in the last line correspond to proof obligation (20). It must be
proved that whenever a new event, nondeterministic or probabilistic, is enabled,
the variant V (v) must be dominated by the upper bound U(v).

Furthermore, using that dd·ee distributes through [], condition (31) can be
decomposed as follows:

I(v) ∧ V (v) = N
⇒

ddG(v) =⇒ S(v) [] H(v) =⇒ T (v)ee (V (v) < N)

⇔ Distribution of dd·ee through []

I(v) ∧ V (v) = N
⇒

(ddG(v) =⇒ S(v)ee (V (v) < N) ∧ ddH(v) =⇒ T (v)ee (V (v) < N))

⇔ Distribution of dd·ee through =⇒

17



I(v) ∧ V (v) = N
⇒

(G(v) ⇒ ddS(v)ee (V (v) < N) ∧ H(v) ⇒ ddT (v)ee (V (v) < N))

⇔ Logic

(I(v) ∧ V (v) = N ∧ G(v) ⇒ ddS(v)ee (V (v) < N))
∧

(I(v) ∧ V (v) = N ∧ H(v) ⇒ ddT (v)ee (V (v) < N))

⇔ T (v) is standard

(I(v) ∧ V (v) = N ∧ G(v) ⇒ ddS(v)ee (V (v) < N))
∧

(I(v) ∧ V (v) = N ∧ H(v) ⇒ [T (v)](V (v) < N))

The above reasoning yields for the event with nondeterministic action the
progress proof obligation (17). For the event with probabilistic action, the action
S(v) is interpreted angelically, yielding the probabilistic progress proof obliga-
tion (19). The derivation of proof obligation (21) from condition (32) proceeds
similarly.

6 Conclusion

The method of qualitative probabilistic reasoning in Event-B that we propose
comes at very little cost of extra proof effort. The introduced concept of almost-
certain convergence is easy to explain, and useful for common termination proofs
based on probabilistic system behaviour. The method preserves the simplicity
of Event-B proof obligations only requiring a modest extension to existing proof
obligations. Furthermore, it is not necessary to make some sort of syntactic
extension. We believe that this is an important advantage. Almost-certain con-
vergence is reduced to a problem of proof. The modelling style of Event-B is
not touched. We plan to implement the extension in the RODIN platform for
Event-B [4].

We have not introduced concrete probabilities, see e.g. [21]. We believe that
the qualitative approach already brings many benefits without the extra com-
plication of numerical probabilistic reasoning. In most cases where only conver-
gence is needed, specifying probabilities could be regarded as over-specification
(at the cost of much more difficult proofs). Having said this, we do not dispute
the usefulness of numerical probabilistic derivations. Note, that in that context
the method we have presented in this article still applies – but some additional
proof obligations would be needed [15]. We intend to work on such extensions
to Event-B when we have more experience with the associated modelling in
Event-B.

Note, that the formalisation of qualitative probabilistic choice we have chosen
reflects closely the structure of Markov decision processes [23]. Hence, it should
be possible to use some body of theory from this area with only little adaptation.

18



In particular, our approach should be open to use techniques of performance
analysis used with Markov decision processes [13].

We have briefly discussed refinement in the context of qualitative probabilis-
tic choice. It is not clear yet whether Event-B refinement should be extended
or whether the present theory is sufficient. Future extensions concerning refine-
ment of qualitative probabilistic choice should be defined to offer an alternative
to existing techniques but not replace them. We think the Event-B technique
of using anticipated events is very attractive because it allows us reason in a
standard (non-probabilistic) way as much as possible.

Acknowledgement

We want to thank Jean-Raymond Abrial and Carroll Morgan for the discussions
about this article, and suggestions for some improvements.

References

1. Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

2. Jean-Raymond Abrial. Event driven system construction, 1999.
3. Jean-Raymond Abrial. Event based sequential program development: Application

to constructing a pointer program. In Keijiro Araki, Stefania Gnesi, and Dino
Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of LNCS, pages 51–
74. Springer, 2003.

4. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An
open extensible tool environment for Event-B. In Z. Liu and J. He, editors, ICFEM
2006, volume 4260, pages 588–605. Springer, 2006.

5. Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically
proved and incremental development of IEEE 1394 tree identify protocol. Formal
Aspects of Computing, 14(3):215–227, 2003.

6. Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. Refinement and
Reachability in EventB. In Helen Treharne, Steve King, Martin Henson, and Steve
Schneider, editors, ZB 2005, volume 3455 of LNCS, pages 222–241, 2005.

7. Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition and In-
stantiation of Discrete Models: Application to Event-B. Fundamentae Informatica,
77(1-2), 2007.

8. Ralph-Johan Back. Refinement Calculus II: Parallel and Reactive Programs. In
J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, Stepwise Refinement
of Distributed Systems, volume 430 of Lecture Notes in Computer Science, pages
67–93, Mook, The Netherlands, May 1989. Springer-Verlag.

9. Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Texts in Computer Science. Springer-Verlag, 1998.

10. Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
NJ, 1976.

11. Stefan Hallerstede. Parallel hardware design in B. In Didier Bert, Jonathan P.
Bowen, Steve King, and Marina A. Waldén, editors, ZB, volume 2651 of LNCS,
pages 101–102. Springer, 2003.

19



12. Stefan Hallerstede. Justifications for the Event-B Modelling Notation. In J. Jul-
liand and O. Kouchnarenko, editors, B 2007, volume 4355 of LNCS, pages 49–63.
Springer, 2007.

13. Stefan Hallerstede and Michael J. Butler. Performance analysis of probabilistic
action systems. Formal Aspects of Computing, 16(4):313–331, 2004.

14. Thai Son Hoang. The Development of a Probabilistic B-Method and a Supporting
Toolkit. PhD thesis, School of Computer Science and Engineering — The Univer-
sity of New South Wales, July 2005.

15. Thai Son Hoang, Zhendong Jin, Ken Robinson, Annabelle McIver, and Carroll
Morgan. Probabilistic Invariants for Probabilistic Machines. In Didier Bert,
Jonathan Bowen, Steve King, and Marina Waldén, editors, ZB2003: Formal Spec-
ification and Development in Z and B, Proceedings of the 3rd International Con-
ference of B and Z Users, volume 2651 of LNCS, pages 240–259, Turku, Finland,
June 2003. Springer.

16. IEEE. IEEE Standard for a High Performance Serial Bus. Std 1394-1995, 1995.
17. IEEE. IEEE Standard for a High Performance Serial Bus (supplement). Std 1394a-

2000, 2000.
18. Annabelle McIver, Carroll Morgan, and Thai Son Hoang. Probabilistic termi-

nation in B. In Didier Bert, Jonathan Bowen, Steve King, and Marina Waldén,
editors, ZB2003, volume 2651 of LNCS, pages 216–239, Turku, Finland, June 2003.
Springer.

19. Carroll Morgan. The Generalised Substitution Language Extended to Probabilistic
Programs. In Proceedings B’98: the 2nd International B Conference, volume 1393
of LNCS, Montpelier, April 1998. Also available at [22, B98].

20. Carroll Morgan, Thai Son Hoang, and Jean-Raymond Abrial. The challenge of
probabilistic event B - extended abstract. In Helen Treharne, Steve King, Mar-
tin C. Henson, and Steve A. Schneider, editors, ZB 2005: Formal Specification and
Development in Z and B, volume 3455 of LNCS, pages 162–171. Springer, 2005.

21. Carroll Morgan and Annabelle McIver. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer, 2005.

22. PSG. Probabilistic Systems Group: Collected Reports. At http://web.comlab.
ox.ac.uk/oucl/research/areas/probs/bibliography.html.

23. Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience, 1994.

20

http://web.comlab.ox.ac.uk/oucl/research/areas/probs/bibliography.html
http://web.comlab.ox.ac.uk/oucl/research/areas/probs/bibliography.html

	Qualitative Probabilistic Modelling in Event-B

