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Abstract. Event-B is a formal modelling method which is claimed to be suitable
for diverse modelling domains, such as reactive systems and sequential program
development. This claim hinges on the fact that any particular model has an ap-
propriate semantics. In Event-B this semantics is provided implicitly by proof
obligations associated with a model. There is no fixed semantics though. In this
article we argue that this approach is beneficial to modelling because we can
use similar proof obligations across a variety of modelling domains. By way of
two examples we show how similar proof obligations are linked to different se-
mantics. A small set of proof obligations is thus suitable for a whole range of
modelling problems in diverse modelling domains.

1 Introduction

Event-B [5] is a formal modelling method for discrete systems based on refinement
[8,9,10]. The main purpose of creating models in Event-B is to reason about them and
understand them. Reasoning about complex models should not happen accidentally but
needs systematic support within the modelling method. We insist that reasoning is an
essential part of modelling because it is the key to understanding complex models.
When we create a complex model, usually, our understanding of it is incomplete at
first; and the first duty of a modelling method is to help improve our understanding of
the model.

To reason about a model we consider its proof obligations. Proof obligations have
a two-fold purpose. On the one hand, they show that a model is sound with respect to
some behavioural semantics. On the other hand, they serve to verify properties of the
model. This goes so far that we only focus on the proof obligations and do not present a
behavioural semantics at all. This approach permits us to use the same proof obligations
for very different modelling domains, for instance: reactive, distributed and concurrent
systems [7], a probabilistic variant [16]; sequential programs [4]; or electronic circuits
[15]. All of this, without being constrained to semantics tailored to a particular domain.
Event-B is a calculus for modelling that is independent of the various models of com-
putation.

In this article we present two examples of Event-B semantics showing the viability
of this approach. For this purpose, we introduce enabledness proof obligations into the
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Event-B method. We go on to show how they are incorporated into relative deadlock-
freeness proofs with respect to the failures model of CSP [17] and into soundness proofs
of sequential program development [4]. The theoretical results as such are not new. In
[9] a temporal leadsto-operator and deadlock-freeness are introduced, where the lead-
sto-operator is modelled by means of a while-loop. In this article we discuss the use
the same (few) proof obligations to reason about different semantic models. We present
the derivation of the proof obligations from the semantic models to demonstrate what
is involved. The theory used in this article is more based on [11,21] than on [1,3]; the
latter are geared towards sequential program development.

A complication arises (by our choice), because the first semantics uses a relational
model [18] and the second set transformers [11,13]. This complication is hidden in
Event-B by means of its proof obligations: to the user of Event-B it all looks the
same. Simple restrictions on proof obligations achieve soundness in either case. Be-
cause Event-B models do not have a (behavioural) semantics a priori, we are free to
chose one and with it a set of appropriate proof obligations. If we were to fix some
semantics for Event-B, we would have difficulties applying it to the various domains
mentioned in the introduction.

Outline. Section 2 presents Event-B in terms of its proof obligations. In Sections 3
and 4 we relate a reactive systems semantics and a sequential program semantics to
proof obligations presented in Section 2. Sections 3 and 4 are somewhat technical. We
have chosen to present the material in this way to demonstrate how enabledness proof
obligations arise in the two cases. As a consequence of this decision there is no space to
present more examples. It is not our intention to present a complete list of semantics for
Event-B. That list is open-ended. In future, new applications of Event-B may emerge
that require new kinds of semantics. In the same sense, the two examples presented are
not intended be understood as fully representing the corresponding domains, reactive
systems modelling and sequential program modelling. The two seem reasonable based
on our experience. They could be adapted to fit particular modelling needs and devel-
opment processes. Whenever we want to use Event-B with some specific semantics we
can prove how Event-B suits that semantics.

2 Event-B

We present the core of Event-B in terms of its proof obligations concerned with refine-
ment and consistency. For the purposes of this article the proof obligations are only
stated as set-theoretic expressions. In order to make them easier to digest we introduce
some rudimentary notation of Event-B and define all employed sets and relations based
on the notation.

