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Abstract. When teaching Event-B to beginners, we usually start with models
that are already good enough, demonstrating occasionally some standard tech-
niques like “invariant strengthening”. We show that we got it essentially right but
need to make improvements here and there. However, this is not how we really
create formal models. To a beginner, getting shown only nearly perfect models is
overwhelming. So we should start earlier and show how we usually get models
wrong initially. This provides ample opportunity to demonstrate the strengths of
formal reasoning (and the weaknesses). The principal strength of formal reason-
ing lies in its capacity to locate mistakes in a model and to suggest corrections.
A beginner should learn how to profit from his mistakes by improving his un-
derstanding of the model. A weakness of formal reasoning is that we only find
mistakes that we expect, for example, invariant violation or non-termination. Mis-
takes that do not fall into one of these categories may slip through.
In this article we present how a formal model is created by refinement and alter-
ation. The approach employs mathematical methodology for problem solving and
a software tool. Both aspects are important. Mathematical methodology provides
ways to turn mistakes into improvements. The software tool is necessary to ease
the impact of changes on a model and to obtain rapid feed back. We begin with a
set of assumptions and requirements, the problem, and set out to solve it, giving
a more vivid picture of how formal methods work.

1 Introduction

In Event-B [2] formal modelling serves primarily for reasoning: reasoning is an essen-
tial part of modelling because it is the key to understanding complex models. Reason-
ing about complex models should not happen accidentally but needs systematic support
within the modelling method. This thinking lies at the heart of the Event-B method.

We use refinement to manage the many details of a complex model. Refinement is
seen as a technique to introduce detail gradually at a rate that eases understanding. The
model is completed by successive refinements until we are satisfied that the model cap-
tures all important requirements and assumptions. In this article we concern ourselves
only with what is involved in coming up with an abstract model of some system. Note
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that refinement can also be used to produce implementations of abstract models, for
instance, in terms of a sequential program [1,8]. But this is not discussed in this article.

We present a worked out example that could be used in the beginning of a course
on Event-B to help students to develop a realistic picture of the use of formal methods.
The challenge is to state an example in such a way that it is easy to follow but provides
enough opportunity to make (many) mistakes. We chose to use a sized-down variant of
the access control model of [2] which we have employed for lectures at ETH Zürich
(Switzerland) and at the university of Southampton (United Kingdom). We have not
used the description of a computer program because it does not leave enough room for
misunderstanding. We begin by stating a problem to be solved in terms of assumptions
and requirements and show how the problem can be approached using formal methods.
It is not possible to show everything that happens during an actual development of a
formal model. But it is possible to point at the main difficulties encountered and show
how to approach them. Students should be encouraged to make mistakes and experiment
with formal models. On the way they will learn about strengths and weaknesses of
formal methods.

We approach the model of the access control in small increments, learning at each
increment something about the problem and the model. We understand this incremental
approach in two ways. The first way is by formal refinement. An existing model is
proved to be refined by another: all properties of the existing model are preserved in the
refined model. The second way is by alteration of an existing model: properties of the
existing model may be broken. When a model is shown to be not consistent, it needs
to be modified in order to make it consistent. This reflects a learning process supported
by various forms of reasoning about a model, for instance, proof, animation, or model-
checking. This way of thinking about a model is common in mathematical methodology
[6,9]. The first way is commonly used and taught in formal methods, whereas the second
is at least not acknowledged. In order to apply formal methods successfully both ways
need to be mastered. This is only feasible in the presence of software tools that make
reasoning easy and modifications to a model painless. We have relied on the Rodin
modelling tool [3] for Event-B for proof obligation generation and proof support and
on the ProB tool [7] for animation and model-checking. Both tools are integrated in the
Rodin platform and can be used seamlessly. In later sections we do not further specify
the tools used, though, as this should be clear from the context. Also note that we present
proof in an equational style [5,10] whereas the Rodin tool uses sequents as in [2].

