
Justifications for the Event-B Modelling
Notation?

Stefan Hallerstede

ETH Zurich
Switzerland

halstefa@inf.ethz.ch

Abstract. Event-B is a notation and method for discrete systems mod-
elling by refinement. The notation has been carefully designed to be
simple and easily teachable. The simplicity of the notation takes also
into account the support by a modelling tool. This is important because
Event-B is intended to be used to create complex models. Without ap-
propriate tool support this would not be possible. This article presents
justifications and explanations for the choices that have been made when
designing the Event-B notation.

1 Introduction

In this article we present an overview of the Event-B notation and provide jus-
tifications for the choices made when developing the notation. The Event-B
notation is targeted at an incremental modelling style where models are found
by trial and error. As such it is best explained by referring to concrete modelling
problems resulting from this approach. For this reason we present the justifi-
cations as a list of problem statements. The guiding principles when designing
the notation were its intended simplicity and the aim to make learning it easy.
Usually notations get more complicated and less consistent as they evolve. As
Event-B has evolved from classical B [1] and Action Systems [10] we were aware
of this danger and took a considerable amount of time to discuss the notation.

Event-B [6] is a modelling notation and method for formal development of
discrete systems based on refinement; see e.g. [1,10]. An Event-B model is asso-
ciated with proof obligations that permit us to reason about it. This is essential
for a modelling method: we must be able to reason about models written in it.
In order to explain specific traits of modelling, we compare requirements for a
programming notation to those for a modelling notation. There are some simi-
larities between programming and modelling, and between the proof obligations
to establish properties of programs and models. However, there are differences
that have an impact on the notations used. The most notable difference is that
for modelling we use refinement, introducing more detail in a step-wise fashion;
? This research was carried out as part of the EU research project IST

511599 RODIN (Rigorous Open Development Environment for Complex Systems)
http://rodin.cs.ncl.ac.uk.



whereas for programming we use verification [11] where all detail is introduced
in a single step, i.e. when writing the program.

Event-B has been designed with tool support in mind and we have drawn on
our experience with the tool Click’n’Prove [4] during the discussions. The user
of an Event-B tool should be presented with proof obligations that (1) are not
trivial and (2) can be easily related to the model.

The first point should allow the user to focus on the interesting part of a
problem. Usually, the proportion of more challenging proof obligations makes
only a small percentage of all proof obligations. We are aware that automated
theorem provers can discharge most of the trivial proof obligations that appear
when modelling systems. However, even as theorem provers improve further and
get more powerful, modelling will remain difficult. The reason for this is that
modelling is an exploratory activity that requires ingenuity in order to arrive at
a meaningful model.

The second point is important because we consider proving properties about
a model one of the major facilities to gain understanding of the model. When
a proof obligation cannot be proved, it should be almost obvious what needs to
be changed in the model. When modelling, we usually do not simply represent
some system in a formal notation; but we learn about the system and eliminate
misunderstandings, inconsistencies, and specification gaps. In particular, in order
to eliminate misunderstandings, we first must develop an understanding of the
system.

This article is organised as follows. Section 2 gives a brief overview of the
Event-B notation. In Section 3 we discuss important points about the notation
by stating a list of problems and the solutions we have chosen.

2 The Event-B Modelling Notation

Event-B [6], unlike classical B [1], does not have a fixed syntax. Instead it is a
collection of modelling elements that are stored in a repository. This decision has
been taken so that Event-B can be more easily extended with new constructs,
say, to incorporate probability [17] or CSP [13,19]. Still, we present the basic
notation for Event-B using some syntax. We proceed like this to improve legi-
bility and help the reader remembering the different constructs of Event-B. The
syntax should be understood as a convention for presenting Event-B models in
textual form rather than defining a language. More reasons for this approach are
discussed in Section 3.

Event-B models are described in terms of the two basic constructs contexts
and machines. Contexts contain the static part of a model whereas machines
contain the dynamic part. This is presented in Section 2.1. Contexts can be
extended by other contexts and referenced by machines. Machines can be refined
by machines. This is presented in Section 2.2.