Behavioural aspects of Event-B models are expressed by means of machines. A
machine M may contain variables, invariants, events, and variants. Variables v define
the state of a machine. They are constrained by invariants I(v). (Variables occurring
free in a formula are indicated in parentheses.) Possible state changes are described
by means of events Em, for m ∈ αM . (In the following sections it will prove useful
to have events associated with indices drawn from finite sets αM . We introduce them
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here to achieve a more coherent presentation.) Each event Em is composed of a guard
Gm(v) and an action v :| Sm(v, v′). We denote an event Em by

when Gm(v) then v :| Sm(v, v′) end .

A dedicated event that has true as its guard and v :| A(v′) as its action is used for
initialisation. (The predicate A(v′) does not refer to unprimed variables.)

The action v :| Sm(v, v′) describes the relationship between the state just before
the action has occurred (represented by unprimed variable names v) and the state just
after the action has occurred (represented by primed variable names v′).

The guard of an event states the necessary condition under which the event may
occur, and the action describes how the state variables evolve when the event occurs.

In order to simplify the main part of this article, we do not present local variables of
events here. For the same reason we state actions as single nondeterministic assignments
v :| Sm(v, v′). For a detailed description of events, actions and assignments see [8].

We assume familiarity with basic set-theoretic notation defining sets and relations
corresponding to all of the above:

Φ =̂ {v | > } 1

i =̂ {v | I(v)}
gm =̂ {v | Gm(v)}
sm =̂ {v 7→ v′ | Sm(v, v′)}
a =̂ {v′ | A(v′)} ,

where Φ denotes the entire state space.

2.1 Machine Consistency

For each event Em of a machine M , feasibility must be proved:

i ∩ gm ⊆ s−1
m [Φ] . (1)

By proving feasibility, we ensure that Sm provides an after state whenever Gm holds.
This means that the guard indeed represents the enabling condition of the event.

Invariants are supposed to hold whenever variable values change. Obviously, this
does not hold a priori for any combination of events and invariants and, thus, needs to
be proved. The corresponding proof obligation is called invariant preservation:

(gm C sm)[i] ⊆ i . 2 (2)

Similar proof obligations are associated with the initialisation event of a machine: fea-
sibility of initialisation is a 6= ∅ and invariant establishment is a ⊆ i.

1 Φ is the Cartesian product of the types∆1,∆2, . . . ,∆κ of the variables v1, v2, . . . , vκ . Writing
{v | > } we avoid introducing the component types ∆1, ∆2, . . . , ∆κ .

2 C denotes domain restriction: x 7→ y ∈ (g C s) ≡ x ∈ g ∧ x 7→ y ∈ S .
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2.2 Machine Refinement

Machine refinement provides a means to introduce more details about the dynamic prop-
erties of a model [8]. For more on the well-known theory of refinement, we refer to the
Action System formalism [10] that has inspired the development of Event-B.

A machine N can refine at most one other machine M . We call M the abstract
machine and N a concrete machine. The state of the abstract machine is related to the
state of the concrete machine by a gluing invariant J(v, w), where v are the variables
of the abstract machine and w the variables of the concrete machine.

Let Em, for m ∈ αM , be the abstract events; and let Fn, for n ∈ αN , with αN a
finite set and αM ⊆ αN , be the concrete events of the form:

when Hn(w) then w :| Tn(w,w′) end ;

and let w :| B(w′) be the action of the initialisation.
The corresponding set-theoretic definitions are:

Ψ =̂ {w | > }
k =̂ {v 7→ w | I(v) ∧ J(v, w)}
j =̂ {v 7→ w | J(v, w)}

hn =̂ {w | Hn(w)
tn =̂ {w 7→ w′ | Tn(w,w′)}
b =̂ {w′ | B(w′)} .

