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Abstract. A reasonable approach to formal modelling is to start with a specifi-
cation that captures the requirements of a system and then use formal refinement
to implement it.
The problem with this approach is that for complex systems the specification it-
self is complex. It becomes a challenge to say whether the specification is the right
one for the given requirements. Sometimes requirements also concern features of
a system closely related to its implementation. This would make an abstract spec-
ification necessarily incomplete.
We believe that it is better not to follow the rigid approach to modelling described
above. Instead, we argue that the specification itself should be elaborated by re-
finement. Ultimately, the distinction between specification and implementation is
no longer made in the strict sense above. There is only one model of the system
that is connected by successive refinements. Using Event-B, we demonstrate how
this can be applied to cope with the complexity of specifications. On the one hand
we benefit from the reduced number of detail to consider at different times. On
the other hand we are encouraged to reason about the formal model since the be-
ginning and to rethink it occasionally to capture better its intended behaviour and
match the requirements.

1 Introduction

When we create a complex model, usually, our understanding of it is incomplete at first;
and a modelling method should help to improve our understanding of the model. During
initial phases in the modelling process, we use refinement to manage the many details
of a complex model. Refinement is seen as a technique to introduce detail gradually
at a rate that eases understanding. We do not assume that we have one most abstract
model, the specification, that could serve as point of reference for all further refine-
ments. Instead, the model is completed by refinement until we are satisfied that the
model captures all important requirements and assumptions. In this article we concern
ourselves only with what is involved in coming up with an abstract model of some sys-
tem. Refinement can also be used to produce implementations of abstract models, for
instance, in terms of a sequential program [1,16]. But this is not discussed in this article.

Event-B [2] is a formal modelling method for discrete systems based on refine-
ment [4,5,6]. Event-B and its predecessor, the B Method, have been used in large scale
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industrial projects [7,8,19]. In Event-B formal modelling serves primarily for reason-
ing: reasoning is an essential part of modelling because it is the key to understanding
complex models. Reasoning about complex models should not happen accidentally but
needs systematic support within the modelling method. This thinking lies at the heart
of the Event-B method. It gives a prominent rôle to proof obligations. Proof obligations
serve to reason about a model and to provide meaning [11].

We briefly contrast the incremental refinement-based modelling approach to two
well-known approaches, TLA+ [14] and ASM [9]. In TLA+ modelling begins with a
specification, in ASM with a ground model. In both methods there are guidelines on
how to begin. This is a difficult and serious problem as an inadequate model may not
provide the kinds of insight we seek or may be plainly wrong (as a starting point for an
implementation). Among the hints on how to begin we find: (1) choose the appropriate
abstraction level; (2) be as abstract as possible yet complete; (3) be simple and concise.
This article addresses (1) and (2) by effectively avoiding the precise choice of an ini-
tial abstraction level. We begin with some simple abstract model and introduce detail
gradually. Guideline (3) remains, being the key to comprehensibility.

We understand incremental modelling in two ways. The first way is by formal re-
finement. An existing model is proved to be refined by another: all properties of the
existing model are preserved in the refined model. The second way is by alteration of
an existing model: properties of the existing model may be broken. When a model is
shown to be not consistent, it needs to be modified in order to make it consistent. This
reflects a learning process supported by various forms of reasoning about a model, for
instance, proof, animation, or model-checking. This way of thinking about a model is
common in mathematical methodology [13,17,18]. The first way is commonly used in
formal methods, whereas the second is at least not acknowledged. We believe both ways
are crucial for formal modelling.

The incremental approach is only feasible in the presence of software tools that
make reasoning easy and modifications to a model painless. We have relied on the
Rodin modelling tool [3] for Event-B for proof obligation generation and proof support
and on the ProB tool [15] for animation and model-checking. Both tools are integrated
in the Rodin platform and can be used seamlessly. In later sections we do not further
specify the tools used, though, as this should be clear from the context. Also note that
we present proof in an equational style [10,20] whereas the Rodin tool uses sequents as
in [2].

Overview. In Section 2 we introduce Event-B. The following sections are devoted to
solving a concrete problem in Event-B. In Section 3 the problem is stated. A first model
is produced and discussed in Section 4. In Sections 5 and 7 we elaborate the model
by refinement. Section 6 contains a small theory of transitive closures that is needed
in the refinement. In Section 8 some further improvements of the model are made and
limitations of formal modelling discussed.

2 Event-B

Event-B models are described in terms of the two basic constructs: contexts and ma-
chines. Contexts contain the static part of a model whereas machines contain the dy-
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namic part. Contexts may contain carrier sets, constants, axioms, where carrier sets are
similar to types [4]. In this article, we simply assume that there is some context and do
not mention it explicitly. Machines are presented in Section 2.1, and proof obligations
in Section 2.2 and Section 2.3. All proof obligations in this article are presented in the
form of sequents: “premises” ` “conclusion”.

For the purpose of this article, we have reduced the Event-B notation used so that
only a little notation suffices and formulas are easier to comprehend, in particular, con-
cerning the relationship between formal model and proof obligations. We have also
reduced the amount of proof obligations associated with a model. We have done this for
two reasons: firstly, it is easier to keep track of what is to be proved; secondly, it permits
us to make a point about a limitation of formal methods later on.

