
The Event-B Proof Obligation Generator
Stefan Hallerstede

ETH Zürich
Version 6

Contents

1 Introduction 4
1.1 Naming Conventions . 5
1.2 Context and Model Relationships . 5
1.3 Proof Obligations . 7
1.4 Derivation of Proof Obligations. 8
1.5 Differential Proof Obligation Generation . 8
1.6 Operators . 9

2 Proof Obligations of Contexts 12
2.1 Description . 12
2.2 Theory . 12

2.2.1 Context Theorems . 12
2.3 Generated Proof Obligations . 12

2.3.1 Well-definedness of Properties . 12
2.3.2 Well-definedness of Theorems . 13
2.3.3 Context Theorems . 13

1

3 Proof Obligations of Initial Models 13
3.1 Description . 13

3.1.1 Internal and External . 14
3.1.2 Actions . 15

3.2 Theory . 15
3.2.1 Model Theorems . 16
3.2.2 Feasibility of Initialisation . 16
3.2.3 Invariant Establishment . 16
3.2.4 Feasibility of Event Actions . 17
3.2.5 Invariant Preservation . 17
3.2.6 Deadlock Freedom (Optional) . 18
3.2.7 (Internal) Anticipated Events . 18
3.2.8 Internal and External Events . 18

3.3 Generated Proof Obligations . 18
3.3.1 Well-definedness of Invariants . 18
3.3.2 Well-definedness of Theorems . 19
3.3.3 Model Theorems . 19
3.3.4 Well-definedness of Initialisation . 19
3.3.5 Feasibility of Initialisation . 20
3.3.6 Invariant Establishment . 20
3.3.7 Well-definedness of Guards . 21
3.3.8 Well-definedness of Event Actions . 21
3.3.9 Feasibility of Event Actions . 22
3.3.10 Invariant Preservation . 22
3.3.11 Deadlock Freedom (Optional) . 23

4 Proof Obligations for Refinements 23
4.1 Description . 23

4.1.1 Actions . 24
4.1.2 Split and Merge . 25
4.1.3 Witnesses . 25

4.2 Theory . 26
4.2.1 Model Theorems . 27
4.2.2 External Invariant . 27
4.2.3 Feasibility of Initialisation . 27
4.2.4 Simulation of Initialisation and Invariant Establishment 28
4.2.5 Equivalent External Initialisation . 29
4.2.6 Feasibility of Events . 30
4.2.7 Before-States and After-States . 31
4.2.8 Guard Strengthening of Events . 31
4.2.9 Simulation of Events and Invariant Preservation 32
4.2.10 Guard Weakening of External Events 37
4.2.11 Equivalent External Events . 37

2

4.2.12 Simulation of Skip and Invariant Preservation 39
4.2.13 Reduction of a Set Variant . 41
4.2.14 Reduction of a Natural Number Variant 42
4.2.15 Introduction of New Events . 43
4.2.16 Refinement of Events . 43
4.2.17 Relative Deadlock-Freedom . 43

4.3 Generated Proof Obligations . 44
4.3.1 Well-definedness of Invariants . 44
4.3.2 Well-definedness of Theorems . 44
4.3.3 Model Theorems . 45
4.3.4 Functional External Invariant . 45
4.3.5 Total External Invariant . 45
4.3.6 Surjective External Invariant . 46
4.3.7 Well-definedness of Initialisation . 46
4.3.8 Feasibility of Initialisation . 47
4.3.9 Simulation of Initialisation . 47
4.3.10 Unreduced External Initialisation . 48
4.3.11 Invariant Establishment . 48
4.3.12 Well-definedness of Guards . 48
4.3.13 Well-definedness of Local Witnesses 49
4.3.14 Well-definedness of Global Witnesses of Events 50
4.3.15 Guard Strengthening (Split Case) . 50
4.3.16 Guard Weakening of External Events 51
4.3.17 Guard Strengthening (Merge Case) . 52
4.3.18 Well-definedness of Event Actions . 52
4.3.19 Feasibility of Event Actions . 53
4.3.20 Simulation of Refined-Event Actions 53
4.3.21 Unreduced External-Event Actions . 55
4.3.22 Invariant Preservation of Refined-Event Actions 56
4.3.23 Simulation of New-Event Actions . 57
4.3.24 Invariant Preservation of New-Event Actions 58
4.3.25 Well-definedness of the Variant . 58
4.3.26 Well-foundedness of the (Set) Variant 59
4.3.27 Strong (Set) Variant . 59
4.3.28 Strong (Natural Number) Variant . 59
4.3.29 Weak (Set) Variant . 60
4.3.30 Weak (Natural Number) Variant . 61
4.3.31 Deadlock-Freedom . 62

3

1 Introduction

This text describes a proof obligation generator for EventB. Most of the document describes
the actual generated proof obligations and justification of their correctness. The algorithm
for their generation is very simple.

We distinguish generated proof obligations from theoretical ones. Theoretical proof obliga-
tions are well-suited for hand-written mathematical proofs but less suited for machine-assisted
proof. In particular, generated proof obligations have be obtained by decomposing theoreti-
cal proof obligations as far as possible so that they are as simple as possible; and hopefully
provable by an automatic prover. Substitutions produced by the proof obligation generator
are left unevaluated. These are applied in a preprocessing step of the proof manager. The
reason for this is to keep the design of the proof obligation generator distinct from the actual
provers. By using witnesses in models a part of the proof has been moved into modelling
itself. The price to pay is that one has to think about proving while modelling. The advan-
tage is that proofs are decomposed and almost all existential quantifiers are removed from
the consequents of proof obligations.

There are three main sections on contexts, initial models, and refined models. Each of
these contains three subsections: the description subsection introduces the notation used in
the section; the theory subsection presents the theoretical proof obligations and derives the
generated proof obligations by proof; the generated proof obligations subsection contains the
list of proof obligations to be generated by the proof obligation generator. This last section
also contains proof obligations for well-definedness. On first reading well-definedness proof
obligations should be ignored. These are necessary but are actually not derived from the
theoretical proof obligations.

4

1.1 Naming Conventions

Throughout this document we use the following conventions to name items occurring in B
developments. The names are used with arbitrary subscripts and superscripts.

contexts B , C
context names CTX
carrier set names s
constant names c
property names PRP
property predicates P
context theorem names THM
context theorem predicates Q
models M , N
model names MDL, REF
variables o, v , w , x , y
external variables ×o, ×v, ×w, ×x, ×y
invariant names INV
invariant predicates I , J , K
model theorem names THM
model theorem predicates Q
variant expressions D
events e
event names EVT , EVM , EVN
guard names GRD , GRM , GRN
guard predicates G
local variables t
substitutions R, S , T , Ξ
witnesses U , V , W

1.2 Context and Model Relationships

We denote by C1 v C2 that context C1 is refined by context C2. Similarly, M1 v M2 denotes
that model M1 is refined by model M2. We use this notation also to represent chains of
refinements

C1 v C2 v . . . v Cm , resp.
M1 v M2 v . . . v Mn .

We denote by M → C that model M sees context C .
Using this notation we define a set of abstract operators on the structure of models and

contexts. We must also show that these operators create proper sets of hypotheses, i.e.
do not create type-conflicts. We must show that they are well-defined. Each definition is
accompanied by an informal proof. We add an empty C0 at the beginning of the refinement

5

chains in order to simplify subsequent definitions and assume the following sees relationships
between models and contexts:

C0 v . . . v Ck1 v . . . v Ck2 v . . . v Ckn−1 v . . . v Ckn

↑ ↑ ↑ ↑ ↑
M0 v M1 v M2 v . . . v Mn−1 v Mn

Instead of saying that a model sees an empty context we usually say that it sees no context.
The operator t used in the definitions joins two sets of predicates. Logically it corresponds
to conjunction. Operator P yields the properties of a context C`:

P(C`) =̂ (properties of context C`)

Property 1 P is well-defined.

Operator Q yields the properties and theorems of a context C` and of all its abstractions:

Q(C0) =̂ >
Q(C`) =̂ (properties and theorems of context C`) t Q(C`−1)

Property 2 Q is well-defined.

Operator J yields the invariants a model M`:

J (M`) =̂ (invariants of model M`)

Property 3 J is well-defined.

Operator I yields the invariants and theorems of a model M` and of all its abstractions:

I(M0) =̂ >
I(M`) =̂ (invariants and theorems of model M`) t I(M`−1)

Property 4 I is well-defined.

Operator U yields the invariants and theorems of a model M` and of all its abstractions and
the the properties and theorems of the seen context Ck`

and of all its abstractions:

U(M`) =̂ I(M`) t Q(Ck`
)

Property 5 U is well-defined.

6

1.3 Proof Obligations

Each proof obligation is described by the following structure:

Proof Obligation: REF

FOR obj WHERE

cnd

ID “NN ”

GPO Σ ` Γ

where the entry GPO can be repeated for case distinction. REF is a symbolic name for
the proof obligation. The structure has three entries FOR, ID, and GPO. The field FOR
denotes the object (or the objects) obj for which the proof obligation is generated, and the
condition cnd under which it is generated. The field ID contains the name NN of a generated
proof obligation. Usually, NN is a compound name that contains some information about the
generated proof obligation itself. Finally, the generated proof obligation in form of a sequent
Σ ` Γ is stated in field GPO. The typing environment E associated with each sequent is not
stated explicitly in the proof obligations. It can be added to the hypothesis of the sequent:
E ;Σ ` Γ. Note, that E depends on the items of the B model from which the proof obligation
was generated. For instance, local variables may have different types in different events. The
typing environment is provided to the proof obligation be the proof manager.

Note that the statement to be proved is the generated proof obligation GPO. By the
term proof obligation we refer to the entire structure. All generated proof obligations must
be uniquely identifiable by their name stated in field ID:

Property 6 (UNIQUE) The name NN of a generated proof obligation is a unique name
for that proof obligation.

Furthermore, they must be well-defined:

Theorem 1 (WDEF) Let

Σ ` Γ

be a generated proof obligation. Then the formula Γ and all formulas in Σ are well-defined.

The operator WD used to express well-definedness of predicates and expressions is defined
in Deliverable D3.2 (D7): The Event-B Language. The proof of Theorem 1 is split across
all proof obligations. That is, we argue for its truth with each proof obligation stated. We
use the property of WD that predicate WD(A) for some predicate A, respectively WD(E) for
some expression E , is well-defined.

7

1.4 Derivation of Proof Obligations.

In order to show soundness, completeness, and necessity of the generated proof obligations
we proceed as follows. We pretend to give a theoretical proof of correctness of a particular
context, initial model or refined model. We rely on the static properties of Event-B models
and the generated proof obligations. Static properties (e.g. well-definedness of P, Q, J , I,
and U) have been verified before the context, initial model or refined model is submitted for
proof obligation generation. Hence, we can assume they hold. Conceptually, we assume we
had proven all generated proof obligations as lemmas and then use them in the theoretical
proofs. A proof obligation is called necessary if it is required by at least one theoretical proof.
A collection of generated proof obligations is called complete if it is sufficient to discharge all
theoretical proofs.

Soundness and completeness ensure that once all generated proof obligations have been
discharged, the theoretical proof for context, initial model, or refined model have been
achieved.

Necessity serves to verify that we do not generate too many proof obligations. This is
needed for efficiency and practicality of proof obligation generator to be implement.

1.5 Differential Proof Obligation Generation

For each proof obligation there are four possibilities when comparing two sets of proof obli-
gations of some context, initial model, or refined model:

it may be unchanged;
it may have been changed;
it may have been added;
it may have been removed.

We say a generated proof obligation depends directly on some item (e.g. an invariant or
substitution) if the item occurs directly in its sequent (perhaps as a parameter of an abstract
operator). A proof obligation depends indirectly on some item if the item is contained in a
sequent but does not occur directly. For example, this is the case for properties contained in
P(C). Note, however, that C itself occurs directly in the sequent and so it depends directly
on C . The following algorithm is used to generate proof obligations differentially:

for all items of the context, initial model or refined model:
generate the unique identifier NN of the associated proof obligation Σ ` Γ;
if there is already a proof obligation with the same identifier,

then
if the proof obligation depends directly on a changed item,

then
generate new proof obligation and remove old;
mark (new) proof obligation

otherwise
mark (old) proof obligation

8

otherwise
generate new proof obligation;
mark (new) proof obligation

finally, remove all unmarked proof obligations

This algorithm ensures that when items on which a particular proof obligation depends di-
rectly have been changed or added, the proof obligation is regenerated or generated. And if
such an item has been removed the proof obligation is removed too. Proof obligations that
do not refer, or only indirectly, to items that have changed are not regenerated. (They may
still have to be reproved, though.)

This algorithm ensures also that we do not keep unnecessary proof obligations. It assumes
that items that have changed have been marked as such before. This is done by a preproces-
sor that compares the items on which the old proof obligations are based with the items on
which the new proof obligations will be based. The proof obligation generator keeps a copy
of the old checked model (or context) for this purpose.

