
Chapter 1
Improving Railway Data Validation with ProB

Jérôme Falampim, Hung Le-Dang, Michael Leuschel, Mikael Mokrani,
Daniel Plagge

Abstract In this chapter, we describe the successful application of ProB on indus-
trial projects realized by Siemens. Siemens are successfully using the B-method to
develop software components for zone controller and carbonne controller of CBTC
systems. However, the development contains certain assumptions about the actual
rail network topology which have to be validated separately in order to ensure safe
operation. For this task, Siemens has developed custom proof rules for AtelierB.
AtelierB, however, was unable to deal with properties related to large constants (re-
lations with thousands of tuples). These properties thus had to be validated by hand
at great expense (and they need to be revalidated whenever the rail network infras-
tructure changes).
In this chapter we show how we were able to use ProB to overcome this challenge.
We describe the deployment and current use of ProB in the SIL4 development chain
at Siemens. This achievement required the extension of the ProB kernel for large
sets as well as an improved constraint propagation phase. We also outline some of
the effort and features that were required in moving from a tool capable of deal-
ing with medium-sized examples towards a tool able to deal with actual industrial
specifications. Notably, a new parser and type checker had to be developed. We also
touch upon the issue of validating ProB.

1.1 Introduction

Siemens have been developing Communication-based Train Control (CBTC) prod-
ucts using the B-method [1] since 1998 and have over the years acquired consider-
able expertise in its applications. Siemens use Atelier B [2], together with in-house
developed automatic refinement tools, to develop critical control software compo-
nents in CBTC systems with great success. Starting from a high-level model of the
control software, refinement is used to make the model more concrete. Each refine-
ment step is formally proven correct. When the model is concrete enough, an Ada
code generator is used. This results in a system ensuring a highest Safety Integrity

1

2 1 Improving Railway Data Validation with ProB

Level (SIL4). This railway software development process comlies fully with cur-
rent railway standards (EN 50126, EN50128, EN50129) and reduces significantly
the test cost at the validation step. Indeed, the unit test is no longer needed in this
process as it was replaced by proof activities during the development.

The first and best known example is obviously the controller software component
for the fully automatic driverless Line 14 of the Paris Métro, also called Météor (Me-
tre est-ouest rapide). In-deed, quoting [3]: ”Since the commissioning of line 14 in
Paris on 1998, not a single malfunction has been noted in the software developed
using this principle”. Since then, many other train control systems have been devel-
opped and installed worldwide by Siemens [4, 5] : San Juan metro (Puerto Rico,
commisionning on 2003), New York metro Canarsie line (USA, commisionning on
2009), Paris metro line 1 (France, Commisionning on 2011), Barcelona metro line 9
(Spain, Commisionning on 2009), Alger metro line 1 (Algeria, Commisionning on
2011), Sao Paolo metro line 4 (Brasil, commisionning on 2010), Charles de Gaulle
Airport Shuttle line 1 (France, commisionning on 2005), e.t.c.

Relationship to Deploy While the work described in this chapter was carried
out within the context of Deploy, Siemens use classical B and not Event-B in their
current development process. Indeed, neither Event-B nor the Rodin tool is at the
time of writing not ready for software development at an industrial level. However,
Event-B and classical B obviously share a common basis, and the ProB tool used in
this chapter works equally well for both formalisms.

The Property Verification Problem. One aspect of the current development
process which is unfortunately still problematic is the validation of properties of
parameters only known at deployment time, such as the rail network topology pa-
rameters. In CBTC systems, the track is divided into several sub-sections, each of
which is controlled by safety critical software called ZC (Zone Controller). A Zone
Controller contribues to realize ATP (Automatic Train Protection) and ATO (Au-
tomatic Train Operations) functions of CBTC systems for a portion of the track :
train location, train anticollision, over-speed prevention, train movement regulation,
train and platform door management, e.t.c. In order to avoid multiple developments,
each ZC is made from a generic B-model and data parameters that are specific to a
sub-section and a particular deployment (cf. Fig. 1.1).

