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1 Introduction

Declarative languages have been used since the beginning
of automated computation, but have been a minority taste
for general-purpose programming, while remaining impor-
tant for a number of special-purpose languages. In addi-
tion, however, they have been widely used in the higher
education sector, both for Computer Science students and
other disciplines. In this article we will consider this par-
ticular area.

Following this introduction, we introduce declarative
languages, discussing both the mathematics on which they
are based (Section 2) and the languages (Section 3). The
two subsequent sections are concerned with education.
We have separated out two aspects of declarative lan-
guages, so that the objectives of each can be considered
separately. The first of those is about teaching declarative
languages themselves (Section 4), and using the process
to learn programming skills and principles. The second
aspect concerns using declarative languages in the cur-
riculum to introduce and understand other subjects and
ideas (Section 5). The last section concludes with a sum-
mary.

The article contains an extensive bibliography. Where
possible we refer to books which might be used as teaching
texts. We also include the more important and relevant
papers in the field.

1.1 What is a Declarative Language?

The commonly-used programming languages, such as
FORTRAN, Java, C++ and Cobol would not normally
be considered declarative languages. Consequently it is
tempting to describe a declarative language in terms of
how it differs from such languages: what it is not, rather
than what it is. Before making this comparison, however,
we will discuss the characteristics that identify declarative
languages.

The unifying theme behind the idea is that the pro-
grammer should be able to rise above the step-by-step
underlying mechanism of the machine, and ‘declare’ the
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answer to a problem; the computer system should then
be able to interpret that declaration to build the answer.

Declarative systems are common in everyday (engineer-
ing) life. Electronic engineers can draw circuit diagrams
from which the systems are built, without being concerned
with specifying the mechanics of construction. We are all
happy to use maps to travel from place to place, and in-
deed many people prefer them and are uncomfortable with
being given step-by-step instructions. Architects draw
plans which show the floor layout without needing to spec-
ify details of construction, such as the fact the second floor
must await the building of the first!

So how might we achieve this static, declarative, world?

Declarative languages have one thing in common in
the way they approach the programming process: they
appeal to mathematics. Of course, such appeal is not
unique to declarative languages, but it is the case that
the proponents look to find clean mathematical models
and semantics to an extent that is rarely seen in other
languages. When we consider the aims of declarative lan-
guages above, it is not really surprising that mathemat-
ics is a good place to start. Most mathematical systems
are static and descriptive, since they are concerned with
formulae defining (cf. declaring) values, rather than the
process of using the formula definition. Recall that the
first steps in programming languages were concerned with
allowing programmers to write algebraic formulas (FOR-
mula TRANslation) instead of the individual instructions.

It should now be possible to see the essential difference
between declarative and non-declarative (usually called
procedural) languages. Procedural languages request and
require the programmer to specify a process or recipe for
arriving at the solution to the problem, whereas declar-
ative languages neither permit nor allow the process to
be specified, but rely on a more abstract statement of the
solution.

Declarative languages, are high-level languages in which
one only has to state what is to be computed and not
necessarily how it is to be computed. Logic program-
ming, functional programming, and specification repre-
sent three prominent members of this class of languages.
Functional programming is based on the A-calculus, logic
programming has its roots in first-order logic and auto-
mated theorem proving, and specification is based on logic



and set theory. All three approaches share the view that a
program is a theory and execution consists in performing
deduction from that theory.

2 Mathematical bases

In this section we look at the major mathematical sys-
tems that are used to underpin declarative languages. We
begin with the predicate calculus, which forms the foun-
dation of logic programming. Section 2.2 introduces the
A-calculus, which underpins functional programming. Fi-
nally, Section 2.3 discusses set theory, which forms the
basis of specification languages.

2.1 Predicate Calculus

Formal logic is an important branch within mathematics
and originated from the attempt to formalise mathemat-
ical proof and truth. Formal logic also plays a central
role within many areas of computer science. It is thus
natural that logic is important within education of both
mathematics and computer science [83, 110, 50, 115, 105].
Many different logics exist, but predicate calculus, also
called first-order logic, is arguably the most wide-spread
and widely used. The most basic logic is propositional
logic. Formulas within the predicate calculus are con-
structed from the following connectives and quantifiers:

- (negation), V (or), A (and),
+ (implication), < (equivalence),
v, 3 (universal and existential quantifier).

The basic constituents are predicates whose arguments
are constructed from logical variables and function sym-
bols. For example the formula below states that disjunc-
tion (V) distributes over conjunction (A).

aVvV(bAc) < (avb)A(aVc)

The meaning of the symbols a b, and c is unspecified,
which brings us to the topic of the semantics or model
theory of the predicate calculus.

2.1.1 Model theory

The semantics of the predicate calculus is based on in-
terpretations and models. An interpretation over an ar-
bitrarily chosen domain D assigns each function symbol
with arity n > 0 to a function D" — D and each predicate
symbol to a relation over D".

Based upon this interpretation we can assign every
(closed) formula a unique truth value (true or false) based
upon the classical truth tables (e.g., true A false = false).
A model for a predicate calculus formula is then an inter-
pretation which makes the formula true.

The important notion of logical consequence |= is then
defined as a |= f if and only if every model of « is also a
model of .

2.1.2 Proof Theory

Model theory provides a formal way of assigning meaning
to predicate calculus formulas, independent of any ma-
nipulation. However, it is of no use to actually formally
establish any logical consequence o |= f in a mechani-
cal way, as the number of domains and interpretations is
usually infinite.

To be able to reason about logical consequence, we
turn to proof theory, which provides axioms and infer-
ence rules. Formally, we denote by o - 8 that we can
prove that 3 is true if we assume a to be true.