The semantics of an Event-B model is characterised by proof obligations. In
fact, proof obligations have a two-fold purpose. On the one hand, they show
that a model is sound with respect to some behavioural semantics. On the other

2



hand, they serve to verify properties of the model. This goes so far that we
only focus on the proof obligations and do not present a behavioural semantics
at all. This approach permits us to use the same proof obligations for very
different modelling domains, e.g., reactive, distributed and concurrent systems
[5], sequential programs [2], electronic circuits [15], or mixed designs [8], not
being constrained to semantics tailored to a particular domain. Event-B is a
calculus for modelling that is independent of the various models of computation.
We believe that this uniformity is a key to teaching the various aspects of systems
modelling.

As a prerequisite to Section 3 which provides the justifications, Sections 2.1
and 2.2 give a brief overview of Event-B.

2.1 Contexts and Machines

Contexts provide axiomatic properties of Event-B models. They play also an
important rôle in model parameterisation (see Section 3.10) and model instan-
tiation [6] which is not discussed in detail in this article. Contexts may contain
carrier sets, constants, axioms, and theorems. Carrier sets are similar to types
but both, carrier sets and constants, can be instantiated as is customary in
algebraic specification, e.g., [9]. Axioms describe properties of carrier sets and
constants. Theorems are derived properties that can be proved from the axioms.
Proof obligations associated with contexts are straightforward: the stated the-
orems must be proved. In this article we focus on (the more interesting) proof
obligations associated with machines.
Machines provide behavioural properties of Event-B models. Machines M may
contain variables, invariants, theorems, events, and variants. Variables v define
the state of a machine. They are constrained by invariants I(v). Possible state
changes are described by means of events. Each event is composed of a guard
G(t, v) and an action S(t, v), where t are local variables the event may contain.
The guard states the necessary condition under which an event may occur, and
the action describes how the state variables evolve when the event occurs. An
event can be represented by the term

any t where G(t, v) then S(t, v) end . (1)

The short form

when G(v) then S(v) end (2)

is used if event e does not have local variables, and the form

begin S(v) end (3)

if in addition the guard equals true. A dedicated event of the form (3) is used
for initialisation. The action of an event is composed of several assignments of
the form

x := E(t, v) (4)
x :∈ E(t, v) (5)
x :| Q(t, v, x′) , (6)

3



where x are some variables, E(t, v) expressions, and Q(t, v, x′) a predicate. As-
signment form (4) is deterministic, the other two forms are nondeterministic.
Form (5) assigns x to an element of a set, and form (6) assigns to x a value
satisfying a predicate. The effect of each assignments can also be described by a
before-after predicate:

BA
(
x := E(t, v)

)
=̂ x′ = E(t, v) (7)

BA
(
x :∈ E(t, v)

)
=̂ x′ ∈ E(t, v) (8)

BA
(
x :| Q(t, v, x′)

)
=̂ Q(t, v, x′) . (9)

A before-after predicate describes the state just before an assignment has oc-
curred (represented by unprimed variable names x) and the state just after the
assignment has occurred (represented by primed variable names x′). All assign-
ments of an action S(t, v) occur simultaneously which is expressed by conjoining
their before-after predicates, yielding a predicate A(t, v, x′). Variables y that do
not appear on the left-hand side of an assignment of an action are not changed
by the action. Formally, this is achieved by conjoining A(t, v, x′) with y′ = y,
yielding the before-after predicate of the action:

BA
(
S(t, v)

)
=̂ A(t, v, x′) ∧ y′ = y . (10)

In proof obligations we represent the before-after predicate BA
(
S(t, v)

)
of an

action S(t, v) by directly by the predicate

S(t, v, v′) .

Proof obligations serve to verify certain properties of a machine. All proof
obligations in this article are presented in the form of sequents: “antecedent” `
“succedent”.

For each event of a machine, feasibility must be proved:

I(v) ∧ G(t, v)
`

(∃v′ · S(t, v, v′)) .
(11)

By proving feasibility we achieve that S(t, v, v′) provides an after state whenever
G(t, v) holds. This means that the guard indeed represents the enabling condition
of the event.

Invariants are supposed to hold whenever variable values change. Obviously,
this does not hold a priori for any combination of events and invariants and,
thus, needs to be proved. The corresponding proof obligation is called invariant
preservation:

I(v) ∧ G(t, v) ∧ S(t, v, v′)
`

I(v′) .
(12)

Similar proof obligations are associated with the initialisation event of a machine.
The only difference is that the invariant does not appear in the antecedent of
the proof obligations (11) and (12). For brevity we do not treat initialisation
differently from ordinary events of a machine. The required modifications of
the concerned proof obligations are obvious. We also do not discuss deadlock
freeness, see [6].