Overview. In Section 2 we introduce Event-B. The following sections are devoted to
solving a concrete problem in Event-B. In Section 3 the problem is stated. Section 4
provides a more detailed overview of Sections 5 to 9. It is intended to help the reader
keeping track of how the solution of the problem advances in the ensuing sections. A
first model is produced and discussed in Section 5. In Sections 6 and 8 we elaborate
the model by refinement. Section 7 contains a small theory of transitive closures that
is needed in the refinement. In Section 9 some further improvements of the model are
made and limitations of formal modelling discussed.
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2 Event-B

Event-B models are described in terms of the two basic constructs: contexts and ma-
chines. Contexts contain the static part of a model whereas machines contain the dy-
namic part. Contexts may contain carrier sets, constants, axioms, where carrier sets are
similar to types [4]. In this article, we simply assume that there is some context and do
not mention it explicitly. Machines are presented in Section 2.1, and proof obligations
in Section 2.2 and Section 2.3. All proof obligations in this article are presented in the
form of sequents: “premises” ` “conclusion”.

Similarly to our course and based on [2], we have reduced the Event-B notation
used so that only a little notation suffices and formulas are easier to comprehend, in
particular, concerning the relationship between formal model and proof obligations.
We have also reduced the number of proof obligations associated with a model. We
have done this for two reasons: firstly, it is easier to keep track of what is to be proved;
secondly, it permits us to make a point about a limitation of formal methods later on.

2.1 Machines

Machines provide behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v = v1, . . . , vm define
the state of a machine. They are constrained by invariants I(v). Theorems are predicates
that are implied by the invariants. Possible state changes are described by means of
events E(v). Each event is composed of a guard G(t, v) and an action x := S(t, v),
where t = t1, . . . , tr are parameters the event may contain and x = x1, . . . , xp are
the variables it may change1. The guard states the necessary condition under which an
event may occur, and the action describes how the state variables evolve when the event
occurs. We denote an event E(v) by

E(v) =̂ any t when

G(t, v)

then

x := S(t, v)

end

or E(v) =̂ begin

x := S(v)

end

.

The short form on the right hand side is used if the event does not have parameters and
the guard is true. A dedicated event of the latter form is used for initialisation. The
action of an event is composed of several assignments of the form

x` := B`(t, v) ,

where x` is a variable and B`(t, v) is an expression. All assignments of an action x :=
S(t, v) occur simultaneously; variables y that do not appear on the left-hand side of
an assignment of an action are not changed by the action, yielding one simultaneous
assignment

x1, . . . , xp, y1, . . . , yq := B1(t, v), . . . , Bp(t, v), y1, . . . , yq , (1)

1 Note that, as x is a list of variables, S(t, v) is a corresponding list of expressions.
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where x1, . . . , xp, y1, . . . , yq are the variables v of the machine. The action x :=
S(t, v) of event E(v) denotes the formula (1), whereas in the proper model we only
specify those variables x` that may change.

2.2 Machine Consistency

Invariants are supposed to hold whenever variable values change. Obviously, this does
not hold a priori for any combination of events and invariants I(v) = I1(v)∧. . .∧ Ii(v)
and, thus, needs to be proved. The corresponding proof obligations are called invariant
preservation (` ∈ 1 .. i):

I(v)

G(t, v)
`
I` (S(t, v)) ,

(2)

for every event E(v). Similar proof obligations are associated with the initialisation
event of a machine. The only difference is that for an initialisation event neither an
invariant nor a guard appears in the premises of proof obligation (2), that is, the only
premises are axioms and theorems of the context. We say that a machine is consistent
if all events preserve all invariants.

2.3 Machine Refinement

Machine refinement provides a means to introduce more details about the dynamic
properties of a model [4]. A machine N can refine at most one other machine M .
We call M the abstract machine and N a concrete machine. The state of the ab-
stract machine is related to the state of the concrete machine by a gluing invariant
J(v, w) = J1(v, w)∧ . . .∧ Jj(v, w), where v = v1, . . . , vm are the variables of the
abstract machine and w = w1, . . . , wn the variables of the concrete machine.

Each event E(v) of the abstract machine is refined by a concrete event F (w). Let
abstract event E(v) with parameters t = t1, . . . , tr and concrete event F (w) with
parameters u = u1, . . . , us be

E(v) =̂ any t when

G(t, v)

then

v := S(t, v)

end

and F (w) =̂ any u when

H(u,w)

with

t = W (u)

then

w := T (u,w)

end .