2.1 Machines

Machines provide behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v = v1, . . . , vm define
the state of a machine. They are constrained by invariants I(v). Theorems are predicates
that are implied by the invariants. Possible state changes are described by means of
events E(v). Each event is composed of a guard G(t, v) and an action x := S(t, v),
where t = t1, . . . , tr are parameters the event may contain and x = x1, . . . , xp are
the (distinct) variables it may change1. The guard states the necessary condition under
which an event may occur, and the action describes how the state variables evolve when
the event occurs. We denote an event E(v) by

E(v) =̂ any t when

G(t, v)
then

x := S(t, v)
end

or E(v) =̂ begin

x := S(v)
end

The short form on the right hand side is used if the event does not have parameters
and the guard is true. A dedicated event of the latter form is used for initialisation. All
assignments of an action x := S(t, v) occur simultaneously; variables y that do not
appear on the left-hand side of an assignment of an action are not changed by the action,
yielding one simultaneous assignment

x1, . . . , xp, y1, . . . , yq := S1(t, v), . . . , Sp(t, v), y1, . . . , yq , (1)

where x1, . . . , xp, y1, . . . , yq are the variables v of the machine. The action x :=
S(t, v) of event E(v) denotes the formula (1), whereas in the proper model we only
specify those variables x` that may change.

1 Note that, as x is a list of variables, S(t, v) = S1(t, v), . . . , Sp(t, v) is a corresponding list
of expressions.
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2.2 Machine Consistency
Invariants are supposed to hold whenever variable values change. Obviously, this does
not hold a priori for any combination of events and invariants I(v) = I1(v)∧. . .∧ Ii(v)
and, thus, needs to be proved. The corresponding proof obligations are called invariant
preservation (` ∈ 1 .. i):

I(v)
G(t, v)
`

I` (S(t, v)) ,

(2)

for every event E(v). Similar proof obligations are associated with the initialisation
event of a machine. The only difference is that neither an invariant nor a guard appears in
the premises of proof obligation (2), that is, the only premises are axioms and theorems
of the context. We say that a machine is consistent if all events preserve all invariants.

2.3 Machine Refinement
Machine refinement provides a means to introduce more details about the dynamic prop-
erties of a model [4]. The refinement theory of Event-B originates in the Action System
formalism [6]. We present some important proof obligations for machine refinement
that are used in this article.

A machine N can refine at most one other machine M . We call M the abstract
machine and N a concrete machine. The state of the abstract machine is related to
the state of the concrete machine by a gluing invariant J(v, w) = J1(v, w) ∧ . . . ∧
Jj(v, w), where v = v1, . . . , vm are the variables of the abstract machine and w =
w1, . . . , wn the variables of the concrete machine.

Each event E(v) of the abstract machine is refined by a concrete event F (w). Let
abstract event E(v) with parameters t = t1, . . . , tr and concrete event F (w) with
parameters u = u1, . . . , us be

E(v) =̂ any t when

G(t, v)
then

v := S(t, v)
end

and F (w) =̂ any u when

H(u, w)
with

t = W (u)
then

w := T (u, w)
end

Informally, concrete event F (w) refines abstract event E(v) if the guard of F (w) is
stronger than the guard of E(v), and the gluing invariant J(v, w) establishes a simula-
tion of the action of F (w) by the action of E(v). The corresponding proof obligations
are called guard strengthening (` ∈ 1 .. g):

I(v)
J(v, w)
H(u, w)
`

G` (W (u), v) ,

(3)
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with the abstract guard G(t, v) = G1(t, v) ∧ . . . ∧ Gg(t, v), and (again) invariant
preservation (` ∈ 1 .. j):

I(v)
J(v, w)
H(u, w)
`

J` (S(W (u), v), T (u, w)) .

(4)

The term W (u) denotes witnesses for the abstract parameters t, specified by the equa-
tion t = W (u) in event F (w), linking abstract parameters to concrete parameters. It
describes how F (w) refines E(v) just as the gluing invariant describes how concrete
machine N refines abstract machine M 2.

(The variable lists v and w do not need to be disjoint. If a variable name gets reused
in a refined machine, equality between the abstract and the concrete variable is postu-
lated implicitly, corresponding to a gluing invariant “vabs = vcon”. Similarly, equality
for common parameters of abstract and concrete events is postulated with a witness
“tabs = tcon”.)

3 Problem Statement

In the following sections we develop a simple model of a secure building equipped with
access control. The problem statement is inspired by a similar problem used by Abrial
[2]. Instead of presenting a fully developed model, we illustrate the process of how we
arrive at the model. We can not follow the exact path that we took when working on the
model: we made changes to the model as a whole several times. So we would soon run
out of space. We comment on some of the changes without going too much into detail
in the hope to convey some of the dynamic character of the modelling process.

The model to be developed is to satisfy the following properties:

P1 : The system consists of persons and one building.
P2 : The building consists of rooms and doors.
P3 : Each person can be at most in one room.
P4 : Each person is authorised to be in certain rooms (but not others).
P5 : Each person is authorised to use certain doors (but not others).
P6 : Each person can only be in a room where the person is authorised to be.
P7 : Each person must be able to leave the building from any room where the person

is authorised to be.
P8 : Each person can pass from one room to another if there is a door connecting the

two rooms and the person has the proper authorisation.
P9 : Authorisations can be granted and revoked.

Properties P1, P2, P8, and P9 describe environment assumptions whereas properties
P3, P4, P5, P6, and P7 describe genuine requirements. It is natural to mix them in the
description of the system. Once we start modelling, the distinction becomes important.
We have to prove that our model satisfies P3, P4, P5, P6, and P7 assuming we have P1,
P2, P8, and P9.