4



2.2 Context and Machine Relationships

Context extensions is a mechanism to introduce more detail into the ax-
iomatic properties of a model by adding carrier sets, constants, and axioms, or
simply to add derived properties in the form of theorems. There are no specific
proof obligations dealing with context extension. In order to structure axiomatic
properties, contexts may extend several other contexts, see [6].
Context references provide the means to access axiomatic properties from
machines. A machine may reference several contexts. In that case we say the
machine sees these contexts. Seeing more than one context is particularly useful
in conjunction with decomposition [6].
Machine refinement provides a means to introduce more detail about the
dynamic properties of a model [6]. For more on the well-known theory of refine-
ment we refer to the Action System formalism that has inspired the develop-
ment of Event-B [10]. We present some important proof obligations for machine
refinement. As mentioned before, the user of Event-B is not presented with a be-
havioural model but only with proof obligations. The proof obligations describe
the semantics of Event-B models.

A machine CM can refine at most one other machine AM . We call AM
the abstract machine and CM a concrete machine. The state of the abstract
machine is related to the state of the concrete machine by a glueing invariant
J(v, w), where v are the variables of the abstract machine and w the variables
of the concrete machine.

Each event ea of the abstract machine is refined by one or more concrete
events ec. Let abstract event ea and concrete event ec be:

ea =̂ any t where G(t, v) then S(t, v) end (13)
ec =̂ any u where H(u, w) then T (u, w) end . (14)

Somewhat simplified, we can say that ec refines ea if the guard of ec is stronger
than the guard of ea, and the glueing invariant J(v, w) establishes a simulation1

of ec by ea:

I(v) ∧ J(v, w) ∧ H(u, w) ∧ T(u, w,w′)
`

(∃t ·G(t, v) ∧ (∃v′ · S(t, v, v′) ∧ J(v′, w′))) .
(15)

In the course of refinement usually new events ec are introduced into a model.
New events must be proved to refine the implicit abstract event skip that does
nothing. Moreover, it may be proved that new events do not collectively diverge
by proving that a variant V (w) is decreased by each new event:

I(v) ∧ J(v, w)) ∧ H(u, w)) ∧ T(u, w,w′)
`

V (w) ∈ N ∧ V (w′) < V (w) ,
(16)

where we assume that the variant expression is a natural number. It can be more
elaborate [6] but this is not relevant here.

1 More specifically, it establishes a forward simulation [22].

5



3 Modelling Problems and Solutions

In this section we present justifications for the Event-B notation, most in the
form of pairs of problem statement and our solution. It resumes many discussions
about the notation and method. Two major objectives during these discussions
were to make the notation as simple as possible and to make learning it easy by
avoiding exceptions and inconsistencies. This section is the heart of the article.
The problems are not sorted according to importance. They are all important in
the sense that they contribute to the overall simplicity of the Event-B notation
and method.

3.1 Terminology

When writing about Event-B we found that by careless choice of terminology
certain concepts are difficult to convey. For instance, instead of the word “ma-
chine”, we could use “model” or “system”. As a consequence, in an introductory
text about B we would have phrases like: “A model consists of models and con-
texts.”, or “A system is a model of a system.”. Such phrases are a hurdle that
is difficult to overcome by beginners learning Event-B. We analysed texts on
Event-B, and have chosen a terminology that, we believe, is neutral with respect
to modelling domains, and does not conflict with habitual modelling terminol-
ogy. This is the reason why, in the end, we have chosen the word “machine” over
its alternatives.