Informally, concrete event F (w) refines abstract event E(v) if the guard of F (w) is
stronger than the guard of E(v), and the gluing invariant J(v, w) establishes a simu-
lation of the action of F (w) by the action of E(v). The term W (u) denotes witnesses
for the abstract parameters t, specified by the equation t = W (u) in event F (w),
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linking abstract parameters to concrete parameters. Witnesses describe for each event
separately more specifically how the refinement is achieved. The corresponding proof
obligations for refinement are called guard strengthening (` ∈ 1 .. g):

I(v)

J(v, w)

H(u,w)
`
G` (W (u), v) ,

(3)

with the abstract guard G(t, v) = G1(t, v) ∧ . . . ∧ Gg(t, v), and (again) invariant
preservation (` ∈ 1 .. j):

I(v)

J(v, w)

H(u,w)
`
J` (S(W (u), v), T (u,w)) .

(4)

3 Problem Statement

In the following sections we develop a simple model of a secure building equipped with
access control. The problem statement is inspired by a similar problem used by Abrial
[2]. Instead of presenting a fully developed model, we illustrate the process of how we
arrive at the model. We can not follow the exact path that we took when working on the
model: we made changes to the model as a whole several times. So we would soon run
out of space. We comment on some of the changes without going too much into detail
in the hope to convey some of the dynamic character of the modelling process.

The model to be developed is to satisfy the following properties:

P1 : The system consists of persons and one building.
P2 : The building consists of rooms and doors.
P3 : Each person can be at most in one room.
P4 : Each person is authorised to be in certain rooms (but not others).
P5 : Each person is authorised to use certain doors (but not others).
P6 : Each person can only be in a room where the person is authorised to be.
P7 : Each person must be able to leave the building from any room where the person

is authorised to be.
P8 : Each person can pass from one room to another if there is a door connecting the

two rooms and the person has the proper authorisation.
P9 : Authorisations can be granted and revoked.

Properties P1, P2, P8, and P9 describe environment assumptions whereas properties
P3, P4, P5, P6, and P7 describe genuine requirements. It is natural to mix them in the
description of the system. Once we start modelling, the distinction becomes important.
We have to prove that our model satisfies P3, P4, P5, P6, and P7 assuming we have P1,
P2, P8, and P9.
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4 Storyboard

In this section we give a brief overview of the development as it will unfold in Sec-
tions 5 to 9. The reader is encouraged to return to this section while reading through
those sections. We have tried to keep a natural flow in the presentation to make it more
credible. It also requires some skill to stay on track when solving a complex problem.

It lies in the nature of the presented material that we can easily lose sight of our aim.
By the way, what is our aim? This will be stated in the beginning of Section 5 before
starting any work:

Our aim is to produce a faithful formal model of the system described by the
properties P1 to P9 of Section 3.

Once we know what we want to achieve we can get started. In Section 5 we begin by
making a rough plan of how to proceed and create a first abstract machine introducing
four invariants inv1 to inv4 and abstract events pass, grant, and revoke. The reason
for the briefness of Section 5 is simply that we needed space to make some more inter-
esting points later on. It is not to suggest that inventing a first model would be trivial.

In Section 6 we commence with the refinement of the abstract machine, introducing
invariants inv5 to inv7, and event pass. We uncover that the properties P1 to P9 do
not say enough about the nature of the doors used in the building. Incompleteness of
assumptions is a common difficulty dealing with which carries the risk of introducing
undocumented assumptions into the model. At this point we have incorporated proper-
ties P1 to P6 and property P8 into our model.

In order to express P7 formally, a little bit of theory about transitive closures is
needed which is introduced in Section 7. (Nothing new is “invented”. We simply use
an existing theory.) We use this in Section 8 to have a first go at property P7 by means
of invariant inv8. (Property P7 is formalised as a more intricate theorem thm1 implied
by the invariants. This is a common strategy to ease the effort of verifying invariant
preservation.) However, when analysing inv8 we find that it is too strong and weaken
it to inv8′.

