
On Fitting A Formal Method Into Practice?

Rainer Gmehlich1, Katrin Grau1, Stefan Hallerstede2,
Michael Leuschel2, Felix Lösch1, and Daniel Plagge2

1 Robert Bosch GmbH, Stuttgart, Germany
2 Heinrich-Heine-University of Düsseldorf, Germany

Abstract. The development of the Event-B formal method and the sup-
porting tools Rodin and ProB was guided by practical experiences with
the B-Method, the Z specification notation, VDM and similar practical
formal methods. The case study discussed in this article — a cruise con-
trol system — is a serious test of industrial use. We report on where
Event-B and its tools have succeeded, where they have not. We also
report on advances that were inspired by the case study. Interestingly,
the case study was not a pure formal methods problem. In addition to
Event-B, it used Problem Frames for capturing requirements. The in-
teraction between the two proved to be crucial for the success of the
case study. The heart of the problem was tracing informal requirements
from Problem Frames descriptions to formal Event-B models. To a large
degree, this issue dictated the approach that had to be used for formal
modelling. A dedicated record theory and dedicated tool support were
required. The size of the formal models rather than complex individual
formulas was the main challenge for tool support.

1 Introduction

This article recounts an attempt to apply Event-B [1] to an industrial specifi-
cation problem in a methodologically heterogenous environment without prior
use of formal methods. This required integration within an existing, evolving
development methodology. This means the methodology cannot be dictated to
follow customs and conventions that have arisen within formal methods such as
Event-B.

We believe some of the problems we encountered will be typical for indus-
trial deployment of formal methods in general. In particular, this concerns prob-
lems related to the different cultures, customs and conventions in industry and
academia. At times, these problems (appear to) become more severe than all
technical problems taken together. It seems advisable to be prepared for this,
assuming the different cultures are unavoidable.

? This research was carried out as part of the EU FP7-ICT research project DEPLOY
(Industrial deployment of advanced system engineering methods for high depend-
ability and productivity) http://www.deploy-project.eu.



The article presents a non-chronological digest of an experiment carried out
at Bosch: to develop a model of a cruise control system. The focus of this exper-
iment was to apply Event-B to an industrial problem in an industrial environ-
ment. In that environment, Problem Frames [8] are used to deal with informal
requirements. Initially, the academics did not yet grasp the central importance
of this: formal methods seem to have a tendency to take over whole develop-
ment processes and dictate what should be done instead. However, here formal
methods were only a piece in a bigger puzzle. Other parts of the puzzle dealt
with continuous control (which is provided by specialised design methods) or
real time (which is considered more a matter of code generation). Note that
such issues enter the case study in the form of assumptions at various places.
We have learned that excluding parts of a problem can be a challenge for formal
methods. The claim of correctness will only be with respect to a large set of
assumptions, the justifications of which are unavailable.

The core of the formal modelling problem of the experiment concerns only
the switching behaviour of the cruise control. The main difficulties are to fit
Event-B into the overall development scheme, while finding the appropriate ab-
stractions to express the formal model of the cruise control. In [16], a formal
development of a cruise control in Event-B is presented. The development is
more ambitious than our development, but it does neither support traceability
of Problem Frames descriptions nor hazard analysis. It also does not respect the
boundaries described above about what not to model. One would also think that
hybrid modelling of the cruise control (for instance, [15]) should be of advantage.
But again, our problem is the switching behaviour of the cruise control. We want
to avoid duplicating work already carried out by other engineers. In principle,
one could also use an approach based on StateMate [?]. We believe, however,
that tracing of requirements and matching formal models with Problem Frames
would be difficult. In particular, although Event-B refinement is not satisfactory
for matching Problem Frames elaboration, it gave us a means to express what
we wanted.

We believe our observations and findings would apply in similar form to other
formal methods used in place of Event-B. In this context, note again the exclusion
of certain aspects such as continuity or real time. Not everything is under control
of the formal method. Our contribution is an approach for tracing requirements
by matching Problem Frames with formal Event-B models using a dedicated way
of modelling and instantiating records. We also have made progress in checking
large models for deadlocks using constraint-solving techniques.

Industrial use is impossible without having supporting tools. For Event-B
the Rodin tool [2] has been developed. In short, it deals with editing and proof
obligation generation. It has a plugin architecture that permits its extension with
new functionality. One plugin provided is ProB [11], a tool for model animation,
model checking and constraint checking.

Overview. Section 2 describes how Event-B was fitted into an industrial
development process. The following sections focus on specific problems of the
integration. Section 3 discusses integration with Problem Frames. Section 4 dis-

2



cusses a specific aspect of that integration: the relationship of Problem Frames
elaboration and Event-B refinement. Section 5 discusses a scaling problem by
way of deadlock analysis. A conclusion follows in Section 6.

2 Event-B in an Industrial Development Process

The case study we discuss in this article is carried out within the Deploy research
project. The project’s main objective is to make major advances in engineering
methods for dependable systems through the deployment of formal engineering
methods. One work package of the project deals with the deployment of for-
mal methods, in particular, Event-B and ProB in the automotive sector. The
case study applies Event-B to the modelling of a cruise control system. A cruise
control system is an automotive system implemented in software which automat-
ically controls the speed of a car. It is part of the engine control system which
controls actuators of the engine (such as injectors, fuel pumps or throttle valve)
based on the values of specific sensors (such as the accelerator pedal position
sensor, the airflow sensor or the lambda sensor).