Each eventEm of the abstract machine is refined by a concrete event Fm. Somewhat
simplified, we can say that Fm refines Em if the guard of Fm is stronger than the guard
of Em, and the gluing invariant J(v, w) establishes a simulation of Fm by Em:

k ; (hm C tm) ⊆ (gm C sm) ; j . 3 (3)

Using (2) we can infer from (3)

k ; (hm C tm) ⊆ (gm C sm) ; k . (4)

In the course of refinement, new events can be introduced into a model. New events
must be proved to refine the implicit abstract event skip that does nothing; that is, its
guard is true and its action is v :| v′ = v. In the notation used in this article new events
are just those with indices drawn from the set αN \ αM .

Convergence. Moreover, it may be proved that new events do not collectively diverge
by means of a well-founded relation r. We refer to the corresponding proof obligation
as progress:

k ; (hn C tn) ⊆ k ; r . (5)

A common choice for r is η−1 ; {x 7→ y | x < y} ; η where η = (λw · w ∈ N | V (w))
and V (w) an integer expression, called variant, of N . We call events that satisfy (5)
convergent.

3 The corresponding proof obligation for the initialisation is: b ⊆ j[a] .
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Enabledness. Using (1) we infer from (3),

k B hm ⊆ gm C k , (6)

the guard of the abstract event may be strengthened during refinement. As a conse-
quence, it is sufficient if the guard of the concrete event is false, that is, hm = ∅ . This
means we could refine any abstract event by a concrete event with false as its guard.
Such an event can never occur. If we strengthen the guard less extremely, we still have
a concrete event that may occur less often than its abstract counterpart. If this is not
intended we need also to weaken the guard as discussed in the next paragraph.

Let m ∈ αM and L ⊆ αN . We may prove that whenever the abstract machine
may continue by means of event Em with guard Gm then the concrete machine may
continue by means of some F` for some ` ∈ L:

k[gm] ⊆ (
⋃
` · ` ∈ L | h`) . (7)

By convention we assume that the guard hm of the concrete event that refines Em is
contained in the union on the right hand side, that is, m ∈ L . If L = {m}, then
combining (6) and (7) yields the equivalence of abstract guards to concrete guards under
the (gluing) invariant:

gm C k = k B hm .

If L contains a new event, the relationship gets more complicated; enabledness and
convergence interact. This is becomes apparent in our presentation of sequential pro-
grams later. In our presentation of reactive systems below this is less visible due to some
simplifications that we have made to keep it brief.

3 Reactive Systems Modelling

We base our presentation of reactive systems modelling on the semantics of the process
algebra CSP [17,22]. CSP was developed specifically for modelling of such systems
[18]. Its semantics is expressed in terms of finite and infinite traces, failures, and diver-
gences describing the behaviour of a system. We focus on failures: failures refinement
guarantees that we cannot introduce new deadlocks in a refined model. In Event-B this
is achieved by enabledness (7). In this section we show how failures and enabledness
are connected. The principle of this connection is not new [12,19]. For this reason, we
only present the essential formal ingredients and proofs. We assume that the machines
are free of divergences, proved by means of (5), and that all events are image-finite,
that is, finite(sm[gm]). As a consequence, the behaviour of machines can be described
purely in terms of failures, the component most relevant to our analysis of enabledness
proof obligations.

3.1 Failure Semantics

We define failures directly in the set-theoretic notation of Section 2; similarly to [14].
Let M be a machine with initialisation a and events with guards gm and actions sm.
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For machine M and a sequence of event indices t we define the path of t by

pathM (〈〉) =̂ aC idΦ

pathM (t_〈m〉) =̂ pathM (t) ; (gm C sm) .

A path describes the state transition corresponding to the occurrence of the t. If the path
of t is not empty, then t belongs to the behaviour of M ; we say such a t is a trace of M .
Failures are defined in terms of paths and of refusals introduced next. Being in a state
satisfying some refusal R, none of the events indexed by R can occur,

refusalM (R) =̂ (
⋂
m ·m ∈ R | Φ\gm) .