2 In full Event-B, instead of an equation t = W (u) a witness can be any predicate. It can also
have more free variables than just the abstract parameters u.
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4 Getting started with a fresh model

Our aim is to produce a faithful formal model of the system described by the properties
P1 to P9 of Section 3. The first decision we need to make concerns the use of refinement.
We have decided to introduce the properties of the system in two steps. In the first step
we deal only with persons and rooms, in the second also with doors. This approach
appears reasonable. At first we let persons move directly between rooms. Later we state
how they do it, that is, by passing through doors. In order to specify doors we need
to know about rooms they connect. It is a good idea, though, to reconsider the strategy
chosen for refinement when it turns out to be difficult to tackle the elements of the model
in the planned order. For now, we intend to produce a model with one refinement:

(i) the abstract machine (this section) models room authorisations;
(ii) the concrete machine (sections 5 and 7) models room and door authorisations.

In Event-B we usually begin modelling by stating invariants that a machine should pre-
serve. (For an alternative approach see, for instance, [12].) When events are introduced
subsequently, we think more about how they preserve invariants than about what they
would do. The focus is on the properties that have to be satisfied. We declare two carrier
sets for persons and rooms, Person and Room, and a constant O, where O ∈ Room,
modelling the outside. We choose to describe the state by two variables for authorised
rooms and locations of persons, arm and loc, with invariants

inv1 : arm ∈ Person ↔ Room 3 Property P4
inv2 : Person × {O} ⊆ arm

inv3 : loc ∈ Person → Room Property P3
inv4 : loc ⊆ arm Property P6

Invariant inv2, that each person is authorised to be outside, is necessary because we
decided to model location by a total function making the outside a special room. In a
first attempt, we made loc a partial function from Person to Room expressing that a
person not in the domain of loc is outside. However, this turned out to complicate the
gluing invariant when introducing doors into the model later on. (Because of property
P7 we need an explicit representation of the outside in the model.) As a consequence
of our decision we had to introduce invariant inv2. It corresponds to a new requirement
that is missing from the list in Section 3 but that we have uncovered while reasoning
formally about the system. In the following we focus on how formal reasoning is used
to improve the model of the system.

In order to satisfy inv2, inv3 and inv4 we let

initialisation

begin

act1 : arm := Person × {O}
act2 : loc := Person × {O}

end

3 The term A↔B denotes the set of relations from A to B.
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We model passage from one room to another by event pass,

pass

any p, r when

grd1 : p 7→ r ∈ arm p is authorised to be in r

grd2 : p 7→ r /∈ loc but not already in r

then

act1 : loc := loc C− {p 7→ r}
end

(For relations a and b relational overwriting C− is defined by a C− b = dom(b) C− a ∪ b ,
and, for a set s, domain subtraction C− by x 7→ y ∈ s C− a ⇔ x /∈ s ∧ x 7→ y ∈ a .)
Event pass preserves the invariants. For instance, it preserves inv4:

loc ⊆ arm Invariant inv4
p 7→ r ∈ arm Guard grd1
p 7→ r /∈ loc Guard grd2
`

loc C− {p 7→ r} ⊆ arm Modified invariant inv4

We prove,

loc C− {p 7→ r} { def. of C− }
= {p} C− loc ∪ {p 7→ r} { {p} C− loc ⊆ loc }
⊆ loc ∪ {p 7→ r} { inv4 and grd1 }
⊆ arm .

Granting and revoking authorisations for rooms is modelled by the two events

grant revoke

any p, r when

grd1 : p ∈ Person

grd2 : r ∈ Room

then

act1 : arm := arm ∪ {p 7→ r}
end

any p, r when

grd1 : p ∈ Person

grd2 : p 7→ r /∈ loc

then

act1 : arm := arm \ {p 7→ r}
end

The two events do not yet model all of P9 which refers to authorisations in general,
including authorisations for doors. Events grant and revoke appear easy enough to
get them right. But it is as easy to make a mistake. This is why we have specified
invariants: to safeguard us against mistakes. If the proof of an invariant fails, we have
the opportunity to learn something about the model and improve it. The two events
preserve all invariants except for revoke which violates invariant inv2,

Person × {O} ⊆ arm Invariant inv2
p ∈ Person Guard grd1
p 7→ r /∈ loc Guard grd2
`

Person × {O} ⊆ arm \ {p 7→ r} Modified invariant inv2
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In an instance of the model with two different rooms I and O and one person P we find
a counter example:

arm = {P 7→ I, P 7→ O}, loc = {P 7→ I}, p = P, r = O .

In fact, we must not remove O from the set of authorised rooms of any person. To
achieve this, we add a third guard to event revoke:

grd3 : r 6= O .

A counter example provides valuable information, pointing to a condition that it does
not satisfy. It may not always be as simple to generalise but at least one can obtain an
indication where to look closer.

The model we have obtained thus far is easy to understand. Ignoring the doors in
the building, it is quite simple but already incorporates properties P3, P4, and P6. Its
simplicity permits us to judge more readily whether the model is reasonable. We can
inspect it or animate it and can expect to get a fairly complete picture of its behaviour.
Way may ask: Is it possible to achieve a state where some person can move around
in the building? We have only partially modelled the assumptions P1, P2, P8, and P9.
We could split them into smaller statements that would be fully modelled but have
decided not to do so. Instead, we are going to document how they are incorporated in
the refinement that is to follow.