These data parameters take the form of B functions describing, e.g., the tracks,
switches, traffic lights, electrical connections and possible routes. These B functions
are typically regrouped in basic invariant machines in which the assumptions about
the topology properties are defined in the PROPERTIES clause. The proofs of the
generic B-model rely on assumptions about the data parameters, e.g., assumptions
about the topology properties of the track. We therefore have to make sure that the
parameters used for each sub-section and deployment actually satisfy the formal
assumptions.

A trivial example is the slope of the track: the calculation of the stopping distance
is made with an algorithm that requires the slope to be within +/-5%. In the generic
software model, we do the assumption of a slope being between -5% and +5%, and
it enables to complete the proof of the algorithm. Then, we also have to make sure
that the assumption is correct, that is to say the slope is indeed between -5% and

1.2 An approach to validate ZC data using Atelier B. 3

Abstract
MODEL of
Controller

CONSTANTS
PROPERTIES
ASSERTIONS

B0 MODEL of
Controller

...

Code Generation (Ada)

Rail Network Topology
(changing)

Encoding in Ada

properties &
assertions

used in
proof

properties &
assertions
satisfied ?

refinement

Fig. 1.1 A need for ZC Data Validation

+5% in the track data (and, of course, that the track data is correct regarding the
actual track). More generally, data validation is needed when a generic software is
used with several sets of specific data.

1.2 An approach to validate ZC data using Atelier B.

Siemens have developed the following approach for validating ZC data :

1. The parameters and topology are extracted from the concrete Ada program (each
of which corresponds to an invariant basic machine in the B-model. In B, a basic
machine does not have a refinement nor an implementation but it has instead an
implementation in ADA) and encoded in B0 (i.e B executable) syntax, written
into Atelier B definition files. Definition files contain only B DEFINITIONS,
i.e., B macros.
This is done with the aid of a tool written in lex. Note, that Siemens not only
wants to check that the assumptions about the data parameters hold, but also
that these have been correctly encoded in the Ada code. Hence, the data is ex-
tracted from the Ada program, rather than directly from the higher-level descrip-
tion (which was used to generate the Ada code).

2. The definition files containing the topology and the other parameters are merged
with the relevant invariant basic machines to create assertion machines. The prop-
erties from a basic machines on the concrete topology and parameters are trans-
lated into B assertions the in relevant assertion machine. The macros derived
from actual data extracted from ADA programs are used to define the constants
value and this definition is realized as a properties in the assertion machines.

4 1 Improving Railway Data Validation with ProB

In B assertions are predicates which should follow from the properties or in-
variant, and have to be proved. Properties themselves do not have to be proved,
but can be used by the prover. By translating the topology properties into B as-
sertions, we thus create proof obligations which stipulate that the topology and
parameter properties must follow from the concrete values of the constants.

3. The machines with assertions obtained from step 2 are then grouped in a B
project called IVP (Invariant Validation Project). Siemens tries to prove the as-
sertions with Atelier B, using custom proof rules and tactics, dedicated to dealing
with explicit data values.

4. Those assertions for which proof is unsuccessful are investigated manually.

Problems with the Existing Process. This approach initially worked quite well
for ZC data, but ran into considerable problems:

• First, if the proof of a property fails, the feedback of the prover is not very useful
in locating the problem (and it may be unclear whether there actually is a problem
with the topology or “simply” with the power of the prover).

• Second, and more importantly, the constants are nowadays becoming so large
(relations with thousands of tuples) that Atelier B quite often runs out of mem-
ory, even with the dedicated proof rules and with maximum memory allocated.
In some of the bigger, more recent models, even simply substituting values for
variables fails with out-of-memory conditions.
This is especially difficult, as some of the properties are very large and compli-
cated, and the prover typically fails on these properties. For example, for the San
Juan development, 80 properties (out of the 300) could not be checked by Ate-
lier B, neither automatically nor interactively (with reasonable effort; sometimes
loading the proof obligation already fails with an out-of-memory condition).