The decision whether a proof for a particular proof obligation is still valid or not lies with
the proof manager. The proof obligation generator ignores this issue.

We note on the predicate set operators P, Q, J , I, and U :

Theorem 2 The sets P(C), Q(C), J (M), I(M), and U(M) do not depend on the order
in which properties, context theorems, invariants, and model theorems appear in contexts and
models.

Proof: This follows directly from the way these sets are constructed. We only rely on the
structure of contexts and models among each other. ¤

The validity of Theorem 2 is important for the efficiency of the proof obligation generator.
Proof obligations refer symbolically to these sets and would have to be regenerated more often
if the order was important. Assume we used parameterised versions, say, P`(C) of operator
P(C) containing the first ` properties of context C . Then P`(C) would rely on the order
in which the properties appear in C , and whenever we would make a change to that order
we would have to replace P`(C) in many proof obligations. In this case, we could put the
properties contained in P`(C) directly in the corresponding sequents. In fact, this is what we
do in situations where the order is important, e.g., in well-definedness proof obligations for
properties.

1.6 Operators

We use a number of terms and abstract operators to express the theoretical and the generated
proof obligations. These are higher-order constructs that cannot be defined in terms of the
B mathematical language.

Well-definedness Operator. The WD operator expresses a well-definedness condition for
a predicate A or an expression E , written: WD(A) and WD(E), respectively.

9

Substitution. A substitution R has either of the following forms:

skip u := E u :∈ E u :| A

where E is an expression that may contain occurrences of before-values v , and A is a predicate
that may contain occurrences of before values v and after-values v ′. A substitution of the
form u := E is called simple if u is a singleton, and simultaneous if u is a list with several
variables.

Frame Operator. The frame frame(R) of a substitution R is the list of variables occurring
on the left hand side of R. Each variable may only occur once in a frame. We use set-theoretic
notation with frames: ∪ for union, ∩ for intersection, \ for difference, ∅ for the empty frame.

Multiple Substitution. Lists of substitutions are written R1 ‖ . . . ‖ Rn and are allowed
to be empty. Such a list is called a multiple substitution. The frames of all component
substitutions must be disjoint. The multiple substitution R1 ‖ . . . ‖ Rn should be read like
a parallel composition of the component substitutions R`, i.e. a simultaneous substitution.
The frame frame(R) of a multiple substitution R is the union of the frames of the component
substitutions.

Substitution Operator. For deterministic substitutions R of the form u := E and multiple
substitutions with deterministic components we introduce extra notation. In order to apply
a multiple substitution R to a predicate A or expression E we define an operator [R]: we
denote R applied to A by [R]A and R applied to E by [R]E . If R is empty then [R] is the
identity. Substitution operators can be composed (sequentially), denoted by [R1] [R2] . . . [Rn].
We refer to substitution operators as substitutions too, because it is always clear from the
context (and notation) what is meant.

Guard Operator. The guard of an event e is the necessary condition under which it may
occur. The guard operator yields this guard for event e. It is written GD(e).

Direct Before-After Operator. The BA operator returns the before-after predicate of
a multiple substitution. For an empty multiple substitution R we define BA(R) = >. The
before-after predicate of a substitution is defined by

BA(skip) =̂ >
BA(u := E) =̂ u ′ = E ,

BA(u :∈ E) =̂ u ′ ∈ E ,

BA(u :| A) =̂ A .

The before-after predicate of a non-empty multiple substitution R1 ‖ . . . ‖Rn is defined to be
the conjunction of the before-after predicates of the components:

BA(R1 ‖ . . . ‖ Rn) =̂ BA(R1) ∧ . . . ∧ BA(Rn) .

10

Relative Before-After Operator. The BAv operator returns the before-after predicate
of a multiple substitution R relative to the variable list v . The frame of R must be contained
in v . We define:

BAv (R) =̂ BA(R) ∧ BA(Ξ) ,

where Ξ equals u := u with u = v \frame(R) which is similar to skip except that frame(Ξ) = u.

Feasibility Operator. By FIS(R) we denote the feasibility condition of a substitution R.
It is defined by:

FIS(skip) =̂ >
FIS(u := E) =̂ > ,

FIS(u :∈ E) =̂ E 6= ∅ ,

FIS(u :| A) =̂ ∃ u ′ ·A .

The operator FIS(R) is undefined for multiple substitutions.

Aside. An event is called feasible if all substitutions of its action are feasible. Because
all events are required to be feasible in an event model, the term GD(e) corresponds to the
formula (∃ t ·G1 ∧ .. ∧ Gg) where t are the local variables of e and G1, ..,Gg are the explicitly
stated guards of event e. We often use directly the formula (∃ t ·G1 ∧ .. ∧ Gg) instead of
GD(e) for the guard of event e.

Freeness Operator. The free operator yields the list of free variables of a predicate A or an
expression E , written: free(A) and free(E), respectively. Given a multiple substitution R the
term free(R) denotes the variables occurring free in the right hand sides of the substitutions
in R. If R is the empty multiple substitution, then free(R) is empty.

Primed Free Variables. We define the operator primed(X) where X is an expression E ,
a predicate A, or a substitution S , by: u ∈ primed(X)⇔ u ′ ∈ free(X).

Not-free-in Operator. The not-free-in operator nfin describes a relation between identifier
lists z and predicates A or expressions E . We write z nfin A, respectively z nfin E , to say
that z does not occur free in A, respectively E .

Local variables. In an event of the form any z where . . . then . . . end, z are called its
local variables.

Property 7 (LOCAL) Let z be local variables of some event e of some model M . Then

z nfin U(M) .

11

2 Proof Obligations of Contexts

We first describe the structure of contexts, in the followings section we present the theoretical
proof obligations. These are proven assuming that the generated proof obligations have
already been proved. I.e. the generated proof obligations (plus the static properties) imply
the theoretical proof obligations. The last section lists the generated proof obligations.

2.1 Description

This section presents the definitions required for formulating the theory and the proof obli-
gations for contexts.

Let C be a context with name CTX with carrier sets s and constants c, and containing
the following sequence of property and theorem declarations:

property PRP1 P1
...
property PRPm Pm

theorem THM1 Q1
...
theorem THMn Qn

Let B be an abstraction of C , i.e. B v C .

2.2 Theory

There is no relevant difference between initial contexts and refined contexts. Hence, they are
treated uniformly in the theory and the proof obligations.

2.2.1 Context Theorems

We must prove that each theorem Q` is implied by properties of C and properties and
theorems of its abstractions.

Theorem 3

Q(B); P(C); Q1; . . . ; Q`−1 ` Q`

Proof: This is trivially implied by CTX THM. ¤

2.3 Generated Proof Obligations

2.3.1 Well-definedness of Properties

Proof Obligation: CTX PRP WD

FOR property P` of C WHERE

` ∈ 1 ..m

ID “CTX /PRP`/WD”

GPO Q(B); P1; . . . ; P`−1 ` WD(P`)

12

Proof of WDEF: (See Theorem 1) The sequent is well-defined because context abstraction
is an acyclic directed graph, and we can assume that we have shown well-definedness of Q(B),
and P1 . . .P`−1 before by CTX PRP WD. ¤

2.3.2 Well-definedness of Theorems

Proof Obligation: CTX THM WD

FOR theorem Q` of C WHERE

` ∈ 1 .. n

ID “CTX /THM`/WD”

GPO Q(B); P(C); Q1; . . . ; Q`−1 ` WD(Q`)

Proof of WDEF: The sequent is well-defined because context abstraction is an acyclic
directed graph, and we can assume that we have shown well-definedness of Q(B) and P(C),
and Q1 . . .Q`−1 before by CTX THM WD. ¤

2.3.3 Context Theorems

Proof Obligation: CTX THM

FOR theorem Q` of C WHERE

` ∈ 1 .. n

ID “CTX /THM`/THM”

GPO Q(B); P(C); Q1; . . . ; Q`−1 ` Q`

Proof of WDEF: The sequent is well-defined because context abstraction is an acyclic
directed graph, and we can assume that we have shown well-definedness of Q(B) and P(C),
and Q1 . . .Q` before by CTX THM WD. ¤

3 Proof Obligations of Initial Models

3.1 Description

Let M be an initial model with name MDL. Assume M sees context C with name CTX (or
no context at all). Let v be the variables of M . Let M contain the following sequences of
invariants and theorems:

invariant INV1 I1
...
invariant INVm Im

theorem THM1 Q1
...
theorem THMn Qn

13

Initialisation of M is partitioned into two parts corresponding to internal and external ini-
tialisation. The initialisations of M have the form:

R1
...
Rr

for some r ≥ 1, i.e. they have the form of an unguarded action R1 ‖ . . . ‖Rr . All other events
e (with name EVT) have the form

any
t1, . . . , tj

where
GRD1 G1
...
GRDg Gg

then
R1
...
Rr

end

for some r ≥ 1 where t1, . . . , tj are the local variables (possibly none), G1, . . . ,Gg the guards
(possibly none), and R1 ‖ . . . ‖ Rr is the action of event e.

Remark. The various definitions should rather be read to specify patterns. Reusing place
holder names and indices allows us to treat modelling items in a uniform way, thus, simplifies
subsequent definitions. Still, the names and indices have been chosen such that we do not need
to rename when using them in the theory (Section 3.2) and the proof obligations (Section 3.3).

3.1.1 Internal and External

Variables. We refer to external variables u of M by ×u.

Initialisation. Internal and external initialisation assign only to internal or external vari-
ables respectively. The combined initialisation R1 ‖ . . . ‖ Rk is defined by the list combining
the internal and the external initialisation of M , i.e. it equals Rε

1‖ . . .‖Rε
rε
‖Rι

1‖ . . .‖Rι
rι

where
we use superscript ε to indicate external and superscript ι to indicate internal initialisation.
This means the combined initialisation is the parallel composition of internal and external
initialisation.

Events. External events only assign to external variables, and internal events to either kind
of variable. We do not use special notation to distinguish internal and external events.

14

Remark. In initial models the distinction between internal and external has no significance
with the exception of deadlock-freedom.

3.1.2 Actions

Whenever convenient we abbreviate an action R1 ‖ . . . ‖ Rr by R.

Components. Let R1‖. . .‖Rr be an action. Each component R` (` ∈ 1..r) is a substitution
of either form:

skip u` := E` u` :∈ E` u` :| A`

where for ` ∈ 1 .. r the u` are all distinct. No variable occurs in more than one u`. A
substitution u`(F) := E` is to be rewritten into

u` := u` C− {F 7→ E`}

before it is subjected to proof obligation generation. We use the notation R ∼ X to say that
R resembles substitution X , where X is one of the substitutions skip, u` := E`, u` :∈ E`, or
u` :| A`.

Partitioning. We can partition the action R1 ‖ . . . ‖ Rr into S and T such that S =
Rk1 ‖ . . . ‖ Rkp is a multiple substitution with components of R of the form wk`

:= Ek`
for

` ∈ 1 .. p; and T = Ri1 ‖ . . . ‖Riq is a multiple substitution with components of R of the form
wi` :∈ Ei` or wi` :| Ai` for ` ∈ 1 .. q . Let vX be the variables occurring on the left hand side
of X , where X is one of R, S , or T . Note, that S or T , or both, can be empty. Note also,
that R is the identity substitution on all variables that occur neither in vS nor in vT .

Restriction. For a substitution R and a list of variables z we define the restriction R|z of
R to z by

R|z = all substitutions R` where a member of z appears on the left hand side of R`

Note, that R|z can be the empty multiple substitution.

Primed Substitutions. For substitution (or witness) S of the form u := E the primed
variant S ′ is defined by u ′ := E . This generalises component-wise to multiple substitutions
(and combined witnesses). Witnesses are defined in Section 4.1.3.

3.2 Theory

The theory of initial models is considerably simpler than the theory of refined models that
is presented in Section 4. The simple reason is that initial models do not have refinement
related proof obligations.

We must prove that the initial model M is consistent.

15

3.2.1 Model Theorems

We must prove that each theorem Q` is implied by properties of C and properties and
theorems of its abstractions and the invariants of M .

Theorem 4

Q(C); J (M); Q1; . . . ; Q`−1 ` Q`

Proof: This is trivially implied by MDL THM. ¤

3.2.2 Feasibility of Initialisation

We must show that the combined initialisation of M is feasible assuming that only properties
(and theorems) of the context C hold. Let R be the combined initialisation of M .

