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De
larative Languages in Edu
ationHugh Glaser, Pieter H. Hartel, Mi
hael Leus
hel � and Andrew Martin yJanuary 1, 20001 Introdu
tionDe
larative languages have been used sin
e the beginningof automated 
omputation, but have been a minority tastefor general-purpose programming, while remaining impor-tant for a number of spe
ial-purpose languages. In addi-tion, however, they have been widely used in the higheredu
ation se
tor, both for Computer S
ien
e students andother dis
iplines. In this arti
le we will 
onsider this par-ti
ular area.Following this introdu
tion, we introdu
e de
larativelanguages, dis
ussing both the mathemati
s on whi
h theyare based (Se
tion 2) and the languages (Se
tion 3). Thetwo subsequent se
tions are 
on
erned with edu
ation.We have separated out two aspe
ts of de
larative lan-guages, so that the obje
tives of ea
h 
an be 
onsideredseparately. The �rst of those is about tea
hing de
larativelanguages themselves (Se
tion 4), and using the pro
essto learn programming skills and prin
iples. The se
ondaspe
t 
on
erns using de
larative languages in the 
ur-ri
ulum to introdu
e and understand other subje
ts andideas (Se
tion 5). The last se
tion 
on
ludes with a sum-mary.The arti
le 
ontains an extensive bibliography. Wherepossible we refer to books whi
h might be used as tea
hingtexts. We also in
lude the more important and relevantpapers in the �eld.1.1 What is a De
larative Language?The 
ommonly-used programming languages, su
h asFORTRAN, Java, C++ and Cobol would not normallybe 
onsidered de
larative languages. Consequently it istempting to des
ribe a de
larative language in terms ofhow it di�ers from su
h languages: what it is not, ratherthan what it is. Before making this 
omparison, however,we will dis
uss the 
hara
teristi
s that identify de
larativelanguages.The unifying theme behind the idea is that the pro-grammer should be able to rise above the step-by-stepunderlying me
hanism of the ma
hine, and `de
lare' the�Dept. of Ele
troni
s and Computer S
ien
e, Univ. ofSouthampton, Email: hg,phh,mal�e
s.soton.a
.ukyOxford University Software Engineering Centre, Email:apm�
omlab.ox.a
.uk

answer to a problem; the 
omputer system should thenbe able to interpret that de
laration to build the answer.De
larative systems are 
ommon in everyday (engineer-ing) life. Ele
troni
 engineers 
an draw 
ir
uit diagramsfrom whi
h the systems are built, without being 
on
ernedwith spe
ifying the me
hani
s of 
onstru
tion. We are allhappy to use maps to travel from pla
e to pla
e, and in-deed many people prefer them and are un
omfortable withbeing given step-by-step instru
tions. Ar
hite
ts drawplans whi
h show the 
oor layout without needing to spe
-ify details of 
onstru
tion, su
h as the fa
t the se
ond 
oormust await the building of the �rst!So how might we a
hieve this stati
, de
larative, world?De
larative languages have one thing in 
ommon inthe way they approa
h the programming pro
ess: theyappeal to mathemati
s. Of 
ourse, su
h appeal is notunique to de
larative languages, but it is the 
ase thatthe proponents look to �nd 
lean mathemati
al modelsand semanti
s to an extent that is rarely seen in otherlanguages. When we 
onsider the aims of de
larative lan-guages above, it is not really surprising that mathemat-i
s is a good pla
e to start. Most mathemati
al systemsare stati
 and des
riptive, sin
e they are 
on
erned withformulae de�ning (
f. de
laring) values, rather than thepro
ess of using the formula de�nition. Re
all that the�rst steps in programming languages were 
on
erned withallowing programmers to write algebrai
 formulas (FOR-mula TRANslation) instead of the individual instru
tions.It should now be possible to see the essential di�eren
ebetween de
larative and non-de
larative (usually 
alledpro
edural) languages. Pro
edural languages request andrequire the programmer to spe
ify a pro
ess or re
ipe forarriving at the solution to the problem, whereas de
lar-ative languages neither permit nor allow the pro
ess tobe spe
i�ed, but rely on a more abstra
t statement of thesolution.De
larative languages, are high-level languages in whi
hone only has to state what is to be 
omputed and notne
essarily how it is to be 
omputed. Logi
 program-ming, fun
tional programming, and spe
i�
ation repre-sent three prominent members of this 
lass of languages.Fun
tional programming is based on the �-
al
ulus, logi
programming has its roots in �rst-order logi
 and auto-mated theorem proving, and spe
i�
ation is based on logi
1



and set theory. All three approa
hes share the view that aprogram is a theory and exe
ution 
onsists in performingdedu
tion from that theory.2 Mathemati
al basesIn this se
tion we look at the major mathemati
al sys-tems that are used to underpin de
larative languages. Webegin with the predi
ate 
al
ulus, whi
h forms the foun-dation of logi
 programming. Se
tion 2.2 introdu
es the�-
al
ulus, whi
h underpins fun
tional programming. Fi-nally, Se
tion 2.3 dis
usses set theory, whi
h forms thebasis of spe
i�
ation languages.2.1 Predi
ate Cal
ulusFormal logi
 is an important bran
h within mathemati
sand originated from the attempt to formalise mathemat-i
al proof and truth. Formal logi
 also plays a 
entralrôle within many areas of 
omputer s
ien
e. It is thusnatural that logi
 is important within edu
ation of bothmathemati
s and 
omputer s
ien
e [83, 110, 50, 115, 105℄.Many di�erent logi
s exist, but predi
ate 
al
ulus, also
alled �rst-order logi
, is arguably the most wide-spreadand widely used. The most basi
 logi
 is propositionallogi
. Formulas within the predi
ate 
al
ulus are 
on-stru
ted from the following 
onne
tives and quanti�ers:: (negation), _ (or), ^ (and), (impli
ation), $ (equivalen
e),8, 9 (universal and existential quanti�er).The basi
 
onstituents are predi
ates whose argumentsare 
onstru
ted from logi
al variables and fun
tion sym-bols. For example the formula below states that disjun
-tion (_) distributes over 
onjun
tion (^).a _ (b ^ 
)$ (a _ b) ^ (a _ 
)The meaning of the symbols a b, and 
 is unspe
i�ed,whi
h brings us to the topi
 of the semanti
s or modeltheory of the predi
ate 
al
ulus.2.1.1 Model theoryThe semanti
s of the predi
ate 
al
ulus is based on in-terpretations and models. An interpretation over an ar-bitrarily 
hosen domain D assigns ea
h fun
tion symbolwith arity n � 0 to a fun
tion Dn 7! D and ea
h predi
atesymbol to a relation over Dn.Based upon this interpretation we 
an assign every(
losed) formula a unique truth value (true or false) basedupon the 
lassi
al truth tables (e.g., true ^ false = false).A model for a predi
ate 
al
ulus formula is then an inter-pretation whi
h makes the formula true.