A particular inference system + is said to be sound if
a - B implies a |= B, and complete if a |= § implies a - 3.

Predicate calculus is semi-decidable, meaning that
whenever o |= [ we can actually prove a F ( in finite
time [46], but if o [~ [/ we might actually not be able
to establish a t/ 8. Furthermore, by Gddel’s famous in-
completeness result [45], predicate calculus is incomplete,
in the sense that any theory containing arithmetic on the
natural numbers cannot be captured. One cannot even re-
strain a theory to just have the natural numbers as model
(see Corollary 4.10.1 in [31]).

2.2 The lambda-calculus

The A-calculus is a logical theory that was developed by
Alonzo Church in the 1930’s to answer questions on com-
putability. The theory has just two operations, function
application and function abstraction. Yet the A-calculus
is powerful enough to express all computable functions,
and to study all aspects of programming in their purest
form.

The syntax of the untyped A-calculus [11] is given by
two syntactic categories: variables V (with v, w ranging
over V), and expressions £ (with e, f ranging over &).

vwweV=al|b|c]| ..
efefE=v | Av-e|fe
Here \ v e denotes the creation of a function with

argument v and function ‘body’ e, and f e denotes the
application of a function f to the argument e.

The semantics of the untyped A-calculus is given by a
reduction relation over expressions. This reduction rela-
tion is usually specified in a natural deduction style, by a
set of rules and axioms. The most important of these is
the B-reduction rule, which specifies how a function f is
applied to its argument e:

f—=Av.f e — e

fe—f[v:i=¢]

[6]



This specification shows that:

e The evaluation of the function (expression f) must
yield a A-abstraction (i.e. of the form A v - f').

e The evaluation of the argument expression e yields
an expression e’.

e The result is an expression obtained by substitution
of ¢’ for every free occurrence of v in the expression
f' (denoted by [v := Ve']).

2.2.1 Normal forms

The purpose of evaluating a A-term is to arrive at a normal
form, which is an expression that cannot be usefully eval-
uated further. A normal form is characterised by the fact
that it does not contain occurrences of the form (A v - f) e.

To evaluate a A\-term one would repeatedly apply the 8-
reduction rule, until it can be applied no more. The result
is then a normal form. It can be shown that normal forms
are unique.

It is perfectly possible for a A-term not to have a normal
form. For example the term w below has no normal form,
because it reduces to w itself:

w= (MNa-aa)(Aa-aa)

2.2.2 Reduction strategy

The rule § specifies that the argument e must be evaluated
before the substitution. This is called applicative order
reduction. It is also possible to substitute e unevaluated.
This is called normal order reduction:

n f=Av - f
7] fe=f|v = e]

Whether to use applicative order reduction or normal or-
der reduction is important when considering termination.
It can be shown that if there is a normal form, then it will
be found with normal order reduction. However, applica-
tive order reduction can usually be implemented more effi-
ciently. The reader is referred to Peyton Jones for further
details [92].

2.3 Set theory

Set theory forms a basis for a great deal of modern mathe-
matics (some would say all of modern mathematics). De-
spite its power and breadth as a means of discussing math-
ematics, it is in essence simple, and is widely taught to
children in elementary mathematics lessons. The central
notions are that of set (a collection of things) and mem-
bership (the property of being one of the things in a given
set).

The study of sets was begun by Georg Cantor (1845—
1918). Early 20th century mathematicians discovered a

number of problems with a naive consideration of set the-
ory. Perhaps the most famous is Russell’s paradox—if
B is the set of all those sets which are not members of
themselves, then is B a member of itself? As a result,
modern set theory is usually presented axiomatically [36].
The most popular axiomatic system derives from work of
Zermelo and Fraenkel, hence it is called ‘ZF set theory’.

The axioms use the central ideas of sets and members
to define other familiar features of sets, such as union and
intersection, Cartesian product (ordered pairs) and the
empty set, as well as more challenging concepts such as
infinity.

For example when given two sets A and B the union
A U B, intersection A N B, and the set of ordered pairs or
Cartesian product A x B are defined as:

xeAAxeEB < xecANB
xeAvVvxeB < xeAUB
x€EAANYyEB & (x,y) EAxB

Whilst a full axiomatic treatment of set theory is outside
the scope of this article, it is by no means irrelevant to
computing, and declarative languages in particular. Type
systems, in particular, will most obviously be underpinned
by set theory.

First-order logic usually contains a notion of functions,
but in set theory it is common to describe functions differ-
ently, via their graphs. The graph of a function is a set of
ordered pairs, the first element of each denoting a value in
the function’s domain, and the second element denoting
that element of the range which the first is mapped to by
the function. This shows that functions can be described
within set theory, and without the need for additional no-
tions.

3 Declarative languages

In this section we first present logic programming in re-
lation to its mathematical basis the predicate calculus.
Then Section 3.2 introduces functional programming in
relation to the A-calculus. Finally Section 3.3, discusses
specification languages with respect to set theory.

3.1 Logic programming languages

Logic programming grew out of the insight that a subset
of first-order logic, based on Horn clauses, has an efficient
operational reading and can thus be used as the basis of
a programming language.

3.1.1 Horn clause logic

A Horn clause is a logical formula of the form A < B; A
B> A ...B,, where A By,...B,, are terms consisting of



symbols but no logical connectives. A logic program then
is just a set of Horn clauses.

An important property of logic programs (and of clausal
form formulas in general) is that they have a model if and
only if they have a Herbrand model. These are restricted,
syntactic models which map every term to itself. This
insight [58] has lead to an efficient proof theory, which
is sound, complete, and can be automated, based upon
unification and resolution [97]. This in turn has lead in
the beginning of the 70’s to the development of linear
SLD-resolution [72] and the logic programming language
Prolog.