5 Elaboration of more details

We are satisfied with the abstract model of the secure building for now and turn to
the refinement where doors are introduced into the model. In the refined model we
employ two variables adr for authorised doors and loc for the locations of persons
in the building (as before). The intention is to keep the information contained in the
abstract variable arm implicitly in the concrete variable adr. That is, in the refined
model variable arm would be redundant. We specify

inv5 : adr ∈ Person → (Room ↔ Room) Property P5
inv6 : ∀ q · ran(adr(q)) ⊆ arm[{q}] 4 Property P4

5.1 Moving between rooms

Let us first look at event pass. Only a few changes are necessary to model property P8,

pass

any p, r when

grd1 : loc(p) 7→ r ∈ adr(p)
then

act1 : loc := loc C− {p 7→ r}
end

4 The term R[A] denotes the relational image of the set A under the realtion R, that is, R[A] =
{y | ∃x · x ∈ A ∧ x 7→ y ∈ R}.
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We only have to show guard strengthening, because loc does not occur in inv5 and
inv6. For the abstract guard grd1 we have to show:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
loc(p) 7→ r ∈ adr(p) Concrete guard grd1
`

p 7→ r ∈ arm Abstract guard grd1

which holds because r ∈ ran(adr(p)). The second guard strengthening proof obliga-
tion of event pass is:

loc ∈ Person → Room Invariant inv3
loc(p) 7→ r ∈ adr(p) Concrete guard grd1
`

p 7→ r /∈ loc Abstract guard grd2

Using inv3 we can rephrase the goal,

p 7→ r /∈ loc { inv3 }
⇔ loc(p) 6= r

Neither concrete guard grd1 nor the invariants inv1 to inv6 imply this. The invariant
is too weak. We do not specify that doors connect different rooms. In fact, our model of
the building is rather weak. We decide to model the building by the doors that connect
the rooms in it. They are modelled by a constant Door. We make the following three
assumptions about doors:

axm1 : Door ∈ Room ↔ Room Each door connects two rooms.

axm2 : Door ∩ idRoom = ∅ No door connects a room to itself.

axm3 : Door ⊆ Door−1 Each door can be used in both directions.

These assumptions are based on our domain knowledge about properties of typical
doors. They were omitted from the problem description because they seemed obvi-
ous. However, the validity of our model will depend on them. As such they ought to
be included. We began to think about properties of doors because we did not succeed
proving a guard strengthening proof obligation. If axiom axm2 would hold for all re-
lations adr(p), for p ∈ Person, we should succeed. Hence, we add a new invariant
inv7. We realise that it captures much better property P5 than invariant inv5,

inv7 : ∀ q · adr(q) ⊆ Door . Property P5

We prove,

x 7→ y ∈ adr(p) { inv7 with “q := p” }
⇒ x 7→ y ∈ Door { axm2 }
⇒ x 7→ y /∈ idRoom { def. of idRoom }
⇔ x 6= y ,
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thus, ∀x, y · x 7→ y ∈ adr(p) ⇒ x 6= y , and with “x, y := loc(p), r” we are able
to show:

Door ∩ idRoom = ∅ Axiom axm2
loc ∈ Person → Room Invariant inv3
∀ q · adr(q) ⊆ Door Invariant inv7
loc(p) 7→ r ∈ adr(p) Concrete guard grd1
`

p 7→ r /∈ loc Abstract guard grd2

6 Intermezzo on transitive closures

Property P7 is more involved. It may be necessary to pass though various rooms in order
to leave the building. We need to specify a property about the transitive relationship of
the doors. We can rely on the well-known mathematical theory of the transitive closure
of a relation.

A relation x is called transitive if x ; x ⊆ x. In other words, any composition of
elements of x is in x. The transitive closure of a relation x is the least relation that
contains x and is transitive. We define the transitive closure x+ of a relation x by

∀x · x ⊆ x+ (5)

∀x · x+ ; x ⊆ x+ (6)

∀x, z · x ⊆ z ∧ z ; x ⊆ z ⇒ x+ ⊆ z . (7)

That is, x+ is the least relation z satisfying x ∪ z ; x ⊆ z. Furthermore, the order in
which the transitive closure is formed does not matter,

∀x · x ∪ x+ ; x = x+ (8)

∀x · x ∪ x ; x+ = x+ . (9)

The transitive closure is monotonic and maps identity and empty relation to themselves,

∀x, y · x ⊆ y ⇒ x+ ⊆ y+ (10)

∀w · id+
w = idw (11)

∅+ = ∅ . (12)

A relation x is called symmetric if x ⊆ x−1. For a symmetric relation we can prove
more laws about its transitive closure: it is symmetric too and the identity is contained
in it,

∀x · x ⊆ x−1 ⇒ (x+)−1 ⊆ x+ (13)

∀x · x ⊆ x−1 ⇒ iddom(x) ⊆ x+ . (14)
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7 Towards a full model of the building

Using the transitive closure of authorised rooms we can express that every person can
at least reach the authorised rooms from the outside,

inv8 : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] .

This invariant is weaker than property P7. However, given the discussion about prop-
erties of doors in Section 5 we should be able to prove that all invariants jointly imply
property P7 which we formalise as a theorem,

thm1 : ∀ q · (arm[{q}] \ {O})× {O} ⊆ adr(q)+ . Property P7

We proceed like this because we expect that proving inv8 to be preserved would be
much easier than doing the same with thm1. Let us continue working with inv8 for
now and return to thm1 later.