The cruise control system consists of a discrete part describing the control
logic and continuous parts describing the actual closed loop controllers required
to adjust the speed of the car. In the case study we focus exclusively on the
discrete part, that is, the switching behaviour of the cruise control system. The
continuous control part is provided by other design methods.

2.1 Event-B

Event-B models are composed of contexts and machines. Contexts capture static
aspects of a model expressed in terms of carrier sets, constants and axioms.
Consequences of the axioms can be stated as theorems (that need to be proved).
Fig. 5 and 7 below show two contexts. The concrete context of Fig. 7 is said
to extend the abstract context of Fig. 5: all carrier sets, constants, axioms and
theorems of the context being extended are visible in the extending context.

Machines capture dynamic aspects of a model (see Fig. 6). The state of a
machine is described in terms of variables. The possible values of the variables are
constrained by invariants (see inv1 and inv2 of Fig. 6). Possible state changes are
modelled by events. Each event consists of a collection of parameters p, of guards
g and of actions a (a collection of simultaneous update statements). We use the
following schema to describe events: any p when g then a end. An event may
cause a state change if its guard is true for a choice of parameters. Event-B does
not make any fairness assumptions about event occurrences. Refinement is used
to specify more details about a machine. For instance, the concrete machine of
Fig. 8 is a refinement of the abstract machine of Fig. 6. The state of the abstract
machine is related to the state of the concrete machine by a gluing invariant
associated with the concrete machine that relates abstract variables to concrete
variables (see invariant inv3 in Fig. 8). Each event of the abstract machine is
refined by one or more concrete events. Roughly speaking, the events of the

3



abstract machine must be capable of simulating the behaviour of the events of
the concrete machine. The Rodin tool can generate proof obligations to verify
properties such as invariant preservation or refinement.

2.2 Fitting Event-B into Development Practice

Introducing the formal development method Event-B into industrial practice (in
the automotive sector) requires integration with existing development processes
and tools. Fig. 1 shows a sketch of a development process which includes Event-
B. This article deals with the use of Event-B at the position indicated in the
figure. The main challenge encountered in this respect is concerned with the
relationship of Event-B and Problem Frames.

requirements document
in natural language

requirements engineering
Problem Frames

system model
in Event-B

target code

hazard analysis

closed-loop
controller model

target code

integrated target code

Fig. 1. Overview of the development process

We comment briefly on
the phases of the devel-
opment process, to give
an impression of the gen-
eral picture and the con-
straints imposed. Develop-
ment begins with natu-
ral language requirements
that tend to be unstruc-
tured and difficult to relate
to a formal model. A haz-
ard analysis yields safety
requirements to be incor-
porated. Requirements en-
gineering and hazard anal-
ysis go hand in hand. The
development of the closed

loop controller is done by control engineers. Verifying closed loop controllers re-
quires reasoning about continuous time behaviour. Since specialised methods are
already in place we did not study modelling of continuous time behavior in the
case study. We modelled the discrete part of the system in Event-B making a
contribution to the existing design process. Another work package of the Deploy
project focused on the task of generating code from Event-B models [3].

The need for Problem Frames for requirements engineering had been recog-
nised early on with formal system modelling in view. The decision to use Prob-
lem Frames was made after a first attempt to directly model natural language
requirements in Event-B resulted in a large gap between the requirements doc-
ument and the Event-B model. The gap between the two documents was too
large to permit maintaining them consistently: it is indispensable to validate
by means of a review, say, that an Event-B model adequately captures what is
stated in the requirements. And tracing this information seemed out of reach.
Furthermore, the Bosch engineers had made good experiences with using the
Problem Frames approach for structuring requirements as well. It is important
to note here, that the conditions determining a decision to use a certain method

4



in industry are considerably different from those in academia: the method chosen
in industry must not only fit a single problem it must also be understandable
for a large variety of engineers who are not directly involved in solving the prob-
lem at hand. The Problem Frames approach looked very promising to the Bosch
engineers because it could easily be understood by the development engineers.

The Problem Frames approach enabled the Bosch engineers to validate the
Event-B model with respect to the requirements and provided an easier way
of tracing requirements in the Event-B model. With the introduction of the
Problem Frames approach they obtained two simpler validation problems:

(1) to validate whether the problem frames capture the natural language re-
quirements

(2) to validate whether the Event-B model corresponds to the problem frames.

Each of the two validation problems appeared to be feasible as opposed to the
direct approach from natural language requirements to Event-B models.

The insight we gained from the early phase of the case study is that in-
troducing Event-B in industry on its own is difficult. Introducing Event-B in
conjunction with supporting Problem Frames greatly reduces the entry barrier
for engineers to use Event-B. Similar observations have been made with UML-B
before [14].