Unification matches up two terms a and b by finding
the most general substitution # instantiating all variables
in a and b so that af is identical to bf. For example the
unification of deriv(deriv(X+Y) xZ) and deriv(A x B) would
produce the substitution {A/deriv(X +Y), B/Z}.

Consider as an example the following Horn clause,
which would be part of a logic program computing the
derivative of a function:

deriv(F + G, F' + G') « deriv(F,F’) A deriv(G, G')

The Horn clause has a logical semantics, whose validity
can be checked independently of the rest of the logic pro-
gram. There is also a natural language translation of this
clause:

If F' is the derivative of F and G’ is the derivative
of G then F’ + G’ is the derivative of F + G.

The Horn clause also has an operational reading, allow-
ing for an efficient execution mechanism:

To calculate deriv(F + G,F’ + G') one should
first calculate deriv(F,F’) and then calculate
deriv(G, G').

Using logic as the basis of a programming language also
means that a uniform language can be used to express and
reason about programs, specifications, databases, queries
and integrity constraints. Also, because of their clear
(and often simple) semantical foundations, declarative
languages offer significant advantages for the design of
semantics based program analysers, transformers and op-
timisers [53].

Logic programming languages allow non-determinism,
making them especially well-suited for applications like
parsing. They also provide for automatic memory man-
agement, thus avoiding a major source of errors in other
programming languages. Another advantage of logic pro-
gramming languages is that they can compute with par-
tially specified data and that the input/output relation is
not fixed beforehand. For instance, the above mentioned
program can not only be used to compute the derivative
of e.g. F x G via the query « deriv(F x G,H) it can (in

theory) also be used to calculate its integral via the query
+ deriv(E, F x G).

Finally, although early logic programming languages
were renowned for their lack of efficiency, the implemen-
tations have become more efficient, recent efforts reaching
or even surpassing the speeds of imperative languages for
some applications.

Good introductions to logic programming can be found
in [6, 74, 87, 33, 7, 39].

3.1.2 Semantics, Negation as Failure, Non-

monotonic Reasoning

Given that a program P is just a set of formulas, which
happen to be clauses, the logical meaning of P might be
seen as all the formulas F for which P &= F. However,
in logic programming one (usually) assumes that the pro-
gram gives a complete description of the intended inter-
pretation, i.e., anything which cannot be inferred from
the program is assumed to be false. This is the so-called
closed world assumption. When given a formula F, the
closed world assumption states that —F is a logical con-
sequence of a program P if F is not a logical consequence
of P. This means that, from a logic programming per-
spective, the program below captures exactly the natural
numbers:

nat(0) —
nat(succ(X)) + nat(X)

This is impossible to accomplish within predicate calculus
alone.

Logic programs have been extended to also allow nega-
tions in the body of clauses and a multitude of semantics
have been developed [8]. All of this makes logic program-
ming an ideal setting for certain applications in artificial
intelligence, such as non-monotonic reasoning or abduc-
tion. It also provides an elegant solution to the so-called
frame problem.

3.1.3 Meta-programming

In essence, meta-programming is the art of treating pro-
grams as objects, which can be modified and manipulated
mechanically by another program, the meta-program.
Usually the object and meta-program are supposed to
be written in (almost) the same language. It turns out
that logic programming is especially suited for Meta-
programming [9] and a great deal of research has been
done on that issue. Meta-programming has many ap-
plications (extending the programming language, debug-
ging, program analysis, program transformation,...) and
is also relevant in areas such as multi-agent systems, so
as to reason about other agents and their (possible) be-
haviour.



3.1.4 Prominent logic programming languages

The five main families of logic programming languages
are:

e pure first-order languages. These languages try to
remain within the logical basis as much as possi-
ble. The programming language Godel [59] is one
prominent member of this family. Mercury [102] is
a pure logic programming language which achieves a
remarkable execution speed by exploiting mode and
type information of the program.

o There has recently been considerable interest in de-
veloping integrated functional/logic languages lead-
ing to the development of such languages as Escher,
Curry, A-Prolog, ALF, Babel. These languages keep
(most of) the advantages of logic programming lan-
guages while adding support for (higher-order) func-
tions.

e (impure) Prolog and its descendants. Many vari-
ants and implementations of Prolog exists, all with
slight variation in functionality and syntax. This has
prompted the development of an international ISO
Standard for Prolog [32].

e Constraint Logic Programming (CLP) languages. An
important discovery was that the resolution and uni-
fication process of logic programming could be ex-
tended to handle constraints over arbitrary domains.
This has lead to many successful applications in in-
dustry and the development of CLP languages such
as CHIP, Prolog IIT and IV, and Eclipse.

e Concurrent logic languages. Another important dis-
covery was that logic programming languages provide
an elegant way of describing and developing concur-
rent or distributed systems: logical variables can be
seen as communication channels and communication
and synchronisation occurs via instantiation of such
variables. This insight was the basis of the Japanese
“Fifth-Generation Computer Systems” research ini-
tiative. Some languages of this type are Parlog, Con-
current Prolog, FGHC, AKL (Andorra Kernel Lan-
guage), Janus, KL1, and KLIC.

3.2 Functional programming languages

A functional program is a set of equations. To ‘execute’
such a program means to solve these equations. The im-
plementation automatically derives the solution via the
B-reduction processes. Functional programmers do not
write equations in the A-calculus, because this would be
cumbersome. Instead one uses high level notations, which
can be translated into the A-calculus.