3.2 Labels

Problem Usually the invariant of a machine I(v) is a conjunction of predicates

I0(v) ∧ I1(v) ∧ . . . ∧ Ik(n) ∧ . . . ∧ In(v) . (17)

When treating proof obligation (12) that serves to verify invariant preservation,

I(v) ∧ G(t, v) ∧ S(t, v, v′)
`

I(v′) ,
(12)

we use basic sequent calculus to split the conjunction in the succedent. The
aim of this is to achieve more manageable proof obligations. Instead of (12) we
generate n proof obligations

I(v) ∧ G(t, v) ∧ S(t, v, v′)
`

Ik(v′) .
(18)

The advantage of this is that proof obligations are much smaller. The problem
introduced by this technique is the following. When a model is changed it can be
costly and sometimes even not possible to relate proofs belonging to previously
generated proof obligations. In our concrete case of (18), if we modify the model,
e.g., by inserting a predicate Ij(v) into the list (17) and changing S(t, v), then all

6



indices after the insertion point change and, at the same time, many of the pred-
icates Ik(v′) of (17) change. This makes it very difficult to relate existing proofs
to their associated proof obligation, stopping us from reusing them efficiently.
This problem exists generally if a model contains many theorems, invariants, or
events.
Solution Individual axioms, theorems, invariants, events, guards, and actions
are labelled. For instance, the invariant of a model is a list of labelled predicates:

inv 0: I0(v)
inv 1: I1(v)
...
inv k: Ik(v)
...
inv n: In(v) .

Let e be an event with label evt, then instead of proof obligation (12) we generate
several proof obligations (18) with names

“evt/inv k/inv” ,

where the last segment of the name “/inv” depends on the proof obligation. It
gives an indication about what is being proved. Now it is very easy to locate
old proofs for this proof obligation by name, independently of the complexity
of changes made to a model. The same approach is followed for all proof obli-
gations associated with Event-B models. The predicates Ik(v) are treated like
atomic predicates during proof obligation generation so that there is an imme-
diate correspondence between models and their proof obligations.

An additional benefit of the labels is that they can be used in the documen-
tation of a model. They can also be useful to make the informal requirements
better traceable into the model, because all Event-B modelling elements can be
easily referenced by their label.

3.3 Feasibility

Problem The intention of specifying a guard of an event is that the event may
always occur when the guard is true. There is, however, some interaction between
guards and nondeterministic assignments (5) and (6), namely x :∈ E(t, v) and
x :| Q(t, v, x′).

We say an assignment is feasible if there is an after-state satisfying the cor-
responding before-after predicate. The first form (5) is not feasible for some t
and v if E(t, v) denotes the empty set, and the second form (6) is not feasible
if Q(t, v, x′) is false. This means that the guard of an event could effectively be
stronger than specified if the guard was true in some state but the assignment
not feasible. Such implicit specification quickly leads to models that are difficult
to comprehend.
Solution For each event its feasibility (11) must be proved. Note, that for
deterministic assignments the proof of feasibility is trivial (one-point rule). Also

7



note, that feasibility of the initialisation of a machine yields the existence of an
initial state of the machine. It is not necessary to require an extra initialisation
theorem as used, e.g., in Z [20].

3.4 Nondeterministic Assignments

Problem When generating proof obligations such as (12) or (15) we use for
each variable two names, an unprimed name to refer to the before-state and a
primed name for the after-state of the action. In classical B nondeterministic
assignments were denoted by

x :| Q(t, y, x0, x) , (19)

where x0 denotes the value of x in the before-state and y refers to the before-
state for all other variables. This notation requires renaming x0 into x and x
into x′ in the proof obligations. We want to avoid renaming of variables as much
as possible in order to improve readability of the proof obligations. Furthermore,
note the notational inconsistency of subscripting some before-state names (x0,
for variables that may be changed by the assignment) but not others (y, for
variables that are not changed by the assignment). This notation is traditionally
used with predicate transformers, e.g., [16].
Solution The problem is solved easily by writing on the right-hand side of
(19) a before-after predicate. Then the problem of renaming disappears, as well
as the notational inconsistency. This explains the notation (6) used in Event-B.
With this notation the predicate Q(t, v, x′) is copied without change into proof
obligations, see (9). This notation follows the style of operation specifications in
Z [20].