2.3 Problem Frames

Problem Frames is an informal graphical requirements engineering method de-
veloped by Michael Jackson [8]. The immediate focus of Problem Frames, as
its name suggests, is on software development as a problem to be solved. The
problem to be solved is hereby visualized using problem diagrams that contain
a machine, i.e., the system to be built, the problem world, i.e., the environ-
ment the system is interacting with and the requirements which are expressed in
terms of the problem world. The requirements engineering process usually starts
with a context diagram, an abstract problem diagram, which describes the main
elements of the problem world as well as the overall requirement the system
shall fulfill. Fig. 2 shows a simple context diagram of the cruise control system.

Cruise
Control

Car
Provide

cruise control
functionality

RequirementProblem WorldMachine Domain

a
b

c

Fig. 2. Context diagram for cruise control system.

The machine inter-
acts with the problem
world by shared phe-
nomena at the inter-
face a. Typically, these
phenomena are events
and states, controlled
either by the problem
world or by the ma-

chine and shared at input-output ports of the machine. Requirements are de-
scribed only in terms of the phenomena of the problem world which are shared
between the problem world and the requirements at interfaces b and c.

5



Projections of this context diagram, called subproblems, are then used to
describe different aspects of the problem. A more detailed description of the
concepts of Problem Frames can be found in [8].

We extended the original Problem Frames approach [9,13] by an additional
operation called elaboration as well as an adapted version of the already exist-
ing projection operation. In an elaboration of an abstract problem diagram the
environment, the phenomena and the requirements are described in more detail.
For example, the problem diagram in Fig. 4 is an elaboration of the problem
diagram in Fig. 3. Elaboration in Problem Frames thus serves a similar purpose
as refinement in Event-B, i.e., to relate abstract descriptions of the system to
more concrete descriptions.

2.4 The Cruise Control System

In the following we describe the control logic of the cruise control system in
more detail. The behaviour of the cruise control system is determined by three
different operating modes: NOCTRL, CTRL, ACTRL. In the NOCTRL mode
the system is inactive, that is, it is not actively regulating the speed of the car.
In the CTRL mode the system is either maintaining or approaching a previously
defined target speed. In the ACTRL mode the system is either accelerating
or decelerating by a predefined value. The three modes of the system can be
switched by the driver using the control interface or by the software in case the
control software detects an error. In the latter case the mode is always switched
to NOCTRL.

There are two ways of a driver to control the behaviour of the cruise control
system: (i) using the brake pedal or clutch pedal to (temporarily) deactivate
the cruise control system, and (ii) using the control elements provided by the
operating lever. The operating lever usually has the following buttons: (a) SET to
define a target speed, (b) RESUME to resume a previously defined target speed,
(c) TIPUP to increase the target speed, (d) TIPDN to decrease the target speed,
(e) ACC to accelerate, (f) DEC to decelerate. Furthermore, there is a dedicated
switch for switching the cruise control system ON or OFF.

Depending on commands given by the driver or signals received by sensors
the cruise control system switches between the modes. In order to distinguish
the different operational states of the system the three major modes are further
partitioned into a number of ten submodes as shown in Table 1.

3 Relating Problem Frames to Event-B Models

A major obstacle during the case study was to understand how the gap between
Problem Frames and Event-B could be closed. If the informal requirements could
not be traced into the formal models, the development method would be of
no use for the engineers. A close correspondence between concepts of Problem
Frames and Event-B was needed to arrive at a systematic approach to require-
ments tracing. Feedback from the analysis of the formal models should suggest

6



Mode Submode Description

NOCTRL

UBAT OFF Ignition is off and engine not running
INIT Ignition is on and cruise control is being intialized
OFF Ignition is on, cruise control initialized and switched off
ERROR An irreversible error has occurred
STANDBY Cruise control has been switched on
R ERROR A reversible error has occurred

CTRL
CRUISE Cruise control is maintaining the target speed
RESUME Target speed is approached from above or from below

ACTRL
ACC Cruise control is accelerating the car
DEC Cruise control is decelerating the car

Table 1. Modes and submodes of the cruise control system.

improvements to the informal requirements. For example, missing requirements
were identified by using deadlock checking in ProB.

The central concern was to relate the elaboration and projection operations
provided by the extended Problem Frames approach to the notion of refinement
in Event-B. In order to illustrate this problem we use a small example which
describes a fragment of the cruise control system both at an abstract level (see
Fig. 3) and a more concrete (elaborated) level (see Fig. 4). Note that some
aspects (e.g. Ignition) are ignored.

3.1 Problem Frames Description of the Cruise Control

Pedals
CrCtl
Pedals

State
Model

R1

L1

L2L3

L4

Interfaces :
L1 : Pedals!{P Env PedalSignals}
L2 : StateModel!{P CrCtl Mode}
L3 : Pedals!{P Env PedalSignals}
L4 : StateModel!{P CrCtl Mode}

Fig. 3. Abstract problem diagram for pedals.