Failures are traces combined with refusals; the pair (t 7→ R) is a failure of M if t is a
trace of M and after having engaged in t machine M may be in a state where all events
indexed by R are refused,

(t 7→ R) ∈ failureM =̂ pathM (t) B refusalM (R) 6= ∅

Failure semantics does not deal with fairness.

3.2 Failure Refinement

Let C = αN\αM be the indices of all new events, and for a trace t and a set of event
names L let t↑L be t with all event names in L removed. We say machine N failure-
refines machine M ,

(t 7→ R ∪ C) ∈ failureN ⇒ (t↑C 7→ R) ∈ failureM ,

if the failures of N are contained in the failures of M modulo the new events C. Note,
that this definition of failure refinement is not standard. We have combined the plain
refinement notion of [17] with hiding of new events in order to shorten the presentation.
The given refinement notion is still monotonic because hiding is monotonic. We do not
suggest that this is the notion of failures refinement one should be using in practice but
believe that it is sufficient to make our point about using Event-B for failure refinement
of machines. A variant of it has been used to model introduction of local channels in
stated based reactive models [12].

Failure-refinement is proved by relating traces and failures of the two machines
[12]. Assume, by means of (4), we have

pathN (t) ⊆ pathM (t↑C) ; k . (8)

We observe

(t 7→ R ∪ C) ∈ failureN { def. of failure }
≡ pathN (t) B refusalN (R ∪ C) 6= ∅ { by (8) }
⇒ pathM (t↑C) ; k B refusalN (R ∪ C) 6= ∅ { set theory }
⇒ pathM (t↑C) B k−1[refusalN (R ∪ C)] 6= ∅ { see (9) below }
⇒ pathM (t↑C) B refusalM (R) 6= ∅ { def. of failure }
≡ (t↑C 7→ R) ∈ failureM
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that N failure-refines M , provided

k−1[refusalN (R ∪ C)] ⊆ refusalM (R) (9)

holds. We observe:

k−1[refusalN (R ∪ C)] ⊆ refusalM (R) { def. refusal }
≡ k−1[(

⋂
n · n ∈ (R ∪ C) | Ψ\hn)] ⊆ (

⋂
m ·m ∈ R | Φ\gm) { set theory }

≡ k[(
⋃
m ·m ∈ R | gm)] ⊆ (

⋃
n · n ∈ (R ∪ C) | hn) { set theory }

≡ (
⋃
m ·m ∈ R | k[gm]) ⊆ (

⋃
n · n ∈ (R ∪ C) | hn) { set theory }

≡ ∀m ·m ∈ R⇒ (k[gm] ⊆ (
⋃
n · n ∈ (R ∪ C) | hn)) { set theory }

⇐ ∀m ·m ∈ R⇒ (k[gm] ⊆ (
⋃
n · n ∈ ({m} ∪ C) | hn)) .

Refusals are downward closed: if R is a refusal and m ∈ R then {m} is a refusal too.
Hence, the strengthening (

⋃
b ∈ (R ∪ C) · . . .) to (

⋃
b ∈ (C ∪ {a}) · . . .) in the last

step is not as severe as it may seem. The formula

k[gm] ⊆ (
⋃
` · ` ∈ ({m} ∪ C) | h`)

in the last step of the calculation is just proof obligation (7) with L = {m} ∪ C.
When we model reactive systems in Event-B, we do not need to be aware of the

failures model. The proof obligations form a barrier that shields from the details and
complications of the semantic model.

Given the description of Event-B in the introduction it is tempting to interpret Event-
B always in the way presented in this section. After all, Event-B is a descendant of
Action Systems and has been conceived to model systems. However, the semantics of
Event-B is not fixed. We can think about any Event-B machine in terms of any appro-
priate semantics. In the next section we discuss Event-B for sequential program devel-
opment — with different semantics but with similar proof obligations to those of this
section.