The important notion of logi
al 
onsequen
e j= is thende�ned as � j= � if and only if every model of � is also amodel of �.2.1.2 Proof TheoryModel theory provides a formal way of assigning meaningto predi
ate 
al
ulus formulas, independent of any ma-nipulation. However, it is of no use to a
tually formallyestablish any logi
al 
onsequen
e � j= � in a me
hani-
al way, as the number of domains and interpretations isusually in�nite.To be able to reason about logi
al 
onsequen
e, weturn to proof theory, whi
h provides axioms and infer-en
e rules. Formally, we denote by � ` � that we 
anprove that � is true if we assume � to be true.A parti
ular inferen
e system ` is said to be sound if� ` � implies � j= �, and 
omplete if � j= � implies � ` �.Predi
ate 
al
ulus is semi-de
idable, meaning thatwhenever � j= � we 
an a
tually prove � ` � in �nitetime [46℄, but if � 6j= � we might a
tually not be ableto establish � 6` �. Furthermore, by G�odel's famous in-
ompleteness result [45℄, predi
ate 
al
ulus is in
omplete,in the sense that any theory 
ontaining arithmeti
 on thenatural numbers 
annot be 
aptured. One 
annot even re-strain a theory to just have the natural numbers as model(see Corollary 4.10.1 in [31℄).2.2 The lambda-
al
ulusThe �-
al
ulus is a logi
al theory that was developed byAlonzo Chur
h in the 1930's to answer questions on 
om-putability. The theory has just two operations, fun
tionappli
ation and fun
tion abstra
tion. Yet the �-
al
ulusis powerful enough to express all 
omputable fun
tions,and to study all aspe
ts of programming in their purestform.The syntax of the untyped �-
al
ulus [11℄ is given bytwo synta
ti
 
ategories: variables V (with v, w rangingover V), and expressions E (with e, f ranging over E).v;w 2 V = a j b j 
 j : : :e; f 2 E = v j � v � e j f eHere � v � e denotes the 
reation of a fun
tion withargument v and fun
tion `body' e, and f e denotes theappli
ation of a fun
tion f to the argument e.The semanti
s of the untyped �-
al
ulus is given by aredu
tion relation over expressions. This redu
tion rela-tion is usually spe
i�ed in a natural dedu
tion style, by aset of rules and axioms. The most important of these isthe �-redu
tion rule, whi
h spe
i�es how a fun
tion f isapplied to its argument e:[�℄ f ! � v � f 0 e! e0f e! f 0 [ v := e0 ℄2



This spe
i�
ation shows that:� The evaluation of the fun
tion (expression f) mustyield a �-abstra
tion (i.e. of the form � v � f 0).� The evaluation of the argument expression e yieldsan expression e0.� The result is an expression obtained by substitutionof e0 for every free o

urren
e of v in the expressionf 0 (denoted by [ v := Ve 0 ℄).2.2.1 Normal formsThe purpose of evaluating a �-term is to arrive at a normalform, whi
h is an expression that 
annot be usefully eval-uated further. A normal form is 
hara
terised by the fa
tthat it does not 
ontain o

urren
es of the form (� v � f) e .To evaluate a �-term one would repeatedly apply the �-redu
tion rule, until it 
an be applied no more. The resultis then a normal form. It 
an be shown that normal formsare unique.It is perfe
tly possible for a �-term not to have a normalform. For example the term ! below has no normal form,be
ause it redu
es to ! itself:! = (� a � a a) (� a � a a)2.2.2 Redu
tion strategyThe rule � spe
i�es that the argument e must be evaluatedbefore the substitution. This is 
alled appli
ative orderredu
tion. It is also possible to substitute e unevaluated.This is 
alled normal order redu
tion:[�0℄ f ! � v � f 0f e! f 0 [ v := e ℄Whether to use appli
ative order redu
tion or normal or-der redu
tion is important when 
onsidering termination.It 
an be shown that if there is a normal form, then it willbe found with normal order redu
tion. However, appli
a-tive order redu
tion 
an usually be implemented more eÆ-
iently. The reader is referred to Peyton Jones for furtherdetails [92℄.2.3 Set theorySet theory forms a basis for a great deal of modern mathe-mati
s (some would say all of modern mathemati
s). De-spite its power and breadth as a means of dis
ussing math-emati
s, it is in essen
e simple, and is widely taught to
hildren in elementary mathemati
s lessons. The 
entralnotions are that of set (a 
olle
tion of things) and mem-bership (the property of being one of the things in a givenset).The study of sets was begun by Georg Cantor (1845{1918). Early 20th 
entury mathemati
ians dis
overed a

number of problems with a naive 
onsideration of set the-ory. Perhaps the most famous is Russell's paradox|ifB is the set of all those sets whi
h are not members ofthemselves, then is B a member of itself? As a result,modern set theory is usually presented axiomati
ally [36℄.The most popular axiomati
 system derives from work ofZermelo and Fraenkel, hen
e it is 
alled `ZF set theory'.The axioms use the 
entral ideas of sets and membersto de�ne other familiar features of sets, su
h as union andinterse
tion, Cartesian produ
t (ordered pairs) and theempty set, as well as more 
hallenging 
on
epts su
h asin�nity.For example when given two sets A and B the unionA [ B, interse
tion A \ B, and the set of ordered pairs orCartesian produ
t A� B are de�ned as:x 2 A ^ x 2 B $ x 2 A \ Bx 2 A _ x 2 B $ x 2 A [ Bx 2 A ^ y 2 B $ (x; y) 2 A� BWhilst a full axiomati
 treatment of set theory is outsidethe s
ope of this arti
le, it is by no means irrelevant to
omputing, and de
larative languages in parti
ular. Typesystems, in parti
ular, will most obviously be underpinnedby set theory.First-order logi
 usually 
ontains a notion of fun
tions,but in set theory it is 
ommon to des
ribe fun
tions di�er-ently, via their graphs. The graph of a fun
tion is a set ofordered pairs, the �rst element of ea
h denoting a value inthe fun
tion's domain, and the se
ond element denotingthat element of the range whi
h the �rst is mapped to bythe fun
tion. This shows that fun
tions 
an be des
ribedwithin set theory, and without the need for additional no-tions.3 De
larative languagesIn this se
tion we �rst present logi
 programming in re-lation to its mathemati
al basis the predi
ate 
al
ulus.Then Se
tion 3.2 introdu
es fun
tional programming inrelation to the �-
al
ulus. Finally Se
tion 3.3, dis
ussesspe
i�
ation languages with respe
t to set theory.3.1 Logi
 programming languagesLogi
 programming grew out of the insight that a subsetof �rst-order logi
, based on Horn 
lauses, has an eÆ
ientoperational reading and 
an thus be used as the basis ofa programming language.3.1.1 Horn 
lause logi
A Horn 
lause is a logi
al formula of the form A  B1 ^B2 ^ : : :Bn , where A;B1; : : :Bn are terms 
onsisting of3