Below is a function take, which when given a natural
number n, and a list xs, returns the first n elements of the
list. The function is defined by three equations, numbered
{1},{2}, {3}. Only one of these equations applies at any
one time. The empty list is denoted by []. The notation
x : xs indicates a list which differs from the list xs in
that the former has one more element in front. The first
equation matches only when n = 0. The second and third
match when n > 0.

take 0 Xs =]
take (n+1) [] =]
take (n+ 1) (x: xs) = x : take n xs

{1}
{2}
{3}

3.2.1 Referential transparency

The hallmark of functional programming is that variables
are treated as in mathematics. Once a variable is associ-
ated with a value, it remains associated with that value;
it never changes. This is called referential transparency.
Languages which have this property are also called pure.
Referential transparency makes it impossible to mutate
data structures. This can be a problem because many
algorithms rely on mutable data structures for efficiency.
However, in the implementation, data structures may be
mutated as long as the compiler is able to guarantee that
the data structure is not shared.

3.2.2 Equational reasoning

The execution of a functional program can be represented
as a sequence of steps, where an expression denoting a
value may be replaced by another expression denoting the
same value ("equals are always replaced by equals”). Here
we show the calculation of an initial segment from a 5-
element list. The steps are annotated on the right with
the appropriate equation for take:

take 3 (1:2:3:4:5:]) {3}

=1:take2(2:3:4:5:]]) {3}
=1:2:takel1(3:4:5:]]) {3}
=1:2:3:take 0 (4:5:]) {3}
=1:2:3:] {1}

The similarity between the above process and the usual
mathematical practice of replacing equals by equals makes
functional programming attractive for mathematically
oriented applications.

3.2.3 Polymorphism

In the above example we have applied the function take
to a list of numbers. However, take would work just as
well when applied to, say, a list of strings.

take 3 ("one” : 7two” : "three” : ' four” : [])
= "one” : "two” : "three” : ]



We say that the function take is polymorphic in the ele-
ment type of the list. The type of the function could be
written as follows:

take :: N — « list — « list

This type judgement says that the function takes a natural
number as its first argument, a list of any element type
a as second argument, then produces a list with elements
of the same type a.

3.2.4 Complexity

The function gsort below embodies the Quick sort algo-
rithm. It uses list comprehensions of the form [F x | x +
xs, P x|, which denote that when x ranges over the ele-
ments of the list xs, only those elements of the list xs that
satisfy the predicate P will be offered to the function F
for inclusion in the result. The operator + concatenates
two lists.

gsort ] =1 {1}
gsort (x:xs) =gsort[y | y < xs,y < X {2}
+ [x] +

gsort[y | y < xs,y > ¥

Sometimes normal order evaluation gives a different com-
plexity to the more commonly used applicative order eval-
uation. For example, one of the remarkable properties of
functional programming based on normal order evaluation
is the fact that taking only the first element after sorting
a list has linear complexity:

Calculation Complexity
take 1 (gsort xs) O(n)
take n (gsort xs) O(nlogn)

3.2.5 Prominent functional languages

The three main families of functional programming lan-
guages are:

e Pure, lazy languages (based on normal order reduc-
tion) with the main representative Haskell [63].

e Pure, eager languages (based on applicative order
reduction), represented by Standard ML [79]. Al-
though Standard ML has an impure extension, the
bulk of the language is pure.

e Lisp and its descendants such as Scheme [96] are ea-
ger languages that permit the use of mutable data
structures.

Functional programming has many other interesting prop-
erties that we glossed over here. The reader is referred to
one of the many text books [15, 119, 91, 61, 29, 114, 112,
24].

3.3 Specification languages

Specification languages are an area where programming
meets mathematics. Just as engineers of many disciplines
have long found value in constructing mathematical mod-
els of the systems they are to build, software engineers
have begun to find it useful to construct precise descrip-
tions of software before it is implemented. In the tra-
ditional engineering domains, these descriptions usually
involve continuous mathematics and the differential and
integral calculi; in software engineering, discrete mathe-
matics, set theory and predicate calculus (or other logical
systems) are more appropriate.

In both cases, the descriptions are declarative in that
their focus is on an abstract statement of a solution, not
on a process by which it is to be achieved. Software is
unusual, however, in that declarative specifications may
be executable. Moreover, even if the specifications are not
directly executable, it is possible to transform them math-
ematically into programs. Whereas bridges are emphati-
cally not bridge specifications, the line between software
specifications and software products is blurred.

There are two main approaches to writing specifications
of programs. The first is the algebraic approach, the sec-
ond is the model based approach. Each will be described
in subsequent sections.

3.3.1 Algebraic Specification

Algebraic specifications assume a simple vocabulary of
named sets and total functions upon those sets. Specifica-
tions are written as axioms (usually equations) describing
properties which those functions must have. Such equa-
tions may be regarded as a superset of those written in
functional programming—by removing constraints (over
what may appear at the left-hand side of an equation),
executability may be lost, but a great freedom of expres-
sion is gained.

Algebraic specification gained popularity though the
1980s, giving rise to the languages Clear and OBJ3. A
text on the subject is [47].

Process algebras are notations for describing concurrent
computation and communication, at a high level. As with
algebraic specification, the description is written using a
series of equations which describe the operation of a pro-
cess. Algebraic laws allow the effects of parallel compo-
sition, communication hiding, etc., to be calculated. The
two leading process algebras are CSP [60] and CCS [78].

Below is a small CCS specification inspired by an ex-
ample from Milners book [78]. It represents a vending
machine selling chocolates to two customers. A full stop
represents sequencing of actions, a plus separates two al-
ternatives and a vertical bar introduces two concurrent
processes. Agents may engage in named input and out-
put actions. An output action is indicated by a bar, an



input action is without a bar. When one agent is willing
to engage in an input action while another is willing to
engage in an output action of the same name, communi-
cation takes place.