7.1 Initialisation

In the abstract model all persons can only be outside initially. This corresponds to them
not being authorised to use any doors,

initialisation

begin

act1 : adr := Person × {∅}
act2 : loc := Person × {O}

end

The invariant preservation proof obligations for inv5 and inv6 hold, as can easily be
seen letting “arm, adr := Person× {O}, P erson× {∅}” in inv5, inv6, and inv7,

` Person × {∅} ∈ Person → (Room ↔ Room)
` ∀ q · ran((Person × {∅})(q)) ⊆ (Person × {O})[{q}]
` ∀ q · (Person × {∅})(q) ⊆ Door

For invariant inv8 there is more work to do. We have to show:

` ∀ q · (Person × {O})[{q}] ⊆ (Person × {∅})(q)+[{O}]

We prove,

(Person × {∅})(q)+[{O}] { set theory }
= ∅+[{O}] { law (12) }
= ∅[{O}] { set theory }
= ∅
6⊇ {O} { set theory }
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= (Person × {O})[{q}] .

Invariant inv8 is too strong! Because of invariant inv7 we cannot initialise adr to
Person × {{O 7→ O}} and because of inv6 we cannot use any other door. Thus,
we must weaken invariant inv8. We replace it by:

inv8′ : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O}

After analysing initialisation and event pass of the refined machine, the gluing invari-
ants of the refined machine have become

inv5 : adr ∈ Person → (Room ↔ Room)
inv6 : ∀ q · ran(adr(q)) ⊆ arm[{q}]
inv7 : ∀ q · adr(q) ⊆ Door

inv8′ : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} .

7.2 Granting door authorisations

A new door authorisation can be granted to a person if (a) it has not been granted yet
and (b) authorisation for one of the connected rooms has been granted to the person.
We introduce constraint (a) to focus on the interesting case and constraint (b) to satisfy
invariant inv8′. Thus,

grant

any p, s, r when

grd1 : s 7→ r /∈ adr(p)
grd2 : s ∈ dom(adr(p))

then

act1 : adr := adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}} 5

end

Invariant inv5 is preserved by event grant by definition of relational overwriting C−.
For invariant inv6 we have to prove:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r /∈ adr(p) Concrete guard grd1
s ∈ dom(adr(p)) Concrete guard grd2
`

ran((adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}})(q))
⊆ (arm ∪ {p 7→ r})[{q}] Modified invariant inv6

for all q. For q 6= p the proof is easy. For the other case q = p we prove, letting
D = {s 7→ r, r 7→ s},

ran(adr(p) ∪ D) ⊆ (arm ∪ {p 7→ r})[{p}] { set theory, def. of D }
5 Event-B has the shorter (and more legible) notation adr(p) := adr(p) ∪ {s 7→ r, r 7→ s}

for this. We do not use it because we can use the formula above directly in proof obligations.
We also try as much as possible to avoid introducing more notation than necessary.
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⇔ ran(adr(p)) ∪ {r, s} ⊆ arm[{p}] ∪ {r} { inv6 with “q := p” }
⇔ {r, s} ⊆ arm[{p}] ∪ {r} { {r} ⊆ {r} }
⇔ {s} ⊆ arm[{p}] ∪ {r} { set theory }
⇔ s ∈ arm[{p}] ∨ s = r { inv6 with “q := p” }
⇐ s ∈ ran(adr(p))

We would expect s ∈ ran(adr(p)) to hold because doors are symmetric and because
of concrete guard grd2, that is, s ∈ dom(adr(p)). We specified symmetry in axiom
axm3 but this property is not covered by invariant inv7. We have to specify it explicitly,

inv9 : ∀ q · adr(q) ⊆ adr(q)−1 . (see axiom axm3)

We can continue the proof where we left off

s ∈ ran(adr(p)) { inv9 with “q := p” }
⇐ s ∈ dom(adr(p))

It is easy to show that invariant inv9 itself is preserved by event grant:

∀ q · adr(q) ⊆ adr(q)−1 Invariant inv9
s 7→ r /∈ adr(p) Concrete guard grd1
s ∈ dom(adr(p)) Concrete guard grd2
`

(adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}})(q) Modified invariant inv9
⊆ (adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}})(q)−1

for all q. Let D = {s 7→ r, r 7→ s}. The interesting case is q = p as above,

adr(p) ∪ D { inv9 with “q := p” }
⊆ adr(p)−1 ∪ D { D−1 = D }
= adr(p)−1 ∪ D−1 { set theory }
= (adr(p) ∪ D)−1 .

Invariants inv8′ and inv7 remain to be analysed. We begin with the proof obligation
for the preservation of invariant inv7:

∀ q · adr(q) ⊆ Door Invariant inv7
s 7→ r /∈ adr(p) Concrete guard grd1
s ∈ dom(adr(p)) Concrete guard grd2
`

(adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}})(q)
⊆ Door Modified invariant inv7

for all q. For q = p,

adr(p) ∪ {s 7→ r, r 7→ s} ⊆ Door { inv7 and set theory }
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⇐ {s 7→ r, r 7→ s} ⊆ Door { inv9 and set theory }
⇐ s 7→ r ∈ Door . (15)

The guard of event grant needs to be strengthened; we replace grd1 by grd1′,

grd1′ : s 7→ r ∈ Door \ adr(p) ,

which implies s 7→ r ∈ Door, that is, (15). With grd1′ in place of grd1 the proof
succeeds. For invariant inv8′ we have some more work to do:

∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} Invariant inv8′

s 7→ r ∈ Door \ adr(p) Guard grd1′

s ∈ dom(adr(p)) Guard grd2
`

(arm ∪ {p 7→ r})[{q}] Modified invariant inv8′

⊆ (adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}})(q)+[{O}] ∪ {O}

for all q. Let D = {s 7→ r, r 7→ s}. For q = p we have to prove:

arm[{p}] ∪ {r} ⊆ (adr(p) ∪ D)+[{O}] ∪ {O} ,

given that (arm ∪ {p 7→ r})[{p}] = arm[{p}] ∪ {r}. We begin with the case
“arm[{p}] ⊆ (adr(p) ∪ D)+[{O}] ∪ {O}”:

arm[{p}] { inv8′ with “q := p” }
⊆ adr(p)+[{O}] ∪ {O} { law (10) with “x, y := adr(p), adr(p) ∪ D” }
⊆ (adr(p) ∪ D)+[{O}] ∪ {O} .

Before proving the second case “{r} ⊆ (adr(p) ∪ D)+[{O}] ∪ {O}”, we have a
closer look at guard grd2,

s ∈ dom(adr(p)) { inv9 with “q := p” }
⇒ s ∈ ran(adr(p)) { inv6 with “q := p” }
⇒ s ∈ arm[{p}] { inv8′ with “q := p” }
⇒ s ∈ adr(p)+[{O}] ∪ {O} { set theory }
⇔ s ∈ adr(p)+[{O}] ∨ s = O . (16)

Now we can conclude the proof, letting AD = adr(p) ∪ D:

AD+[{O}] ∪ {O} { set theory }
⊇ AD+[{O}] { law (8) with “x := AD”, set theory }
= AD[{O}] ∪ (AD+ ; AD)[{O}] { set theory }
⊇ D[{O}] ∪ (AD+ ; D)[{O}] { law (10) with “x, y := adr(p), AD” }
⊇ D[{O}] ∪ (adr(p)+ ; D)[{O}] { set theory }
= D[{O}] ∪ D[adr(p)+[{O}]] { (16) and def. of D }
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⊇ {r} .

Having specified invariant inv9 we would now succeed proving theorem thm1 pos-
tulated in the beginning of this section. This shows that our model satisfies property P7.
We do not carry out the proof but turn to the last event not yet refined.

7.3 Revoking door authorisations

We model revoking of door authorisations symmetrically to granting door authorisa-
tions. A door authorisation can be revoked if (a) there is an authorisation for the door,
(b) the corresponding person is not in the room that could be removed, and (c) the room
is not the outside. Condition (a) is just chosen symmetrically to grd1 of refined event
revoke (for the same reason). The other two conditions (b) and (c) are already present
in the abstraction. The two refined events grant and revoke together model property
P9.

revoke

any p, s, r when

grd1 : s 7→ r ∈ adr(p)
grd2 : p 7→ r /∈ loc

grd3 : r 6= O
then

act1 : adr := adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}}
end

We expect that the guard of event revoke will be to weak to preserve invariant inv8′.
We are going to search for it in the corresponding proof. But we can get started without
it, in particular, proving guard strengthening of the abstract guards grd1 to grd3 and
preservation of inv5, inv6, inv7, and inv9. For instance, preservation of inv6:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r ∈ adr(p) Concrete guard grd1
p 7→ r /∈ loc Concrete guard grd2
r 6= O Concrete guard grd3
`

ran((adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q))
⊆ (arm \ {p 7→ r})[{q}] Modified invariant inv6

for all q. For q = p we have to prove

ran(adr(p) \ {s 7→ r, r 7→ s}) ⊆ arm[{p}] \ {r} ,

thus,

r /∈ ran(adr(p) \ {s 7→ r, r 7→ s}) .
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This does not look right. Indeed, we find a counter example with one person P and
three different rooms H, I, O:

adr = {P 7→ {O 7→ H, H 7→ O, O 7→ I, I 7→ O, I 7→ H, H 7→ I}}
arm = {P 7→ H, P 7→ I, P 7→ O}
loc = {P 7→ O} p = P s = I r = H

In order to resolve this problem we could remove all doors connecting to r. But this
seems not acceptable: we grant door authorisations one by one and we should revoke
them one by one. We could also strengthen the guard of the concrete event requiring,
say, adr(p)[{r}] = {s}. But then we would not be able to revoke authorisations once
there are two or more doors for the same room. The problem is in the abstraction! The
abstract event revoke should not always remove r. We weaken the guard of the abstract
event,

revoke

any p, R when

grd1 : p ∈ Person

grd2 : loc(p) /∈ R

grd3 : R ∈ S(Room \ {O})
then

act1 : arm := arm \ ({p} × R)
end

where for a set X by S(X) we denote all subsets of X with at most one element:

Y ∈ S(X) =̂ Y ⊆ X ∧ (∀x, y · x ∈ Y ∧ y ∈ Y ⇒ x = y) .