symbols but no logi
al 
onne
tives. A logi
 program thenis just a set of Horn 
lauses.An important property of logi
 programs (and of 
lausalform formulas in general) is that they have a model if andonly if they have a Herbrand model. These are restri
ted,synta
ti
 models whi
h map every term to itself. Thisinsight [58℄ has lead to an eÆ
ient proof theory, whi
his sound, 
omplete, and 
an be automated, based uponuni�
ation and resolution [97℄. This in turn has lead inthe beginning of the 70's to the development of linearSLD-resolution [72℄ and the logi
 programming languageProlog.Uni�
ation mat
hes up two terms a and b by �ndingthe most general substitution � instantiating all variablesin a and b so that a� is identi
al to b�. For example theuni�
ation of deriv(deriv(X+Y)�Z) and deriv(A�B) wouldprodu
e the substitution fA=deriv(X + Y);B=Zg.Consider as an example the following Horn 
lause,whi
h would be part of a logi
 program 
omputing thederivative of a fun
tion:deriv(F + G;F0 + G0)  deriv(F;F0) ^ deriv(G;G0)The Horn 
lause has a logi
al semanti
s, whose validity
an be 
he
ked independently of the rest of the logi
 pro-gram. There is also a natural language translation of this
lause:If F0 is the derivative of F and G0 is the derivativeof G then F0 + G0 is the derivative of F + G.The Horn 
lause also has an operational reading, allow-ing for an eÆ
ient exe
ution me
hanism:To 
al
ulate deriv(F + G;F0 + G0) one should�rst 
al
ulate deriv(F;F0) and then 
al
ulatederiv(G;G0).Using logi
 as the basis of a programming language alsomeans that a uniform language 
an be used to express andreason about programs, spe
i�
ations, databases, queriesand integrity 
onstraints. Also, be
ause of their 
lear(and often simple) semanti
al foundations, de
larativelanguages o�er signi�
ant advantages for the design ofsemanti
s based program analysers, transformers and op-timisers [53℄.Logi
 programming languages allow non-determinism,making them espe
ially well-suited for appli
ations likeparsing. They also provide for automati
 memory man-agement, thus avoiding a major sour
e of errors in otherprogramming languages. Another advantage of logi
 pro-gramming languages is that they 
an 
ompute with par-tially spe
i�ed data and that the input/output relation isnot �xed beforehand. For instan
e, the above mentionedprogram 
an not only be used to 
ompute the derivativeof e.g. F � G via the query  deriv(F � G;H) it 
an (in

theory) also be used to 
al
ulate its integral via the query deriv(E;F� G).Finally, although early logi
 programming languageswere renowned for their la
k of eÆ
ien
y, the implemen-tations have be
ome more eÆ
ient, re
ent e�orts rea
hingor even surpassing the speeds of imperative languages forsome appli
ations.Good introdu
tions to logi
 programming 
an be foundin [6, 74, 87, 33, 7, 39℄.3.1.2 Semanti
s, Negation as Failure, Non-monotoni
 ReasoningGiven that a program P is just a set of formulas, whi
hhappen to be 
lauses, the logi
al meaning of P might beseen as all the formulas F for whi
h P j= F. However,in logi
 programming one (usually) assumes that the pro-gram gives a 
omplete des
ription of the intended inter-pretation, i.e., anything whi
h 
annot be inferred fromthe program is assumed to be false. This is the so-
alled
losed world assumption. When given a formula F, the
losed world assumption states that :F is a logi
al 
on-sequen
e of a program P if F is not a logi
al 
onsequen
eof P. This means that, from a logi
 programming per-spe
tive, the program below 
aptures exa
tly the naturalnumbers:nat(0)  nat(su

(X))  nat(X)This is impossible to a

omplish within predi
ate 
al
ulusalone.Logi
 programs have been extended to also allow nega-tions in the body of 
lauses and a multitude of semanti
shave been developed [8℄. All of this makes logi
 program-ming an ideal setting for 
ertain appli
ations in arti�
ialintelligen
e, su
h as non-monotoni
 reasoning or abdu
-tion. It also provides an elegant solution to the so-
alledframe problem.3.1.3 Meta-programmingIn essen
e, meta-programming is the art of treating pro-grams as obje
ts, whi
h 
an be modi�ed and manipulatedme
hani
ally by another program, the meta-program.Usually the obje
t and meta-program are supposed tobe written in (almost) the same language. It turns outthat logi
 programming is espe
ially suited for Meta-programming [9℄ and a great deal of resear
h has beendone on that issue. Meta-programming has many ap-pli
ations (extending the programming language, debug-ging, program analysis, program transformation,. . . ) andis also relevant in areas su
h as multi-agent systems, soas to reason about other agents and their (possible) be-haviour.4



3.1.4 Prominent logi
 programming languagesThe �ve main families of logi
 programming languagesare:� pure �rst-order languages. These languages try toremain within the logi
al basis as mu
h as possi-ble. The programming language G�odel [59℄ is oneprominent member of this family. Mer
ury [102℄ isa pure logi
 programming language whi
h a
hieves aremarkable exe
ution speed by exploiting mode andtype information of the program.� There has re
ently been 
onsiderable interest in de-veloping integrated fun
tional/logi
 languages lead-ing to the development of su
h languages as Es
her,Curry, �-Prolog, ALF, Babel. These languages keep(most of) the advantages of logi
 programming lan-guages while adding support for (higher-order) fun
-tions.� (impure) Prolog and its des
endants. Many vari-ants and implementations of Prolog exists, all withslight variation in fun
tionality and syntax. This hasprompted the development of an international ISOStandard for Prolog [32℄.� Constraint Logi
 Programming (CLP) languages. Animportant dis
overy was that the resolution and uni-�
ation pro
ess of logi
 programming 
ould be ex-tended to handle 
onstraints over arbitrary domains.This has lead to many su

essful appli
ations in in-dustry and the development of CLP languages su
has CHIP, Prolog III and IV, and E
lipse.� Con
urrent logi
 languages. Another important dis-
overy was that logi
 programming languages providean elegant way of des
ribing and developing 
on
ur-rent or distributed systems: logi
al variables 
an beseen as 
ommuni
ation 
hannels and 
ommuni
ationand syn
hronisation o

urs via instantiation of su
hvariables. This insight was the basis of the Japanese\Fifth-Generation Computer Systems" resear
h ini-tiative. Some languages of this type are Parlog, Con-
urrent Prolog, FGHC, AKL (Andorra Kernel Lan-guage), Janus, KL1, and KLIC.3.2 Fun
tional programming languagesA fun
tional program is a set of equations. To `exe
ute'su
h a program means to solve these equations. The im-plementation automati
ally derives the solution via the�-redu
tion pro
esses. Fun
tional programmers do notwrite equations in the �-
al
ulus, be
ause this would be
umbersome. Instead one uses high level notations, whi
h
an be translated into the �-
al
ulus.