Fig. 3 shows an abstract
problem diagram of the pedal
subproblem for the cruise
control system. The diagram
of Fig. 3 shows the ma-
chine domain CrCtl Pedals,
the given domain Pedals,
the designed domain
State Model, and the require-
ment R1. The phenomena
shared between the machine,
the domains, and the requirement are shown in Fig. 3 under interfaces
with the following syntax: [Name of the interface]: [Domain controlling the
phenomenon]!{list of shared phenomena}. For example, the line ”L1 : Ped-
als!{P Env PedalSignals}” means that the phenomenon P Env PedalSignals
controlled by the domain Pedals is shared with the machine CrCtl Pedals.
The requirement R1 states that ”depending on the status of the ped-
als (P Env PedalSignals), the internal mode of the cruise control system
(P CrCtl Mode) should change to the mode R ERROR or ERROR.”

7



Fig. 4 shows the elaborated version of the abstract problem diagram of
Fig. 3. The abstract given domain Pedals has now been elaborated into the

L24

L6 CrCtl
Pedals

State
Model

Brake
Pedal

Clutch
Pedal

Accelerator
Pedal

R2
(Brake Pedal)

R3
(Brake Pedal)

R5
(Clutch Pedal)

R4
(Clutch Pedal)

R6
(Acc Pedal)

L10

L13

L14

L11

L20
L9

L7

L19

L16

L17

L23

L22

L25

L26L27

L28

Interfaces :
L6 : BrakePedal!{P Env PS BRK PRSD,

P Env PS BRK ERR}
L7 : ClutchPedal!{P Env PS CLT PRSD,

P Env PS CLT ERR}
L9 : StateModel!{P CrCtl Mode}
L10 : BrakePedal!{P Env PS BRK ERR}
L11 : StateModel!{P CrCtl Mode}
L13 : BrakePedal!{P Env PS BRK PRSD, P Env PS BRK ERR}
L14 : StateModel!{P CrCtl Mode}
L16 : ClutchPedal!{P Env PS CLT PRSD, P Env PS CLT ERR}

L17 : StateModel!{P CrCtl Mode}
L19 : ClutchPedal!{P Env PS CLT ERR}
L20 : StateModel!{P CrCtl Mode}
L22 : AcceleratorPedal!{P Env PS ACC ERR}
L23 : StateModel!{P CrCtl Mode}
L24 : AcceleratorPedal!{P Env PS ACC ERR}
L25 : ClutchPedal!{P Env PS CLT ERR}
L26 : AcceleratorPedal!{P Env PS ACC ERR}
L27 : BrakePedal!{P Env PS BRK ERR}
L28 : AcceleratorPedal!{P Env PS ACC ERR}

Fig. 4. Elaborated problem diagram for pedals.

given domains Brake Pedal, Clutch Pedal, and Accelerator Pedal as well as the
abstract phenomena shown in Fig. 3. For example, the abstract phenomenon
P Env PedalSignals has been elaborated into the concrete phenomena
P Env BRK PRSD, P Env BRK ERR, P Env CLT PRSD, P Env CLT ERR,
and P Env PS ACC ERR. The requirement R1 of Fig. 3 has also been elabo-
rated into the requirements R2, R3, R4, R5, R6.

For illustration we state the requirements R2 and R3. Requirement R2 is: “If
the brake pedal is pressed (P Env PS BRK PRSD) and no pedal error is present
(P Env PS BRK ERR = FALSE, P Env PS CLT ERR = FALSE,
P Env PS ACC ERR = FALSE), the mode (P CrCtl Mode) must change to
R ERROR.” Requirement R3 is: “If a brake pedal error is present
(P Env PS BRK ERR), the mode (P CrCtl Mode) must change to ERROR.”
R4 states the same as R2 for the clutch pedal (P Env CLT PRSD) and R5 the
same as R3 for the clutch pedal error (P Env PS CLT ERR). R6 states the same
as R3 for the accelerator pedal error (P Env PS ACC ERR). Pressing the ac-
celerator pedal (P Env PS ACC PRSD) is part of a different subproblem and
therefore not dealt with in Fig. 4.

3.2 Relating Problem Frames Concepts to Event-B Concepts

To support traceability of requirements in problem diagrams to formal elements
of Event-B models we relate Problem Frames concepts one-to-one to Event-

8



B concepts. This simple approach to relating Problem Frames descriptions to
Event-B models is a key to the feasibility problem of requirements tracing men-
tioned in Section 2.2. Table 2 indicates how the concepts are matched. The tran-

Problem Frames Event-B

Problem diagram Machine and context

Phenomena Variables, constants or carrier sets

Types of phenomena Carrier sets or constants

Requirements Events and/or invariants

Elaboration of a problem diagram Refinement of a machine or context

Projection of a problem diagram Decomposition of a machine or context

Elaboration of phenomena Data refinement

Table 2. Mapping of Problem Frame Elements to Event-B Elements

sition from Problem Frames descriptions to Event-B models is still a manual step
in the design process. However, starting from the natural language requirements
this intermediate step provides enough guidance to obtain a suitable Event-B
model that captures the requirements and permits tracing them into that model.

The first three correspondences for problem diagrams, phenomena and their
types do not pose problems. Requirements state properties that must hold for
the system: if they are dynamic, they are best matched by events; if they are
static, they are best matched by invariants. Determining the relationship of
elaboration and refinement is more involved. In particular, an approach to record
instantiation was needed on top of Event-B refinement for the correspondence
to work. Dealing with projection and decomposition is still more complicated
because in Problem Frames projection is used as early as possible in system
description whereas in Event-B decomposition is usually delayed so that system-
wide properties can be verified before decomposition.