Theorem 5

Q(C) ` ∃ v ′ ·BAv (R)

Proof: Because vR equals v in the combined initialisation we can replace BAv by BA:
Q(C) ` ∃ v ′ ·BA(R). Each after-value u ′ only appears on one conjunct of BA(R). This allows
us to move the existential quantifiers into each conjunct: Q(C) ` FIS(R1) ∧ . . . ∧ FIS(Rr).
We decompose this sequent into r sequents of the form Q(C) ` FIS(R`) where ` ∈ 1 .. r .
Applying the definition of FIS this means we have nothing to prove in case R` ∼ skip or
R` ∼ u` := E`. In the remaining two cases we have to prove Q(C) ` E` 6= ∅ if R` ∼ u` :∈ E`,
and Q(C) ` ∃ u ′` ·A` if R` ∼ u` :| A`. This corresponds to proving MDL INI FIS for all `. ¤

3.2.3 Invariant Establishment

We have to show that after initialisation of M the invariant holds assuming only properties
(and theorems) of the context C . Let R be the combined initialisation of M .

Theorem 6

Q(C); BAv (R) ` [v := v ′] (I1 ∧ . . . ∧ Im)

Proof: Note that vR equals v in the combined initialisation, hence, we can rewrite the sequent
replacing BAv by BA: Q(C); BA(R) ` [vR := v ′R] (I1 ∧ . . . ∧ Im). First we decompose the
sequent into m sequents: Q(C) ` BA(R)⇒ [vR := v ′R] I`. We partition R into a deterministic
part S and a non-deterministic part T : Q(C) ` BA(T) ∧ BA(S) ⇒ [vR := v ′R] I`. The
predicate BA(S) consists of a set of equations of the form v ′S = . . ., hence, we can apply the
equalities to the conclusion, Q(C) ` BA(T)⇒ [S ′] [vR := v ′R] I`. Now we know that S and
T do have disjoint left hand sides, thus, we can rewrite the conclusion once more to yield:
Q(C) ` BA(T) ⇒ [S] [vT := v ′T] I`. Finally, we can restrict the substitutions S and T to
the variables z occurring free in I`. This gives: Q(C) ` BA(T|z)⇒ [S|z] [vT|z := v ′T|z] I` , i.e.
MDL INI INV. ¤

16

3.2.4 Feasibility of Event Actions

We must show that all events of M are feasible assuming that all of U(M) hold. For each
event we must prove:

Theorem 7

U(M) ` ∀ t ·G1 ∧ . . . ∧ Gg ⇒∃ v ′ ·BAv (R)

Proof: We eliminate all after-values v ′Ξ of variables outside the frame of R by applying
the one-point rule: U(M) ` ∀ t ·G1 ∧ . . . ∧ Gg ⇒ ∃ v ′R ·BA(R), and move the existential
quantifiers into the conjuncts: U(M) ` ∀ t ·G1 ∧ . . . ∧ Gg ⇒ FIS(R1) ∧ . . . ∧ FIS(Rr). Using
Theorem 7 (Section 1.6) rewriting yields: U(M); G1; . . . ; Gg ` FIS(R1) ∧ . . . ∧ FIS(Rr).
We decompose this sequent into r sequents of the form U(M); G1; . . . ; Gg ` FIS(R`) where
` ∈ 1 ..r . Applying the definition of FIS this means we have nothing to prove in case R` ∼ skip

or R` ∼ u` := E`. In the remaining two cases we have to prove U(M); G1; . . . ; Gg ` E` 6= ∅
if R` ∼ u` :∈ E`, and U(M); G1; . . . ; Gg ` ∃ u ′` ·A` if R` ∼ u` :| A`. This corresponds to
proving MDL EVT FIS for all `. ¤

3.2.5 Invariant Preservation

We must show that all events of M preserve the combined invariant. We must prove for each
event:

Theorem 8

U(M); (∃ t ·G1 ∧ . . . ∧ Gg); (∀ t ·G1 ∧ . . . ∧ Gg ⇒ BAv (R)) ` [v := v ′] (I1 ∧ . . . ∧ Im)

Proof: Using Theorem 7 rewriting yields:

U(M); G1; . . . ; Gg ; (∀ t ·G1 ∧ . . . ∧ Gg ⇒ BAv (R)) ` [v := v ′] (I1 ∧ . . . ∧ Im) .

We instantiate t and apply modus ponens to produce the simpler sequent:

U(M); G1; . . . ; Gg ; BAv (R) ` [v := v ′] (I1 ∧ . . . ∧ Im) .

Using the one-point rule on Ξ (where BAv (R) ⇔ BA(R) ∧ BA(Ξ)) we can replace BAv by
BA, yielding: U(M); G1; . . . ; Gg ; BA(R) ` [vR := v ′R] (I1 ∧ . . . ∧ Im). We decompose
this sequent into m sequents: U(M); G1; . . . ; Gg ` BA(R) ⇒ [vR := v ′R] I`. We parti-
tion R into a deterministic part S and a non-deterministic part T , and rewrite the claim:
U(M); G1; . . . ; Gg ` BA(T) ∧ BA(S)⇒ [vR := v ′R] I`. The predicate BA(S) consists of a
set of equations of the form v ′S = . . ., hence, we can apply the equalities to the conclusion,
U(M); G1; . . . ; Gg ` BA(T) ⇒ [S ′] [vR := v ′R] I`. Now we know that S and T do have
disjoint left hand sides, thus, we can rewrite the conclusion once more to yield:

U(M); G1; . . . ; Gg ` BA(T)⇒ [S] [vT := v ′T] I` .

Finally, we can restrict the substitutions S and T to the variables z occurring free in I`. This
gives: U(M); G1; . . . ; Gg ` BA(T|z)⇒ [S|z] [vT|z := v ′T|z] I`, i.e. MDL EVT INV. ¤

17

3.2.6 Deadlock Freedom (Optional)

To show deadlock-freedom we must show that the disjunction of the guards of all internal
events e1, . . . , ek of M is true.

Theorem 9

U(M) ` GD(e1) ∨ . . . ∨ GD(ek)

Proof: By MDL DLK. ¤

3.2.7 (Internal) Anticipated Events

In an initial model anticipated events do not cause any different or additional proof obligations.
The differences only appear in refinements (where new events are introduced).

3.2.8 Internal and External Events

All proof obligations must be proven for all events, internal and external. In a refinement
external events can only be refined in a more constrained way. In an initial model there are
no extra constraints on external events.

3.3 Generated Proof Obligations

3.3.1 Well-definedness of Invariants

Proof Obligation: MDL INV WD

FOR invariant I` of M WHERE

` ∈ 1 ..m

ID “MDL/INV`/WD”

GPO Q(C); I1; . . . ; I`−1 ` WD(I`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C), and I1 . . . I`−1 before by MDL INV WD. ¤

18

3.3.2 Well-definedness of Theorems

Proof Obligation: MDL THM WD

FOR theorem Q` of M WHERE

` ∈ 1 .. n

ID “MDL/THM`/WD”

GPO Q(C); J (M); Q1; . . . ; Q`−1 ` WD(Q`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of J (M), and Q1 . . .Q`−1 before by MDL THM WD. ¤

3.3.3 Model Theorems

Proof Obligation: MDL THM

FOR theorem Q` of M WHERE

` ∈ 1 .. n

ID “MDL/THM`/THM”

GPO Q(C); J (M); Q1; . . . ; Q`−1 ` Q`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of J (M), and Q1 . . .Q` before by MDL THM WD. ¤

3.3.4 Well-definedness of Initialisation

Proof Obligation: MDL INI WD

FOR substitution R` of combined initialisation of M WHERE

` ∈ 1 .. r AND u` = frame(R`)

ID “MDL/INIT/u`/WD”

GPO > (if R` ∼ skip)

GPO Q(C) ` WD(E`) (if R` ∼ u` := E`)

GPO Q(C) ` WD(E`) (if R` ∼ u` :∈ E`)

GPO Q(C) ` WD(A`) (if R` ∼ u` :| A`)

19

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C). ¤

3.3.5 Feasibility of Initialisation

Proof Obligation: MDL INI FIS

FOR substitution R` of combined initialisation of M WHERE

` ∈ 1 .. r AND u` = frame(R`)

ID “MDL/INIT/u`/FIS”

GPO > (if R` ∼ skip)

GPO > (if R` ∼ u` := E`)

GPO Q(C) ` E` 6= ∅ (if R` ∼ u` :∈ E`)

GPO Q(C) ` ∃ u ′` ·A` (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C), and of E`, respectively A`, by MDL INI WD. ¤

3.3.6 Invariant Establishment

Proof Obligation: MDL INI INV

FOR combined initialisation of M and invariant I` of M WHERE

` ∈ 1 ..m AND z = free(I`)

ID “MDL/INIT/INV`/INV”

GPO Q(C) ` BA(T|z)⇒ [S|z] [vT|z := v ′T|z] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C), and T and S by MDL INI WD, and I` by MDL INV WD. ¤

20

3.3.7 Well-definedness of Guards

Proof Obligation: MDL GRD WD

FOR guard G` of e of M WHERE

` ∈ 1 .. g

ID “MDL/EVT/GRD`/WD”

GPO U(M); G1; . . . ; G`−1 ` WD(G`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M), and G1 . . .G`−1 before by MDL GRD WD, and t1, . . . tj nfin U(M) by Theorem 7.
¤

3.3.8 Well-definedness of Event Actions

Proof Obligation: MDL EVT WD

FOR substitution R` of e of M WHERE

` ∈ 1 .. r AND u` = frame(R`)

ID “MDL/EVT/u`/WD”

GPO > (if R` ∼ skip)

GPO U(M); G1; . . . ; Gg ` WD(E`) (if R` ∼ u` := E`)

GPO U(M); G1; . . . ; Gg ` WD(E`) (if R` ∼ u` :∈ E`)

GPO U(M); G1; . . . ; Gg ` WD(A`) (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M), and G1 . . .Gg before by MDL GRD WD, and t1, . . . tj nfin U(M) by Theorem 7.
¤

21

3.3.9 Feasibility of Event Actions

Proof Obligation: MDL EVT FIS

FOR substitution R` of e of M WHERE

` ∈ 1 .. r AND u` = frame(R`)

ID “MDL/EVT/u`/FIS”

GPO > (if R` ∼ skip)

GPO > (if R` ∼ u` := E`)

GPO U(M); G1; . . . ; Gg ` E` 6= ∅ (if R` ∼ u` :∈ E`)

GPO U(M); G1; . . . ; Gg ` ∃ u ′` ·A` (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M), and G1 . . .Gg has be shown by MDL GRD WD, and that of E` (respectively A`)
by MDL EVT WD, and t1, . . . tj nfin U(M) by Theorem 7. ¤

3.3.10 Invariant Preservation

Proof Obligation: MDL EVT INV

FOR event e of M and invariant I` of M WHERE

` ∈ 1 ..m AND z = free(I`) AND R|z is not empty

ID “MDL/EVT/INV`/INV”

GPO U(M); G1; . . . ; Gg ` BA(T|z)⇒ [S|z] [vT|z := v ′T|z] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M), and T and S by MDL EVT WD, and I` by MDL INV WD, and G1 . . .Gg has be
shown by MDL GRD WD, and t1, . . . tj nfin U(M) by Theorem 7. ¤

Remark. If R|z is the empty multiple substitution, this proof obligation should not be
generated because I` would appear in the antecedent and the consequent. This holds when
the free variables of I` are not in the frame of R.

Remark. We cannot reduce the number of guards in the hypotheses because they can be
transitively dependent. So we could render a provable proof obligation unprovable.

22

3.3.11 Deadlock Freedom (Optional)

Proof Obligation: MDL DLK

FOR model M WHERE

e1, . . . , ek are all internal events of M

ID “MDL/DLK”

GPO U(M) ` GD(e1) ∨ . . . ∨ GD(ek)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M), and GD(e1) . . .GD(ek) follows from MDL GRD WD and the fact that the local
variables te`

of each event e` are bound by an existential quantifier in GD(e`). ¤

Remark. We could equivalently generate the proof obligation:

U(M); ¬ GD(e1); . . . ; ¬ GD(ek−1) ` GD(ek) .

Remark. This proof obligation should only be generated when all guards of all events of
the model M are well-formed and well-typed. It should be avoided to present the user with
proof obligations that may not be stable. For this proof obligation we know that if some
evnets have not passed static-checking, then it will certainly change. If the user would prove
a such proof obligation before it is stable, this would be nuisance.

Remark. The user who is creating a model has to decide whether or not to prove deadlock
freedom. The corresponding information must be available to the proof obligation generator.

4 Proof Obligations for Refinements

4.1 Description

Let M be a model and N a refinement of M , i.e. M v N . Assume N sees context C with name
CTX (or no context at all). Let x be the variables that appear only in M , y be the variables
that appear only in N , v all variables of M , and w all variables of N . In other words, x are
the variables that disappear in the refinement step, and y are the newly introduced variables.
Furthermore, let o be the variables occurring in M and N .