Below is a fun
tion take, whi
h when given a naturalnumber n, and a list xs, returns the �rst n elements of thelist. The fun
tion is de�ned by three equations, numberedf1g; f2g; f3g. Only one of these equations applies at anyone time. The empty list is denoted by [℄. The notationx : xs indi
ates a list whi
h di�ers from the list xs inthat the former has one more element in front. The �rstequation mat
hes only when n = 0. The se
ond and thirdmat
h when n > 0.take 0 xs = [℄ f1gtake (n + 1) [℄ = [℄ f2gtake (n + 1) (x : xs) = x : take n xs f3g3.2.1 Referential transparen
yThe hallmark of fun
tional programming is that variablesare treated as in mathemati
s. On
e a variable is asso
i-ated with a value, it remains asso
iated with that value;it never 
hanges. This is 
alled referential transparen
y.Languages whi
h have this property are also 
alled pure.Referential transparen
y makes it impossible to mutatedata stru
tures. This 
an be a problem be
ause manyalgorithms rely on mutable data stru
tures for eÆ
ien
y.However, in the implementation, data stru
tures may bemutated as long as the 
ompiler is able to guarantee thatthe data stru
ture is not shared.3.2.2 Equational reasoningThe exe
ution of a fun
tional program 
an be representedas a sequen
e of steps, where an expression denoting avalue may be repla
ed by another expression denoting thesame value ("equals are always repla
ed by equals"). Herewe show the 
al
ulation of an initial segment from a 5-element list. The steps are annotated on the right withthe appropriate equation for take:take 3 (1 : 2 : 3 : 4 : 5 : [℄) f3g= 1 : take 2 (2 : 3 : 4 : 5 : [℄) f3g= 1 : 2 : take 1 (3 : 4 : 5 : [℄) f3g= 1 : 2 : 3 : take 0 (4 : 5 : [℄) f3g= 1 : 2 : 3 : [℄ f1gThe similarity between the above pro
ess and the usualmathemati
al pra
ti
e of repla
ing equals by equals makesfun
tional programming attra
tive for mathemati
allyoriented appli
ations.3.2.3 PolymorphismIn the above example we have applied the fun
tion taketo a list of numbers. However, take would work just aswell when applied to, say, a list of strings.take 3 ("one" : "two" : "three" : "four" : [℄)= "one" : "two" : "three" : [℄5



We say that the fun
tion take is polymorphi
 in the ele-ment type of the list. The type of the fun
tion 
ould bewritten as follows:take :: N ! � list! � listThis type judgement says that the fun
tion takes a naturalnumber as its �rst argument, a list of any element type� as se
ond argument, then produ
es a list with elementsof the same type �.3.2.4 ComplexityThe fun
tion qsort below embodies the Qui
k sort algo-rithm. It uses list 
omprehensions of the form [F x j x  xs;P x℄, whi
h denote that when x ranges over the ele-ments of the list xs, only those elements of the list xs thatsatisfy the predi
ate P will be o�ered to the fun
tion Ffor in
lusion in the result. The operator ++ 
on
atenatestwo lists.qsort [℄ = [℄ f1gqsort (x : xs) = qsort [y j y  xs; y < x℄ f2g++ [x℄ ++qsort [y j y  xs; y � x℄Sometimes normal order evaluation gives a di�erent 
om-plexity to the more 
ommonly used appli
ative order eval-uation. For example, one of the remarkable properties offun
tional programming based on normal order evaluationis the fa
t that taking only the �rst element after sortinga list has linear 
omplexity:Cal
ulation Complexitytake 1 (qsort xs) O(n)take n (qsort xs) O(n log n)3.2.5 Prominent fun
tional languagesThe three main families of fun
tional programming lan-guages are:� Pure, lazy languages (based on normal order redu
-tion) with the main representative Haskell [63℄.� Pure, eager languages (based on appli
ative orderredu
tion), represented by Standard ML [79℄. Al-though Standard ML has an impure extension, thebulk of the language is pure.� Lisp and its des
endants su
h as S
heme [96℄ are ea-ger languages that permit the use of mutable datastru
tures.Fun
tional programming has many other interesting prop-erties that we glossed over here. The reader is referred toone of the many text books [15, 119, 91, 61, 29, 114, 112,24℄.

3.3 Spe
i�
ation languagesSpe
i�
ation languages are an area where programmingmeets mathemati
s. Just as engineers of many dis
iplineshave long found value in 
onstru
ting mathemati
al mod-els of the systems they are to build, software engineershave begun to �nd it useful to 
onstru
t pre
ise des
rip-tions of software before it is implemented. In the tra-ditional engineering domains, these des
riptions usuallyinvolve 
ontinuous mathemati
s and the di�erential andintegral 
al
uli; in software engineering, dis
rete mathe-mati
s, set theory and predi
ate 
al
ulus (or other logi
alsystems) are more appropriate.In both 
ases, the des
riptions are de
larative in thattheir fo
us is on an abstra
t statement of a solution, noton a pro
ess by whi
h it is to be a
hieved. Software isunusual, however, in that de
larative spe
i�
ations maybe exe
utable. Moreover, even if the spe
i�
ations are notdire
tly exe
utable, it is possible to transform them math-emati
ally into programs. Whereas bridges are emphati-
ally not bridge spe
i�
ations, the line between softwarespe
i�
ations and software produ
ts is blurred.There are two main approa
hes to writing spe
i�
ationsof programs. The �rst is the algebrai
 approa
h, the se
-ond is the model based approa
h. Ea
h will be des
ribedin subsequent se
tions.3.3.1 Algebrai
 Spe
i�
ationAlgebrai
 spe
i�
ations assume a simple vo
abulary ofnamed sets and total fun
tions upon those sets. Spe
i�
a-tions are written as axioms (usually equations) des
ribingproperties whi
h those fun
tions must have. Su
h equa-tions may be regarded as a superset of those written infun
tional programming|by removing 
onstraints (overwhat may appear at the left-hand side of an equation),exe
utability may be lost, but a great freedom of expres-sion is gained.Algebrai
 spe
i�
ation gained popularity though the1980s, giving rise to the languages Clear and OBJ3. Atext on the subje
t is [47℄.Pro
ess algebras are notations for des
ribing 
on
urrent
omputation and 
ommuni
ation, at a high level. As withalgebrai
 spe
i�
ation, the des
ription is written using aseries of equations whi
h des
ribe the operation of a pro-
ess. Algebrai
 laws allow the e�e
ts of parallel 
ompo-sition, 
ommuni
ation hiding, et
., to be 
al
ulated. Thetwo leading pro
ess algebras are CSP [60℄ and CCS [78℄.Below is a small CCS spe
i�
ation inspired by an ex-ample from Milners book [78℄. It represents a vendingma
hine selling 
ho
olates to two 
ustomers. A full stoprepresents sequen
ing of a
tions, a plus separates two al-ternatives and a verti
al bar introdu
es two 
on
urrentpro
esses. Agents may engage in named input and out-put a
tions. An output a
tion is indi
ated by a bar, an6