3.3 A Matching Event-B Model of the Cruise Control

Using the mapping from Problem Frames to Event-B described in Section 3.2
we developed an Event-B model of the cruise control. Problem Frames are used
to structure requirements and support their (informal) analysis. Requirements
and domain properties can be stated in any way that appears convenient like
Table 1. Fig. 5 shows a context that captures the table with OK represent-
ing all submodes except R ERROR and ERROR.1 The two constants PS SET
and PS ERROR are abstractions for specific pedal signal combinations not ex-
pressible in the abstract model. The abstract machine (that corresponds to the
abstract diagram of Fig. 3) is shown in Fig. 6. Depending on the pedal signals

1 We have abstracted from the remaining submodes for the sake of brevity.
2 The predicate partition states that the sets OK, {R ERROR} and {ERROR} are a

set-theoretical partition of the set T Mode.

9



constants OK R ERROR ERROR PS SET PS ERROR
sets T Mode T Env PedalSignals
axioms @axm1 PS SET ⊆ T Env PedalSignals

@axm2 PS ERROR ⊆ T Env PedalSignals
@axm3 PS SET ∩ PS ERROR = ∅
@axm4 partition(T Mode,OK, {R ERROR}, {ERROR}) 2

Fig. 5. Context of abstract model

variables P Env PedalSignals P CrCtl Mode
invariants @inv1 P Env PedalSignals ∈ T Env PedalSignals

@inv2 P CrCtl Mode ∈ T Mode
events

event CrCtl Chg Mode PedalSignals R1
when P Env PedalSignals ∈ PS SET ∨ P Env PedalSignals ∈ PS ERROR
then P CrCtl Mode :∈ {R ERROR,ERROR} end

Fig. 6. Abstract machine

the mode is changed. This is stated informally in the Problem Frame diagram
of Fig. 3. Close correspondence between the diagram and the Event-B model
is important for traceability of the requirements and validation of the formal
model.

Correspondence of the abstract diagrams and models is straightforward. Re-
lating elaborated problem diagrams to Event-B models is less obvious because
close correspondence remains crucial. Refinement permits to introduce more de-
tails into a model as needed for elaboration. However, it does not allow to relate
abstract and concrete phenomena systematically. What is needed is closer to
“instantiation” of abstract phenomena by concrete phenomena. Refinement is
powerful enough to emulate the intended effect of such an “instantiation”: we
can state the mathematics of it (see Fig. 7). Although refinement does not suit

constants iEnv PS iEnv PS SET iEnv PS ERROR
axioms

@axm5 iEnv PS ∈ B× B× B× B× B�� T Env PedalSignals
@axm6 iEnv PS ERROR = iEnv PS−1[PS ERROR]
@axm7 iEnv PS ERROR =

(B× {T} × B× B× B) ∪ (B× B× B× {T} × B) ∪ (B× B× B× B× {T})
theorem @thm1 ∀a, b, c, d ·

iEnv PS(a 7→ b 7→ c 7→ d 7→ e) ∈ PS ERROR⇔ b = T ∨ d = T ∨ e = T
@axm8 iEnv PS SET = iEnv PS−1[PS SET]
@axm9 iEnv PS SET = ({T}×{F}×B×{F}×{F}) ∪ (B×{F}×{T}×{F}×{F})
theorem @thm2 ∀a, b, c, d, e · iEnv PS(a 7→ b 7→ c 7→ d 7→ e) ∈ PS SET⇔

(a = T ∧ b = F ∧ d = F ∧ e = F) ∨ (b = F ∧ c = T ∧ d = F ∧ e = F)

Fig. 7. Context of concrete model

10



our needs perfectly we can use it to develop the notion of “elaboration in Event-
B” that will suit it. Here refinement is used for the development of a development
method. Refinement in its generality may not be part of the final development
method that could be used at Bosch for the modelling of discrete systems. The
general technique refinement allowed us experiment with different notions using
an available software tool, the Rodin tool. We are aware that the approach us-
ing refinement for instantiation that we describe in the following would be too
complicated to scale. Of course, we intend that records and record instantiation
be incorporated directly into the formal notation of Event-B so that refinement
would not have to be used to imitate it. However, we found it instructive to
determine first what kind of record concept would be needed for our purposes.