M
v

x o y
w
N

23

Let N contain the following sequences of invariants and theorems:

invariant INV1 I1
...
invariant INVm Im

theorem THM1 Q1
...
theorem THMn Qn

One part of the invariant I1 ∧ . . . ∧ Im is called external invariant, denoted by J1 ∧ .. ∧ Jσ.
An external invariant can only refer to external variables of the refined and the abstract
model. The remaining part of the invariant I1 ∧ . . . ∧ Im is called internal, and can refer to
all variables of the refined model and the abstract model except the disappearing abstract
external variables. Initialisation of M and N is partitioned into two parts corresponding to
internal and external initialisation. The initialisations of have the form:

RM1

...
RMp

RN1

...
RNq

for some p ≥ 1 and q ≥ 1. All other events eM (with name EVTM), respectively eN (with
name EVTN), have the form

any
tM1 , . . . , tMi

where
GRM1 G1

...
GRMg Gg

then
RM1

...
RMp

end

any
tN1 , . . . , t

N
j

where
GRN1 H1

...
GRNg Hh

then
RN1

...
RNq

end

for some p ≥ 1 and q ≥ 1; where tM1 , . . . , tMi are the local variables (possibly none), G1, . . . ,Gg

the guards (possibly none), and RM1 ‖ . . . ‖RMp is the action of event eM ; and tN1 , . . . , t
N
j are

the local variables (possibly none), H1, . . . ,Hh the guards (possibly none), and RN1 ‖ . . .‖RNq

is the action of event eN .

External Variables. We refer to external variables u of M or N by ×u.

4.1.1 Actions

We use similar conventions an notations as described in Section 3.1.2. The only difference is
that we propagate the subscripts M and N , for instance, partitioning RM into SM and TM .

24

4.1.2 Split and Merge

Split. For a split refinement of an event we do not need special notation. In fact, we treat
this as the standard case of refinement.

Merge. For a merge refinement of a set of events eM
1 , . . . , eM

k we need some more compli-
cated notation for their guards. We let G`,1, . . . ,G`,g`

be the guards of event eM
` for ` ∈ 1 .. k .

There is no need for further extra notation for merge refinements because all the events
eM
1 , . . . , eM

k are required to have identical local variables (in particular, identically typed)
and identical actions (except for permutation of substitutions). Furthermore, no explicit use
of guard names of eM

1 , . . . , eM
k is made.

4.1.3 Witnesses

Witnesses serve to instantiate existential quantifiers in consequents. They are an important
technique for decomposing complex proof obligations. We distinguish explicit and default
witnesses.

Explicit Witnesses. Explicit witnesses are associated with events. The are two kinds of
explicit witnesses, called local and global, used with events in a refined model:

Local witnesses of the form tM` := E , where tM` is a local variable of the cor-
responding abstract event eM , and E is an expression over constants, sets,
local variables tN , and global variables w of the refined model and their
post-values w ′;

Local witnesses of the form tN` := E , where tN` is a local variable of the cor-
responding refined event eN , and E is an expression over constants, sets,
local variables tM , and global variables v of the abstract model and their
post-values v ′;

Global witnesses of the form u := E , where u is contained in the disappearing
abstract variables x , and E is an expression over constants, sets, variables w
of the refined model and their post-values w ′, and local variables tN of the
event of the refined model (to which the witness belongs).

Abstract and Concrete Local Witnesses. Witnesses for abstract local variables tM are
used in the guard strengthening proof obligation. Witnesses for concrete local variables tN

are used in the guard equivalence proof obligation of external events (REF GRD EXT).

Derived Witnesses. The user interface could suggest certain invariants and theorems to
be global witnesses if they are equations of the form u = E where expression E must be an
expression over constants, sets, and variables w of the refined model. This equation could
be turned into a global witness by renaming the variables and rewriting the equation into a
substitution: u := E ′. The proof obligation generator does not do this. Similarly, the user
interface could search for equalities in guards to suggest local witnesses.

25

Witnessed Variable. We call the variable occurring on the left hand side of a witness (i.e.
its frame) the witnessed variable.

Default Local Witnesses. If local variables are repeated in a refined event, then they are
required to be the same, i.e. the default local witness

u := u

is assumed. Note, that in order for this to be well-defined, the types of identically named
local variables must also have identical types.

Default Global Witnesses. If global variables are repeated in a refined model, then they
are required to be the same, i.e. the default global witness

u := u

is assumed. This corresponds just to the glueing invariant for identically named global vari-
ables (that is not stated explicitly in the refined model). Note, that in order for this to be
well-defined, the types of identically named global variables must also have identical types.
(This is checked by the static-checker.) This must be true transitively along the chain of ab-
stractions of a model (as is already required for I(M) for some model M to be well-defined).

Use of Default Witnesses. Because default witnesses are identity substitutions they do
not need to be explicitly part of generated proof obligations. However, if a default witness
exists, it is not possible for the user to provide another witness for the concerned local or
global variable.

Combined Local Witness. For local variables tM of the abstract model M the combined
local witness is defined to be the multiple substitution consisting of all non-default local
witnesses tM` := E . The combined witness for abstract local variables is denoted by VtM .
The combined witness for the local variables tN of the concrete model VtN is defined similarly.

Combined Global Witness. For (disappearing) global variables x of the abstract model
M the combined global witness is defined to be the multiple substitution consisting of all non-
default global witnesses u := E . The combined witness for disappearing abstract variables
ids denoted by Wx .

4.2 Theory

We have to prove that model N is a refinement of model M .

26

4.2.1 Model Theorems

We must prove that each theorem Q` is implied by properties of C and properties and
theorems of its abstractions, and the invariants of M and the invariants and theorems of
the abstractions of M . This proof obligation is similar to that for initial models.

Theorem 10

Q(C); I(M); J (N); Q1; . . . ; Q`−1 ` Q`

Proof: This is trivially implied by REF THM. ¤

4.2.2 External Invariant

The external invariant J1 ∧ . . . ∧ Jσ must be functional from concrete to abstract disappearing
variables, total, and surjective. Theorem 11 shows that it is functional, Theorem 12 shows
that it is total, and Theorem 13 shows that it is surjective.

Theorem 11

Q(C); [×x := ×x] J1; . . . ; [×x := ×x] Jσ; [×x := ×x ′] J1; . . . ; [×x := ×x ′] Jσ ` ×x = ×x ′

Proof: The claim just corresponds to REF EXT FUN. ¤

Theorem 12

Q(C) ` ∀×x · ∃×y ·J1 ∧ . . . ∧ Jσ

Proof: The claim just corresponds to REF EXT TOT. ¤

Theorem 13

Q(C) ` ∀×y · ∃×x ·J1 ∧ . . . ∧ Jσ

Proof: The claim just corresponds to REF EXT SRJ. ¤

4.2.3 Feasibility of Initialisation

We must show that the combined initialisation of N is feasible assuming that only properties
(and theorems) of the context C hold. This is the same proof obligation as for initial models.

Theorem 14

Q(C) ` ∃w ′ ·BAw (RN)

Proof: Similarly to Theorem 5 it is sufficient to prove: Q(C) ` FIS(RN1) ∧ . . . ∧ FIS(RNr).
We decompose this sequent into r sequents of the form Q(C) ` FIS(RN`

) where ` ∈ 1 .. r .
Applying the definition of FIS this means we have nothing to prove in case RN`

∼ skip

or RN`
∼ u` := E`. In the remaining two cases we have to prove Q(C) ` E` 6= ∅ if

RN`
∼ u` :∈ E`, and Q(C) ` ∃ u ′` ·A` if RN`

∼ u` :| A`. This corresponds to proving
MDL INI FIS for all `. ¤

27

4.2.4 Simulation of Initialisation and Invariant Establishment

This proof obligation comprises simulation of initialisation and invariant establishment. We
have to show that the combined initialisation of M can simulate the combined initialisation of
N and that invariant of N holds after initialisation assuming only properties (and theorems)
of the context C and its abstractions. Let RM be the combined initialisation of M , and RN be
the combined initialisation of N . We use v ′′ to denote the after-state of abstract initialisation,
and w ′ to denote the after-state of the refined initialisation.

Theorem 15

Q(C); BAv (RN) `
∃ v ′′ ·[v ′ := v ′′]BAv (RM) ∧ o ′ = o ′′ ∧ [x := x ′′][w := w ′] (I1 ∧ . . . ∧ Im)

Proof: Note that vRM equals v (resp. wRN equals w) in a initialisation, hence, we can
rewrite the sequent replacing BAv by BA:

Q(C); BA(RN) `
∃ v ′′RM

·[v ′RM
:= v ′′RM

] BA(RM) ∧ o′ = o′′ ∧
[x := x ′′] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) .

First we apply the one-point rule for the common variables o:

Q(C); BA(RN) `
∃ x ′′ ·[x ′ := x ′′] BA(RM) ∧

[x := x ′′] [wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) .

The abstract action RM can be split into a deterministic part SM and a non-deterministic
part TM :

Q(C); BA(RN) `
∃ x ′′ ·[x ′ := x ′′] (BA(SM) ∧ BA(TM)) ∧

[x := x ′′] [wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) .

Application of the one-point rule for SM |x yields:

Q(C); BA(RN) `
∃ x ′′TM

·[x ′TM
:= x ′′TM

] BA(TM) ∧ BA(SM |o) ∧
[S ′′M |x] [x := x ′′] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) .

Now we instantiate the remaining disappearing variables x ′′TM
using the global witness Wx .

We assume the global witnesses have been chosen for the proof to succeed.

Q(C); BA(RN) `
[W ′′

x] [x ′TM
:= x ′′TM

]BA(TM) ∧ BA(SM |o) ∧
[W ′′

x] [S ′′M |x] [x := x ′′] [wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) .

28

This simplifies to:

Q(C); BA(RN) `
[W ′

x] BA(TM) ∧ BA(SM |o) ∧
[Wx] [SM |x] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) .

We partition RN into a deterministic part SN and a non-deterministic part TN , and rewrite
the claim: Q(C); BA(SN); BA(TN) ` The predicate BA(SN) consists of a set of
equations of the form w ′

SN
= . . ., hence, we can apply the equalities to the conclusion,

Q(C); BA(TN) `
[S ′N] ([W ′

x] BA(TM) ∧ BA(SM |o)) ∧ (1)

[S ′N] [Wx] [SM |x] [wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) . (2)

In order to prove (1) we rewrite it to:

Q(C); BA(TN) ` [S ′N] [W ′
x] (BA(TM) ∧ BA(SM |o)) .

This possible because x ′ does not occur free in BA(SM |o). We decompose this sequent into
the sequents: Q(C); BA(TN) ` [S ′N] [W ′

x] BA(RM`
), where RM`

is not in SM |x . Note, that
(primed) abstract disappearing variables x ′ do not occur free in BA(SM |o). Finally, with f =
frame(RM`

) and z = primed(Wx |f), it is sufficient to prove:

Q(C); BA(TN |f ∪z) ` [S ′N |f ∪z] [W
′
x |f]BA(RM`

) ,

i.e. REF INI SIM. In order to prove (2), we decompose the sequent

Q(C); BA(TN) ` [S ′N] [Wx] [SM |x] [wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im)

into m sequents of the form Q(C); BA(TN) ` [S ′N] [Wx] [SM |x] [wRN
:= w ′

RN
] I` for ` ∈ 1 ..m.

Letting z = free(I`) and θ = primed(Wx |z) ∪ primed(SM |x∩z), it is thus sufficient to prove

Q(C); BA(TN |θ∪z) ` [S ′N |θ∪z] [Wx |z] [SM |x∩z] [(wRN
:= w ′

RN
)|z] I` ,

i.e. REF INI INV. ¤

4.2.5 Equivalent External Initialisation

We have to prove that the refined external initialisation is not less non-deterministic than the
abstract external initialisation.

Theorem 16

Q(C); [×v ′ := ×v ′′] BA×
v
(RM);

×o ′ = ×o ′′; [×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `
BA×

w
(RN)

29

Proof: We apply the equalities ×o′ = ×o′′:

Q(C); [×x ′ := ×x ′′] BA×
v
(RM);

[×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `
BA×

w
(RN) .

Because x and w are distinct, we can rename x ′′ to x ′:

Q(C); BA×
v
(RM);

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
BA×

w
(RN) .

We replace the relative before-after operators by relative before-after operators which is pos-
sible because external initialisations assign to all external variables (and only those).

Q(C); BA(RM);
[×xRM

:= ×x ′RM
] [×y := ×y ′] J1; . . . ; [×xRM

:= ×x ′RM
] [×y := ×y ′] Jσ `

BA(RN) .

We split RM into the deterministic part SM and the non-deterministic part TM , and apply
the equalities BA(SM):

Q(C); BA(TM);
[SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[SM |o]BA(RN) .