input a
tion is without a bar. When one agent is willingto engage in an input a
tion while another is willing toengage in an output a
tion of the same name, 
ommuni-
ation takes pla
e.Vending = insert2p:
olle
tbig:Vending +insert1p:
olle
tsmall:VendingCust1 = insert2p:
olle
tbig:Cust1Cust2 = insert1p:
olle
tsmall:Cust2System = Cust1 j Cust2 j VendingThe vending ma
hine a

epts either a 1p 
oin for a small
ho
olate (input a
tion insert1p) or a 2p 
oin for a big
ho
olate. On
e a 
oin has been a

epted, the ma
hineinsists that the appropriate 
ho
olate be dispensed beforeit a

epts another 
oin. The �rst 
ustomer keeps pur-
hasing big 
ho
olates by engaging in the output a
tioninstert2p. Similarly, the se
ond 
ustomer keeps pur
hasingsmall 
ho
olates.The �-
al
ulus, a variant of CCS, has greater 
exibil-ity, but a greater learning overhead. CSP in
ludes a no-tion of re�nement, whi
h makes it appropriate for thespe
i�
ation and development of large systems. Re
ently,model-
he
king tools for CSP have been used to greate�e
t [98℄. By permitting exhaustive exploration of thestate spa
e de�ned by a CSP pro
ess, the de
larative de-s
ription of a proto
ol, say, 
an be 
he
ked for propertiessu
h as deadlo
k-freedom whi
h would be hard to estab-lish using an implementation. The same tool 
he
ks re-�nement, so a pro
ess spe
i�
ation 
an be automati
allytested against a desirable (or undesirable) property.3.3.2 Model-based spe
i�
ationThe 
ontrast between model-based spe
i�
ation and alge-brai
 spe
i�
ation may at �rst sight be rather subtle, butin fa
t is quite profound. In a model-based spe
i�
ation,one 
onstru
ts a des
ription of the artifa
t (program, datatype, et
.) by using simpler mathemati
al obje
ts (sets,relations, fun
tions). A model is 
onstru
ted in that thereis an abstra
t entity whi
h denotes the artifa
t.In pra
ti
e, a model-based spe
i�
ation may 
ontainmany similar equations/axioms to an algebrai
 spe
i�-
ation, but the emphasis is di�erent: the model-basedspe
i�
ation typi
ally des
ribes some abstra
t `ma
hine',whereas the algebrai
 spe
i�
ation is more usually 
on-
erned with properties of abstra
t data types.The following se
tion gives an example of a model basedspe
i�
ation in the widely used Z notation.The Z Notation The Z notation [104℄ began in thework of Abrial and others in Oxford, and has evolvedover the last twenty years to 
over a wide international
ommunity. To a large degree, it is simply a style forusing �rst-order predi
ates and ZF set theory. Z's main

additions to simple set theory are a strong type systemreminis
ent of 
ertain fun
tional languages, and a notionof s
hemas, through whi
h spe
i�
ations are stru
tured.A programming-language style grammar ensures that var-ious aspe
ts of Z spe
i�
ations (su
h as type-
orre
tness)
an be ma
hine-
he
ked. To fa
ilitate 
onvergen
e in su
htools, an international standard for Z is under 
onstru
-tion [85℄.Z s
hemas serve many purposes. Usually, a s
hema ispresented as a 
olle
tion of variable de
larations, togetherwith some predi
ates des
ribing �xed relationships be-tween those variables. For example, the following s
hemades
ribes a data �le, as a sequen
e of bytes (modelled asnatural numbers), together with a measure of the �le size.File
ontents : seqZsize : Nsize = #
ontentsThe size 
omponent is redundant in that it is derivedfrom the value of 
ontents; however, it is often found tobe useful to re
ord redundant information in this way, forthe su

in
t expression of spe
i�
ations. The predi
atepart provides a state invariant whi
h ensures that sizealways holds the 
orre
t value.Depending on the spe
i�
ation being 
onstru
ted, thisFile might represent a data type (like a stru
ture), oran item of system state, or indeed an obje
t. The most
ommon use of s
hemas in Z is in the spe
i�
ation of state-based systems. Having de�ned a �le as above, we mightpro
eed by de
laring operations whi
h append input data(extra?) to the �le and read the 
ontents of the �le as anoutput (data!).Append�Fileextra? : seqZ
ontents 0 = 
ontents a extra?Read�Filedata! : seqZ
ontents 0 = 
ontents = data!Append is a s
hema whi
h denotes not the state of somesystem, but an operation upon that system. The notation�File indi
ates that the operation relates a `before' state(with unde
orated variables) and an `after' state (in whi
hvariables 
arry a prime 0) of the 
omponents of File. Sim-ilarly, �File indi
ates a similar relationship, but with the7



added 
aveat that the 
omponents of File do not 
hangetheir values. extra? is an input to the Append operation,and data! is an output.In a state-based system it is also important to de�nehow the system is to be initialised. This may be des
ribedusing a degenerate operation, whi
h has an `after' state,but no `before' state:InitFileFile 0
ontents 0 = h iSpe
i�
ations in this style 
an be formally re�ned to-wards 
ode by stepwise transformation. Su
h re�nementsusually end with imperative 
ode, though other de
lara-tive languages are also a possibility. The usual expe
ta-tion is that the state variables will be
ome global variablesin some program (or module, or 
lass). The initialisations
hema will be re�ned either by initialisation of the vari-ables by the 
ompiler, or by some expli
it initialisationpro
edure (or method). The operation s
hemas will bere�ned by pro
edures (or fun
tions, if they do not 
hangethe state, or methods) with appropriate inputs and out-puts.3.3.3 Exe
utabilityThe similarity between 
ertain spe
i�
ation notations and
ertain programming languages raises the possibility ofexe
uting the spe
i�
ations (models) of systems. In al-most every 
ase, this is no substitute for system develop-ment, but might form part of a prototyping exer
ise.There has been a long debate about the desirability ofexe
uting spe
i�
ations. The original paper is [55℄; themost re
ent 
ontribution is [48℄. On the one hand, it isargued that enabling the exe
ution/animation of spe
i�-
ations is a useful tool in understanding a spe
i�
ationand 
ommuni
ating its 
ontents to a non-mathemati
alreader. The 
ounter-argument is that the purpose of for-mal spe
i�
ation is to a
hieve a 
lear des
ription of whatis to be done, without 
ommitting on how this will work.If the spe
i�er has even half an eye to the possible exe-
ution of their spe
i�
ation, the result will tend to be a
ompromise on the 
larity.3.3.4 Prominent spe
i�
ation languagesThe Z notation as introdu
ed above is the most widelyused spe
i�
ation language to date.The Vienna Development Method [67℄ was initially thework of a group 
on
erned with formal semanti
s and 
om-piler design, at IBM laboratories in Vienna. As the nameimplies, VDM embra
es a means of program development,with rules of proof for program design steps. Our inter-est, however, is in VDM-SL, the spe
i�
ation language of

