
A (Small) Improvement of Event-B?

Stefan Hallerstede

Institut für Informatik, Universität Düsseldorf
Düsseldorf, Germany

halstefa@cs.uni-duesseldorf.de

Abstract. Event-B and the Rodin tool use a number of simple tech-
niques that make the modelling method around them effective in prac-
tical applications. We present two of these techniques, anticipation and
witnesses. It is interesting how a couple of very simple techniques are so
important for the method to work. Finally we propose a small enhance-
ment of Event-B that would extend the use of witnesses.

Keywords. Event-B, Formal Methods, Methodology, Proof

1 Introduction

We believe that the main purpose of
modelling is reasoning, finding out why
something works or why it does not.
Reasoning should be formal in order to
achieve a high degree of certainty about
the corresponding claims we make. In

Proof
ObligationsModelling Proving

Fig. 1: Formal Reasoning in Event-B
the Event-B modelling method [1] reasoning is supported by formal proof. With
each formal model we create a number of proof obligations is associated that,
once discharged, establish certain properties of the model. Reasoning is not con-
fined to carrying out a formal proof though. Whenever we fail to discharge some
proof obligations, we modify the model and try to discharge the proof obliga-
tions of the modified model, and so on (Figure 1). This method of reasoning is
supported by the Event-B formalism that has been designed to achieve a close
correspondence between models and proof obligations. Event-B is intended for
the modelling of complex systems. The large number of details of a complex
system to be considered is introduced piecemeal by formal refinement [2]. We
use refinement more as a technique to structure complex proofs, focusing less on
preserving correctness along a sequence of models.
During the evolution of Event-B [1,3,4,5,6,7,8,9,10,11] many decisions and de-
velopments have been made to make Event-B an effective practical modelling
method. Many of those are as simple as effective. In this paper we discuss two
of them, the use of anticipated events [6] and of refinement witnesses [10].



2 S. Hallerstede

In Section 2 we briefly discuss anticipation of events and in Section 3 we
discuss refinement witnesses and suggest a small improvement of Event-B: to
use witnesses also for non-deterministic assignments.1

2 Anticipation

Anticipated events are described in [6] as a technique to couple events introduced
during refinement with their variant and decouple them from variables. The
approach solves the technical problem of finding a good ordering for a chain of
refinements by relaxing the constraints on that order thus increasing the number
of good orderings. Anticipated events can be used to avoid using lexicographic
variants altogether, (m 7→ n) < (m′ 7→ n′) ⇔ m < m′ ∨ (m = m′ ∧ n < n′) .
Say, m is the variant of a machine M and n the variant of some refinement N of
M . For an anticipated event f of M we would show that it does not increase m,
that is, m < m′. Ultimately, event f has to be refined by a convergent event f
in machine N , say. In machine N we have to show that f decreases the variant n,
that is, n < n′. Following this technique we implicitly construct a lexicographic
variant (m 7→ n), similar to the one shown above.

Anticipated events have turned out to be a very useful concept for modelling
beyond the original purpose. Below are three examples of their practical use.
Counter abstraction: specification of an abstract timer. An abstract
model of timer needs only express that after an arbitrary finite amount of time
it will raise an alarm. The counter by which it could be implemented is irrelevant.

invariants
alarm ∈ BOOL
v ∈ 0 .. 1
v = 1⇒ alarm = TRUE

event INITIALISATION
alarm :∈ BOOL
v := 0

anticipated event tick
when v = 0
then alarm :∈ BOOL

event one
when alarm = TRUE
then v := 1

In some refinement the timer can be implemented by a counter or in some other
way that provides convergence.
Fewer variables: avoid introducing new variables. In Event-B new events
must refine skip. This means that usually variables manipulated in a loop can
not be variables from an abstract machine. The gcd algorithm, for instance,
computes its result in variable q:

q ←− getgcd(x, y) event getgcd
p, q := x, y; q := gcd(x, y)
do p < q → q := q − p
� q < p → p := p− q anticipated event loop2
od q :∈ N1