We split this sequent into q sequents:

Q(C); BA(TM);
[SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[SM |o]BA(RN`
) .

where ` ∈ 1 .. q . For all ` it is sufficient to prove

Q(C); BA(TM |x∪f);

[SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[SM |f] BA(RN`

) .

where f = frame(RN`
), i.e. REF INI EXT. ¤

4.2.6 Feasibility of Events

We must show that all events of M are feasible assuming that all of U(M) hold. This is the
same proof obligation as for initial models. For each event we must prove:

Theorem 17

U(N) ` ∀ t ·H1 ∧ . . . ∧ Hh ⇒∃w ′ ·BA(RN)

30

Proof: Similarly to Theorem 7 we only need to prove

U(N) ` ∀ t ·H1 ∧ . . . ∧ Hh ⇒ FIS(RN1) ∧ . . . ∧ FIS(RNq) .

Using Theorem 7 rewriting yields: U(N); H1; . . . ; Hh ` FIS(RN1) ∧ . . . ∧ FIS(RNq). We
decompose this sequent into q sequents of the form U(N); H1; . . . ; Hh ` FIS(R`) where
` ∈ 1 ..q . Applying the definition of FIS this means we have nothing to prove in case R` ∼ skip

or R` ∼ u` := E`. In the remaining two cases we have to prove U(N); H1; . . . ; Hh ` E` 6= ∅
if R` ∼ u` :∈ E`, and U(N); H1; . . . ; Hh ` ∃ u ′` ·A` if R` ∼ u` :| A`. This corresponds to
proving REF EVT FIS for all `. ¤

4.2.7 Before-States and After-States

In proof obligations that deal with refinement of events we must rename global variables of
the abstract model in order to achieve disjoint state spaces, for instance, [o := o1]U(M). Fur-
thermore, we add a predicate o = o1 assuming equality of the before states to the antecedent.
So we have a sequent like: [o := o1]U(M); o = o1; . . . ` We can apply the equalities
o = o1 to the entire sequent to remove o1 from all predicates. We state all proof obligations
after this renaming has been carried out and o1 does not appear anymore.

After-states of refined model events are named w ′, and after-states of the abstract model
events are named v ′′. Abstract model event after-states only appear existentially quantified
in the consequent. After application of the global witnesses all abstract after-states v ′′ are
removed.

4.2.8 Guard Strengthening of Events

We have to prove that the guards of refined events are stronger than the guards of their
abstract counterparts. We have two cases, one for events that are split (perhaps only into
one event) and for events that are merged. We deal with the split case first:

Theorem 18

U(N); H1; . . . ; Hh ` ∃ tM ·G1 ∧ . . . ∧ Gg

Proof: Because of the feasibility of the event of the refined model we can add its before-after
predicate to the hypotheses. This implies that this theorem is proved as part of Theorem 20.
(In fact, we must prove it as part of Theorem 20 because the witnesses must be the same.)

¤
The merge case is similar:

Theorem 19

U(N); H1; . . . ; Hh ` ∃ tM ·((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk))

Proof: Because of the feasibility of the event of the refined model we can add its before-after
predicate to the hypotheses. This implies that this theorem is proved as part of Theorem 21.

¤

31

4.2.9 Simulation of Events and Invariant Preservation

We have to show that the action of the abstract event can simulate the action of the refined
event and the resulting after-states satisfy the invariant (provided the before-states satisfy
the invariant).

Split case. In case of a split refinement the following must hold:

Theorem 20

U(N); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN)) `
∃ tM ·G1 ∧ . . . ∧ Gg ∧ (∃ v ′′ ·[v ′ := v ′′] BAv (RM)) ∧

o ′ = o′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

Proof: Using Theorem 7 on the local variables tN rewriting yields:

U(N); H1; . . . ; Hh ; (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN)) `
∃ tM ·G1 ∧ . . . ∧ Gg ∧ (∃ v ′′ ·[v ′ := v ′′] BAv (RM)) ∧

o ′ = o′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We instantiate tN in the antecedent and apply modus ponens to produce the simpler sequent:

U(N); H1; . . . ; Hh ; BAw (RN) `
∃ tM ·G1 ∧ . . . ∧ Gg ∧ (∃ v ′′ ·[v ′ := v ′′] BAv (RM)) ∧

o ′ = o′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We assume the combined witness VtM has been chosen for the proof to succeed:

U(N); H1; . . . ; Hh ; BAw (RN) `
[VtM]G1 ∧ . . . ∧ [VtM]Gg ∧
(∃ v ′′ ·[VtM] [v ′ := v ′′]BAv (RM)) ∧

o′ = o′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We replace BAw by BA denoting by wΞN
the variables that are not in the frame of RN , and

similarly for the abstract action RM where wΞM
denotes the variables not in the frame. This

yields:

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

[VtM]G1 ∧ . . . ∧ [VtM]Gg ∧ (1)
∃ v ′′ ·[VtM] [v ′RM

:= v ′′RM
] BA(RM) ∧ (2)

vΞM
= v ′′ΞM

∧ o′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

32

To prove sequent (1) we split RN into a deterministic part SN and a non-deterministic part
TN , and apply the equalities wΞN

= w ′
ΞN

and BA(SN):

U(N); H1; . . . ; Hh ; BA(TN) `
[S ′N] [w ′

ΞN
:= wΞN

] [VtM]G1 ∧ . . . ∧ [S ′N] [w ′
ΞN

:= wΞN
] [VtM]Gg

We split this sequent into g sequents:

U(N); H1; . . . ; Hh ; BA(TN) ` [S ′N] [w ′
ΞN

:= wΞN
] [VtM]G`

for ` ∈ 1 .. g . Letting z = free(G`) and ψ = primed(VtM |z) it is sufficient to prove

U(N); H1; . . . ; Hh ; BA(TN |ψ) ` [S ′N |ψ] [(w ′
ΞN

:= wΞN
)|ψ] [VtM |z]G`

i.e. REF GRD REF (see also Theorem 18). Sequent (2) is proved by Theorem 22. ¤

Merge case. In case of a merge refinement the following must hold (Remember that for
events to be merged we require their actions to be identical.):

Theorem 21

U(N); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN)) `
∃ tM ·((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk)) ∧

(∃ v ′′ ·[v ′ := v ′′] BAv (RM)) ∧
o′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

Proof: The proof is almost identical to that of Theorem 18. Using Theorem 7 on the local
variables tN rewriting yields:

U(N); H1; . . . ; Hh ; (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN)) `
∃ tM ·((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk)) ∧

(∃ v ′′ ·[v ′ := v ′′] BAv (RM)) ∧
o′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

We instantiate tN in the antecedent and apply modus ponens to produce the simpler sequent:

U(N); H1; . . . ; Hh ; BAw (RN) `
∃ tM ·((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk)) ∧

(∃ v ′′ ·[v ′ := v ′′] BAv (RM)) ∧
o′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

33

We assume the combined witness VtM has been chosen for the proof to succeed:

U(N); H1; . . . ; Hh ; BAw (RN) `
[VtM] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk)) ∧
(∃ v ′′ ·[v ′ := v ′′] BAv (RM)) ∧

o′ = o′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

We replace BAw by BA denoting by wΞN the variables that are not in the frame of RN , and
similarly for the abstract action RM where wΞM denotes the variables not in the frame. This
yields:

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

[VtM] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk)) ∧ (1)
∃ v ′′ ·[VtM] [v ′RM

:= v ′′RM
] BA(RM) ∧ (2)

vΞM
= v ′′ΞM

∧ o′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

To prove sequent (1) we split RN into a deterministic part SN and a non-deterministic part
TN , and apply the equalities wΞN

= w ′
ΞN

and BA(SN):

U(N); H1; . . . ; Hh ; BA(TN) `
[S ′N] [w ′

ΞN
:= wΞN

] [VtM] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk)) .

Letting ψ = primed(VtM) it is sufficient to prove

U(N); H1; . . . ; Hh ; BA(TN |ψ) `
[S ′N |ψ] [(w ′

ΞN
:= wΞN

)|ψ] [VtM] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk)) .

i.e. REF GRD MRG (see also Theorem 19). Sequent (2) is proved by Theorem 22. ¤

Theorem 22

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

∃ v ′′ ·[VtM] [v ′RM
:= v ′′RM

] BA(RM) ∧
vΞM

= v ′′ΞM
∧ o′ = o ′′ ∧

[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

Proof: We apply the one-point rule for the common variables o:

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

∃ x ′′ ·[VtM] [x ′RM
:= x ′′RM

] BA(RM) ∧
[o′′ := o′] vΞM

= v ′′ΞM
∧

[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

34

We split vΞM
into to sets of disappearing variables xΞM

and common variables oΞM
:

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

∃ x ′′ ·[VtM] [x ′RM
:= x ′′RM

] BA(RM) ∧
xΞM

= x ′′ΞM
∧ oΞM

= o′ΞM
∧

[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We apply the one-point law to xΞM
= x ′′ΞM

(note, that primed variables do not occur free in
VtM):

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

∃ x ′′RM
·[VtM] [x ′RM

:= x ′′RM
]BA(RM) ∧

oΞM
= o ′ΞM

∧
[xRM

:= x ′′RM
] [w := w ′] (I1 ∧ . . . ∧ Im) .

Now we split the abstract action RM into a deterministic part SM and a non-deterministic
part TM :

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

∃ x ′′RM
·[VtM] [x ′RM

:= x ′′RM
] (BA(SM) ∧ BA(TM)) ∧

oΞM
= o ′ΞM

∧
[xRM

:= x ′′RM
] [w := w ′] (I1 ∧ . . . ∧ Im) .

We can apply the one-point rule for [VtM] BA(S ′′M |x):

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

∃ x ′′TM
·[VtM] [x ′TM

:= x ′′TM
] (BA(TM) ∧ BA(SM |o)) ∧

oΞM
= o′ΞM

∧
[VtM] [S ′′M |x] [xRM

:= x ′′RM
] [w := w ′] (I1 ∧ . . . ∧ Im) .

We instantiate the remaining disappearing variables x ′′TM
using the global witness Wx , assum-

ing they have been chosen for the proof to succeed:

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

[W ′′
x] [VtM] [x ′TM

:= x ′′TM
] (BA(TM) ∧ BA(SM |o)) ∧

oΞM
= o′ΞM

∧
[W ′′

x] [VtM] [S ′′M |x] [xRM
:= x ′′RM

] [w := w ′] (I1 ∧ . . . ∧ Im) .

We can swap W ′′
x and VtM because frame(W ′′

x) ∩ frame(VtM) is empty, x ′′ 6∈ free(VtM), and
tM \ tN 6∈ free(W ′′

x):

U(N); H1; . . . ; Hh ; BA(RN); wΞN
= w ′

ΞN
`

[VtM] [W ′′
x] [x ′TM

:= x ′′TM
] (BA(TM) ∧ BA(SM |o)) ∧

oΞM
= o′ΞM

∧
[VtM] [W ′′

x] [S ′′M |x] [xRM
:= x ′′RM

] [w := w ′] (I1 ∧ . . . ∧ Im) .

35

We simplify and apply the equalities wΞN
= w ′

ΞN
:

U(N); H1; . . . ; Hh ; BA(RN) `
[w ′

ΞN
:= wΞN

] [VtM] [W ′
x] (BA(TM) ∧ BA(SM |o)) ∧

[w ′
ΞN

:= wΞN
] oΞM

= o ′ΞM
∧

[w ′
ΞN

:= wΞN
] [VtM] [Wx] [SM |x] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) .

We partition RN into a deterministic part SN and a non-deterministic part TN , and rewrite
the claim:

U(N); H1; . . . ; Hh ; BA(TN) `
[S ′N] [w ′

ΞN
:= wΞN

] [VtM] [W ′
x] (BA(TM) ∧ BA(SM |o)) ∧ (1)

[S ′N] [w ′
ΞN

:= wΞN
] oΞM

= o ′ΞM
∧ (2)

[S ′N] [w ′
ΞN

:= wΞN
] [VtM] [Wx] [SM |x] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) . (3)

This sequent can be decomposed into three sequents: (1) deals with simulation by RM , (2)
deals with simulation by ΞM , and (3) deals with invariant preservation. Sequent (1), i.e.
U(N); H1; . . . ; Hh ; BA(TN) ` [S ′N] [w ′

ΞN
:= wΞN

] ([W ′
x] BA(TM) ∧ BA(SM |o)) can be

decomposed into the sequents

U(N); H1; . . . ; Hh ; BA(TN) `
[S ′N] [w ′

ΞN
:= wΞN

] [VtM] [W ′
x]BA(RM`

)

for RM`
6∈ SM |x . Letting f = frame(RM`

), ψ = free(RM`
), and χ = primed(Wx |f), it is sufficient

to prove:

U(N); H1; . . . ; Hh ; BA(TN |f ∪χ) `
[S ′N |f ∪χ] [(w

′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f]BA(RM`
) ,

i.e. REF EVT SIM ∆. Sequent (2) is proved by REF EVT SIM Ξ for the common variables
u of M and N that are not in the frame of RM but are in the frame of RN (in other words
u ∈ o ∩ (frame(RN) \ frame(RM)):

U(N); H1; . . . ; Hh ; BA(TN |u) ` [S ′N |u] u = u ′ .