VDM. VDM-SL has mu
h in 
ommon with the Z nota-tion [56℄, and like Z it has been the subje
t of an interna-tional standardisation e�ort [64℄.VDM-SL di�ers from Z in 
on
rete syntax (it la
ks theboxes, and uses keywords instead). Semanti
ally it di�ersin using a three-valued logi
 of partial fun
tions and adomain-theoreti
 semanti
s. Methodologi
ally, it di�ersin the status of state invariants, and in having expli
itimperative programming 
onstru
ts in the spe
i�
ationlanguage.Promela is the spe
i�
ation language used by the widelyused Spin model 
he
ker [62℄. The language supportsdynami
 
reation of 
on
urrent pro
esses and both syn-
hronous and asyn
hronous message passing.B is a model-oriented spe
i�
ation notation [3℄ wherebya system is spe
i�ed in terms of an expli
it abstra
t modelof the state along with operations on the state. It is basedon set theory and the weakest pre-
ondition 
al
ulus. TheB-toolkit provides a 
omprehensive pa
kage of tools foranimation, proof, re�nement and implementation of de-s
riptions [84℄.3.4 Other LanguagesMany languages and notations exists whi
h have a largede
larative subset and/or whi
h are used in a way similarto the fun
tional, logi
al and spe
i�
ation languages in-trodu
ed above. Of parti
ular interested from the pointof view of their use in edu
ation are the following.ISETL is a programming language spe
i�
ally 
reatedto support 
ourses in Dis
rete Mathemati
s. ISETL hasa large de
larative 
ore, o�ering all the ne
essary ingre-dients for experimentation with 
on
epts from Dis
reteMathemati
s, su
h as �nite sets, sequen
es, relations, �rstand higher order fun
tions, existential and universal quan-ti�ers, and ZF-expressions.MATLAB [111℄, Maple [44℄, and Mathemati
a [121℄ aresystems/languages for 
omputer based mathemati
al 
al-
ulations in S
ien
e and Engineering. Ea
h 
ontains alarge de
larative subset used to express the mathemati
aloperations for whi
h these systems have been designed.4 Tea
hing De
larative LanguagesHaving introdu
ed the mathemati
al bases and the majorde
larative languages, we now 
onsider where de
larativelanguages are used in the 
urri
ulum. In this se
tion webrie
y look at the ways in whi
h de
larative languages aretaught as topi
s of interest in their own right. The nextse
tion looks at the role of de
larative languages in otherparts of the 
urri
ulum.8



4.1 Logi
 ProgrammingLogi
 programming languages have been used as the �rstlanguage taught in universities or even s
hools [37℄. WhileProlog used to be the only 
hoi
e for this, re
ent yearshave seen in
reased popularity of purer logi
 programminglanguages, su
h as G�odel [59℄ and Mer
ury [102℄.Many books exist that provide good introdu
tions tologi
 programming and Prolog. Classi
al texts [23, 22℄mainly 
on
entrated on the programming aspe
ts. Morere
ent books more and more 
over the logi
al side of Pro-log [109, 108, 90, 25, 87, 7, 33, 74℄.A re
ent development is ToonTalk [69℄ whi
h, in thespirit of Logo, tries to tea
h 
hildren as young as 4 yearsto program by asso
iating graphi
s, animation, and soundwith logi
 programs.4.2 Fun
tional ProgrammingA fun
tional language is 
lose to dis
rete mathemati
s,thus making it an ideal vehi
le to tea
h the prin
iplesof programming in a �rst programming 
ourse. With aminimum of synta
ti
 burden, it is possible to tea
h thefundamental tools of re
ursion and indu
tion. The stu-dent should be 
apable of writing abstra
t data types forlists, queues and trees in just a few weeks. Many 
oursehave been developed on the basis of this idea. Some aretargeted at a sophisti
ated audien
e [15℄, others are tar-geted at a more youthful audien
e [41℄. There are manyother good texts [1, 119, 91, 61, 29, 114, 112, 24℄.4.3 Spe
i�
ationIn most UK universities formal methods has be
ome astandard subje
t in the 
omputer s
ien
e undergraduatesyllabus. In parti
ular, use of Z is widely taught, andmany text books are available [3, 65, 94, 103, 124℄. Often,this is a vehi
le for the tea
hing of dis
rete mathemati
s,so students 
ome to regard the subje
t as `hard' and moretheoreti
al than pra
ti
al.Students with the bene�t of greater perspe
tive | ongraduate 
ourses, or returning to study after time in in-dustry | have been found to be able to use Z to bettere�e
t, seeing it as a modelling tool with great pra
ti
albene�t. One of the texts [122℄ 
omes from the experien
eof many years tea
hing Z to industrial pra
titioners.5 Using De
larative Languages inTea
hingIn this se
tion we visit ea
h of the nine subje
t areasde�ned by the 1991 ACM/IEEE Computer S
ien
e 
ur-ri
ulum [113℄ to dis
uss whether and how de
larative lan-

guages are being used to support tea
hing. Before this we
onsider Dis
rete Mathemati
s and Logi
.In 
onsidering ea
h of these subje
t areas, we reportbrie
y on the use of ea
h of the three de
larative languagesthat we have identi�ed: logi
 programming, fun
tionalprogramming and spe
i�
ation.5.1 Dis
rete Mathemati
sWainwright [117℄ des
ribes laboratory assignments usinga fun
tional language to support a dis
rete mathemat-i
s 
ourse. The author reports that even without priorexposure to programming, all students found the labora-tory assignments useful and re
ommend that they be keptas part of the 
ourse. In a later experiment S
hoenefeldand Wainwright [99℄ tea
h dis
rete mathemati
s using thebook by Skiena [101℄, whi
h o�ers extensive laboratory as-signments based on Mathemati
a. Again the parti
ipantswere \pleased that Mathemati
a was integrated into the
ourse". The use of Mathemati
a as an exploratory toolmakes operational important mathemati
al 
on
epts su
has abstra
tion and generalisation.Cousineau and Mauny [24℄ use ML to 
reate aesthet-i
ally pleasing drawings in order to explain various ge-ometri
 
on
epts, su
h as tiling. The images generatedresemble M.C. Es
her's engravings. The same book alsouses ML to support the presentation of exa
t arithmeti
over natural, integer and rational numbers.One of the text books on ISETL [38℄ en
ourages thestudents to experiment with small ISETL programs, totry and dis
over the underlying mathemati
al 
on
epts.Virtually all ISETL examples given in the book are purelyde
larative. In some 
ases the students are asked to 
reatede
larative solutions to problems for whi
h an imperativesolution is given. The `ISETL method' is reported to beused at over 75 
olleges throughout the world [35℄.5.2 Logi
De
larative languages are dire
tly based on a logi
, andde
larative programs 
an be viewed as exe
utable logi
s.This makes de
larative languages suitable to support a
ourse on logi
.Be
ause of its logi
al basis, Prolog is an ideal supportlanguage for mathemati
al logi
 and also many �elds indis
rete mathemati
s. Automated theorem provers 
anbe built easily in Prolog and many 
on
epts in logi
 pro-gramming are important in mathemati
s as well, so thata joint study is highly bene�
ial [39, 12℄.Hein [57℄ des
ribes tools to tea
h dis
rete mathemati
sand logi
 using a large variety of short and relevant labo-ratory assignments. Simple assignments are des
ribed toexperiment with laws of logi
 (using Prolog). Other as-signments support learning about fun
tions and fun
tion
omposition using fun
tional languages.9