3.5 Witnesses

Problem In Section 3.2 we say that separate proof obligations are generated
corresponding to the labelled elements (provided by the user), e.g., events or
invariants. However, this is not directly possible for proof obligation (15):

I(v) ∧ J(v, w) ∧ H(u, w) ∧ T(u, w,w′)
`

(∃t ·G(t, v) ∧ (∃v′ · S(t, v, v′) ∧ J(v′, w′))) .
(15)

The two existential quantifiers in the succedent stop us from decomposing it into
more manageable pieces.
Solution As mentioned in Section 2.2 proof obligation (15) describes a simu-
lation of the concrete event by the abstract event. This is an intuitive concept,
i.e. we have an idea of how the simulation “works”. In other words, the required
instantiations of the existentially quantified variables are well-understood. These
can be specified as witnesses in an Event-B model rather than being elaborated
during proof. Let t = E(u, v, w, w′) be the witnesses for the local variables t, and
v′ = F (u, v, w, w′) be the witnesses for the global variables v′ corresponding to
the after-state.

8



By a witness we usually understand an expression to replace one of the
existentially quantified variables. But the technique can easily be generalised to
predicative witnesses, i.e., by providing a predicate P (x, u, v, w,w′) for a variable
x, where x stands for t or v′. In this generalisation the witness is not defined
by an equation as previously. It just has to satisfy the less restrictive predicate
P (x, u, v, w,w′). Of course, a predicative witness must not be void and, as a
consequence, gives rise to a new proof obligation

I(v) ∧ J(v, w) ∧ H(u, w) ∧ T(u, w,w′)
`

(∃x · P (x, u, v, w,w′)) ,

resembling feasibility described in Section 3.3 above.
Whatever the means by which witnesses have been specified, simple or pred-

icative: once the two existential quantifiers have been eliminated by instantiation,
we can split the proof obligation into three larger blocks for the guard G(. . .),
the abstract before-after predicate S(. . .), and the glueing invariant J(. . .). From
there we can continue as described in Section 3.2, further decomposing the proof
obligation. For instance, we obtain several (named) proof obligations for invari-
ant preservation by splitting J(. . .):

I(v) ∧ J(v, w) ∧ H(u, w) ∧ T(u, w,w′)
`

Jk(F (u, v, w, w′), w′) .
(20)

By using witnesses in models, a part of the proof has been moved into modelling
itself. The price to pay is that one has to think about proving while modelling.
We do not see this as a problem because we think that modelling and proving
should not be considered different activities. Note, that providing witnesses is a
constructive proof technique. In modelling we prefer this over non-constructive
techniques where the exact nature of the refinement relationship of the two
events is left undetermined. The aim of modelling is always to increase our
understanding of a model.

Using simple techniques and conventions, most of the witnesses used in (20)
can be determined automatically. This frees us in practice from having to search
for many witnesses.

For the global variables x, of an abstract machine, that are linked to the
global variables y of a concrete machine by an equality invariant x = y, the
instantiation is trivial using the one-point rule. In practice, equality invariants
are assumed to hold whenever variable names are reused during refinement. Then
such a variable z of the abstract machine is renamed into, say, z1 and variable
z of the concrete machine is linked to z1 by the invariant z = z1.

For local variables of events we do not have invariants that we could use
to find witnesses. However, most instantiations appear in practice for local vari-
ables. So we need an efficient and simple way to find witnesses for local variables.
To this end, we introduce the following convention: when a local variable name
` is used in a concrete and a corresponding abstract event, then the abstract `
is instantiated with the concrete `. Conceptually, we treat instantiation of local
variables similarly to that of global variables.

9



3.6 Programming versus Modelling

In this short section we discuss some general points about modelling that prede-
termine some of the choices we have made in Event-B (those presented in Sec-
tions 3.7 to 3.10). Our discussion contrasts modelling and programming because
in computing science modelling is often understood to be a form of programming.
We propose to see them as activities of different nature with different aims.

The most important characteristic of a program is that it can be executed
to perform some computation. When we conceive a model, we do not think
about execution. We do not even require that it could be executed. How would
we execute “pressing a button” when this is supposed to be done by a person
in a model we have developed. It is impossible to do this and it was never our
intention. In Event-B a model usually contains elements with such characteristics
because we usually include the environment of a computing artefact, if we are
developing one. In fact, nothing in Event-B requires that a model has anything
to do with computation at all.

Modelling is much more concerned with observation of a model as transi-
tions between its states occur and with reasoning about properties of the model.
Models often are already useful when they are still very abstract by helping us
to understand the system being modelled. The major concern in programming
is execution. Properties of programs are usually directly linked to the implemen-
tation. They do not capture the system as a whole. Accordingly, programming
offers a lot of support for expressing how something is computed.