4 Sequential Program Modelling

Event-B has been used for sequential program development [4]. We present a sound-
ness argument resulting from the “defect” of Event-B not to provide preconditions for
events: events are guarded and block execution when the guard is false. In sequential
program refinement preconditions are more common because they lead certainly to im-
plementable programs. This does not hold for guards. If we were to interpret event
guards as preconditions the problem would disappear. (In fact, this interpretation is
customary in Z [23,24].) We need an additional proof obligation to rectify this.

Given the problem described above: Why does Event-B not support preconditions
and guards? By contrast, this is supported by the B Method [1] but leads to more in-
tricate (and sometimes obscure) proof obligations. In Event-B simplicity of the proof
obligations is considered of major importance. It brings two strongly related benefits:
proof obligations are easy to understand, and more efficient and comprehensive tool
support is possible.
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In this section we present how enabledness proof obligations arise when proving
loop introduction correct in Event-B. We first present some set transformer theory. In the
remainder of this section we prove loop introduction correct with respect to (forward)
refinement of set transformers. The enabledness proof obligation will only appear at the
very end of the proof.

4.1 Set Transformers

The notions introduced in this section are intended to capture semantical properties of
sequential programs. This should not be confounded with the actual Event-B notation
that uses first-order predicate logic and set theory presented in Section 2. The model of
set transformers we use follows closely the type-theoretical model of [11]4. However,
instead of type theory we use set theory which is easier to relate to Event-B; see also
[21]. State spaces are Cartesian products denoted by the letters Φ and Ψ as introduced
in Section 2.

Set transformers5 are functions from sets to sets. Let g and ϕ be subsets of V and s
a relation. In this article we make use of the following set transformers6:⌊

g
⌋
(ϕ) =̂ g ∩ ϕ (assertion)⌈

g
⌉
(ϕ) =̂ (Φ \ g) ∪ ϕ (assumption)⌈

s
⌉
(ϕ) =̂ {v | s[{v}] ⊆ ϕ} . (demonic update)

For set transformers P we define precondition pre(P ) and guard grd(P ) by

pre(P ) =̂ P (Φ)
grd(P ) =̂ Φ \ P (∅) .

Note, that (1) implies i∩grd(
⌈
gm
⌉
;
⌈
sm
⌉
) = i∩gm and i∩pre(

⌊
gm
⌋
;
⌈
sm
⌉
) = i∩gm.

The informal description of the meaning of a guard in the beginning of Section 2 leaves
us a choice for its interpretation. It can be read as an assertion or an assumption. The
standard reading of Event-B is as an assertion, that is, event Em corresponds to the set
transformer ⌈

gm
⌉
;
⌈
sm
⌉

. (10)

Based on set transformers, sequential programs are usually specified in terms of speci-
fication statements[11,20], namely,⌊

gm
⌋
;
⌈
sm
⌉

, (11)

4 Our presentation is based on first-order set theory instead of higher-order logic. For this reason,
we use set transformers instead of predicate transformers.

5 We use the definitions of [11] over that of [1] because they seem to be easier to handle during
proof; to avoid a notational clash we use

¨
·
˝

instead of { · } and
˚
·
ˇ

instead of [ · ] .
6 Angelic update

¨
s
˝
(ϕ) b= {v | s[{v}] ∩ ϕ 6= ∅} is missing from the list. We do not need it

in this article.
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where grd(
⌊
gm
⌋
;
⌈
sm
⌉
) = Φ would be required as a healthiness condition [13]. The

two simple laws ⌊
g
⌋
;
⌈
g
⌉

=
⌊
g
⌋

(12)⌈
g
⌉
;
⌊
g
⌋

=
⌈
g
⌉

(13)

permit us to switch between the two representations (10) and (11) in suitable contexts.