With this the proof obligation for invariant preservation of inv6 becomes:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r ∈ adr(p) Concrete guard grd1
p 7→ r /∈ loc Concrete guard grd2
r 6= O Concrete guard grd3
`

ran((adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q))
⊆ (arm \ ({p} × R))[{q}] Modified invariant inv6

for all q. For q = p we have to prove,

ran(adr(p) \ {s 7→ r, r 7→ s}) ⊆ arm[{p}] \ R . (17)

Before we can continue we need to make a connection between r and R. We need a
witness for R. After some reflection we decide for

R = {r} \ ran(adr(p) \ {s 7→ r, r 7→ s}) . (18)

Witness (18) explains how the concrete and the abstract event are related. If there is
only one door s connecting to room r, then R = {r} and the authorisation for room
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r is revoked. Otherwise, R = ∅ and the authorisation for room r is kept. Now we are
ready to prove (17). In case r ∈ ran(adr(p) \ {s 7→ r, r 7→ s}), that is R = ∅ by
(18),

ran(adr(p) \ {s 7→ r, r 7→ s}) { set theory }
⊆ ran(adr(p)) { inv6 with “q := p” }
⊆ arm[{p}] { R = ∅ }
= arm[{p}] \ R ,

otherwise, that is in case r /∈ ran(adr(p) \ {s 7→ r, r 7→ s}),

ran(adr(p) \ {s 7→ r, r 7→ s}) { r /∈ ran(. . .) }
⊆ ran(adr(p)) \ {r} { R = {r} by (18) }
= ran(adr(p)) \ R { inv6 with “q := p” }
⊆ arm[{p}] \ R .

We note without showing the proofs that guard strengthening of the abstract guards
grd1 to grd3 and preservation of inv5, inv7, and inv9 all hold. Only preservation of
invariant inv8′ remains:

∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} Invariant inv8′

s 7→ r ∈ Door \ adr(p) Guard grd1′

s ∈ dom(adr(p)) Guard grd2
`

(arm \ ({p} × R))[{q}] Modified invariant inv8′

⊆ (adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q)+[{O}] ∪ {O}

for all q. Let D = {s 7→ r, r 7→ s}. For q = p we have to show

(arm \ ({p} × R))[{p}] ⊆ (adr(p) \ D)+[{O}] ∪ {O} . (19)

We have seen above that the term on term on the left hand side is either arm[{p}] or
arm[{p}] \ {r}. So we won’t succeed proving (19) unless we add a guard to event
revoke. We cannot use arm[{p}] in the guard because the refined machine does not
contain variable arm. If inv6 was an equality, we could use ran(adr(p)) instead of
arm[{p}], obtaining the guard

grd4 : ran(adr(p)) \ {r} ⊆ (adr(p) \ D)+[{O}] ∪ {O} .

It says that all rooms except for r must still be reachable from the outside after revoking
the authorisation for door D leading to room r. This sounds reasonable. We find that it
is not possible to turn the set inclusion into an equality in invariant inv6. However, we
can still prove the weaker theorem

thm2 : ∀ q · ran(adr(q)) ∪ {O} = arm[{q}] ,

using inv2, inv6, inv8′, and property (8) of the transitive closure. The authorised rooms
are maintained precisely by means of the authorised doors. As a matter of fact, initially
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we used thm2 as invariant instead of inv6 but then weakened the invariant to inv6
and proved thm2 as a theorem. This is a useful strategy for reducing the amount of
proof necessary while keeping powerful properties such as thm2. Similarly, we get the
theorem

thm3 : ∀ q · arm[{q}] = adr(q)+[{O}] ∪ {O} .

We prove (19) by case distinction similarly to (17). In case r ∈ ran(adr(p) \ D),
letting AD = adr(p) \ D,

(arm \ ({p} × R))[{p}] ⊆ AD+[{O}] ∪ {O} { R = ∅ }
⇔ arm[{p}] ⊆ AD+[{O}] ∪ {O} { thm2, “q := p” }
⇔ ran(adr(q)) ⊆ AD+[{O}] ∪ {O} { grd4 }
⇐ AD+[{O}] ∪ {O} ∪ {r} ⊆ AD+[{O}] ∪ {O} { set theory }
⇐ r ∈ AD+[{O}] { (8), “x := AD” }
⇔ r ∈ (AD ∪ AD+ ; AD)[{O}] { set theory }
⇐ r ∈ AD[{O}] ∪ AD[AD+[{O}]] { AD−1[{r}] 6= ∅ }
⇐ AD−1[{r}] ⊆ {O} ∪ AD+[{O}] { inv9, def. of D }
⇔ AD[{r}] ⊆ {O} ∪ AD+[{O}] { set theory }
⇐ adr(p)[{r}] ⊆ {O} ∪ AD+[{O}] { r /∈ adr(p)[{r}] }
⇐ ran(adr(p)) \ {r} ⊆ AD+[{O}] ∪ {O} ,

and in case r /∈ ran(adr(p) \ D),

(arm \ ({p} × R))[{p}] { R = {r} }
= arm[{p}] \ {r} { thm2 with “q := p” }
= (ran(adr(p)) ∪ {O}) \ {r} { r 6= O }
= (ran(adr(p)) \ {r}) ∪ {O} { grd4 }
⊆ (adr(p) \ D)+[{O}] ∪ {O} .

Now we have taken into account all important properties P1 to P9 and we have
proved that the abstract and the concrete model are consistent. We have proved that all
invariants inv1 to inv9 are preserved by the initialisation and the events pass, grant
and revoke.

8 Towards a better model

Assuming we have one person P and three different rooms H, I, and O we can inspect
how the modelled system would behave.

Initially variables adr and loc have the values

adr = Person × {∅}
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loc = Person × {O} .