In the remainder of Section 8 we refine events grant and revoke. (Proving refine-
ment of event grant we find the need for invariant inv9, which would also permit us
to prove thm1.) When trying to refine event revoke we discover that event revoke of
the abstract machine is wrong. We have to alter the abstract machine in order to get a
model that is consistent and represents P9 adequately. By the end of Section 8 we feel
that properties P1 to P9 have all been incorporated into the model. To ensure this we
have made some effort to trace them into the formal model and argued that each one
has been adequately captured.

In Section 9 we have another look at the model, animating it. We immediately see
that the concrete machine cannot “do” anything. It deadlocks right after the initiali-
sation of the machine. We rectify the problem and use it to illustrate limitations of a
formal method. This is also a good place to advertise the usefulness of complementary
techniques in analysing formal models.
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5 Getting started with a fresh model

Our aim is to produce a faithful formal model of the system described by the properties
P1 to P9 of Section 3. The first decision we need to make concerns the use of refinement.
We have decided to introduce the properties of the system in two steps. In the first step
we deal only with persons and rooms, in the second also with doors. This approach
appears reasonable. At first we let persons move directly between rooms. Later we state
how they do it, that is, by passing through doors. In order to specify doors we need
to know about rooms they connect. It is a good idea, though, to reconsider the strategy
chosen for refinement when it turns out to be difficult to tackle the elements of the model
in the planned order. For now, we intend to produce a model with one refinement:

(i) the abstract machine (this section) models room authorisations;
(ii) the concrete machine (sections 6 and 8) models room and door authorisations.

In Event-B we usually begin modelling by stating invariants that a machine should
preserve. When events are introduced subsequently, we think more about how they
preserve invariants than about what they would do. The focus is on the properties that
have to be satisfied. We declare two carrier sets for persons and rooms, Person and
Room, and a constant O, where O ∈ Room. Constant O models the outside of the
building. We choose to describe the state by two variables for authorised rooms and
locations of persons, arm and loc, with invariants

inv1 : arm ∈ Person ↔ Room Property P4
inv2 : Person × {O} ⊆ arm

inv3 : loc ∈ Person → Room Property P3
inv4 : loc ⊆ arm Property P6

Invariant inv2, that each person is authorised to be outside, is necessary because we
decided to model location by a total function making the outside a special room. For
instance, person p is outside is written formally loc(p) = O. In a first attempt, we
made loc a partial function from Person to Room expressing that a person not in the
domain of loc is outside. However, this turned out to complicate the gluing invariant
when introducing doors into the model later on. (Because of property P7 we need an
explicit representation of the outside in the model.) As a consequence of our decision
we had to introduce invariant inv2. It corresponds to a new requirement that is missing
from the list in Section 3 but that we have uncovered while reasoning formally about
the system. In the following we focus on how formal reasoning is used to improve the
model of the system.

In order to satisfy inv2, inv3 and inv4 we let

initialisation

begin

act1 : arm := Person × {O}
act2 : loc := Person × {O}

end .
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We model passage from one room to another by event pass,

pass

any p, r when

grd1 : p 7→ r ∈ arm p is authorised to be in r

grd2 : p 7→ r /∈ loc but not already in r

then

act1 : loc := loc C− {p 7→ r}
end .

Event pass preserves the invariants. Granting and revoking authorisations for rooms is
modelled by the two events

grant revoke

any p, r when

grd1 : p ∈ Person

grd2 : r ∈ Room

then

act1 : arm := arm ∪ {p 7→ r}
end

any p, r when

grd1 : p ∈ Person

grd2 : p 7→ r /∈ loc

then

act1 : arm := arm \ {p 7→ r}
end .

The two events do not yet model all of P9 which refers to authorisations in general,
including authorisations for doors. Events grant and revoke appear easy enough to
get them right. But it is as easy to make a mistake. This is why we have specified
invariants: to safeguard us against mistakes. If the proof of an invariant fails, we have
the opportunity to learn something about the model and improve it. The two events
preserve all invariants except for revoke which violates invariant inv2,

Person × {O} ⊆ arm Invariant inv2
p ∈ Person Guard grd1

p 7→ r /∈ loc Guard grd2
`
Person × {O} ⊆ arm \ {p 7→ r} Modified invariant inv2

In an instance of the model with two different rooms I and O and one person P we find
a counter example:

arm = {P 7→ I, P 7→ O}, loc = {P 7→ I}, p = P, r = O .