4.2 Refinement of Set Transformers

Denoting by v the ordering of set transformers

P v Q =̂ (∀ϕ · ϕ ⊆ Φ ⇒ P (ϕ) ⊆ Q(ϕ)) ,

an extensive refinement theory can be developed for set transformers [11,21]. For a
relation k let

⌈
k
⌉∼

be the left adjoint of the set transformer
⌈
k
⌉
. It has the following

simple characterisation [21]: ⌈
k
⌉∼(ϕ) = k[ϕ] . (14)

A set transformer P is said to be forward refined by a set transformer Q, denoted
by P vk Q, if ⌈

k
⌉∼ ;P v Q ;

⌈
k
⌉∼

.

Taking P and Q to be either of the form (10) or (11), forward refinement can be
rephrased in relational terms [11,21]:⌈

g
⌉
;
⌈
s
⌉
vk
⌈
h
⌉
;
⌈
t
⌉
⇔ k ; (hC t) ⊆ (g C s) ; k (15)⌊

g
⌋
;
⌈
s
⌉
vk
⌊
h
⌋
;
⌈
t
⌉
⇔ g C k ⊆ k B h ∧ g C (k ; t) ⊆ s ; k (16)

At its core refinement in Event-B corresponds to forward refinement of universally
conjunctive set transformers of the form (10). This is the interpretation used in Sec-
tion 3. But Event-B does not have to be interpreted in this way. This is discussed in
more detail in the remainder of this section:

We want to verify that introducing a loop as described in [4] in Event-B is sound.
Note that because of

g C k ⊆ k B h ∧ k ; (hC t) ⊆ (g C s) ; k ⇒ g C (k ; t) ⊆ s ; k

it is sufficient to prove just g C k ⊆ k B h on top of (15) so as to obtain (16). This
indicates where to begin with a theory of sequential program refinement in Event-B.
Matters get complicated by the presence of while loops and associated new events. We
consider only this case because the case where loops are not involved is quite trivial as
we have just seen.
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4.3 Introduction of a While Loop

Let m ∈ αM and n ∈ αN\αM . Our aim is to prove that the abstract event Em is
refined by a loop composed of the new event Fn followed by an assignment, the action
of the concrete event Fm:

while Hn do
Tn

end ;
Tm .

We model the loop by the least fix point (µX ·B(X)):⌊
gm
⌋
;
⌈
sm
⌉
vk (µX ·B(X)) ;

⌈
tm
⌉

, (17)

where the body of the loop is given in terms of the new event Fn 7

B(X) =̂ (
⌈
hn
⌉
; (
⌊
hn
⌋
;
⌈
tn
⌉
) ;X) u

⌈
Ψ\hn

⌉
.

(Because of law (13), we can simplify B(X) to (
⌈
hn
⌉
;
⌈
tn
⌉
;X) u

⌈
Ψ\hn

⌉
. We

may not want to carry out this simplification, though, if Fn is refined further. In that
case we would want to replace

⌊
hn
⌋
;
⌈
tn
⌉

in the longer formula by whatever refines it.
In that case we would like a more concise loop guard than just the guard

⌈
hn
⌉

of the
new event. We are not concerned about the exact form of the loop guards here, however.
A systematic way of deriving them is presented in [4].)

Proof of (17). We assume event Fm refines event Em,⌈
gm
⌉
;
⌈
sm
⌉
vk
⌈
hm
⌉
;
⌈
tm
⌉

, (18)

and the loop (µX ·B(X)) forward refines skip, that is,⌈
idΦ
⌉
vk (µX ·B(X)) , (19)

Note, that the update
⌈
idΦ
⌉

does not diverge, hence, the refinement (19) requires the
new concrete event Fn to be convergent. Now,

(17)