Vending = insert2p.collectbig.Vending +
insert1p.collectsmall.Vending
Cust; = insert2p.collectbig.Cust;
Cust = insertlp.collectsmall.Cust,
System = Cust; | Cust, | Vending

The vending machine accepts either a 1p coin for a small
chocolate (input action insertlp) or a 2p coin for a big
chocolate. Once a coin has been accepted, the machine
insists that the appropriate chocolate be dispensed before
it accepts another coin. The first customer keeps pur-
chasing big chocolates by engaging in the output action
instert2p. Similarly, the second customer keeps purchasing
small chocolates.

The m-calculus, a variant of CCS, has greater flexibil-
ity, but a greater learning overhead. CSP includes a no-
tion of refinement, which makes it appropriate for the
specification and development of large systems. Recently,
model-checking tools for CSP have been used to great
effect [98]. By permitting exhaustive exploration of the
state space defined by a CSP process, the declarative de-
scription of a protocol, say, can be checked for properties
such as deadlock-freedom which would be hard to estab-
lish using an implementation. The same tool checks re-
finement, so a process specification can be automatically
tested against a desirable (or undesirable) property.

3.3.2 Model-based specification

The contrast between model-based specification and alge-
braic specification may at first sight be rather subtle, but
in fact is quite profound. In a model-based specification,
one constructs a description of the artifact (program, data
type, etc.) by using simpler mathematical objects (sets,
relations, functions). A model is constructed in that there
is an abstract entity which denotes the artifact.

In practice, a model-based specification may contain
many similar equations/axioms to an algebraic specifi-
cation, but the emphasis is different: the model-based
specification typically describes some abstract ‘machine’,
whereas the algebraic specification is more usually con-
cerned with properties of abstract data types.

The following section gives an example of a model based
specification in the widely used Z notation.

The Z Notation The Z notation [104] began in the
work of Abrial and others in Oxford, and has evolved
over the last twenty years to cover a wide international
community. To a large degree, it is simply a style for
using first-order predicates and ZF set theory. Z’s main

additions to simple set theory are a strong type system
reminiscent of certain functional languages, and a notion
of schemas, through which specifications are structured.
A programming-language style grammar ensures that var-
ious aspects of Z specifications (such as type-correctness)
can be machine-checked. To facilitate convergence in such
tools, an international standard for Z is under construc-
tion [85].

7 schemas serve many purposes. Usually, a schema is
presented as a collection of variable declarations, together
with some predicates describing fixed relationships be-
tween those variables. For example, the following schema
describes a data file, as a sequence of bytes (modelled as
natural numbers), together with a measure of the file size.

__File
contents : seq Z
size : N

size = #contents

The sitze component is redundant in that it is derived
from the value of contents; however, it is often found to
be useful to record redundant information in this way, for
the succinct expression of specifications. The predicate
part provides a state invariant which ensures that size
always holds the correct value.

Depending on the specification being constructed, this
File might represent a data type (like a structure), or
an item of system state, or indeed an object. The most
common use of schemas in Z is in the specification of state-
based systems. Having defined a file as above, we might
proceed by declaring operations which append input data
(extra?) to the file and read the contents of the file as an
output (data!).

_ Append
APFile
extra? : seqZ

contents’ = contents " extra?

— Read
EFile
data! : seqZ

contents’ = contents = data!

Append is a schema which denotes not the state of some
system, but an operation upon that system. The notation
AFile indicates that the operation relates a ‘before’ state
(with undecorated variables) and an ‘after’ state (in which
variables carry a prime ') of the components of Fiile. Sim-
ilarly, ZF"ile indicates a similar relationship, but with the



added caveat that the components of F'ile do not change
their values. extra? is an input to the Append operation,
and data! is an output.

In a state-based system it is also important to define
how the system is to be initialised. This may be described
using a degenerate operation, which has an ‘after’ state,
but no ‘before’ state:

__ InitFile
File'

contents’ = ()

Specifications in this style can be formally refined to-
wards code by stepwise transformation. Such refinements
usually end with imperative code, though other declara-
tive languages are also a possibility. The usual expecta-
tion is that the state variables will become global variables
in some program (or module, or class). The initialisation
schema will be refined either by initialisation of the vari-
ables by the compiler, or by some explicit initialisation
procedure (or method). The operation schemas will be
refined by procedures (or functions, if they do not change
the state, or methods) with appropriate inputs and out-
puts.

3.3.3 Executability

The similarity between certain specification notations and
certain programming languages raises the possibility of
executing the specifications (models) of systems. In al-
most every case, this is no substitute for system develop-
ment, but might form part of a prototyping exercise.

There has been a long debate about the desirability of
executing specifications. The original paper is [55]; the
most recent contribution is [48]. On the one hand, it is
argued that enabling the execution/animation of specifi-
cations is a useful tool in understanding a specification
and communicating its contents to a non-mathematical
reader. The counter-argument is that the purpose of for-
mal specification is to achieve a clear description of what
is to be done, without committing on how this will work.
If the specifier has even half an eye to the possible exe-
cution of their specification, the result will tend to be a
compromise on the clarity.

3.3.4 Prominent specification languages

The Z notation as introduced above is the most widely
used specification language to date.

The Vienna Development Method [67] was initially the
work of a group concerned with formal semantics and com-
piler design, at IBM laboratories in Vienna. As the name
implies, VDM embraces a means of program development,
with rules of proof for program design steps. Our inter-
est, however, is in VDM-SL, the specification language of

VDM. VDM-SL has much in common with the Z nota-
tion [56], and like Z it has been the subject of an interna-
tional standardisation effort [64].