In the case where u is not in either frame, sequent (1) is trivially true. Sequent (3) can be
decomposed into m sequents:

U(N); H1; . . . ; Hh ; BA(TN) `
[S ′N] [w ′

ΞN
:= wΞN

] [VtM] [Wx] [SM |x] [wRN
:= w ′

RN
] I` ,

for ` ∈ 1 ..m, and for each ` it is sufficient to prove:

U(N); H1; . . . ; Hh ; BA(TN |η∩z) `
[S ′N |η∩z] [(w

′
ΞN

:= wΞN
)|η∩z] [VtM |φ] [Wx |z] [SM |x∩z] [(wRN

:= w ′
RN

)|z] I` .

where z = free(I`), φ = free(SM |x∩z), and η = primed(Wx |z) ∪ primed(SM |x∩z), i.e. proof
obligation REF EVT INV. ¤

36

4.2.10 Guard Weakening of External Events

Theorem 23

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ` ∃ tN ·H1 ∧ . . . ∧ Hh

Proof: Because of the feasibility of the abstract event and surjectivity of J1 ∧ . . . ∧ Jσ
interpreted as a mapping from states of the refined model to states of the abstract model, we
can add the abstract before-after predicate and the external invariant to the hypotheses:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ;
[×x := ×x ′′]BA×

v
(RM); [×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `

∃ tN ·H1 ∧ . . . ∧ Hh .

This is proved as part of Theorem 24. ¤

Remark. Guard strengthening (Theorem 18) and guard weakening (Theorem 23) of exter-
nal events together imply that the guards of external events are equivalent.

4.2.11 Equivalent External Events

Theorem 24

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; [×v := ×v ′′] BA×
v
(RM);

×o ′ = ×o ′′; [×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `
∃ tN ·H1 ∧ . . . ∧ Hh ∧ BA×

w
(RN)

Proof: We apply the equalities ×o′ = ×o′′, yielding:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; [×x := ×x ′′] BA×
v
(RM);

[×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `
∃ tN ·H1 ∧ . . . ∧ Hh ∧ BA×

w
(RN)

Because x and w are distinct, we can rename x ′′ to x ′:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA×
v
(RM);

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
∃ tN ·H1 ∧ . . . ∧ Hh ∧ BA×

w
(RN) .

We assume that the witnesses for tN have been chosen for the proof to succeed:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA×
v
(RM);

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
[VtN]H1 ∧ . . . ∧ [VtN]Hh ∧ (1)
[VtN] BA×

w
(RN) . (2)

37

We split sequent (1) into h sequents:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA×
v
(RM);

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
[VtN]H` .

for ` ∈ 1 .. h. The before-after predicate can be split according to the frame of RM , and the
latter can split into a deterministic part SM and a non-deterministic part TM :

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM); BA(SM); BA(ΞM);
[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `

[VtN]H` .

We apply the equalities BA(SM) and BA(ΞM) to yield:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM);
[SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[S ′M] [×v ′ΞM
:= ×vΞM

] [VtN]H` .

Letting z = free(H`) and ψ = primed(VtN |z) it is sufficient to prove:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪ψ);

[SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[S ′M |ψ] [(×v ′ΞM

:= ×vΞM
)|ψ] [VtN |z]H` .

i.e. REF GRD EXT. Sequent (2) remains to be proved:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA×
v
(RM);

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
[VtN] BA×

w
(RN) .

This equivalent to:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(RM); BA(ΞM);
[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `

[VtN] BA(RN) ∧
[VtN] BA(ΞN) .

We apply the equalities BA(ΞM). This yields (ΞN does not refer to local variables):

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(RM);
[×xRM

:= ×x ′RM
] [×y := ×y ′] J1; . . . ; [×xRM

:= ×x ′RM
] [×y := ×y ′] Jσ `

[×v ′ΞM
:= ×vΞM

] [VtN] BA(RN) ∧
[×o ′ΞM

:= ×oΞM
] (×w′ΞN

= ×wΞN
) .

38

We split RM into a deterministic substitution SM and a non-deterministic substitution TM ,
and apply the equalities BA(SM):

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM);
[SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[S ′M] [×v ′ΞM
:= ×vΞM

] [VtN] BA(RN) ∧ (3)

[S ′M |o] [×o ′ΞM
:= ×oΞM

] (×w′ΞN
= ×wΞN

) . (4)

We prove sequent (3) by splitting it into q sequents:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM);
[SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[S ′M] [×v ′ΞM
:= ×vΞM

] [VtN] BA(RN`
) ,

where ` ∈ 1 .. q . Letting f = frame(RN`
) it is sufficient to prove:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪f);

[SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[S ′M |f] [(

×v ′ΞM
:= ×vΞM

)|f] [VtN] BA(RN`
) ,

i.e. REF EVT GEN ∆. Sequent (4) is proved by

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM);
[SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[S ′M |o] (u = u ′) ,

for all u ∈ o ∩ (frame(RM) \ frame(RN)). Thus it is sufficient to prove:

Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪u);

[SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[S ′M |u] (u = u ′) ,

i.e. REF EVT GEN Ξ. ¤

4.2.12 Simulation of Skip and Invariant Preservation

If an ordinary event is introduced we only need to prove that it preserves the invariant and
refines skip.

Theorem 25

U(N); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN)) `
∃ v ′′ ·[v ′ := v ′′] BAv (skip) ∧

o′ = o′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

39

Proof: We proceed similarly to the proof of Theorem 20. After simplifying the antecedent
we obtain:

U(N); H1; . . . ; Hh ; BAw (RN) `
∃ v ′′ ·[v ′ := v ′′] BAv (skip) ∧

o′ = o′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

The predicate BAv (skip) is v ′ = v , hence, we can simplify using the one-point rule:

U(N); H1; . . . ; Hh ; BAw (RN) `
[v ′′ := v] o′ = o′′ ∧
[v ′′ := v] [x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We continue simplifying:

U(N); H1; . . . ; Hh ; BAw (RN) `
o′ = o ∧
[w := w ′] (I1 ∧ . . . ∧ Im) .

We replace BAw by BA, and apply the equalities:

U(N); H1; . . . ; Hh ; BA(RN) `
[w ′

ΞN
:= wΞN

] o′ = o ∧
[w ′

ΞN
:= wΞN

] [w := w ′] (I1 ∧ . . . ∧ Im) .

Thus,

U(N); H1; . . . ; Hh ; BA(RN) `
o′RN

= oRN
∧

[wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) .

We split RN into a deterministic part SN and a non-deterministic part TN , apply the equalities
BA(SN), and simplify:

U(N); H1; . . . ; Hh ; BA(TN) `
[S ′N] o′RN

= oRN
∧ (1)

[SN] [wTN
:= w ′

TN
] (I1 ∧ . . . ∧ Im) . (2)

In order to prove (1), it is sufficient to show:

U(N); H1; . . . ; Hh ; BA(TN |u) ` [S ′N |u] u ′ = u

for all u ∈ frame(RN) ∩ o, i.e. REF NEW SIM. To show (2) we prove m sequents:

U(N); H1; . . . ; Hh ; BA(TN) ` [SN] [wTN
:= w ′

TN
] I` ,

where ` ∈ 1 ..m. Letting z = free(I`), it suffices to prove:

U(N); H1; . . . ; Hh ; BA(TN |z) ` [SN |z] [(wTN
:= w ′

TN
)|z] I` ,

i.e. REF NEW INV. ¤

40

4.2.13 Reduction of a Set Variant

The variant of a model must be a finite set. It is decreased by convergent events; it is not
increased by anticipated events.

Theorem 26

U(N) ` finite(D)

Proof: This is trivially proven by REF VAR FIN P. ¤

Theorem 27

U(N); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN)) ` ([w := w ′]D) ⊆ D

Proof: We proceed similarly to the first steps of the proof of Theorem 20 to obtain:

U(N); H1; . . . ; Hh ; BAw (RN) ` ([w := w ′]D) ⊆ D .

Thus,

U(N); H1; . . . ; Hh ; BA(RN) ` ([wRN
:= w ′

RN
]D) ⊆ D .

We split RN into a deterministic part SN and a non-deterministic part TN , apply the equalities
BA(SN), and simplify:

U(N); H1; . . . ; Hh ; BA(TN) ` ([SN][wTN
:= w ′

TN
]D) ⊆ D ,

thus, letting z = free(D):

U(N); H1; . . . ; Hh ; BA(TN |z) ` ([SN |z][(wTN
:= w ′

TN
)|z]D) ⊆ D ,

i.e. REF ANT VAR P. ¤

Theorem 28

U(N); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN)) ` ([w := w ′]D) ⊂ D

Proof: Following the same steps as in the proof of Theorem 27 we obtain:

U(N); H1; . . . ; Hh ; BA(TN |z) ` ([SN |z][(wTN
:= w ′

TN
)|z]D) ⊂ D ,

i.e. REF CVG VAR P, where z = free(D). ¤

41

4.2.14 Reduction of a Natural Number Variant

In the case when the variant can be expressed as a number specialised proof obligations can
be used. If DZ describes an integer number, then 0 .. DZ is a set. So, all we have to do is to
state the equivalents of Theorems 26 to 28 for natural numbers.

Theorem 29

U(N) ` finite(0 ..DZ)

Proof: The set 0 ..DZ is finite. ¤

Theorem 30

U(N); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN)) `
([w := w ′] 0 ..DZ) ⊆ 0 ..DZ

Proof: We obtain (see Theorem 27):

U(N); H1; . . . ; Hh ; BA(TN) ` ([SN][wTN
:= w ′

TN
] 0 ..DZ) ⊆ 0 ..DZ .

The consequent can be expressed equivalently:

U(N); H1; . . . ; Hh ; BA(TN) `
DZ ∈ N ∧ (1)
([SN][wTN

:= w ′
TN

]DZ) ≤ DZ . (2)

Letting z = free(DZ) the first sequent becomes

U(N); H1; . . . ; Hh ` DZ ∈ N ,

i.e. REF ANT VAR N and the second sequent:

U(N); H1; . . . ; Hh ; BA(TN |z) ` ([SN |z][(wTN
:= w ′

TN
)|z]DZ) ≤ DZ ,

i.e. REF ANT VAR ∆. ¤

Theorem 31

U(N); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN)) `
([w := w ′] 0 ..DZ) ⊂ 0 ..DZ

Proof: We proceed as in the proof of Theorem 30 and with z = free(DZ) obtain the sequents:

U(N); H1; . . . ; Hh ` DZ ∈ N ,

i.e. REF CVG VAR N, and:

U(N); H1; . . . ; Hh ; BA(TN |z) ` ([SN |z][(wTN
:= w ′

TN
)|z]DZ) ≤ DZ

i.e. REF CVG VAR ∆. ¤

42

4.2.15 Introduction of New Events

Ordinary Events. If an ordinary event is introduced we must prove Theorem 25.

Anticipated Events. If an anticipated event is introduced we must prove Theorem 25
and that the event does not increase the variant. If there are no convergent events either
by refinement or introduction, there is no variant for the model and, hence, there is nothing
to prove. In the other case Theorem 26 and Theorem 27 must hold (or alternatively only
Theorem 30).

Convergent Events. If a convergent event is introduced we must prove Theorem 25 and
that the event decreases the variant. I.e. we must also prove Theorem 26 and Theorem 28
must hold (or alternatively only Theorem 31).

4.2.16 Refinement of Events

External Events. External events can neither be anticipated nor convergent. They must,
however, not have a stronger guard or be less deterministic. We must prove Theorem 20 and
Theorem 24.

Ordinary Events. If the refined event is ordinary we must prove Theorem 20 or Theo-
rem 21.

Anticipated Events. If the refined event is anticipated we must prove Theorem 20 or
Theorem 21, and that the event does not increase the variant (if there is a variant in the
refined model). If there is a variant we must also prove Theorem 26 and Theorem 27 (or
alternatively only Theorem 30).

Convergent Events. If the refined event is convergent we must prove Theorem 20 or
Theorem 21, and that the event decreases the variant. I.e. we must also prove Theorem 26
and Theorem 28 must hold (or alternatively only Theorem 31).

4.2.17 Relative Deadlock-Freedom

We must prove that the disjunction of the guards of the internal events of the refined model im-
plies the disjunction of the guards of the internal events of the abstract model. Let eN

1 , . . . , e
N
`

be the internal events of the refined model, and eM
1 , . . . , eM

k be the internal events of the ab-
stract model.

Theorem 32

U(M); GD(eN
1) ∨ . . . ∨ GD(eN

`) ` GD(eM
1) ∨ . . . ∨ GD(eM

k)

Proof: By REF DLK. ¤

43

4.3 Generated Proof Obligations

4.3.1 Well-definedness of Invariants

Proof Obligation: REF INV WD

FOR invariant I` of N WHERE

` ∈ 1 ..m

ID “REF/INV`/WD”

GPO Q(C); I(M); I1; . . . ; I`−1 ` WD(I`)

Proof of WDEF: Analogously to MDL INV WD. ¤

Remark. REF INV WD is identical to MDL INV WD (3.3.1 on page 18) apart from re-
naming.