1 We do not present an introduction to Event-B. Introductions to Event-B can be
found in the references mentioned above.



A (Small) Improvement of Event-B? 3

In the corresponding abstract Event-B machine we model the body of the loop
by an anticipated event loop2, specifying that in some refinement loop2 is im-
plemented by a convergent event that may modify variable q.
Decomposition of a proof: partial correctness and termination. When
introducing a loop in a development of a sequential program, we have to prove
that the loop body preserves the invariant and decreases a variant. If we make
the loop body an anticipated event, we can prove invariant preservation at one
stage and termination at a later stage. This reduces the complexity at each stage
and separates concerns of invariant preservation from termination.

3 Witnesses

Originally, witnesses have been introduced in Event-B in order to decompose
proof obligations [12] but also the methodical benefits had been recognised [10].
The reasoning underlying the use of witnesses is very simple: Let v be the ab-
stract variables, I(v) the abstract invariant, w the concrete variables, J(v, w)
the gluing invariant, p the abstract event parameters, G(p, v) the abstract event
guard, S(p, v, v′) the abstract event actions before-after predicate, q be the con-
crete event parameter, H(q, w) the concrete event guard, and T (q, w, w′) the
concrete event actions before-after predicate. With

K(v, q, w, w′) =̂ I(v) ∧ J(v, w) ∧ H(q, w) ∧ T (q, w,w′)
L(p, v, w, w′) =̂ G(p, v) ∧ S(p, v, v′) ∧ J(v′, w′)

the refinement proof obligation for the refinement of the abstract by the concrete
event is thus:

K(v, q, w, w′) ⇒ ∃ p, v′ · L(p, v, w, w′) . (1)

In the introduction we discussed the close correspondence between Event-B mod-
els and proof obligations. We see that the granularity of the correspondence
could be improved greatly if (1) could be decomposed into three implications
with conclusions G(p, v), S(p, v, v′), and J(v′, w′), for instance. Because of the
existential quantification “ ∃ p, v′ ” this is not possible. In some step of the proof
of (1) we would usually instantiate the bound identifiers p and v′ by expressions
r and u′, subsequently, proving the conclusions G(r, v), S(r, v, u′), and J(u′, w′)
separately. We can do this systematically for all refinements specifying witnesses
W (p, v, v′, q, w, w′) that serve to instantiate p and v′. Of course, we have to verify
that the witnesses exist 2

K(v, q, w, w′) ⇒ ∃ p, v′ · W (p, v, v′, q, w, w′) . (2)

Applying modus ponens in the premises of (1) and observing that p and v′ do
not occur free in (1) the following (3) implies (1)

K(v, q, w, w′) ∧ W (p, v, v′, q, w, w′) ⇒ ∃ p, v′ · L(p, v, w, w′) . (3)
2 This proof obligation is usually a simple consequence of the invariant and easily
discharged.



4 S. Hallerstede

Finally, we can instantiate “ p, v′ := p, v′ ” in the conclusion so that (4) implies
(3), hence, also (1):

K(v, q, w, w′) ∧ W (p, v, v′, q, w, w′) ⇒ L(p, v, w, w′) . (4)

Implication (4) can now be decomposed and proved separately for each conjunct
G(p, v), S(p, v, v′), and J(v′, w′) in the conclusion.3 As an example of the use of
witnesses we refine the abstract timer from the preceding section where witnesses
are specified in the with clauses of the events:

invariants
time ∈ N
time = 0⇒ alarm = TRUE
time > 0⇒ alarm = FALSE

event INITIALISATION
with alarm′ = FALSE
then

time :∈ N1

v := 0

convergent event tick
when time > 0
with alarm′ = bool(time′ = 0)
then time := time− 1

event one
when time = 0
then v := 1

More complicated examples of witnesses can be found, for instance, in [13].
Witnesses have turned out to be very valuable for explaining how refinement is
achieved. They have also increased the potential of animation of Event-B models
opening up an efficient possibility for refinement animation [14].
A small improvement: witnesses for non-deterministic choices. We
have shown how witnesses are used to obtain proof obligations that are easier to
handle than (1). In practice, we observe however, that the refinement condition
K(v, q, w, w′) ∧ W (p, v, v′, q, w, w′) ⇒ S(p, v, v′) that we have obtained from
the decomposition often has itself a form similar to (1).