VDM-SL differs from Z in concrete syntax (it lacks the
boxes, and uses keywords instead). Semantically it differs
in using a three-valued logic of partial functions and a
domain-theoretic semantics. Methodologically, it differs
in the status of state invariants, and in having explicit
imperative programming constructs in the specification
language.

Promela is the specification language used by the widely
used Spin model checker [62]. The language supports
dynamic creation of concurrent processes and both syn-
chronous and asynchronous message passing.

B is a model-oriented specification notation [3] whereby
a system is specified in terms of an explicit abstract model
of the state along with operations on the state. It is based
on set theory and the weakest pre-condition calculus. The
B-toolkit provides a comprehensive package of tools for
animation, proof, refinement and implementation of de-
scriptions [84].

3.4 Other Languages

Many languages and notations exists which have a large
declarative subset and/or which are used in a way similar
to the functional, logical and specification languages in-
troduced above. Of particular interested from the point
of view of their use in education are the following.

ISETL is a programming language specifically created
to support courses in Discrete Mathematics. ISETL has
a large declarative core, offering all the necessary ingre-
dients for experimentation with concepts from Discrete
Mathematics, such as finite sets, sequences, relations, first
and higher order functions, existential and universal quan-
tifiers, and ZF-expressions.

MATLAB [111], Maple [44], and Mathematica [121] are
systems/languages for computer based mathematical cal-
culations in Science and Engineering. Each contains a
large declarative subset used to express the mathematical
operations for which these systems have been designed.

4 Teaching Declarative Languages

Having introduced the mathematical bases and the major
declarative languages, we now consider where declarative
languages are used in the curriculum. In this section we
briefly look at the ways in which declarative languages are
taught as topics of interest in their own right. The next
section looks at the role of declarative languages in other
parts of the curriculum.



4.1 Logic Programming

Logic programming languages have been used as the first
language taught in universities or even schools [37]. While
Prolog used to be the only choice for this, recent years
have seen increased popularity of purer logic programming
languages, such as Godel [59] and Mercury [102].

Many books exist that provide good introductions to
logic programming and Prolog. Classical texts [23, 22]
mainly concentrated on the programming aspects. More
recent books more and more cover the logical side of Pro-
log [109, 108, 90, 25, 87, 7, 33, 74].

A recent development is ToonTalk [69] which, in the
spirit of Logo, tries to teach children as young as 4 years
to program by associating graphics, animation, and sound
with logic programs.

4.2 Functional Programming

A functional language is close to discrete mathematics,
thus making it an ideal vehicle to teach the principles
of programming in a first programming course. With a
minimum of syntactic burden, it is possible to teach the
fundamental tools of recursion and induction. The stu-
dent should be capable of writing abstract data types for
lists, queues and trees in just a few weeks. Many course
have been developed on the basis of this idea. Some are
targeted at a sophisticated audience [15], others are tar-
geted at a more youthful audience [41]. There are many
other good texts [1, 119, 91, 61, 29, 114, 112, 24].

4.3 Specification

In most UK universities formal methods has become a
standard subject in the computer science undergraduate
syllabus. In particular, use of Z is widely taught, and
many text books are available [3, 65, 94, 103, 124]. Often,
this is a vehicle for the teaching of discrete mathematics,
so students come to regard the subject as ‘hard’ and more
theoretical than practical.

Students with the benefit of greater perspective — on
graduate courses, or returning to study after time in in-
dustry — have been found to be able to use Z to better
effect, seeing it as a modelling tool with great practical
benefit. One of the texts [122] comes from the experience
of many years teaching Z to industrial practitioners.

5 Using Declarative Languages in
Teaching
In this section we visit each of the nine subject areas

defined by the 1991 ACM/IEEE Computer Science cur-
riculum [113] to discuss whether and how declarative lan-

guages are being used to support teaching. Before this we
consider Discrete Mathematics and Logic.

In considering each of these subject areas, we report
briefly on the use of each of the three declarative languages
that we have identified: logic programming, functional
programming and specification.

5.1 Discrete Mathematics

Wainwright [117] describes laboratory assignments using
a functional language to support a discrete mathemat-
ics course. The author reports that even without prior
exposure to programming, all students found the labora-
tory assignments useful and recommend that they be kept
as part of the course. In a later experiment Schoenefeld
and Wainwright [99] teach discrete mathematics using the
book by Skiena [101], which offers extensive laboratory as-
signments based on Mathematica. Again the participants
were “pleased that Mathematica was integrated into the
course”. The use of Mathematica as an exploratory tool
makes operational important mathematical concepts such
as abstraction and generalisation.

Cousineau and Mauny [24] use ML to create aesthet-
ically pleasing drawings in order to explain various ge-
ometric concepts, such as tiling. The images generated
resemble M.C. Escher’s engravings. The same book also
uses ML to support the presentation of exact arithmetic
over natural, integer and rational numbers.

One of the text books on ISETL [38] encourages the
students to experiment with small ISETL programs, to
try and discover the underlying mathematical concepts.
Virtually all ISETL examples given in the book are purely
declarative. In some cases the students are asked to create
declarative solutions to problems for which an imperative
solution is given. The ‘ISETL method’ is reported to be
used at over 75 colleges throughout the world [35].

5.2 Logic

Declarative languages are directly based on a logic, and
declarative programs can be viewed as executable logics.
This makes declarative languages suitable to support a
course on logic.

Because of its logical basis, Prolog is an ideal support
language for mathematical logic and also many fields in
discrete mathematics. Automated theorem provers can
be built easily in Prolog and many concepts in logic pro-
gramming are important in mathematics as well, so that
a joint study is highly beneficial [39, 12].

Hein [57] describes tools to teach discrete mathematics
and logic using a large variety of short and relevant labo-
ratory assignments. Simple assignments are described to
experiment with laws of logic (using Prolog). Other as-
signments support learning about functions and function
composition using functional languages.