Our main insight here is that refinement seems to function as an enabler for
the invention of the required technology. It may not itself be the required tech-
nology. The development of the concept of elaboration in Event-B is discussed
in the next section.

variables P Env PS BRK PRSD P Env PS BRK ERR P Env PS CLT PRSD
P Env PS CLT ERR P Env PS ACC ERR P CrCtl Mode

invariants @inv3 P Env PedalSignals = iEnv PS(
P Env PS BRK PRSD 7→ P Env PS BRK ERR 7→ P Env PS CLT PRSD 7→
P Env PS CLT ERR 7→ P Env PS ACC ERR)

events

event CrCtl Chg Mode PedalSignals R2 refines CrCtl Chg Mode PedalSignals R1
when P Env PS BRK PRSD = T ∧ P Env PS BRK ERR = F∧

P Env PS CLT ERR = F ∧ P Env PS ACC ERR = F
then P CrCtl Mode := R ERROR end

event CrCtl Chg Mode PedalSignals R3 refines CrCtl Chg Mode PedalSignals R1
when P Env PS BRK ERR = T then P CrCtl Mode := ERROR end

event CrCtl Chg Mode PedalSignals R4 refines CrCtl Chg Mode PedalSignals R1
when P Env PS CLT PRSD = T ∧ P Env PS BRK ERR = F

P Env PS CLT ERR = F ∧ P Env PS ACC ERR = F
then P CrCtl Mode := R ERROR end

event CrCtl Chg Mode PedalSignals R5 refines CrCtl Chg Mode PedalSignals R1
when P Env PS CLT ERR = T then P CrCtl Mode := ERROR end

event CrCtl Chg Mode PedalSignals R6 refines CrCtl Chg Mode PedalSignals R1
when P Env PS ACC ERR = T then P CrCtl Mode := ERROR end

Fig. 8. Concrete machine

4 Elaboration in Event-B

Dealing with elaboration in Event-B was the central problem to be solved to
deal adequately with traceability of requirements from problem diagrams. Its

11



solution required a dedicated record theory, an instantiation method and a tool
improvement that could master the refinement-based modelling of the former.

A convention for modelling records. When elaborating Problem Frame
diagrams each abstract phenomenon is replaced by a set of more concrete phe-
nomena. For example, in the cruise control model the abstract phenomenon
P Env PedalSignals is replaced by the concrete phenomena

P Env PS BRK PRSD Brake pedal pressed,
P Env PS BRK ERR Brake pedal error,
P Env PS CLT PRSD Clutch pedal pressed,
P Env PS CLT ERR Clutch pedal error,
P Env PS ACC ERR Accelerator pedal error.

This problem appeared to be solved in the form of existing record theories for
Event-B [4] or VDM [10]. However, after some experimentation with [4] we also
shied away from trying [10]. The theories appeared too powerful. Simple facts
—and we only needed simple facts— were comparatively difficult to prove. We
wanted them to be proved automatically without further interaction. It took a
while until we realised that we should formulate a simple effective theory of lim-
ited expressiveness that would satisfy our needs (but not more). The approach
that we use now (see Fig. 7 and 8) does permit nearly fully automatic proofs.
We use a restricted form of data refinement for records based on a convention
to model records loosely by lists of variables. Refinement of such records is done
by instantiating abstract variables by lists of concrete variables and similarly for
parameters. The instantiation is expressed by means of invariants, for instance,
inv3 in Fig. 8. Function iEnv PS is a bijection from the concrete variables to
the abstract variables.3 This function facilitates all refinement proofs. By means
of it abstract constants are mapped to concrete constants that specify relation-
ships between data values in more detail. For instance, by axm6 of Fig. 7 the
concrete set iEnv PS ERROR corresponds to the abstract set PS ERROR. The
concrete set iEnv PS ERROR is then specified in more detail in axm7 . Theo-
rem thm1 formulates the set-theoretical equation in terms of an equivalence.
In fact, theorem thm1 is more useful in proofs. The approach of specifying
iEnv PS ERROR by two axioms has been chosen in order to avoid introduc-
ing contradicting statements in contexts. Important facts such as theorem thm1
are proved. Note that the shape of the theorems matches the needs of the refine-
ment proof. For instance, theorem thm2 is geared towards the refinement proof
of event CrCtl Chg Mode PedalSignals R2. Letting a = P Env PS BRK PRSD,
b = P Env PS BRK ERR and so on, using inv3 we can infer

P Env PS BRK PRSD = T ∧ P Env PS BRK ERR = F∧
P Env PS CLT PRSD = T ∧ P Env PS CLT ERR = F∧
P Env PS ACC ERR = F

⇒ P Env PedalSignals ∈ PS SET ,

which establishes that the concrete guard implies the abstract guard. We have
solved the problem concerning refinement proofs of record instantiation.

3 This is even stronger than functional data-refinement.

12



Tool issues. The full model of the cruise control turned out to be difficult
to model check. The extra theory provided in the contexts for the instantia-
tion reduced the efficiency of the associated tools used for model checking and
constraint solving (see Section 5). To solve the problem of instantiation a pre-
processing step is applied to the model to automatically detect records usage.
We begin by searching for axioms of the form iAP ∈ CP �� AP where iAP
is a constant, the “instantiation mapping”, AP a carrier set, the abstract phe-
nomenon to be instantiated, and CP a Cartesian product, modelling the list of
concrete phenomena. Axiom @axm5 in the concrete model above (Fig. 7) is such
an axiom. Using iAP ∈ CP �� AP we can safely assume the set AP to be equal
to CP because of the existence of the bijection iAP . Technically, the concerned
axiom is removed, the set AP turned into a constant and the axioms AP = CP
and iAP = id(CP) are added.