The second point means that these properties have to be checked by hand (e.g., by
creating huge spreadsheets on paper for the compatibility constraints of all possible
itineraries), which is very costly and arguably less reliable than automated checking.
For the San Juan development, this meant about one man month of effort, which is
likely to grow further for larger developments such as the Canarsie line [5].

1.3 First experiments with ProB

The starting point of the experiment was to try to automate the proof of the re-
maining proof obligations, by using an alternate technology. Indeed, the ProB tool
[9, 11] has capabilities to deal with B properties in order to animate and model check
B models. The big question was, whether the technology would scale to deal with
the industrial models and the large constants in this case study.

In order to evaluate the feasibility of using ProB for checking the topology prop-
erties, Siemens sent the STUPS team at the University of Dusseldorf the models for
the San Juan case study on the 8th of July 2008. There were 23,000 lines of B spread
over 79 files, two of which were to be analyzed: a simpler model and a hard model.

1.4 RDV : Railway Data Validator 5

It then took STUPS a while to understand the models and get them through the new
parser, whose development was being finalized at that time.

On 14th November 2008 STUPS were able to animate and analyze the first
model. This uncovered one error in the assertions. However, at that point it be-
came apparent that a new data structure would be needed in ProB to validate bigger
models.

On the 8th of December 2008 STUPS were finally able to animate and validate
the complicated model. This revealed four errors. Note that the STUPS team were
not told about the presence of errors in the models (they were not even hinted at by
Siemens), and initially STUPS believed that there was still a bug in ProB. In fact,
the errors were genuine and they were exactly the same errors that Siemens had un-
covered themselves by manual inspection. The manual inspection of the properties
took Siemens several weeks (about a man month of effort). Checking the properties
takes 4.15 seconds, and checking the assertions takes 1017.7 seconds (i.e., roughly
17 minutes) using ProB 1.3.0 on a MacBook Pro with 2.33 GHz Core2 Duo. More
information on this subject was presented at FM 2009 [7] and in the ensuing journal
paper [8].

1.4 RDV : Railway Data Validator

In the first experiments, ProB was used instead of Atelier B, on the same IVP, with
great success. But the creation of IVP was still problematic, with few atomization.
As described in Sect. 1.1, each IVP is an encoding of a specific wayside configura-
tion data in B; this is required in order to validate the configuration data against the
formal properties in the generic B project.

The goal was to create a tool that could automatically generate the B projects
(containing assertions machines), run ProB on created B projects, and collect the
result in a synthesis report. In addition, this tool should not work only on ZC data,
but also on CC (Carbonne Controller) data which were not formally validated be-
fore the use of ProB. Indeed, in the CC software development, as shown in Fig. 1.2,
the topology data are contained in textfiles and loaded “on the fly” by the CC soft-
ware component when need. Therefore, in order to enable the CC data validation,
the macros in definition files are derived from topology text files instead of ADA
programs. Such macros are then merged with variables defined in basic invariant
machines to assertion machines for the segment in question.

RDV is a new tool realized by Siemens. Via a graphical interface (cf. Fig. 1.3),
RDV provides following services :

IVP Generation: this function generates an IVP for a sub-section in case of ZC
or a segment in case of CC. The generated IVP is almost ready to be used by
ProB or Atelier B. Indeed, we still need some manual modifications related to
properties of non-function constants, however, in comparison with the former
tool, it reduces significantly manual modifications on generated B machines. In

6 1 Improving Railway Data Validation with ProB

Fig. 1.2 CC Data Validation

Fig. 1.3 RDV interface

addition, with the file selection function based on regular expression, RDV en-
ables the generation of a subset of assertions machines (i.e, only machines with
modifications). Moreover, the automation of CC IVP creation is a great help for
safety engineers as there are about several hundreds IVP to be crated (one project
per segment).