Modelling is difficult without refinement. The amount of detail in a complete
model of a complex system is too high to be written in a single model. In fact, we
can write such models but, in practice, we cannot reason about them anymore.
Refinement solves this problem by allowing us to introduce gradually more and
more detail, reasoning at each refinement step about the so-enriched model.
Programming usually begins with a large amount of detail necessary for the
implementation of a program. Hence, it is too late to reason about it if the
program is of high complexity.

Programming is associated with programming notations that have many con-
struct convenient for programming. They are based on the assumption that the
program is to be executed and that the development begins with the implemen-
tation of the program. None of this holds for modelling. We certainly do not
want to begin by implementing something and we do not want our models to
be restricted to those that can be executed. Concluding, we are not interested
in supporting programming notation. In addition to this general discussion Sec-
tions 3.7 to 3.10 present some more technical points about constructs otherwise
customary in programming.

3.7 Sequential Composition

In addition to the general problem discussed in Section 3.6 there are some tech-
nical problems we encounter with sequential composition. While modelling we
usually learn about the system we are modelling. For this reason we frequently

10



have to switch back and forth between a model and its associated proof obli-
gations. This switching should be as effortless as possible in order to focus on
learning and on improving the model instead of analysing proof obligations with
respect to their significance for the model. We cannot achieve this when we use
sequential composition.
Problem Sequential composition can make proof obligations difficult to under-
stand. We give two little examples to motivate the problem.

Assume we have an invariant I(x, y) and we want to verify that the program

x := E(x, y) ; y := F (x, y) (21)

preserves the invariant. Using a standard definition of sequential composition
(e.g., [1,16]), we derive the following proof obligation

I(x, y)
`

I(E(x, y), F (E(x, y), y)) .

The succedent is the invariant I(x, y) rewritten according to (21). To understand
the proof obligation we have to trace backwards through (21). This quickly in-
creases the difficulty of proof obligations. In the case of (21) this is simple. Using
many assignments in sequence, the problem gets more and more difficult. The
following example demonstrates this on a more concrete example. In addition,
it makes use of a non-deterministic assignment which aggravates the problem.

Let x ∈ Z and y ∈ Z be two integer variables; let program P be defined by:

P =̂ begin
x := y − 1 ;
y :∈ {x + 1, x− 1} ;
x := y ∗ x ;
y := y ∗ y − x

end

Suppose we have specified invariant (22) that relates x and y:

x + y = x ∗ y (22)

The proof obligation to verify that (22) is an invariant of P would be a sequent
as shown below2:

x ∈ Z ∧ y ∈ Z ∧ y1 ∈ {y, y − 2} ∧ x + y = x ∗ y
`

y1 ∗ (y−1) + (y1 ∗ y1 − y1 ∗ (y−1)) = y1 ∗ (y−1) ∗ (y1 ∗ y1 − y1 ∗ (y−1))

Note, that we had to rename y as a consequence of the appearance of the non-
deterministic assignment. Now we have to judge whether this sequent is true or
false. We can use a theorem prover to help us. If we think it does not hold we
have to change the program. But even in this simple case it is not obvious what
change in the program would cause the desired change of the proof obligation.
2 The proof of the claim is much easier once the following three consequences of (22)

are used: x ∈ {0, 2}, y ∈ {0, 2}, and x = y.

11



One could suggest that an automated theorem prover should discharge this
proof obligation, should it be true. Unfortunately, there is no decision procedure
for general arithmetic expressions. So this will not work.

When modelling we usually encounter sequents that are not provable because
we rarely get a model correct the first time. As a consequence, we expect that we
get sufficient support for improving the model. The best way to achieve this is an
immediate correspondence between the model we write and the proof obligations
that result from it.
Solution Event-B does not contain sequential composition. This does not mean,
however, that we cannot model sequential programs in Event-B [2].