A method for records and record instantiation. The mathematical
model and its treatment by the tool can be used to formulate a method for
dealing with records and instantiation: All records are non-recursive. They may
contain some constraints, for instance, “maximal speed” > “minimal speed”. For
the instantiation of fields, we simply state which concrete fields instantiate which
abstract fields. Constants like PS ERROR can be instantiated by specifying a
corresponding subset of the concrete record. Abstract properties like @axm3
have to be proved for the instantiated subsets.

Discussion. We do not believe that a general theory and method can be
found that would satisfy all the needs of different industrial domains. We need
specific theories and tools that work well in specific domains, for instance, the
automotive domain. Similar experiences have been made in the railway domain
at Siemens Transportation Systems [12], where ProB was improved to deal
with large relations and sets. These arose in the modelling and validation of
track topologies. Our quiet hope is that still some theory and technology can
be shared. It just does not seem reasonable anymore to seek expressly a general
theory with supporting technology.

5 Verifying Deadlock Freedom

Besides invariant preservation, the absence of deadlocks is crucial in this case
study, as it means that the engineers have thought of every possible scenario. In
other words, a deadlock means that the system can be in a state for which no
action was foreseen by the engineers.

Deadlock freedom. An event is enabled in a state if there are values for its
parameters p that make its guard g true in that state. We denote the enabling
predicate (∃p·g) of an event e by Ge. Event-B provides a way to verify the
deadlock freedom of model: the (DLF) proof obligation of [1]: A ∧ I ⇒ Ge1 ∨
. . . ∨ Gen , where A are the axioms, I are invariants and Ge` (` ∈ 1 .. n) the
enabling predicates of the events e` of the considered machine. For the machine

13



of Fig. 8 this proof obligations is:4

“all axioms and theorems of Fig. 5 and Fig. 7”∧
“all invariants of Fig. 6 and Fig. 8”
⇒ (P Env PS BRK PRSD = T ∧ P Env PS BRK ERR = F∧

P Env PS CLT ERR = F ∧ P Env PS ACC ERR = F)∨
P Env PS BRK ERR = T∨
(P Env PS CLT PRSD = T ∧ P Env PS BRK ERR = F∧
P Env PS CLT ERR = F ∧ P Env PS ACC ERR = F)∨

P Env PS CLT ERR = T ∨ P Env PS ACC ERR = T

The (DLF) proof obligation in general quickly becomes very complex, in
particular, if the involved events have parameters. As long as it holds and is
discharged by an automatic theorem prover this is not a problem. The more
common situation is, however, that it cannot be proved. As a matter of fact,
this is also the more interesting situation because it may point to errors in the
model. For example, the (DLF) proof obligation above could not be proven:
an event for covering the case in which all pedal signals are set to FALSE was
missing.

We need the tool in order to find errors in our model and expect support
for correcting the model. To put this into perspective: the real model of the
case study from which the example has been extracted has 78 constants with
121 axioms, 62 variables with 59 invariants and has 80 events with 855 guards.
When the proof of this proof obligation fails, it is not clear at all why this is.
Analysis of a large failed (DLF) proof obligation by interactive proof is very
time consuming. Maybe we simply do not find the proper proof; maybe there
is a deadlock; maybe the invariant is too weak. Counter examples can provide
vital clues where to look for problems.

A different approach is needed to check for deadlocks. The most immediate
is to animate the model and see whether we encounter a state in which no event
is enabled. Another one is to model-check it. Model checking can provide fast
feedback, but is also associated with known problems: in many applications the
state space is either infinite or much too large to explore exhaustively. In the
case study model checking did not produce satisfactory results. Neither proof
nor model-checking worked.

Constraint checking. Finally, we did achieve good results using constraint
checking. We have implemented a dedicated constraint checker to deal with
deadlock-freedom [5]. It is not based on model execution but yields a solution
to the (DLF) proof obligation, providing a counter example if (DLF) does not
hold. On sub-models with about 20 events constraint checking was very effec-
tive in helping to develop a correct deadlock-free model. But on the large proof
obligation mentioned above it did not help to resolve all problems. Constraint
solving computed counterexamples to (DLF) but eventually it became too time
consuming to see how the model could be corrected. No obvious improvement to

4 Currently, this proof obligation is not generated by the Rodin tool. We have gener-
ated it by means of the Flow-Plugin [7].

14



ProB could have solved this problem. Independently of the modelling method,
the large number of constants and variables makes it difficult to interpret dead-
locked states and understand how the model has to be corrected. We believe
that refinement can be used to address the inherent complexity of the model.
This way deadlock-freedom could be analysed for models whose size is increased
in small increments: we have already seen that dealing with about 20 events at
once is effectively possible.

Lessons learned. The lesson we learned is that the problem could only be
solved by using multiple verification techniques, such as proof, model checking
and animation, in order to analyse, understand and debug the formal model.
Matching Problem Frames with Event-B may have to be relaxed allowing for
refinement in Event-B to cater for a stepwise introduction of records. The most
interesting insight we gained from the case study was the need for strong tools to
allow for large models and at the same time the need for appropriate techniques
to reduce the size of those models. We plan to redo some parts of the modelling
to find a good measure for that mix. The case study was important as a driver
for tool improvements, in particular, of ProB. The scale of the case study was
the key to this.