ProB Launch: RDV enables users to parameterize ProB before launching it.
ProB is is called on each assertion machine in order to analyze the assertions
contained in each machine. It does not require B experts to carry out data valida-
tion. Indeed, the B experts are required only in case of problem, whereas in the
former process, B experts were required in any case, for long and fastidious tasks.

1.5 ZC data validation 7

In addition, using ProB significantly reduces the time checking data properties:
from 2 or 3 days with old tool to 2 or 3 hours per project with RDV. The analyse
of CC assertion machines with ProB reduces signgificantly the interaction with
user as one does not need launch Atelier B several hundreds times on created CC
IVP.

Assertion-Proof Graph Generation: This function provides a graphical way to
investigate the proof on an assertion. Is is based on a service provided by ProB
to compute values of B expressions and the truth-values of B predicates, as well
as all sub-expressions and sub-predicates. This is very useful because users often
want to know more about the exact source why an assertion fails. This was one
problem in the Atelier B approach: when a proof fails it is very difficult to find
out why the proof has failed, especially when large and complicated constants
are present.

Validation Synthesis Report: The results of analysis realized by ProB on asser-
tions machine are recorded in a set of .rp and .err files (one per B component
and per sector/segment). Each rp (report) file contains the normal results of the
analysis with ProB :

• Values used during initialization of machines;
• Proof details on each assertion checked;
• Result of the analysis (true, false, timeout...).

Each err (error) file contains the abnormal results of the analysis:

• Variables/Constants with incorrect type;
• Variables/Constants with multiple values, redefinition of value or missing

value;
• Error during execution of ProB (missing file...).

When all report and error files have been generated, an html synthesis report
is issued. This report gives the result (number of false/true assertions, timeout,
unknown results...) for each sector/segment. For each B component, a hyperlink
to the detailed results, error and report files gives access to the results of the
component (in order to know which assertion is false, for instance).

1.5 ZC data validation

As the CC data validation only differs from the ZC data validation in the way the
assertion machines are created, we present here an example of the ZC data validation
to show how data validation is carried out with RDV.

As shown in fig. 1.1, the track is decomposed into several sectors (from 2 to 10),
there is one zone controller dedicated for each sector. The Ada data are linked with
the Ada code trans-coded from the generic B model. Below is a B machine with
some properties on the data inv zaum quai i and inv zaum troncon i:

8 1 Improving Railway Data Validation with ProB

MACHINE
pas_as_env_inv_zaum
SEES
pas_as_env_typ_quai,
pas_as_env_typ_zaum,
pas_as_env_typ_troncon
CONCRETE_CONSTANTS
inv_zaum_quai_i,
inv_zaum_troncon_i
DEFINITIONS
typage_tab == (

inv_zaum_quai_i : t_nb_zaum_par_pas --> t_nb_quai_par_pas &
inv_zaum_troncon_i : t_nb_zaum_par_pas --> t_nb_troncon_par_pas)

PROPERTIES
typage_tab &

/* Proprietes */
!xx.(xx : t_zaum_pas

=>
inv_zaum_quai_i(xx) : t_quai_pas \/ {c_quai_indet}) &

!xx.(xx : t_zaum_pas
=>
inv_zaum_troncon_i(xx) : t_troncon_pas \/ {c_troncon_indet})

END

An example of the relevant ADA program with configuration data is as followed:
with SEC_OPEL_FONC;
with PAS_AS_ENV_TYP_FONC;

use SEC_OPEL_FONC;

package pas_as_env_inv_zaum_val is
subtype T_INV_ZAUM_TRONCON_I

is SEC_OPEL_FONC.FINT_ARRAY_1(PAS_AS_ENV_TYP_FONC.T_NB_ZAUM_PAR_PAS);
subtype T_INV_ZAUM_QUAI_I

is SEC_OPEL_FONC.FINT_ARRAY_1(PAS_AS_ENV_TYP_FONC.T_NB_ZAUM_PAR_PAS);
INV_ZAUM_TRONCON_I : constant T_INV_ZAUM_TRONCON_I := T_INV_ZAUM_TRONCON_I’(