3.8 Conditional Statements

We present a problem of technical nature caused by conditional statements be-
sides the problems discussed in Section 3.6.
Problem The greatest problem with conditional statements in refinement is
that we cannot avoid generating superfluous proof obligations. Worse, these proof
obligations are often difficult to understand. Let x ∈ Z be an integer variable,
a ∈ BOOL and b ∈ BOOL boolean variables, and m ∈ Z→ Z a total function.
Furthermore, let program P be defined by:

P =̂ if a = FALSE ∧ b = FALSE then
x := m(x + 1)

else
x := m(x− 1)

end

We carry out a simple data-refinement of P by program Q defined below:

Q =̂ if (1−A) ∗ (1−B) = 0 then
x := m(x− 1)

else
x := m(x + 1)

end

where A ∈ {0, 1} and B ∈ {0, 1} are two integer variables refining a and b,
respectively, using the glueing invariant3

a = bool(A = 1) ∧ b = bool(B = 1) .

Even in this simple example it can not immediately be seen that the refinement
proof obligation below has a contradictory hypothesis. The situation is much

3 The notation bool(P ) is used to denote the boolean value corresponding to truth or
falsehood of predicate P .

12



worse when more realistic programs are considered.

a = bool(A = 1)
b = bool(B = 1)
¬((1−A) ∗ (1−B) = 0)
¬(a = FALSE ∧ b = FALSE)
`

m(x + 1) = m(x− 1)

In particular, note that we have to discharge a proof obligation that is completely
insignificant with respect to the refinement relationship of P and Q. Had we used
a case-statement with 10 branches, 90 out of 100 proof obligations would have
been of this kind. We cannot solve this problem because it is in general not
decidable which branches are supposed to refine which.
Solution Event-B does not contain conditional statements. One could sug-
gest to name the different branches of the conditional statement and specify
the refinement relationship. But this would effectively remove the conditional
statement. In fact, it corresponds to the approach chosen in Event-B where each
branch would correspond to a separate event. The conditional statement is not
essential for the development of sequential programs in Event-B [2].

3.9 Undefinedness

Problem Any model may contain expressions that are conditionally defined,
e.g., 1÷ x which is not defined for x = 0. A detailed discussion of this problem
can be found in [7,12].
Solution In our quest for simplicity we prefer not to deviate from classical logic
which has the additional advantage of being in wide-spread use. In Event-B well-
definedness of expressions is treated on the level of type-checking. Type-checking
works in two passes. The first pass checks whether expressions are correctly
typed independently of whether they are defined everywhere. The second pass
creates well-definedness proof obligations that must be discharged by proof. This
technique is similar to predicate sub-typing described in [18].

3.10 Parameterisation

Problem Often a model depends on a number of parameters, e.g., the num-
ber of components in a distributed system or the size of some buffer. We do
not want to write a new model each time we need different parameter values.
In programming notations, e.g. Ada [21], parameterisation (also called “gener-
icity”) is used to choose specific implementation types and constants left open
for customisation. This permits the development of libraries that can be reused
by instantiating the parameters appropriately. For a modelling method this ap-
proach is not appropriate because the reuse is catered for execution whereas we
need reuse catered for reasoning. In algebra a different form of instantiation is
used. For instance, we first develop group theory and then instantiate groups
with geometric transformations. Once we have proved that the transformations

13



form a group, we can reuse everything we have proved about groups for transfor-
mations. This technique has been adopted in algebraic specification notations,
e.g. CASL [9].
Solution In Event-B parameterisation is algebraic. Event-B provides carrier
sets and constants that are contained in contexts. Carrier sets and constants can
be instantiated. After the axioms of the context have been proven to hold for
the instantiated carrier sets and constants all theorems that have been derived
from them can be reused. Machines that reference a context are parameterised
by that context [6].

3.11 Openness

Problem Devising a formal method requires a lot of foresight. We would like
the method to be used for years to come, estimating where it could be useful and
making reasonable restrictions on the development processes in which it would
be used.
Solution Being pessimistic about our capacity to predict the future and the
ability to dictate changes, radical or not, to industries that could profit from
the method, we choose not to finalise Event-B. We expect it to evolve according
to the different needs and application domains. We propose an approach where
the method from which we depart is open with respect to extensions and even
changes. Still, when extending the method great care should be taken not to
complicate the existing theory. In order to be able to serve a larger community
duplication of concepts should be avoided and each single concept should have
a simple and unambiguous interpretation.