Sin
e Z in
orporates 
lassi
al logi
 and set theory, itsnotation provides a natural way to tea
h these topi
s to
omputing students and software engineers [123℄.In his book, Downward [34℄ explores the 
onne
tion be-tween logi
 and de
larative programming in four di�erentways:� Logi
 programming is related to �rst order logi
.� Many sorted logi
 is the foundation of abstra
t datatypes. The OBJ2 [42℄ term rewrite system supportsthis logi
 dire
tly.� Domain theory is used to establish models for the�-
al
ulus, whi
h in turn is the basis of fun
tionalprogramming.� Intuitionisti
 logi
 is shown to be the basis of thetheory of types underlying all modern fun
tional lan-guages.Throughout the book, Downward en
ourages the readerto write programs in the di�erent programming languagesto experiment with the 
on
epts being studied.5.3 Algorithms and Data stru
turesTea
hing algorithms and data stru
tures using a purelyfun
tional languages is a 
hallenge. The main problemis that many data stru
tures and algorithms rely on mu-table data stru
tures for eÆ
ien
y. Some 
ourses havebeen taught using a fun
tional language (Standard ML),relying on language extensions that support mutable datastru
tures [51℄. This is less than satisfa
tory be
ause theadvantage of a fun
tional programming language is lost,i.e. to be able to use equational reasoning.The work of Okasaki represents an important step inthat it develops a wealth of data stru
tures in StandardML [89℄, without using the impure extensions. The topi
sdis
ussed in
lude single and double ended queues, binarysear
h trees, heaps, tries and random a

ess lists, all in anumber of important varieties. The key idea is that goodamortised 
omplexity is at least as important as worst 
ase
omplexity. The book is neither a straight repla
ement for
lassi
al texts su
h as Sedgewi
k's Algorithms and DataStru
tures, nor does it 
laim to be su
h a repla
ement.Another text for advan
ed 
ourses on data stru
turesand algorithms is Bird & de Moor [14℄. This uses a purelyde
larative style|its approa
h is 
ompatible with fun
-tional programming, although the methods used also re-quire a little 
ategory theory.More a

essible but less rigorous is the book by Rabhiand Lapalme [95℄, who 
over many important algorithms,su
h as sorting, sear
hing, graph algorithms, divide-and-
onquer, dynami
 programming, and the traveling sales-person. Most algorithms are a

ompanied by a worst 
ase

spa
e and time 
omplexity bound, unfortunately mostlywithout a derivation. The emphasis of Rabhi and La-palme is on the high level spe
i�
ation of the algorithms,often with a fold/unfold style program transformation toimprove the eÆ
ien
y. The book makes good use of thefa
ilities provided by a modern fun
tional programminglanguage (Haskell) in showing how 
lasses of algorithms
an be represented in the language as higher order fun
-tions. The drawba
k of the high-level approa
h is that thespa
e 
omplexity of the resulting algorithms is often worsethan that obtained with imperative methods. In addition,to understand the spa
e 
omplexity 
onsiderable knowl-edge is required of the implementation of fun
tional lan-guages. The proposed 
omplexity analysis method doesnot apply to higher order fun
tions nor to essentially lazyalgorithms.5.4 Ar
hite
tureSome authors tea
h abstra
t ma
hines in terms of de
lar-ative programs. Prolog [26℄ even enables `reverse exe
u-tion' (i.e. given a �nite state ma
hine and its output, theProlog system will re
onstru
t the possible inputs). Pi-otrowski [93℄ observes that Miranda is less versatile, buto�ers more elegant and robust (typed) spe
i�
ations ofabstra
t ma
hines. Both of these de
larative approa
hesto experimenting with abstra
t ma
hines o�er readily ex-e
utable spe
i�
ations of abstra
t ma
hines.The Marktoberdorf summer s
hools often 
onsider top-i
s related to de
larative languages [18℄. In the 
ited vol-ume, 
hapters by M. P. Fourman and A. J. Martin de-s
ribe digital 
ir
uits in this way, at 
onsiderable levelsof detail|in Martin's 
ase, as the basis for synthesis ofVLSI 
ir
uits. Similar material has been in
luded in un-dergraduate 
urri
ula [88℄.5.5 Arti�
ial Intelligen
e and roboti
sTogether with Lisp, Prolog is arguably the favourite lan-guage for tea
hing arti�
ial intelligen
e. Many books onarti�
ial intelligen
e are based on Prolog [17, 100, 70, 75,40℄. Prolog is espe
ially well suited to implement expertsystems [16℄, planners and problem solving [73℄.Logi
 programming has been used with su

ess as asound basis for Ma
hine Learning, leading to a whole new�eld of Indu
tive Logi
 Programming [82, 30, 13℄Within Natural Language Pro
essing , logi
 program-ming also plays a major role. For example, the De�-nite Clause Grammars (DCG) provided by Prolog haveappli
ations in parsing and natural language pro
essing[19, 77℄.10



5.6 Data Base and information retrievalThere is a tight link between relational/dedu
tivedatabases and logi
 programming. Indeed, from a the-oreti
al point of view, a relational or dedu
tive database
an be viewed as a spe
ial kind of logi
 program. Thisis re
e
ted in the 
ommon semanti
al foundation and awhole series of books [43, 49, 80, 27, 20, 21℄.Furthermore, 
ertain versions of Prolog (e.g., XSB-Prolog) 
an be used as eÆ
ient database engines, allowingthe programmer to get the best of both worlds.Queries of databases, su
h as those of the widely usedlanguage SQL [28℄ often have a large de
larative 
ore.This is be
ause query languages provide an abstra
tionaway from the manner in whi
h the database system 
om-putes the results to a query. However, updates to databases 
annot be regarded in the same de
larative way.5.7 Human Computer Communi
ationDes
riptions of the 
omputer's role in Human ComputerCommuni
ation are amenable to a de
larative treatment.For example the 
onstru
tion of a graphi
al user interfa
ein a modern windowing toolkit takes pla
e at a level ofabstra
tion where one de
lares 
omponents to be in a par-ti
ular relationship (e.g. adja
ent, or laid out on a grid).The windowing system then works out the details (e.g.order and pla
ement) of instantiating the 
omponents.Re
ent developments around XML [118℄ indi
ate thathere again the basi
 paradigm is de
larative. One de-s
ribes stru
tures and their relationships, without a
tu-ally worrying about the details of rendering and pla
e-ment. SMIL [116℄ is an XML based de
larative languagefor hypermedia presentations on the Web. It des
ribesrelationships in time as well as in spa
e.5.8 Numeri
al and symboli
 
omputationSin
e the early 1960's dozens of symboli
 mathemati
spa
kages have been developed. Be
ause of the 
lose tieswith mathemati
s most of these pa
kages have a largede
larative 
ore. At the time of writing three pa
kagesdominate the market: Maple [44℄, whi
h is parti
ularlystrong in symboli
 
al
ulation, MATLAB [111℄, whi
h isprimarily devoted to numeri
al 
omputation and Mathe-mati
a [121℄, whi
h aims to 
ombine both of these. Forea
h of these pa
kages many hundreds of books are avail-able on topi
s ranging from �nan
ial mathemati
s to s
i-enti�
 
omputation. Many of these books have been writ-ten spe
i�
ally to support tea
hing in spe
ialist areas ins
ien
e, and engineering.