Remark. See remarks on MDL INV WD.

4.3.2 Well-definedness of Theorems

Proof Obligation: REF THM WD

FOR theorem Q` of N WHERE

` ∈ 1 .. n

ID “REF/THM`/WD”

GPO Q(C); I(M); J (N); Q1; . . . ; Q`−1 ` WD(Q`)

Proof of WDEF: Analogously to MDL THM WD. ¤

Remark. REF THM WD is identical to MDL THM WD (3.3.2 on page 19) apart from
renaming.

Remark. See remarks on MDL THM WD.

44

4.3.3 Model Theorems

Proof Obligation: REF THM

FOR theorem Q` of N WHERE

` ∈ 1 .. n

ID “REF/THM`/THM”

GPO Q(C); I(M); J (N); Q1; . . . ; Q`−1 ` Q`

Proof of WDEF: Analogously to MDL THM. ¤

Remark. REF THM is identical to MDL THM (3.3.3 on page 19) apart from renaming.

Remark. See remarks on MDL THM.

4.3.4 Functional External Invariant

Proof Obligation: REF EXT FUN

FOR external invariants J1, .., Jσ of N WHERE

>
ID “REF/EXT/FUN”

GPO Q(C); [×x := ×x] J1; . . . ; [×x := ×x] Jσ; [×x := ×x ′] J1; . . . ; [×x := ×x ′] Jσ ` ×x = ×x ′

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C), and J1, . . . , Jσ before by REF INV WD. ¤

4.3.5 Total External Invariant

Proof Obligation: REF EXT TOT

FOR external invariants J1, .., Jσ of N WHERE

>
ID “REF/EXT/TOT”

GPO Q(C) ` ∀×x · ∃×y ·J1 ∧ . . . ∧ Jσ

Proof of WDEF: Similarly to REF EXT FUN. ¤

45

4.3.6 Surjective External Invariant

Proof Obligation: REF EXT SRJ

FOR external invariants J1, .., Jσ of N WHERE

>
ID “REF/EXT/SRJ”

GPO Q(C) ` ∀×y · ∃×x ·J1 ∧ . . . ∧ Jσ

Proof of WDEF: Similarly to REF EXT FUN. ¤

4.3.7 Well-definedness of Initialisation

Proof Obligation: REF INI WD

FOR substitution R` of the combined initialisation of N WHERE

` ∈ 1 .. n AND u` = frame(R`)

ID “REF/INIT/u`/WD”

GPO > (if R` ∼ skip)

GPO Q(C) ` WD(E`) (if R` ∼ u` := E`)

GPO Q(C) ` WD(E`) (if R` ∼ u` :∈ E`)

GPO Q(C) ` WD(A`) (if R` ∼ u` :| A`)

Proof of WDEF: Analogously to MDL INI WD. ¤

Remark. REF INI WD is identical to MDL INI WD (3.3.4 on page 19) apart from renam-
ing.

Remark. See remarks on MDL INI WD.

46

4.3.8 Feasibility of Initialisation

Proof Obligation: REF INI FIS

FOR substitution R` of the combined initialisation of N WHERE

` ∈ 1 .. n AND u` = frame(R`)

ID “REF/INIT/u`/FIS”

GPO > (if R` ∼ skip)

GPO > (if R` ∼ u` := E`)

GPO Q(C) ` E` 6= ∅ (if R` ∼ u` :∈ E`)

GPO Q(C) ` ∃ u ′` ·A` (if R` ∼ u` :| A`)

Proof of WDEF: Analogously to MDL INI FIS. ¤

Remark. REF INI FIS is identical to MDL INI FIS (3.3.5 on page 20) apart from renam-
ing.

Remark. See remarks on MDL INI FIS.

4.3.9 Simulation of Initialisation

Proof Obligation: REF INI SIM

FOR combined initialisation of N and combined initialisation of M WHERE

` ∈ 1 .. p AND RM`
6∈ SM |x AND f = frame(RM`

) AND z = primed(Wx |f)

ID “REF/INIT/u/SIM”

GPO Q(C); BA(TN |f ∪z) ` [S ′N |f ∪z] [W
′
x |f]BA(RM`

)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C), and TN and SN by REF INI WD, and combined witness Wx by REF GWIT WD,
and RM`

by MDL INI WD/REF INI WD. ¤

Remark. This proof obligation should only be generated when the initialisations, external
and internal, of the models M and N are well-formed and well-typed. It should be avoided
to present the user with proof obligations that may not be stable.

Remark. Note also, that the initialisation of a model must assign values to variables of
that model. This means there no variables outside its frame.

47

4.3.10 Unreduced External Initialisation

Proof Obligation: REF INI EXT

FOR subst. RN`
of ext. initialisation of N and ext. initialisation of M WHERE

` ∈ 1 .. q AND f = frame(RN`
)

ID “REF/INIT/f /EXT”

GPO Q(C); BA(TM |x∪f);

[SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[SM |f] BA(RN`

)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C), and J1 . . . Jσ by REF INV WD, and substitution RN`

by REF INI WD, and SM

and TM by MDL INI WD/REF INI WD. ¤

4.3.11 Invariant Establishment

Proof Obligation: REF INI INV

FOR combined initialisation of N and invariant I` of N WHERE

` ∈ 1 .. i AND z = free(I`) AND θ = primed(Wx |z) ∪ primed(SM |x∩z)

ID “REF/INIT/INV`/INV”

GPO Q(C); BA(TN |θ∪z) ` [S ′N |θ∪z] [Wx |z] [SM |x∩z] [(wRN
:= w ′

RN
)|z] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C), and TN and SN by REF INI WD, and Wx by REF GWIT WD, and invariant I`
by REF INV WD. ¤

4.3.12 Well-definedness of Guards

Proof Obligation: REF GRD WD

FOR guard H` of event eN of N WHERE

` ∈ 1 .. h

ID “REF/EVT/GRN`/WD”

PO U(N); H1; . . . ; H`−1 ` WD(H`)

48

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1, . . . ,H`−1 before by REF GRD WD, and tN1 , . . . , t

N
j nfin U(N) by Theo-

rem 7. ¤

Remark. REF GRD WD is identical to MDL GRD WD (3.3.7 on page 21) apart from
renaming.

4.3.13 Well-definedness of Local Witnesses

Remark. There are two kinds of local witnesses: witnesses for local variables of the abstract
event, and for external events also witnesses for local variables of the refined event.

Proof Obligation: REF LWIT WD A

FOR witness WtM`
of event eN of N WHERE

` ∈ 1 .. i AND WtM`
∼ tM` := E

ID “REF/EVT/tM` /WWD”

GPO U(N); H1; . . . ; Hh ` WD(E)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1, . . . ,Hh before by REF GRD WD, and tN1 , . . . , t

N
j nfin U(N) by Theorem 7.

¤

Remark. This proof obligation does not apply to index ` for tM` ∈ tN because it is not
possible to specify explicit witnesses for local variables for which default witnesses are used.

Proof Obligation: REF LWIT WD R

FOR witness WtN`
of event eN of N WHERE

` ∈ 1 .. i AND WtN`
∼ tN` := E

ID “REF/EVT/tN` /WWD”

GPO Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ` WD(E)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C), and the external invariants J1, . . . , Jσ by REF INV WD, and the guards G1, . . . ,Gg

by MDL GRD WD/REF GRD WD, and tM1 , . . . , tMj nfin U(N) by Theorem 7. ¤

49

Remark. This proof obligation does not apply to index ` for tN` ∈ tM because it is not
possible to specify explicit witnesses for local variables for which default witnesses are used.

4.3.14 Well-definedness of Global Witnesses of Events

Proof Obligation: REF GWIT WD

FOR witness Wu of event eN of N WHERE

Wu ∼ u := E AND z = primed(E)

ID “REF/EVT/u/WWD”

GPO U(N); H1; . . . ; Hh ` BA(TN |z)⇒ [S ′N |z]WD(E)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and the guards H1, . . . ,Hh by REF GRD WD, and TN and SN by REF EVT WD,
and tN1 , . . . , t

N
j nfin U(N) by Theorem 7. ¤

4.3.15 Guard Strengthening (Split Case)

Proof Obligation: REF GRD REF

FOR event eN of N and guard G` of event eM of M WHERE

` ∈ 1 .. g AND z = free(G`) AND ψ = primed(VtM |z)

ID “REF/EVT/GRM`/REF”

GPO U(N); H1; . . . ; Hh ; BA(TN |ψ) ` [S ′N |ψ] [(w ′
ΞN

:= wΞN
)|ψ] [VtM |z]G`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1, . . . ,Hh by REF GRD WD, and that of SN and TN by REF EVT WD,
and VtM by REF LWIT WD A, and guard G` by MDL GRD WD/REF GRD WD, and
tN1 , . . . , t

N
j nfin U(N) by Theorem 7. ¤

50

4.3.16 Guard Weakening of External Events

Proof Obligation: REF GRD EXT

FOR guard H` of external event eN of N and external event eM of M WHERE

` ∈ 1 .. h AND z = free(H`) AND ψ = primed(VtN |z)

ID “REF/EVT/GRN`/EXT”

GPO Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪ψ);

[SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[S ′M |ψ] [(×v ′ΞM

:= ×vΞM
)|ψ] [VtN |z]H`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H` by REF GRD WD, and VtN by REF LWIT WD R, and the guards G1 . . .Gg

by MDL GRD WD/REF GRD WD, and SM and TM by MDL EVT WD/REF EVT WD,
and tM1 , . . . , tMi nfin U(N) by Theorem 7. ¤

Remark. This proof obligation applies to all external events of a model. In conjunction
with REF GRD REF it shows that the guards of an external event and the corresponding
refined event are equivalent.

Remark. External events can neither be split nor be merged. The proof obligation that
applies is that for the split case (where the abstract event is split into only one event).

Remark. The combined witnesses VtM and VtN are used for both proof obligations con-
cerning guards REF GRD REF and REF GRD EXT. This is possible because identically
named local variables u must denote the same objects. They are associated with default wit-
nesses of the form u := u. These are applied in both directions. For the remaining variables
with distinct names it is clear for which proof obligation they are to be applied because they
only occur either in the guard of the abstract event or in the guard of the refined event.

51

4.3.17 Guard Strengthening (Merge Case)

Proof Obligation: REF GRD MRG

FOR event eN of N and events eM
1 , . . . , eM

k of M WHERE

ψ = primed(VtM)

ID “REF/EVT/MRG”

GPO U(N); H1; . . . ; Hh ; BA(TN |ψ) `
[S ′N |ψ] [(w ′

ΞN
:= wΞN

)|ψ] [VtM] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk))

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1, . . . ,Hh by REF GRD WD, and that of SN and TN by REF EVT WD,
and the combined witness VtM by REF LWIT WD A, and G1,1 . . .G1,g1 . . . Gk ,1 . . .Gk ,gk by
MDL GRD WD/REF GRD WD, and tN1 , . . . , t

N
j nfin U(N) by Theorem 7. ¤

Remark. Unfortunately this proof obligation cannot be further decomposed.

4.3.18 Well-definedness of Event Actions

Proof Obligation: REF EVT WD

FOR substitution R` of event eN of N WHERE

` ∈ 1 .. n AND u` = frame(R`)

ID “REF/EVT/u`/WD”

GPO > (if R` ∼ skip)

GPO U(N); H1; . . . ; Hh ` WD(E`) (if R` ∼ u` := E`)

GPO U(N); H1; . . . ; Hh ` WD(E`) (if R` ∼ u` :∈ E`)

GPO U(N); H1; . . . ; Hh ` WD(A`) (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh before by REF GRD WD, and t1, . . . tj nfin U(N) by Theorem 7. ¤

Remark. REF EVT WD is identical to MDL EVT WD (3.3.8 on page 21) apart from
renaming.

52

4.3.19 Feasibility of Event Actions

Proof Obligation: REF EVT FIS

FOR substitution R` of event eN of N WHERE

` ∈ 1 .. n AND u` = frame(R`)

ID “REF/EVT/u`/FIS”

GPO > (if R` ∼ skip)

GPO > (if R` ∼ u` := E`)

GPO U(N); H1; . . . ; Hh ` E` 6= ∅ (if R` ∼ u` :∈ E`)

GPO U(N); H1; . . . ; Hh ` ∃ u ′` ·A` (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh has be shown by REF GRD WD, and that of E` (respectively A`) by
REF EVT WD, and t1, . . . tj nfin U(N) by Theorem 7. ¤

Remark. REF EVT FIS is identical to MDL EVT FIS (3.3.9 on page 22) apart from re-
naming.