4 Conclusion

It took a considerable amount of time to make many of the decisions presented in
Section 3. We believe this effort will pay off in terms of the ease with which Event-
B can be used and taught. We have not presented all decisions we have made,
in particular, with respect to the notation used for predicates and expressions.
In comparison to classical B their syntax has been simplified considerably. The
improvements of the notation used for predicates and expressions has much less
to do with constraints imposed by the need of tool support than with legibility.
For a discussion of notational conventions for predicates and expressions see also
[14].

We believe it is important to make the reasoning underlying the notation
publicly available. This is particularly true in the light of Section 3.11. We hope
that all extensions to Event-B will be made cautiously so that the notation keeps
its simplicity and a lot of notation and associated methodology can be shared
between different communities.

At ETH Zurich the RODIN modelling platform for Event-B is being devel-
oped that implements the techniques presented in this article. A description of
the RODIN platform is published separately [3].

14



Acknowledgement

This article reports on results from discussions about Event-B that took place
over several months with at least one meeting per week. The other two partici-
pants were Jean-Raymond Abrial and Laurent Voisin, both also at ETH Zurich.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. CUP, 1996.
2. J.-R. Abrial. Event based sequential program development: Application to con-

structing a pointer program. In K. Araki, S. Gnesi, and D. Mandrioli, editors,
FME, volume 2805 of LNCS, pages 51–74. Springer, 2003.

3. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool
environment for Event-B. In Z. Liu and J. He, editors, ICFEM, volume 4260 of
LNCS, pages 588–605. Springer, 2006.

4. J.-R. Abrial and D. Cansell. Click’n’Prove: Interactive Proofs within Set Theory.
In TPHOL, volume 2758 of LNCS, pages 1–24, 2003.

5. J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and incremental
development of IEEE 1394 tree identify protocol. FAC, 14(3):215–227, 2003.

6. J.-R. Abrial and S. Hallerstede. Refinement, Decomposition and Instantiation of
Discrete Models: Application to Event-B. Fundamentae Informatica, 2006.

7. J.-R. Abrial and L. Mussat. On using conditional definitions in formal theories. In
D. Bert et al., editor, ZB, volume 2272 of LNCS, pages 242–269, 2002.

8. Jean-Raymond Abrial. Event driven system construction, 1999.
9. E. Astesiano, M. Bidoit, B. Krieg-Brückner, H. Kirchner, P. D. Mosses, D. Sannella,

and A. Tarlecki. CASL - the common algebraic specification language. TCS,
286:153–196, 2002. Special issue on Abstract Data Types.

10. R.-J. Back. Refinement Calculus II: Parallel and Reactive Programs. In J. W.
deBakker, W. P. deRoever, and G. Rozenberg, editors, Stepwise Refinement of
Distributed Systems, volume 430 of LNCS, pages 67–93. Springer, 1989.

11. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In F. S. de Boer et al.,
editor, FMCO 2005, volume 4111 of LNCS, 2006.

12. P. Behm, L. Burdy, and J.-M. Meynadier. Well defined B. In D. Bert, editor, B’98:
2nd Int. B Conference, volume 1393 of LNCS, pages 29–45. Springer, 1998.

13. M. Butler. csp2B: A practical approach to combining CSP and B. FAC, 12(3):182–
198, 2000.

14. E. W. Dijkstra. The notational conventions I adopted, and why. Technical Report
EWD1300, University of Texas, 2000.

15. Stefan Hallerstede. Parallel hardware design in B. In D. Bert et al., editor, ZB,
volume 2651 of LNCS, pages 101–102. Springer, 2003.

16. Carroll Morgan. Programming from Specifications: Second Edition. PHI, 1994.
17. C.Morgan, T.Hoang, and J.Abrial. The Challenge of Probabilistic Event B. In H.

Treharne at al., editor, ZB, volume 3455 of LNCS, pages 162–171. Springer, 2005.
18. J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate sub-

typing in PVS. IEEE Trans. Soft. Eng., 24(9):709–720, 1998.
19. S. Schneider and H. Treharne. CSP theorems for communicating B machines. FAC,

17(4):390–422, 2005.
20. J. M. Spivey. The Z Notation: A Reference Manual. PHI, 2nd edition, 1992.
21. S. T. Taft and R. A. Duff, editors. Ada 95 Reference Manual. Springer, 1997.
22. J.Woodcock and J.Davies. Using Z. Specification, Refinement, and Proof. PH, 1996.

15


	Justifications for the Event-B Modelling Notation