In fact, we must not remove O from the set of authorised rooms of any person. To
achieve this, we add a third guard to event revoke:

grd3 : r 6= O .

A counter example provides valuable information, pointing to a condition that it does
not satisfy. It may not always be as simple to generalise but at least one can obtain an
indication where to look closer.
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The model we have obtained thus far is easy to understand. Ignoring the doors in
the building, it is quite simple but already incorporates properties P3, P4, and P6. Its
simplicity permits us to judge more readily whether the model is reasonable. We can
inspect it or animate it and can expect to get a fairly complete picture of its behaviour.
We may ask: Is it possible to achieve a state where some person can move around in
the building? We have only partially modelled the assumptions P1, P2, P8, and P9.
We could split them into smaller statements that would be fully modelled but have
decided not to do so. Instead, we are going to document how they are incorporated in
the refinement that is to follow.

6 Elaboration of more details

We are satisfied with the abstract model of the secure building for now and turn to
the refinement where doors are introduced into the model. In the refined model we
employ two variables adr for authorised doors and loc for the locations of persons
in the building (as before). The intention is to keep the information contained in the
abstract variable arm implicitly in the concrete variable adr. That is, in the refined
model variable arm would be redundant. We specify

inv5 : adr ∈ Person → (Room ↔ Room) Property P5
inv6 : ∀ q · ran(adr(q)) ⊆ arm[{q}] Property P4

6.1 Moving between rooms

Let us first look at event pass. Only a few changes are necessary to model property P8,

pass

any p, r when

grd1 : loc(p) 7→ r ∈ adr(p)

then

act1 : loc := loc C− {p 7→ r}
end .

We only have to show guard strengthening, because loc does not occur in inv5 and
inv6. The abstract guard grd1 is strengthened by the concrete guards because r ∈
ran(adr(p)). The second guard strengthening proof obligation of event pass is:

loc ∈ Person → Room Invariant inv3
loc(p) 7→ r ∈ adr(p) Concrete guard grd1
`
p 7→ r /∈ loc Abstract guard grd2

Using inv3 we can rephrase the goal,

p 7→ r /∈ loc { inv3 }
⇔ loc(p) 6= r
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Neither concrete guard grd1 nor the invariants inv1 to inv6 imply this. The invariant
is too weak. We do not specify that doors connect different rooms. In fact, our model of
the building is rather weak. We decide to model the building by the doors that connect
the rooms in it. They are modelled by a constant Door. We make the following three
assumptions about doors:

axm1 : Door ∈ Room ↔ Room Each door connects two rooms.

axm2 : Door ∩ idRoom = ∅ No door connects a room to itself.

axm3 : Door ⊆ Door−1 Each door can be used in both directions.2

These assumptions are based on our domain knowledge about properties of typical
doors. They were omitted from the problem description because they seemed obvi-
ous. However, the validity of our model will depend on them. As such they ought to be
included. We began to think about properties of doors because we did not succeed in
proving guard strengthening. If adr(p), for p ∈ Person, would share the property of
the set Door given by axm2, we should succeed. Hence, we add a new invariant inv7.
We realise that it captures much better property P5 than invariant inv5,

inv7 : ∀ q · adr(q) ⊆ Door . Property P5

Using inv7 and axm2, we can prove ∀x, y · x 7→ y ∈ adr(p) ⇒ x 6= y , and
with “x, y := loc(p), r” we are able to show the guard strengthening proof obligation
above.

7 Intermezzo on transitive closures

Property P7 is more involved. It may be necessary to pass though various rooms in order
to leave the building. We need to specify a property about the transitive relationship of
the doors. We can rely on the well-known mathematical theory of the transitive closure
of a relation.