4.3.20 Simulation of Refined-Event Actions

Remark. There are two cases of simulation to be treated as indicated in the proof obli-
gations REF EVT SIM (∆/Ξ) by underlining the corresponding conditions. This happens
because an event behaves like skip on variables that are not in its frame. For each event, the
generated simulation proof obligations must cover all abstract variables v .

Proof Obligation: REF EVT SIM ∆

FOR refined event eN of N and substitution RM`
of event eM of M WHERE

` ∈ 1 .. p AND RM`
6∈ SM |x AND

f = frame(RM`
) AND ψ = free(RM`

) AND χ = primed(Wx |f)

ID “REF/EVT/u/SIM”

GPO U(N); H1; . . . ; Hh ; BA(TN |f ∪χ) `
[S ′N |f ∪χ] [(w

′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f]BA(RM`
)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness

53

of U(N), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, , and that of RM`

by MDL EVT WD/REF EVT WD, and Wx by
REF GWIT WD, and t1, . . . tj nfin U(N) by Theorem 7. ¤

Remark. We have the choice to add either proved invariant preservation as lemmas to
the antecedent of this generated proof obligation, or the simulations as lemmas to the an-
tecedents of the invariant preservation proof obligations REF EVT INV. We have decided
for the second choice because, empirically, the simulation proof obligation is usually straight-
forward whereas invariant preservation proofs are more difficult and profit from the addition
antecedents. See the remarks on REF EVT INV.

Split GPO. In case of a split refinement we can add some useful additional hypotheses
to REF EVT SIM ∆, assuming that REF GRD REF (Theorem 18) has been proven as a
lemma (for all G`):

U(N); [VtM |θ1]G1; . . . ; [VtM |θg]Gg ; H1; . . . ; Hh ; BA(TN |f ∪χ) `
[S ′N |f ∪χ] [(w

′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f]BA(RM`
)

where θ` = free(G`) for ` ∈ 1 .. g . This is still well-defined because we have shown well-
definedness of G1, . . . ,Gg has be shown by MDL GRD WD/REF GRD WD, and VtM by
REF LWIT WD A.

Merge GPO. In case of a merge refinement we can add some useful additional hypotheses
to REF EVT SIM ∆, assuming that REF GRD MRG (Theorem 19) has been proven as a
lemma:

U(N);
[VtM] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk));
H1; . . . ; Hh ; BA(TN |f ∪χ) `

[S ′N |f ∪χ] [(w
′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f]BA(RM`
)

This is still well-defined because we have shown well-definedness of (G1,1, . . . ,G1,g1), . . . ,
(Gk ,1, . . . ,Gk ,gk) has be shown by MDL GRD WD/REF GRD WD, and the combined wit-
ness VtM by REF LWIT WD A.

Remark. There must only be global witnesses for variables that do occur in the frame of
are non-deterministic assignment in the abstract action. Extra witnesses would break the
correctness of REF EVT INV.

54

Proof Obligation: REF EVT SIM Ξ

FOR refined event eN of N and event eM of M WHERE

` ∈ 1 .. p AND u ∈ o ∩ (frame(RN) \ frame(RM)

ID “REF/EVT/u/SIM”

GPO U(N); H1; . . . ; Hh ; BA(TN |u) ` [S ′N |u] u = u ′

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh has been shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and t1, . . . tj nfin U(N) by Theorem 7. ¤

4.3.21 Unreduced External-Event Actions

Proof Obligation: REF EVT GEN ∆

FOR subst. RN`
ext. event eN of N and ext. event eM of M WHERE

` ∈ 1 .. q AND f = frame(RN`
)

ID “MDL/EVT/f /EXT”

GPO Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪f);

[SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[S ′M |f] [(

×v ′ΞM
:= ×vΞM

)|f] [VtN]BA(RN`
)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and the external invariants J1, . . . , Jσ by REF INV WD, and G1 . . .Gg has be shown
by MDL GRD WD/REF GRD WD, and V N

t by REF LWIT WD R, and that of SM and
TM by MDL EVT WD/REF EVT WD, and that of RN`

by REF EVT WD, and tM1 , . . . tMj
nfin U(N) by Theorem 7. ¤

55

Proof Obligation: REF EVT GEN Ξ

FOR external event eN of N and external event eM of M WHERE

u ∈ o ∩ (frame(RM) \ frame(RN))

ID “MDL/EVT/u/EXT”

GPO Q(C); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪u);

[SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[S ′M |u] (u = u ′)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and G1 . . .Gg has be shown by MDL GRD WD/REF GRD WD, and that of SM

and TM by MDL EVT WD/REF EVT WD, and tM1 , . . . tMj nfin U(N) by Theorem 7. ¤

4.3.22 Invariant Preservation of Refined-Event Actions

Proof Obligation: REF EVT INV

FOR refined event eN of N and event eM of M and invariant I` of N WHERE

` ∈ 1 ..m AND

z = free(I`) AND φ = free(SM |x∩z) AND η = primed(Wx |z) ∪ primed(SM |x∩z)

ID “REF/EVT/INV`/INV”

GPO U(N); H1; . . . ; Hh ; BA(TN |η∩z) `
[S ′N |η∩z] [(w

′
ΞN

:= wΞN
)|η∩z] [VtM |φ] [Wx |z] [SM |x∩z] [(wRN

:= wRN)′|z] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N) and VtM by REF LWIT WD A, and SN and TN by REF EVT WD, and Wx by
REF GWIT WD, and I` by REF INV WD, and H1 . . .Hh has be shown by REF GRD WD,
and tN1 , . . . t

N
j nfin U(N) by Theorem 7. ¤

Remark. If RN |z is the empty multiple substitution and z∩x is empty, this proof obligation
should not be generated because I` would appear in the antecedent and in the consequent.

Remark. The frame of the combined witness Wx must not be larger than xRM .

56

Remark. We can add additional hypotheses to proof obligation REF EVT INV, assuming
that REF EVT SIM ∆ has been proven as a lemma (for all RMk

6∈ SM |x):

[S ′N |f ∪χ] [(w
′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f] BA(RMk
) .

This is still valid if the option Split GPO or Merge GPO has been used to for proof obli-
gation REF EVT SIM ∆. This corresponds to an application of the cut rule. Furthermore,
these hypotheses can be add in addition to those suggested in the options Split GPO or
Merge GPO for this proof obligation.

Split GPO. In case of a split refinement we can add some useful additional hypotheses to
REF EVT INV, assuming that REF GRD REF (Theorem 18) has been proven as a lemma
(for all G`):

U(N); [VtM |θ1]G1; . . . ; [VtM |θg]Gg ; H1; . . . ; Hh ; BA(TN |η∩z) `
[S ′N |η∩z] [(w

′
ΞN

:= wΞN
)|η∩z] [VtM |φ] [W ′

x |z] [S
′
M |x∩z] [(wRN

:= wRN
)′|z] I`

where θ` = free(G`) for ` ∈ 1 .. g . This still well-defined because well-definedness of G1 . . .Gg

has be shown by MDL GRD WD/REF GRD WD and VtM by REF LWIT WD A.

Merge GPO. In case of a merge refinement we can add some useful additional hypotheses to
REF EVT INV, assuming that REF GRD MRG (Theorem 19) has been proven as a lemma:

U(N);
[VtM] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk));
H1; . . . ; Hh ; BA(TN |η∩z) `

[S ′N |η∩z] [(w
′
ΞN

:= wΞN
)|η∩z] [VtM |φ] [W ′

x |z] [S
′
M |x∩z] [(wRN

:= wRN
)′|z] I`

This is still well-defined because we have shown well-definedness of (G1,1, . . . ,G1,g1), . . . ,
(Gk ,1, . . . ,Gk ,gk) has be shown by MDL GRD WD/REF GRD WD, and the combined wit-
ness VtM by REF LWIT WD A.

4.3.23 Simulation of New-Event Actions

Proof Obligation: REF NEW SIM

FOR new event eN of N WHERE

` ∈ 1 .. p AND u ∈ frame(RN) ∩ o

ID “REF/EVT/u/SIM”

GPO U(N); H1; . . . ; Hh ; BA(TN |u) ` [S ′N |u] u ′ = u

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and t1, . . . tj nfin U(N) by Theorem 7. ¤

57

Remark. This is a simplified variant of of REF EVT SIM Ξ, where we have used the fact
that a new event refines skip, i.e. the abstract event has the guard > and the action skip, and
frame(skip) is empty.

4.3.24 Invariant Preservation of New-Event Actions

Proof Obligation: REF NEW INV

FOR new event eN of N and invariant I` of N WHERE

` ∈ 1 ..m AND z = free(I`)

ID “REF/EVT/INV`/INV”

GPO U(N); H1; . . . ; Hh ; BA(TN |z) ` [SN |z] [(wTN
:= w ′

TN
)|z] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and SN and TN by REF EVT WD, and I` by REF INV WD, and H1 . . .Hh has be
shown by REF GRD WD, and t1, . . . tj nfin U(N) by Theorem 7. ¤

Remark. If RN |z is the empty multiple substitution, this proof obligation should not be
generated because I` would appear in the antecedent and in the consequent.

4.3.25 Well-definedness of the Variant

Proof Obligation: REF VAR WD

FOR variant D of N WHERE

>
ID “REF/VWD”

GPO U(N) ` WD(D)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N). ¤

58

4.3.26 Well-foundedness of the (Set) Variant

Proof Obligation: REF VAR FIN P

FOR variant D of N WHERE

>
ID “REF/VFIN”

GPO U(N) ` finite(D)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and D has been shown by REF VAR WD. ¤

4.3.27 Strong (Set) Variant

Proof Obligation: REF CVG VAR P

FOR variant of N and event eN of N WHERE

z = free(D)

ID “REF/EVT/VAR”

GPO U(M); H1; . . . ; Hh ` BA(TN |z)⇒ ([SN |z] [wTN |z := w ′
TN |z]D) ⊂ D

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N) by Theorem 7.

¤

Remark. This proof obligation must be generated for each convergent event (where the
variant is a set expression).

4.3.28 Strong (Natural Number) Variant

Proof Obligation: REF CVG VAR ∆

FOR variant of N and event eN of N WHERE

z = free(D)

ID “REF/EVT/VAR”

GPO U(M); H1; . . . ; Hh ` BA(TN |z)⇒ ([SN |z] [wTN |z := w ′
TN |z]D) < D

59

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N) by Theorem 7.

¤

Proof Obligation: REF CVG VAR N

FOR variant of N and event eN of N WHERE

>
ID “REF/EVT/NAT”

GPO U(M); H1; . . . ; Hh ` D ∈ N

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh has be shown by REF GRD WD, and D by REF VAR WD, and
t1, . . . tj nfin U(N) by Theorem 7. ¤

Remark. These proof obligations must be generated for each convergent event (where the
variant is a set expression).

4.3.29 Weak (Set) Variant

Proof Obligation: REF ANT VAR P

FOR variant of N and event eN of N WHERE

z = free(D)

ID “REF/EVT/VAR”

PRE >

GPO U(M); H1; . . . ; Hh ` BA(TN |z)⇒ ([SN |z] [wTN |z := w ′
TN |z]D) ⊆ D

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N) by Theorem 7.

¤

Remark. This proof obligation must be generated for each anticipated event if the refined
model has (set) variant.

60

4.3.30 Weak (Natural Number) Variant

Proof Obligation: REF ANT VAR ∆

FOR variant of N and event eN of N WHERE

z = free(D)

ID “REF/EVT/VAR”

PRE >

GPO U(M); H1; . . . ; Hh ` BA(TN |z)⇒ ([SN |z] [wTN |z := w ′
TN |z]D) ≤ D

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N) by Theorem 7.

¤

Proof Obligation: REF ANT VAR N

FOR variant of N and event eN of N WHERE

>
ID “REF/EVT/NAT”

PRE >

GPO U(M); H1; . . . ; Hh ` D ∈ N

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N) by Theorem 7.

¤

Remark. This proof obligation is identical to REF CVG VAR N.

Remark. This proof obligation must be generated for each anticipated event if the refined
model has a (natural number) variant.

61

4.3.31 Deadlock-Freedom

Proof Obligation: REF DLK

FOR model M WHERE

eN
1 , . . . , e

N
` are the internal events of N AND eM

1 , . . . , eM
k the internal events of M

ID “REF/DLK”

GPO U(M); GD(eN
1) ∨ . . . ∨ GD(eN

`) ` GD(eM
1) ∨ . . . ∨ GD(eM

k)

Remark. Deadlock-freedom proof obligations need only be generated for events whose
guard has been changed. The two sets of events can be chosen accordingly.

Remark. One could alternatively generate the proof obligation:

U(M); ¬ GD(eM
2); . . . ; ¬ GD(eM

k); GD(eN
1) ∨ . . . ∨ GD(eN

`) ` GD(eM
1)

where event eM
1 is arbitrarily chosen.

62