6 Conclusion

When we started the case study we asked whether Event-B is fit for industrial
use. We had to be more specific about our question. There are too many fac-
tors besides Event-B so that we should have asked whether Event-B fits into a
suitable methodology for development (at Bosch). We have seen that Event-B
allowed us to think about properties of the cruise system model that would be
difficult to achieve non-formally. We have matched Problem Frames elaboration
formally using Event-B refinement. The resulting method of Event-B elaboration
supported by theory and tools is novel and was crucial for the use of Event-B
in the targeted development process. We have successfully analysed the model
with respect to deadlock-freedom, but saw the difficulty of using the counter ex-
amples to develop a non-trivial deadlock-free system. We believe that refinement
will be the key to overcome this difficulty: the model must be analysed and con-
structed piecemeal to provide better feedback to the engineers. In future work,
we would like to check more properties. For instance, check wether the choice
between the events of a machine is deterministic. Only one event should be en-
abled at any time: we expect an implementation of a cruise control controller to
be predictable. We also would like to analyse certain sequences of actions using
temporal (LTL) formulas. Some requirements do not fit into the simple scheme
of events and invariants.

What about the answer to our question? In the case study we could see that
we can clearly profit from the use of formal methods in the development process.
Checking the model for consistency and deadlock-freedom uncovered many errors
in the model and led to various improvements of the requirements. For example,
deadlock checking identified many cases in which requirements had been missing.

15



Event-B with its tools Rodin and ProB can be useful for improving the quality
of requirements and of models that can serve as blue prints for implementations.
We have also seen that we have profited in “unintended” ways. We did not follow
the method described in [1] but had to develop our own, in particular, to work
with Problem Frames for the management of complex requirements.

Acknowledgements. We are especially grateful to Cliff Jones who coordi-
nated the work of the academic partners in this case study. We are also grateful
for the fruitful interactions with Rezazadeh Abdolbaghi, Jean-Raymond Abrial,
Michael Butler, Alexei Iliasov, Michael Jackson, Sascha Romanovsky, Matthias
Schmalz, and Colin Snook.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in Event-B. STTT, 12(6):447–466, 2010.

3. Andrew Edmunds and Michael Butler. Tool support for Event-B code generation,
2009.

4. Neil Evans and Michael J. Butler. A proposal for records in Event-B. In Jayadev
Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM, volume 4085 of Lecture
Notes in Computer Science, pages 221–235. Springer, 2006.

5. Stefan Hallerstede and Michael Leuschel. Constraint-Based Deadlock Checking of
High-Level Specifications. Proceedings ICLP’2011, pages –, 2011.

6. Stefan Hallerstede, Michael Leuschel, and Daniel Plagge. Refinement-animation
for Event-B - towards a method of validation. In Marc Frappier, Uwe Glässer,
Sarfraz Khurshid, Régine Laleau, and Steve Reeves, editors, ABZ, volume 5977 of
Lecture Notes in Computer Science, pages 287–301. Springer, 2010.

7. Alexei Iliasov. On Event-B and Control Flow. Technical Report CS-TR-1159,
University of Newcastle, 2009.

8. Michael Jackson. Problem Frames: Analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

9. Cliff B. Jones. DEPLOY Deliverable D15: Advances in Methodological WPs.
http://www.deploy-project.eu/pdf/D15final.pdf.

10. Cliff B. Jones. Systematic Software Development Using VDM. Prentice Hall, second
edition, 1990.

11. Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for
the B method. STTT, 10(2):185–203, 2008.

12. Michael Leuschel, Jérôme Falampin, Fabian Fritz, and Daniel Plagge. Automated
property verification for large scale B models. In A. Cavalcanti and D. Dams,
editors, Proceedings FM 2009, volume 5850 of Lecture Notes in Computer Science,
pages 708–723. Springer, 2009.

13. Felix Loesch, Rainer Gmehlich, Katrin Grau, Cliff B. Jones, and Manuel Maz-
zara. DEPLOY Deliverable D19: Pilot Deployment in the Automotive Sector.
http://www.deploy-project.eu/pdf/D19final.pdf.

14. Colin F. Snook and Michael J. Butler. UML-B: Formal modeling and design aided
by UML. ACM Trans. Softw. Eng. Methodol, 15(1):92–122, 2006.

16



15. Olaf Stursberg, Ansgar Fehnker, Zhi Han, and Bruce H. Krogh. Verification of
a cruise control system using counterexample-guided search. Control Engineering
Practice, 12(10):1269 – 1278, 2004. Analysis and Design of Hybrid Systems.

16. Sanaz Yeganefard, Michael Butler, and Abdolbaghi Rezazadeh. Evaluation of a
Guideline by Formal Modelling of Cruise Control System in Event-B. In César
Muñoz, editor, Proceedings of the Second NASA Formal Methods Symposium (NFM
2010), number NASA/CP-2010-216215, NASA Langley Research Center, Hampton
VA 23681-2199, USA, April 2010.

17


	On Fitting A Formal Method Into Practice