5.9 Operating systemsMany of the early published 
ase studies in using Z [54℄
over operating systems topi
s|perhaps unsurprisinglyas the transa
tion pro
essing domain was the �rst majorappli
ation of Z. These allow the Z-literate student to gaina detailed understanding of what, for example the UNIX�ling system does, without needing to be 
on
erned withany implementation details. The alternative is to tea
husing a large pie
e of produ
tion 
ode, whi
h means itis diÆ
ult to abstra
t away from low-level detail, or totea
h using a spe
ially-
rafted operating system (whi
hmay entail more work than writing a spe
i�
ation of areal one).Su
h an approa
h also lends itself to easy prototyp-ing. A Z des
ription of virtual memory page repla
ementpoli
ies is readily turned into a de
larative program, withwhi
h one 
an run simulations to dis
over the e�e
ts ofvarious patterns of memory usage.5.9.1 Distributed systemsHoare's book on CSP [60℄ in
ludes implementation ideasusing Lisp. It provides a thorough 
ourse on the moretheoreti
al aspe
ts of distributed and 
on
urrent 
ompu-tation, in
luding pro
esses, syn
hronisation, 
ommuni
a-tion, deadlo
k, and live lo
k. A more pra
ti
al approa
his taken by [76℄, whi
h is also presented as a 
ourse text-book. It uses CSP-style models to provide a high-level de-s
ription of pro
esses, and presents them alongside Javaprograms whi
h implement them, using Java threads tosimulate 
on
urren
y.5.10 Programming LanguagesProgramming languages is a large area, ranging from thea
tivity of programming itself, to the implementation andtheory of programming languages.5.10.1 Imperative programmingDe
larative spe
i�
ations written in Z or some similarnotation may be re�ned into imperative programs|thatis, transformed using mathemati
al laws so that the im-plemented program provably a
hieves the spe
i�ed out-
ome. A detailed methodology for doing this is explainedin [81℄, whi
h has been used as an introdu
tory program-ming text at Oxford University for several years. Re-�nement within Z is 
overed in [122℄, whi
h also arosefrom extensive tea
hing experien
e. The B method [3℄(and asso
iated tools) in
ludes similar material, thoughindustrially-oriented, and also features in software engi-neering edu
ation.It is also possible to use an introdu
tion of a few weekswith a purely fun
tional language to give the students11



enough 
on�den
e and knowledge of the prin
iples of pro-gramming to be able to start programming in an im-perative language. Hartel & Muller have developed amethod whereby the main tool is transformation of triedand tested fun
tional programs (using Standard ML) intoC programs [52℄.5.10.2 CompilersAppel [5℄ shows that a de
larative approa
h to 
ompilerdesign is possible. The book en
ourages the student towrite a 
omplete 
ompiler in Standard ML, using the MLversions of lex and ya

. The book dis
usses all the majortopi
s from a 
ompilers 
ourse, in
luding lexi
al analysis,parsing, semanti
 analysis, 
ode generation, runtime sys-tems, register allo
ation and 
ode optimisation. In addi-tion the text 
overs topi
s like garbage 
olle
tion in moredetail than a standard text, su
h as Aho, Sethi and Ull-man [4℄.Re
ursive des
ent parsing is easy to implement in Pro-log by using de�nite 
lause grammars [106℄ and Prolog isa good language to develop 
ompiler prototypes. In fa
t,the �rst 
ompiler for the su

essful tele
ommuni
ationslanguage Erlang was written in Prolog.Finally, as de
larative languages are amenable to re-�ned stati
 analysis [2℄ and partial evaluation, one 
ana
hieve the automati
 generation of (prototype) 
ompil-ers from interpreters [68℄.5.10.3 Semanti
sThe study of the semanti
s of programming languages isheavily based on bran
hes of dis
rete mathemati
s, su
has �-
al
ulus, predi
ate logi
, set theory, domain theoryand 
ategory theory. A fun
tional language is thus appro-priate to experiment with the stati
 and dynami
 seman-ti
s of programming languages. Kirkerud [71℄ 
ontains a
hapter explaining how the denotational semanti
s of asimple imperative language 
an be represented in Stan-dard ML. Nielson and Nielson [86℄ provide a number ofappendi
es showing how both operational semanti
s anddenotational semanti
s 
an be represented in Miranda.Winksel [120℄ re
ommends using Prolog, Standard ML orMiranda to \enliven the treatment of operational seman-ti
s".Stepney [106℄ uses Prolog to implement the semanti
sof a programming language �rst spe
i�ed in Z. Prolog isan ideal language for rapid prototyping and uni�
ation to-gether with non-determinism allow the easy implementa-tion of varying semanti
s for many di�erent programminglanguages or formalisms.

5.11 Software Methodology and Engi-neeringThe absen
e of types and modules means that 
lassi
alProlog is not well suited for software engineering pur-poses. Nonetheless, more re
ent logi
 programming lan-guages su
h as Mer
ury and G�odel support these featuresand are being used to tea
h software engineering prin-
iples. Also, the logi
al nature 
oupled with the simplesemanti
al model, make logi
 programming languages es-pe
ially well suited for applying te
hniques su
h as formalveri�
ation, synthesis of provably 
orre
t programs [66℄ orde
larative debugging.It 
an be hard to motivate Software Engineering tea
h-ing in the 
lassroom, be
ause the size of the systems whi
h
an be analysed tend not to show up the problems thatSoftware Engineering te
hniques are designed to solve.This is espe
ially true in the tea
hing of notations likeZ. Nevertheless, the bene�t of using Z to dis
uss su
h is-sues is that it does represent best industrial pra
ti
e |as witnessed by texts like [10, 65, 124, 107℄, all of whi
h
ome from industrial authors.6 SummaryIt is 
lear from the dis
ussion above that de
larative lan-guages 
an be, and indeed are, widely used in edu
ation.Some areas are in fa
t 
ompletely dominated by de
lar-ative languages, su
h as formal methods in software en-gineering, and arti�
ial intelligen
e. Other areas, su
h asoperating systems rely less on spe
i�
 de
larative ideas.However as understanding of Computer S
ien
e in
reases,the formal basis for su
h subje
ts is growing, and with itthe need to tea
h in a de
larative fashion.We 
on
lude the arti
le with an extensive bibliography,from whi
h we hope the interested reader 
an �nd supportfor tea
hing with de
larative languages and ideas.A
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