A relation x is called transitive if x ;x ⊆ x. In other words, any composition of
elements of x is in x. The transitive closure of a relation x is the least relation that
contains x and is transitive. We define the transitive closure x+ of a relation x by

∀x · x ⊆ x+ (5)

∀x · x+ ;x ⊆ x+ (6)

∀x, z · x ⊆ z ∧ z ;x ⊆ z ⇒ x+ ⊆ z . (7)

That is, x+ is the least relation z satisfying x ∪ z ;x ⊆ z. The definition implies

∀x · x ∪ x+ ;x = x+ (8)

The transitive closure is monotonic and maps the empty relation to itself,

∀x, y · x ⊆ y ⇒ x+ ⊆ y+ (9)

∅+ = ∅ . (10)

2 We say Door is a symmetric relation.
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8 Towards a full model of the building

Using the transitive closure of authorised rooms we can express that every person can
at least reach the authorised rooms from the outside,

inv8 : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] .

This invariant does not quite correspond to property P7. However, given the discussion
about properties of doors in Section 6 we should be able to prove that all invariants
jointly imply property P7 which we formalise as a theorem,

thm1 : ∀ q · (arm[{q}] \ {O})× {O} ⊆ adr(q)+ . Property P7

We proceed like this because we expect that proving inv8 to be preserved would be
much easier than doing the same with thm1. Let us continue working with inv8 for
now and return to thm1 later.

8.1 Initialisation

In the abstract model all persons can only be outside initially. This corresponds to their
not being authorised to use any doors,

initialisation

begin

act1 : adr := Person × {∅}
act2 : loc := Person × {O}

end .

The invariant preservation proof obligations for inv5 and inv6 hold, as can easily be
seen letting “arm, adr := Person× {O}, P erson× {∅}” in inv5, inv6, and inv7.
For invariant inv8 there is more work to do. We have to show:

` ∀ q · (Person × {O})[{q}] ⊆ (Person × {∅})(q)+[{O}]

Using law (10), (Person× {∅})(q)+[{O}] = ∅ 6⊇ {O} = (Person× {O})[{q}] .
Invariant inv8 is too strong! Because of invariant inv7 we cannot initialise adr to
Person × {{O 7→ O}} and because of inv6 we cannot use any other door. Thus,
we must weaken invariant inv8. We replace it by:

inv8′ : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O}

8.2 Granting door authorisations

A new door authorisation can be granted to a person if (a) it has not been granted yet
and (b) authorisation for one of the connected rooms has been granted to the person.

11



We introduce constraint (a) to focus on the interesting case and constraint (b) to satisfy
invariant inv8′. Thus,

grant

any p, s, r when

grd1 : s 7→ r ∈ Door \ adr(p)

grd2 : s ∈ dom(adr(p))

then

act1 : adr := adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}} 3

end

Invariant inv5 is preserved by event grant by definition of relational overwriting C−.
For invariant inv6 we have to prove:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r ∈ Door \ adr(p) Concrete guard grd1

s ∈ dom(adr(p)) Concrete guard grd2
`
ran((adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}})(q))
⊆ (arm ∪ {p 7→ r})[{q}] Modified invariant inv6

for all q. For q 6= p the proof is easy. For the other case q = p we prove,

ran(adr(p) ∪ {s 7→ r, r 7→ s}) ⊆ (arm ∪ {p 7→ r})[{p}]
⇐ . . .

⇐ s ∈ ran(adr(p))

We would expect s ∈ ran(adr(p)) to hold because doors are symmetric and because
of concrete guard grd2, that is, s ∈ dom(adr(p)). We specified symmetry in axiom
axm3 but this property is not covered by invariant inv7. We have to specify it explicitly,

inv9 : ∀ q · adr(q) ⊆ adr(q)−1 . (see axiom axm3)

We can continue the proof where we left off

s ∈ ran(adr(p)) { inv9 with “q := p” }
⇐ s ∈ dom(adr(p))

It is easy to show that invariants inv7 and inv9 are preserved by event grant. Preser-
vation of inv8′ can be proved using law (8) and law (9).

Having specified invariant inv9 we would now succeed proving theorem thm1 pos-
tulated in the beginning of this section. This shows that our model satisfies property P7.
We do not carry out the proof but turn to the last event not yet refined.