1 => 3, 2 => 3, 3 => 3, 4 => 3,
5 => 4, 6 => 4, 7 => 3, 8 => 3,
9 => 3, 10 => 3, 11 => 4, 12 => 4,
13 => 4, 14 => 4, 15 => 4, 16 => 4,
17 => 3, 18 => 3, 19 => 3, 21 => 3,
22 => 1, 23 => 1, 24 => 1, 25 => 1,
26 => 1, 27 => 2, 28 => 2, 29 => 2,
30 => 1, 31 => 2, 32 => 2, 33 => 2,
34 => 2, 35 => 2, 36 => 3,
OTHERS=>0

);
INV_ZAUM_QUAI_I : constant T_INV_ZAUM_QUAI_I := T_INV_ZAUM_QUAI_I’(

23 => 1, 25 => 2,
27 => 3, 31 => 4,
33 => 5,
OTHERS=>0

);
end pas_as_env_inv_zaum_val;

Using RDV, we obtained the following assertion machine:

1.5 ZC data validation 9

MACHINE
pas_as_env_inv_zaum
SEES
pas_as_env_typ_quai,
pas_as_env_typ_zaum,
pas_as_env_typ_troncon
CONCRETE_CONSTANTS
inv_zaum_quai_i,
inv_zaum_troncon_i
DEFINITIONS
"pas_as_env_inv_zaum_val.1.def";
typage_tab == (

inv_zaum_quai_i : t_nb_zaum_par_pas --> t_nb_quai_par_pas &
inv_zaum_troncon_i : t_nb_zaum_par_pas --> t_nb_troncon_par_pas)

PROPERTIES
inv_zaum_quai_i = inv_zaum_quai_i_indetermine <+ inv_zaum_quai_i_surcharge &
inv_zaum_troncon_i = inv_zaum_troncon_i_indetermine <+ inv_zaum_troncon_i_surcharge
ASSERTIONS
typage_tab ;
!xx.(xx : t_zaum_pas => inv_zaum_quai_i(xx) : t_quai_pas \/ {c_quai_indet}) ;
!xx.(xx : t_zaum_pas => inv_zaum_troncon_i(xx) : t_troncon_pas \/ {c_troncon_indet})
END

The machine name is unchanged for traceability reasons. The ASSERTIONS
clause in the new machine contains predicates which were in the PROPERTIES
clause of the orignal machine. The DEFINITIONS clause includes the definition file
pas as env inv zaum val.1.def which contains macros derived from data defined in
pas as env inv zaum val.1.ada:

• inv zaum quai i indetermine and inv zaum quai i surchage which were derived
from the configuration data INV ZAUM QUAI I.

• inv zaum troncon i indetermine and inv zaum troncon i surchage which were
derived from the configuration data INV ZAUM QUAI I.

DEFINITIONS
inv_zaum_quai_i_indetermine == (t_nb_zaum_par_pas)*{0};
inv_zaum_quai_i_surcharge =={

23|->1, 25|->2, 27|->3, 31|->4, 33|->5
};

inv_zaum_troncon_i_indetermine == (t_nb_zaum_par_pas)*{0};
inv_zaum_troncon_i_surcharge =={

1|->3, 2|->3, 3|->3, 4|->3, 5|->4, 6|->4, 7|->3,
8|->3, 9|->3, 10|->3, 11|->4, 12|->4, 13|->4,
14|->4, 15|->4, 16|->4, 17|->3, 18|->3, 19|->3,
21|->3, 22|->1, 23|->1, 24|->1, 25|->1, 26|->1,
27|->2, 28|->2, 29|->2, 30|->1, 31|->2, 32|->2,
33|->2, 34|->2, 35|->2, 36|->3