Since Z incorporates classical logic and set theory, its
notation provides a natural way to teach these topics to
computing students and software engineers [123].

In his book, Downward [34] explores the connection be-
tween logic and declarative programming in four different
ways:

e Logic programming is related to first order logic.

Many sorted logic is the foundation of abstract data
types. The OBJ2 [42] term rewrite system supports
this logic directly.

Domain theory is used to establish models for the
A-calculus, which in turn is the basis of functional
programming.

Intuitionistic logic is shown to be the basis of the
theory of types underlying all modern functional lan-
guages.

Throughout the book, Downward encourages the reader
to write programs in the different programming languages
to experiment with the concepts being studied.

5.3 Algorithms and Data structures

Teaching algorithms and data structures using a purely
functional languages is a challenge. The main problem
is that many data structures and algorithms rely on mu-
table data structures for efficiency. Some courses have
been taught using a functional language (Standard ML),
relying on language extensions that support mutable data
structures [51]. This is less than satisfactory because the
advantage of a functional programming language is lost,
i.e. to be able to use equational reasoning.

The work of Okasaki represents an important step in
that it develops a wealth of data structures in Standard
ML [89], without using the impure extensions. The topics
discussed include single and double ended queues, binary
search trees, heaps, tries and random access lists, all in a
number of important varieties. The key idea is that good
amortised complexity is at least as important as worst case
complexity. The book is neither a straight replacement for
classical texts such as Sedgewick’s Algorithms and Data
Structures, nor does it claim to be such a replacement.

Another text for advanced courses on data structures
and algorithms is Bird & de Moor [14]. This uses a purely
declarative style—its approach is compatible with func-
tional programming, although the methods used also re-
quire a little category theory.

More accessible but less rigorous is the book by Rabhi
and Lapalme [95], who cover many important algorithms,
such as sorting, searching, graph algorithms, divide-and-
conquer, dynamic programming, and the traveling sales-
person. Most algorithms are accompanied by a worst case
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space and time complexity bound, unfortunately mostly
without a derivation. The emphasis of Rabhi and La-
palme is on the high level specification of the algorithms,
often with a fold/unfold style program transformation to
improve the efficiency. The book makes good use of the
facilities provided by a modern functional programming
language (Haskell) in showing how classes of algorithms
can be represented in the language as higher order func-
tions. The drawback of the high-level approach is that the
space complexity of the resulting algorithms is often worse
than that obtained with imperative methods. In addition,
to understand the space complexity considerable knowl-
edge is required of the implementation of functional lan-
guages. The proposed complexity analysis method does
not apply to higher order functions nor to essentially lazy
algorithms.

5.4 Architecture

Some authors teach abstract machines in terms of declar-
ative programs. Prolog [26] even enables ‘reverse execu-
tion’ (i.e. given a finite state machine and its output, the
Prolog system will reconstruct the possible inputs). Pi-
otrowski [93] observes that Miranda is less versatile, but
offers more elegant and robust (typed) specifications of
abstract machines. Both of these declarative approaches
to experimenting with abstract machines offer readily ex-
ecutable specifications of abstract machines.

The Marktoberdorf summer schools often consider top-
ics related to declarative languages [18]. In the cited vol-
ume, chapters by M. P. Fourman and A. J. Martin de-
scribe digital circuits in this way, at considerable levels
of detail—in Martin’s case, as the basis for synthesis of
VLSI circuits. Similar material has been included in un-
dergraduate curricula [88].

5.5 Artificial Intelligence and robotics

Together with Lisp, Prolog is arguably the favourite lan-
guage for teaching artificial intelligence. Many books on
artificial intelligence are based on Prolog [17, 100, 70, 75,
40]. Prolog is especially well suited to implement expert
systems [16], planners and problem solving [73].

Logic programming has been used with success as a
sound basis for Machine Learning, leading to a whole new
field of Inductive Logic Programming [82, 30, 13]

Within Natural Language Processing, logic program-
ming also plays a major role. For example, the Defi-
nite Clause Grammars (DCG) provided by Prolog have
applications in parsing and natural language processing
[19, 77].



5.6 Data Base and information retrieval

There is a tight link between relational/deductive
databases and logic programming. Indeed, from a the-
oretical point of view, a relational or deductive database
can be viewed as a special kind of logic program. This
is reflected in the common semantical foundation and a
whole series of books [43, 49, 80, 27, 20, 21].

Furthermore, certain versions of Prolog (e.g., XSB-
Prolog) can be used as efficient database engines, allowing
the programmer to get the best of both worlds.

Queries of databases, such as those of the widely used
language SQL [28] often have a large declarative core.
This is because query languages provide an abstraction
away from the manner in which the database system com-
putes the results to a query. However, updates to data
bases cannot be regarded in the same declarative way.

5.7 Human Computer Communication

Descriptions of the computer’s role in Human Computer
Communication are amenable to a declarative treatment.
For example the construction of a graphical user interface
in a modern windowing toolkit takes place at a level of
abstraction where one declares components to be in a par-
ticular relationship (e.g. adjacent, or laid out on a grid).
The windowing system then works out the details (e.g.
order and placement) of instantiating the components.

Recent developments around XML [118] indicate that
here again the basic paradigm is declarative. One de-
scribes structures and their relationships, without actu-
ally worrying about the details of rendering and place-
ment. SMIL [116] is an XML based declarative language
for hypermedia presentations on the Web. It describes
relationships in time as well as in space.