3 Event-B has the shorter (and more legible) notation adr(p) := adr(p) ∪ {s 7→ r, r 7→ s}
for this. We do not use it because we can use the formula above directly in proof obligations.
We also try as much as possible to avoid introducing more notation than necessary.
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8.3 Revoking door authorisations

We model revoking of door authorisations symmetrically to granting door authorisa-
tions. A door authorisation can be revoked if (a) there is an authorisation for the door,
(b) the corresponding person is not in the room that could be removed, and (c) the room
is not the outside. Condition (a) is just chosen symmetrically to grd1 of refined event
grant (for the same reason). The other two conditions (b) and (c) are already present in
the abstraction. The refined events grant and revoke together model property P9.

revoke

any p, s, r when

grd1 : s 7→ r ∈ adr(p)

grd2 : p 7→ r /∈ loc

grd3 : r 6= O
then

act1 : adr := adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}}
end

We expect that the guard of event revoke will be too weak to preserve invariant inv8′.
We are going to search for it in the corresponding proof. But we can get started without
it, in particular, proving guard strengthening of the abstract guards grd1 to grd3 and
preservation of inv5, inv6, inv7, and inv9. For instance, preservation of inv6:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r ∈ adr(p) Concrete guard grd1

p 7→ r /∈ loc Concrete guard grd2

r 6= O Concrete guard grd3
`
ran((adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q))
⊆ (arm \ {p 7→ r})[{q}] Modified invariant inv6

for all q. For q = p we have to prove ran(adr(p) \ {s 7→ r, r 7→ s}) ⊆ arm[{p}] \
{r}, thus, r /∈ ran(adr(p) \ {s 7→ r, r 7→ s}). This does not look right. Indeed, we
find a counter example with one person P and three different rooms H, I, O:

adr = {P 7→ {O 7→ H, H 7→ O, O 7→ I, I 7→ O, I 7→ H, H 7→ I}}
arm = {P 7→ H, P 7→ I, P 7→ O}
loc = {P 7→ O} p = P s = I r = H

In order to resolve this problem we could remove all doors connecting to r. But this
seems not acceptable: we grant door authorisations one by one and we should revoke
them one by one. We could also strengthen the guard of the concrete event requiring,
say, adr(p)[{r}] = {s}. But then we would not be able to revoke authorisations once
there are two or more doors for the same room. The problem is in the abstraction! The
abstract event revoke should not always remove r. We weaken the guard of the abstract
event using a set R of at most one room instead of r. If R = ∅, then {p} × R = ∅.
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So, for R = ∅ event revoke does not change arm and for R = {r} it corresponds to
the first attempt at abstract event revoke:

revoke

any p, R when

grd1 : p ∈ Person

grd2 : loc(p) /∈ R

grd3 : R ∈ S(Room \ {O})
then

act1 : arm := arm \ ({p} × R)

end ,

where for a set X by S(X) we denote all subsets of X with at most one element:

Y ∈ S(X) =̂ Y ⊆ X ∧ (∀x, y · x ∈ Y ∧ y ∈ Y ⇒ x = y) .

With this the proof obligation for invariant preservation of inv6 becomes:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r ∈ adr(p) Concrete guard grd1

p 7→ r /∈ loc Concrete guard grd2

r 6= O Concrete guard grd3
`
ran((adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q))
⊆ (arm \ ({p} × R))[{q}] Modified invariant inv6

for all q. For q = p we have to prove,

ran(adr(p) \ {s 7→ r, r 7→ s}) ⊆ arm[{p}] \ R . (11)

Before we can continue we need to make a connection between r and R. We need a
witness for R. After some reflection we decide for

R = {r} \ ran(adr(p) \ {s 7→ r, r 7→ s}) . (12)

Witness (12) explains how the concrete and the abstract event are related. If there is
only one authorised door s connecting to room r, then R = {r} and the authorisation
for room r is revoked. Otherwise, R = ∅ and the authorisation for room r is kept.
Now we can prove (11) using inv6 and (12). We note without showing the proofs that
guard strengthening of the abstract guards grd1 to grd3 and preservation of inv5, inv7,
and inv9 all hold. Only preservation of invariant inv8′ remains:

∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} Invariant inv8′

s 7→ r ∈ adr(p) Concrete guard grd1

p 7→ r /∈ loc Concrete guard grd2

r 6= O Concrete guard grd3
`
(arm \ ({p} × R))[{q}] Modified invariant inv8′

⊆ (adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q)+[{O}] ∪ {O}
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for all q. Let D = {s 7→ r, r 7→ s}. For q = p we have to show

(arm \ ({p} × R))[{p}] ⊆ (adr(p) \ D)+[{O}] ∪ {O} . (13)

We have seen above that the term on term on the left hand side is either arm[{p}] or
arm[{p}] \ {r}. So we won’t succeed proving (13) unless we add a guard to event
revoke. We cannot use arm[{p}] in the guard because the refined machine does not
contain variable arm. If inv6 was an equality, we could use ran(adr(p)) instead of
arm[{p}], obtaining the guard

grd4 : ran(adr(p)) \ {r} ⊆ (adr(p) \ D)+[{O}] ∪ {O} .

It says that all rooms except for r must still be reachable from the outside after revoking
the authorisation for door D leading to room r. This sounds reasonable. We find that it
is not possible to turn the set inclusion into an equality in invariant inv6. However, we
can still prove the weaker theorem

thm2 : ∀ q · ran(adr(q)) ∪ {O} = arm[{q}] ,

using inv2, inv6, inv8′, and property (8) of the transitive closure. The authorised rooms
are maintained precisely by means of the authorised doors. As a matter of fact, initially
we used thm2 as invariant instead of inv6 but then weakened the invariant to inv6 and
proved thm2 as a theorem. This is a useful strategy for reducing the amount of proof
necessary while keeping powerful properties such as thm2.

9 Towards a better model

After all the serious thinking about the model we are confident that the model captures
the properties P1 to P9. Assuming we have one person P and three different rooms H,
I, and O we can inspect how the modelled system would behave.

Initially variables adr and loc have the values

adr = Person × {∅}
loc = Person × {O} .

Event pass is disabled as expected; grd1, that is, loc(p) 7→ r ∈ adr(p) cannot be
satisfied for any p and r. Similarly, event revoke is disabled, but also event grant:
guard grd2, s ∈ dom(adr(p)), cannot be satisfied for any s. Deadlock! We have
not proved all properties we would expect from our model. This property seems to be
implicitly contained in properties P8 and P9, but we have missed it. We have to weaken
grd2,

grd2′ : s ∈ dom(adr(p)) ∪ {O}

As a consequence, we have to check again that concrete event grant preserves all in-
variants. Fortunately, all proofs succeed.

Note, that just adding another proof obligation will not suffice to solve the problem
in general. We can easily imagine a lift, say, that does not have a deadlock because some
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button could always be pressed and the lift could always move; but the doors of the lift
would remain always shut. If we do not specify that we expect the doors to open on
some occasions, a model of the lift may not have this property. Because such properties
are common sense they are often not mentioned but then they are also easily forgot. We
have to analyse the model using complementary techniques such as proving, model-
checking, and animation in order to find such mistakes. In the end, the best we can hope
for is a model of good quality that captures the required properties well. This problem
holds for formal modelling in general. However, it is very visible in the incremental
approach described in this article. The proof obligations shown in Section 2 have been
restricted not to take into account deadlock-freedom to emphasise the problem that we
only verify properties where we expect difficulties but not more. So we can see better the
benefits of using jointly the three techniques of proof, model-checking, and animation.

10 Conclusion

What we have learned: We have used proof to verify that the model is consistent and to
get indications for improvements of the model. We have used model-checking before
attempting a proof. If a counter example was found, the effort of proving could be
saved, and the counter example could be analysed. (We could also have started a proof
knowing that it would fail.) Finally we have used animation to “try out” the model, to
see whether it behaves reasonably. When we animated the model, we found a problem
that was not discovered by the other two techniques. Whereas trying out (or systematic
testing) does not show absence of errors as proof does, proof only verifies properties
where we expect problems. In this sense proof is incomplete too. We have developed a
more realistic impression of what a formal method can achieve.
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