Event pass is disabled as expected; grd1, that is, loc(p) 7→ r ∈ adr(p) cannot be
satisfied for any p and r. Similarly, event revoke is disabled, but also event grant:
guard grd2, s ∈ dom(adr(p)), cannot be satisfied for any s, leading to a deadlock. We
have not proved all properties we would expect from our model. This property seems
to be implicitly contained in properties P8 and P9, but we have missed it. We have to
weaken grd2,

grant

any p, s, r when

grd1′ : s 7→ r ∈ Door \ adr(p)
grd2′ : s ∈ dom(adr(p)) ∪ {O}

then

act1 : adr := adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}}
end

As a consequence, we have to check again that concrete event grant preserves all in-
variants. Fortunately, our proof of preservation of inv8′ can is easily adaptable because
we have first inferred (16) from grd2; it is still implied by grd2′.

The proof obligations shown in Section 2 have been restricted not to take into ac-
count deadlock-freedom to emphasise the problem that we only verify properties where
we expect difficulties but not more. This is a problem of formal modelling in general.
But it is more visible in the incremental approach.

9 Conclusion

We have demonstrated how a model in Event-B is created incrementally by refinement
and alteration. Refinement permits to structure a complex model thus to cope better
with complexity. While reasoning formally about the model developed in this article as
a whole we found some problems. These led us to alter the model, both the abstraction
and the refinement. Although this is only mentioned in the introduction it should be
clear how much this depends on good tool support [3,15]. Modifying a model is en-
couraged by these tools that that have been developed expressly to facilitate changes.
Without such tools the approach would fail in practice. In this article we have focused
more on methodological benefits than on how to use the respective tools because this is
where the principal gain of using them is to be found. The techniques we have used are
not meant to be comprehensive. For instance, we have not made use of temporal logic,
behaviour specification, or testing.

We have not solved the problem of how to come up with a perfect specification. That
is not our aim. We are content with achieving a model of good quality that captures re-
quired behaviour reasonably well and reasonably complete. By serious reasoning about
the model we have gone some way towards a meticulous validation of the intended
behaviour of the model. Some required properties are usually linked to the implemen-
tation. They would be difficult to incorporate into a more abstract model. Our solution
would be not to incorporate them but to deal with them at the appropriate level.

19



Acknowledgment I am grateful to Michael Leuschel and the STUPS group at the
University of Düsseldorf for their suggestions and stimulating discussions.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. CUP, 1996.
2. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University

Press, 2008. To appear.
3. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool environment

for Event-B. In Z. Liu and J. He, editors, ICFEM 2006, volume 4260, pages 588–605.
Springer, 2006.

4. J.-R. Abrial and S. Hallerstede. Refinement, Decomposition and Instantiation of Discrete
Models: Application to Event-B. Fundamentae Informatica, 77(1-2), 2007.

5. J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In Didier Bert, editor,
B’98, volume 1393 of LNCS, pages 83–128. Springer, 1998.

6. R.-J. Back. Refinement Calculus II: Parallel and Reactive Programs. In J. W. deBakker, W. P.
deRoever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems, volume
430 of Lecture Notes in Computer Science, pages 67–93. Springer, May 1989.

7. Frédéric Badeau and Arnaud Amelot. Using B as a high level programming language in an
industrial project: Roissy VAL. In Helen Treharne, Steve King, Martin Henson, and Steve
Schneider, editors, ZB 2005, volume 3455 of LNCS, pages 334–354, 2005.

8. P. Behm, P. Desforges, and J.-M. Meynadier. MéTéOR: An industrial success in formal
development. In D. Bert, editor, B’98, volume 1393 of LNCS, pages 26–26. Springer, 1998.

9. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

10. D. Gries and F. B. Schneider. A Logical Approach to Discrete Math. Springer, 1994.
11. S. Hallerstede. On the purpose of event-B proof obligations. In E. Börger, M. J. Butler, J. P.

Bowen, and P. Boca, editors, ABZ, volume 5238 of LNCS, pages 125–138. Springer, 2008.
12. T. S. Hoang, H. Kuruma, D. A. Basin, and J.-R. Abrial. Developing topology discovery in

event-B. In M. Leuschel and H. Wehrheim, editors, IFM, volume 5423 of LNCS, pages 1–19.
Springer, 2009.

13. I. Lakatos. Proofs and Refutations. Cambridge University Press, 1976.
14. L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley, 2002.
15. M. Leuschel and M. Butler. ProB : an automated analysis toolset for the B method. Interna-

tional Journal on Software Tools for Technology Transfer, 10(2):185–203, 2008.
16. C. C. Morgan. Programming from Specifications: Second Edition. Prentice Hall, 1994.
17. G. Pólya. Mathematics and Plausible Reasoning. Volume 1: Induction and Analogy in Math-

ematics. Princeton University Press, Princeton/NJ, 1954.
18. G. Pólya. How to Solve It: A New Aspect of Mathematical Method. Princeton Science

Library. Princeton University Press, second edition, 1957.
19. Guilhem Pouzancre. How to diagnose a modern car with a formal B model? In Didier Bert,

Jonathan P. Bowen, Steve King, and Marina A. Waldén, editors, ZB, volume 2651 of Lecture
Notes in Computer Science, pages 98–100. Springer, 2003.

20. A. J. M. van Gasteren. On the Shape of Mathematical Arguments, volume 445 of LNCS.
Springer, 1990.

20


	Incremental system modelling in Event-B