}

The macros inv zaum quai i indetermine and inv zaum quai i surchage are then
used to define inv zaum quai i as shown in the PROPERTIES clause. As the
modified PROPERTIES clause is instantiated using the definition file, so that
inv zaum quai i is replaced by the actual data:

inv_zaum_quai_i = (t_nb_zaum_par_pas)*{0}
<+ {23|->1,25|->2,27|->3,31|->4,33|->5}

Similarly, the macros inv zaum troncon i indetermine and inv zaum troncon i surchage
are used to define and instantiate inv zaum troncon i.

The goal of the modification presented above is therefore to include the actual
data (in PROPERTIES clause), include the definition files (in DEFINITION clause),

10 1 Improving Railway Data Validation with ProB

and displace the assumptions on data in the ASSERTIONS clause. This modification
will lead to generate some proof obligations “data” = “assumptions”. For example,
with inv zaum quai i, we will have to prove the (simplified) following proof obli-
gation:

inv_zaum_quai_i = (t_nb_zaum_par_pas)*{0} <+ {23|->1,25|->2,27|->3,
31|->4,33|->5} => inv_zaum_quai_i : t_nb_zaum_par_pas --> t_nb_quai_par_pas

1.6 Industrial projects already validated using RDV

In addition to San Juan case study, Currently, ProB has been used in all ongoing
projects in parallel with AtelierB in data validation; the results show that ProB is
more effective and less restrictive than Atelier B for railway data validation. Below
are experiences from typical projects.

ALGER line 1 (ZC). This is the first driverless metro line in Africa. This line is
composed of 10 stations over 10 km. The line is divided into two sections, each
of which is controlled by a ZC. There were 25,000 lines of B spread over 130
files. ProB was used for the last 3 versions of this project railway data. Table 1.1
shows the results obtained with ProB on the last version :

Table 1.1 Alger line 1 (ZC)

Sector Predicates TRUE FALSE UNKNOWN TIMEOUT
pas as inv s01.html 1174 1164 10 0 0
pas as inv s02.html 1174 1162 12 0 0

Each line represents the summary result for one sector. The Predicates column
shows the number of assertion to be analyzed, the TRUE column represents the
number of assertions verified by ProB (no counter-example found by ProB). The
FALSE column represents the number assertions failed by ProB (with counter-
example). The UNKNOWN column represents the number of assertions that
ProB does not know how to verify. The TIMEOUT collones corresponds to as-
sertions that ProB encoutered a time out problemen during analysis.
For each sector, there were two assertions un-proved with Atelier B due tu their
complexity. One of which is shown below. This property has rightfully been
proven wrong with proB with the railway data for both sectors.
ran(inv_quai_variants_nord_troncon >< (((((((((((t_quai_pas <|
inv_quai_adh_red_nord_rg_variant_bf_i) |> t_rg_variant_bf) \/ ((t_quai_pas <|
inv_quai_ato_inhibe_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_mto_inhibe_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_atp_inhibe_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_arret_tete_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_arret_centre_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_arret_queue_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|

1.6 Industrial projects already validated using RDV 11

inv_quai_tete_ape_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_centre_ape_nord_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_queue_ape_nord_rg_variant_bf_i) |> t_rg_variant_bf))) /\
ran(inv_quai_variants_sud_troncon >< (((((((((((t_quai_pas <|
inv_quai_adh_red_sud_rg_variant_bf_i) |> t_rg_variant_bf) \/ ((t_quai_pas <|
inv_quai_ato_inhibe_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_mto_inhibe_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_atp_inhibe_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_arret_tete_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_arret_centre_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_arret_queue_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_tete_ape_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_centre_ape_sud_rg_variant_bf_i) |> t_rg_variant_bf)) \/ ((t_quai_pas <|
inv_quai_queue_ape_sud_rg_variant_bf_i) |> t_rg_variant_bf))) = {}

Sao Paolo line 4 (ZC). This is the first driverless metro line in Sud-America. This
line has 11 stations over 12,8km and is divided into 3 sections. The model con-
sisted of 210 files with over 30,000 lines of B. ProB has been used for the last 6
versions of this project railway data. For the last version, the results are presented
in Tab. 1.2.