5.8 Numerical and symbolic computation

Since the early 1960’s dozens of symbolic mathematics
packages have been developed. Because of the close ties
with mathematics most of these packages have a large
declarative core. At the time of writing three packages
dominate the market: Maple [44], which is particularly
strong in symbolic calculation, MATLAB [111], which is
primarily devoted to numerical computation and Mathe-
matica [121], which aims to combine both of these. For
each of these packages many hundreds of books are avail-
able on topics ranging from financial mathematics to sci-
entific computation. Many of these books have been writ-
ten specifically to support teaching in specialist areas in
science, and engineering.

11

5.9 Operating systems

Many of the early published case studies in using Z [54]
cover operating systems topics—perhaps unsurprisingly
as the transaction processing domain was the first major
application of Z. These allow the Z-literate student to gain
a detailed understanding of what, for example the UNIX
filing system does, without needing to be concerned with
any implementation details. The alternative is to teach
using a large piece of production code, which means it
is difficult to abstract away from low-level detail, or to
teach using a specially-crafted operating system (which
may entail more work than writing a specification of a
real one).

Such an approach also lends itself to easy prototyp-
ing. A 7 description of virtual memory page replacement
policies is readily turned into a declarative program, with
which one can run simulations to discover the effects of
various patterns of memory usage.

5.9.1 Distributed systems

Hoare’s book on CSP [60] includes implementation ideas
using Lisp. It provides a thorough course on the more
theoretical aspects of distributed and concurrent compu-
tation, including processes, synchronisation, communica-
tion, deadlock, and live lock. A more practical approach
is taken by [76], which is also presented as a course text-
book. It uses CSP-style models to provide a high-level de-
scription of processes, and presents them alongside Java
programs which implement them, using Java threads to
simulate concurrency.

5.10 Programming Languages

Programming languages is a large area, ranging from the
activity of programming itself, to the implementation and
theory of programming languages.

5.10.1 Imperative programming

Declarative specifications written in Z or some similar
notation may be refined into imperative programs—that
is, transformed using mathematical laws so that the im-
plemented program provably achieves the specified out-
come. A detailed methodology for doing this is explained
in [81], which has been used as an introductory program-
ming text at Oxford University for several years. Re-
finement within Z is covered in [122], which also arose
from extensive teaching experience. The B method [3]
(and associated tools) includes similar material, though
industrially-oriented, and also features in software engi-
neering education.

It is also possible to use an introduction of a few weeks
with a purely functional language to give the students



enough confidence and knowledge of the principles of pro-
gramming to be able to start programming in an im-
perative language. Hartel & Muller have developed a
method whereby the main tool is transformation of tried
and tested functional programs (using Standard ML) into
C programs [52].

5.10.2 Compilers

Appel [5] shows that a declarative approach to compiler
design is possible. The book encourages the student to
write a complete compiler in Standard ML, using the ML
versions of lex and yacc. The book discusses all the major
topics from a compilers course, including lexical analysis,
parsing, semantic analysis, code generation, runtime sys-
tems, register allocation and code optimisation. In addi-
tion the text covers topics like garbage collection in more
detail than a standard text, such as Aho, Sethi and Ull-
man [4].

Recursive descent parsing is easy to implement in Pro-
log by using definite clause grammars [106] and Prolog is
a good language to develop compiler prototypes. In fact,
the first compiler for the successful telecommunications
language Erlang was written in Prolog.

Finally, as declarative languages are amenable to re-
fined static analysis [2] and partial evaluation, one can
achieve the automatic generation of (prototype) compil-
ers from interpreters [68].

5.10.3 Semantics

The study of the semantics of programming languages is
heavily based on branches of discrete mathematics, such
as A-calculus, predicate logic, set theory, domain theory
and category theory. A functional language is thus appro-
priate to experiment with the static and dynamic seman-
tics of programming languages. Kirkerud [71] contains a
chapter explaining how the denotational semantics of a
simple imperative language can be represented in Stan-
dard ML. Nielson and Nielson [86] provide a number of
appendices showing how both operational semantics and
denotational semantics can be represented in Miranda.
Winksel [120] recommends using Prolog, Standard ML or
Miranda to “enliven the treatment of operational seman-
tics”.

Stepney [106] uses Prolog to implement the semantics
of a programming language first specified in Z. Prolog is
an ideal language for rapid prototyping and unification to-
gether with non-determinism allow the easy implementa-
tion of varying semantics for many different programming
languages or formalisms.
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5.11 Software Methodology and Engi-

neering

The absence of types and modules means that classical
Prolog is not well suited for software engineering pur-
poses. Nonetheless, more recent logic programming lan-
guages such as Mercury and Gddel support these features
and are being used to teach software engineering prin-
ciples. Also, the logical nature coupled with the simple
semantical model, make logic programming languages es-
pecially well suited for applying techniques such as formal
verification, synthesis of provably correct programs [66] or
declarative debugging.

It can be hard to motivate Software Engineering teach-
ing in the classroom, because the size of the systems which
can be analysed tend not to show up the problems that
Software Engineering techniques are designed to solve.
This is especially true in the teaching of notations like
Z. Nevertheless, the benefit of using Z to discuss such is-
sues is that it does represent best industrial practice —
as witnessed by texts like [10, 65, 124, 107], all of which
come from industrial authors.

6 Summary

It is clear from the discussion above that declarative lan-
guages can be, and indeed are, widely used in education.
Some areas are in fact completely dominated by declar-
ative languages, such as formal methods in software en-
gineering, and artificial intelligence. Other areas, such as
operating systems rely less on specific declarative ideas.
However as understanding of Computer Science increases,
the formal basis for such subjects is growing, and with it
the need to teach in a declarative fashion.

We conclude the article with an extensive bibliography,
from which we hope the interested reader can find support
for teaching with declarative languages and ideas.
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