In order to be able to use witnesses for non-deterministic assignments, too,
in the absence of explicit support, non-deterministic assignments can be mod-
elled by means of guards [15,14] and distinguished by a labelling convention;
for instance, guards are labelled grdn and non-deterministic assignments chcn.
However, this complicates support for certain proof obligations, in particular,
deadlock freedom. (Relying on a labelling convention for proof obligation gen-
eration does not appear reliable.) The best solution would seem to treat non-
deterministic assignments the same way as guards. An additional benefit would
be that the need for primed identifiers in Event-B models would disappear, too,
simplifying further the existing concept of witnesses described above.

4 Conclusion

The modelling method Event-B is effective in practice because of a number of
simple techniques that have been incorporated into it. They usually originated as
3 Note, that we have not renamed any identifiers in the conclusion which would have
obscured the correspondence with model.



A (Small) Improvement of Event-B? 5

a solution to some technical problem but then proved to be useful in a much wider
context. We believe that it is important to take note of such developments. If
we keep record of the small improvements, we can mark the methodical progress
we make and we avoid losing the knowledge about why Event-B works.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2009) To appear.

2. Back, R.J.: Refinement Calculus II: Parallel and Reactive Programs. In deBakker,
J.W., deRoever, W.P., Rozenberg, G., eds.: Stepwise Refinement of Distributed
Systems. Volume 430 of Lecture Notes in Computer Science., Springer (1989) 67–
93

3. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for Event-B. In Liu, Z., He, J., eds.: ICFEM 2006. Volume 4260., Springer
(2006) 588–605

4. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. Software Tools for
Technology Transfer (2009) To appear.

5. Abrial, J.R., Cansell, D.: Click’n’Prove: Interactive Proofs within Set Theory. In:
Theorem Proving in Higher Order Logics. Volume 2758 of LNCS. (2003) 1–24

6. Abrial, J.R., Cansell, D., Méry, D.: Refinement and Reachability in EventB. In
Treharne, H., King, S., Henson, M., Schneider, S., eds.: ZB 2005. Volume 3455 of
LNCS. (2005) 222–241

7. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition and Instantiation of Dis-
crete Models: Application to Event-B. Fundamentae Informatica 77 (2007) 1–28

8. Abrial, J.R., Mussat, L.: Introducing dynamic constraints in B. In Bert, D., ed.:
B’98 : The 2nd International B Conference. Volume 1393 of LNCS., Springer (1998)
83–128

9. Abrial, J.R., Mussat, L.: On using conditional definitions in formal theories. In
Bert, D., Bowen, J., Henson, M., Robinson, K., eds.: ZB 2002. Volume 2272 of
LNCS. (2002) 242–269

10. Hallerstede, S.: Justifications for the Event-B Modelling Notation. In Julliand, J.,
Kouchnarenko, O., eds.: B 2007. Volume 4355 of LNCS., Springer (2007) 49–63

11. Métayer, C., Jean-Raymond-Abrial, Vosin, L.: Event-B Language. Technical re-
port, ETH Zürich (2005)

12. Hallerstede, S.: The Event-B Proof Obligation Generator. Technical report, ETH
Zürich (2005)

13. Hallerstede, S.: Proving Quicksort correct in Event-B. In Boiten, E., Derrick, J.,
eds.: Refine 2009. ENTCS (2009)

14. Hallerstede, S., Leuschel, M., Plagge, D.: Refinement-Animation for Event-B —
Towards a Method of Validation. In: ABZ 2010. LNCS, Springer (2007) 14 pages.
To appear.

15. Colley, J.: Private communication (2009)


	A (Small) Improvement of Event-B?