≡ { (14) and def. of
⌊
-
⌋

and vk }⌊
gm
⌋
;
⌈
sm
⌉
vk

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌈
tm
⌉

≡ { (∗) }⌊
gm
⌋
;
⌈
sm
⌉
vk

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌈
hm
⌉
;
⌈
tm
⌉

≡ { (12) }⌊
gm
⌋
;
⌈
gm
⌉
;
⌈
sm
⌉
vk

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌈
hm
⌉
;
⌈
tm
⌉

⇐ {
⌊
gm
⌋
vk

⌊
k[gm]

⌋
}

(18) ∧ (19)

7 The operator u denotes demonic choice of set transformers: (P uQ)(ϕ) = P (ϕ) ∧Q(ϕ) .
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Only the inference marked by (∗) is missing. We close the gap by proving the fol-
lowing claim⌊

k[gm]
⌋
; (µX ·B(X)) ;

⌈
hm
⌉

=
⌊
k[gm]

⌋
; (µX ·B(X)) , (20)

permitting to eliminate the guard hm of the concrete event from the left hand side. This
is done in the next two sections: in Section 4.4 we prove two claims facilitating the
conclusion of the proof of (20) in the ensuing Section 4.5.

4.4 Analysing the While Loop

Our aim is to establish (20). In order to eliminate
⌈
hm
⌉
, propagating some information

through the loop seems a good idea. Hence, we have a closer look at the set transformer⌊
k[gm]

⌋
; (µX ·B(X)). Assuming the new event is convergent —as we do: (19)— we

can exchange the least against the greatest fix point [11,18]:⌊
k[gm]

⌋
; (µX ·B(X)) =

⌊
k[gm]

⌋
; (νX ·B(X))

So we can carry out fix point calculations using the greatest fix point.

First, we show k[gm] ⊆ (νX ·B(X))(k[gm]). We know that the abstract guard
gm is an invariant of the concrete action sn because the concrete event refines skip:

k[gm] ⊆
⌈
tn
⌉
(k[gm]) . (21)

We state without proof (compare [11, Lemma 21.9], for instance):

(νX ·B(X))(ϕ) = (νx · (hn ∩
⌈
tn
⌉
(x)) ∪ ((Ψ\hn) ∩ φ)) . (22)

We prove that k[gm] is an invariant of the loop (νX ·B(X)). We calculate:

(νX ·B(X))(k[gm]) { (22) }
= (νx · (hn ∩

⌈
tn
⌉
(x)) ∪ ((Ψ\hn) ∩ k[gm])) { see def. of b(x) below }

= (νx · b(x)) { see below }
⊇ k[gm] .

We define b(x) by b(x) =̂ (hn∩
⌈
tn
⌉
(x)) ∪ ((Ψ\hn)∩k[gm]) and prove the remaining

claim k[gm] ⊆ (νx · b(x)); we insert k[gm] into b(x):

b(k[gm]) { def. of b(x) }
= (hn ∩

⌈
tn
⌉
(k[gm])) ∪ ((Ψ\hn) ∩ k[gm]) { (21) }

⊇ (hn ∩ k[gm]) ∪ ((Ψ\hn) ∩ k[gm]) { set theory }
= k[gm] .

Using the fix point property (e.g. [11]),

φ ⊆ b(φ) ⇒ φ ⊆ (νx · b(x)) ,

we conclude k[gm] ⊆ (νx · b(x)) as desired.
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Second, (νX ·B(X))((Ψ\hn) ∩ φ) = (νX ·B(X))(φ). In other words, we
can also show that (νX ·B(X)) establishes the negated guard of the concrete event;
see [11]:

(νX ·B(X))((Ψ\hn) ∩ φ) { (22) }
= (νx · (hn ∩

⌈
tn
⌉
(x)) ∪ ((Ψ\hn) ∩ (Ψ\hn) ∩ φ)) { set theory }

= (νx · (hn ∩
⌈
tn
⌉
(x)) ∪ ((Ψ\hn) ∩ φ)) { (22) }

= (νX ·B(X))(φ) .