Table 1.2 Sao Paolo line 4 (ZC)

Sector Predicates TRUE FALSE UNKNOWN TIMEOUT
pas as inv s036.html 1465 1459 6 0 0
pas as inv s037.html 1165 1460 5 0 0
pas as inv s038.html 1465 1457 8 0 0

ProB has detected issues with a group of properties which had to be put in com-
mentary in machines used with Atelier B because they were crashing the predi-
cates prover. Here an example of one of them:
!(cv_o,cv_d).(((cv_d : t_cv_pas & cv_o : t_cv_pas) & cv_o :
inv_lien_cv_cv_orig_i[inv_chainage_cv_liste_i[inv_chainage_cv_deb(cv_d) ..
inv_chainage_cv_fin(cv_d)]])
& not(inv_lien_cv_cv_dest_i((t_cv_pas <| inv_lien_cv_cv_orig_i˜)|>
inv_chainage_cv_liste_i[inv_chainage_cv_deb(cv_d) ..
inv_chainage_cv_fin(cv_d)](cv_o)) = cv_d)
=> inv_lien_cv_cv_dest_i((t_cv_pas <| inv_lien_cv_cv_orig_i˜) |>
inv_chainage_cv_liste_i[inv_chainage_cv_deb(cv_d) ..
inv_chainage_cv_fin(cv_d)](cv_o)) : inv_cv_pas_modifiable_i˜[{TRUE}]))

Thankfully, after analysis, we have concluded that the problem was not critical.
Nonetheless, without ProB, it would have been a lot harder to find these prob-
lems. In this case, the assertion-proof graphs were useful to understand better
where the problems were coming from.

Paris line 1 (ZC). This is a project to automate the line 1 (25 stations over 16,6
km)) of the Paris Métro. The line has been gradually being upgraded to driverless
train while it remains in operation. The first driverless train has been commin-
sionning since Nomvember 2011. In February 2012, there have been 17 of 49
driverless trains in operation in conjunction with manual trains. The line is going
to be full driverless in the early 2013. The line is divided in 6 section. The model

12 1 Improving Railway Data Validation with ProB

to be checked is the same as the SPL4’s one. ProB has been used for the last 7
versions of railway data. For the last version, the results are presented in Tab. 1.3.

Table 1.3 Paris line 1 (ZC)

Sector Predicates TRUE FALSE UNKNOWN TIMEOUT
pas as inv s011.html 1503 1501 2 0 0
pas as inv s012.html 1503 1498 5 0 0
pas as inv s013.html 1503 1496 7 0 0
pas as inv s014.html 1503 1499 4 0 0
pas as inv s015.html 1503 1498 5 0 0
pas as inv s016.html 1503 1498 5 0 0

Paris line 1 (PAL) . PAL (Pilote Automatique Ligne) is a controller line who re-
alizes the Automatic Train Supervision (ATS) function of CBTC systems. The B
models of PAL consisted of 74 files with over 10,000 lines of B. In all 2024 as-
sertions about concrete data of the PAL needed to be checked. ProB found 12 in
under 5 minutes. These problems have been examined and confirmed by manual
inspection aterward at Siemens.

CDGVAL LISA (Charles de Gaulle Véhicle Automatique Léger . This is an
extension of CDVVAL qui has been commisionning since 2005. This line is go-
ing to be operational in the early 2012. The LISA model consisted of 10,000 line
of B over 30 files. This project has 3 sections. ProB has been used for the last 3
versions of this project railway data. For the last version, the results are presented
in Tab. 1.4.