4.5 Use of the Enabledness Proof Obligation

Combining the first and second claim of the preceding section, we have proved:⌊
k[gm]

⌋
; (µX ·B(X)) =

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌊
(Ψ\hn) ∩ k[gm]

⌋
. (23)

Finally, we can discharge (20) by means of (7):⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌈
hm
⌉

{ (23) }

=
⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌊
(Ψ\hn) ∩ k[gm]

⌋
;
⌈
hm
⌉

{ (∗) }
=

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌊
(Ψ\hn) ∩ k[gm]

⌋
{ (23) }

=
⌊
k[gm]

⌋
; (µX ·B(X)) ,

where the step marked by (∗) depends on

k[gm] ⊆ hm ∪ hn (24)

which corresponds to the enabledness proof obligation (7) with L = {m,n}. Using this
proof obligation, we have proved something about preconditions. If we were committed
to the failures semantics of Event-B, we would have had difficulties seeing this. Intu-
itively, deadlock-freeness appears quite distant from preconditions. The enabledness
proof obligations permit us to weaken preconditions as usual in sequential program
refinement [20]; we have k[gm] ⊆ hm ∪ hn but only k−1[hm] ⊆ gm .

Preservation of enabledness properties is achieved by simple rules governing their
refinement [9]; the guard of each abstract event must imply the guard of the concrete
event or the guard of some new event. This is just what we have shown to be necessary
in this section. Loop introduction is proved by refinement. If we continue in this way
correctness is preserved.

When developing sequential programs in Event-B we do not need to apply the pos-
sibly complex underlying theory directly but only know about the proof obligations of
the kind given in the introduction. We do not need to be aware of the theory while mod-
elling a program. We do not need to be aware of the theory while modelling other kinds
of system either but simply rely on the proof obligations presented to us. A large amount
of those proof obligations is shared among the the different kinds of system. This makes
it easy for the same person to create models in the different domains without having to
learn a new approach each time.
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4.6 Limitations.

In standard situations a system model is based on a specific, usually, well-known se-
mantics. When using Event-B we only consider the kind of model created interesting,
within the scope of this article, a sequential program or a reactive system. However,
in these situations we do not worry too much by which means soundness was proved
with respect to the proof obligations. We simply rely on the proof obligations as they
are generated by some tool [6]. In standard situations we ought to be able to focus on
modelling, and writing a model become mere routine. However, it is also possible that
a model does not fit one of those situations. For instance, in the model described in
[2] some events that are newly introduced must be convergent and some need not be.
In that case one has to be aware of the semantics of the model justifying the presence
of proof obligations and the absence of proof obligations. This is the price of the lib-
erty one can have when modelling in Event-B. We can create models unconstrained by
some semantics. This may be particularly useful for experimentation. But we have to
be careful about what a model means and justify why we consider a particular model
reasonable. For such models the semantics can be considered to be part of the proper-
ties of the system modelled — it is no longer given a priori as is the case in standard
situations.

5 Conclusion

Event-B addresses various modelling domains among which reactive systems and se-
quential programs presented in this article. Event-B has a notation based on first-order
predicate logic and set theory. Event-B has a set proof obligations that are associated
with models.

What Event-B lacks is a behavioural semantics. And that is so intentionally. In fact,
it would be difficult to support all those modelling domains using one semantics that
would suit all. What we have seen, by way of two examples, is that the proof obligations
of Event-B can be used in a way to fit with some intended semantics, be it relational or
predicate transformer-based, be it for reactive systems or sequential programs. In some
sense, in Event-B semantics is replaced by proof obligations. Possible semantics are
characterised but not fixed.

The major advantage of this approach is that proof obligations can be used across
the different domains. From our experience we know that they have a lot in common and
seems a good idea to exploit this. For the different domains, though, proof obligations
can be proved sound with respect to appropriate semantics. We would still like a model
that is supposed to represent a sequential program, say, to have proof obligations that
are sound with respect to a semantics for sequential programs. And this can be achieved
in Event-B by linking the proof obligations to an appropriate semantic theory.
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