Table 1.4 Roissy LISA (ZC)

Sector Predicates TRUE FALSE UNKNOWN TIMEOUT
ry pads as inv pa31.html 1038 1038 0 0 0
ry pads as inv pa32.html 957 957 0 0 0
ry pads as inv pagat.html 1038 1038 0 0 0

1.7 Tool issues

A crucial aspect when trying to deploy a tool like PROB successfully to an industrial
project is that only minimal changes must me made to the existing models because

1.7 Tool issues 13

changes to models are usually regarded as cost- and time-intensive. We cannot ex-
pect industrial users to adapt their models to an academic tool Thus it is important
to work on the full language used in industry.

To make PROB an industrial usable tool, we had to make significant changes to
the parser and type checker to even be able to load the models. Then several changes
to PROB’s core had to be made to make the large data sets in the models tractable.

The Parser. Previous versions of PROB used a freely available parser that lacked
some features of Atelier B’s syntax. In particular it had no support for parametrized
DEFINITIONS, tuples that use commas instead of |-> and definition files. We
realised that the code base of the existing parser was very difficult to extend and to
maintain and decided to completely rewrite the parser. We decided to use the parser
generator SableCC [6], because it allowed us to write a clean and readable grammar.
We briefly describe some of the aspects we encountered during the development of
the parser and we describe where our parser’s behaviour deviates from Atelier-B’s
behaviour.

• Atelier-B’s definitions provide a macro-like functionality with parameters. I.e.
that a call to a definition somewhere in the specification is syntactically replaced
by the definition. A problem with this approach is that the use of such macros
can lead to subtle problems. E.g. consider the definition sm(x,y)==x+y: The
expression 2*sm(1,4) is not equal to 10 as we might expect. Instead it is re-
placed by 2*1+4 which equals 6.
We think this can easily lead to errors in the specification and decided to de-
viate from Atelier-B’s behaviour in this aspect. Thus we treat 2*sm(1,4) as
2*(1+4) which equals 10 as expected.

• Another problem were an ambiguity in the grammar when dealing with defini-
tions and overloaded operators like ; and ||. ; can be used to express composition
of relations as well as sequential composition of substitutions. When such an op-
erator is used in a definition like d(x)==x;x it is not clear which meaning is
expected. It could be a substitution when calling it with d(y:=y+1) or in an-
other context it could be an expression when calling it with two variables a, b
as in d(a,b). We resolved the problem by requiring the user to use parenthesis
for expressions (like (x;x)). Substitutions are never put in parenthesis because
they are bracket by BEGIN and END.

• The parser generator SableCC does not support source code positions. Thus we
are not able to trace expressions in the abstract syntax tree back to the source
code. This is e.g. important when we encounter errors in the specificatio to visu-
alize where the problem lies. To circumvent the problem we modified the parser
generator itself to support source code positions.

The resulting parser deviates in only a few aspects to Atelier B’s parser. It is rela-
tively rare that an Atelier B model needs to be rewritten to work with PROB.

The type checker. We re-implemented our type checker for B specifications be-
cause the former version often needed additional predicates to provide typing infor-
mation. We implemented a type inference similar to the Hindley-Milner algorithm
[10] that is more powerful than Atelier B’s type checker and thus accepts all spec-

14 1 Improving Railway Data Validation with ProB

ifications that Atelier B would accept and more. A nice side-effect of the new type
checker is that together with the parser’s position information we can highlight an
erroneous expression in the source code. This improves the user experience espe-
cially for new users.

Improved data structures and algorithms. Originally PROB represented all
sets internally as lists. But with thousends of elements operations on lists performs
very bad. We introduced an alternative represention based on self-balancing binary
search trees (AVL trees) that provides much faster access to it’s elements. In that
context we examined the bottlenecks of the kernel in light of the industrial mod-
els given to us and implemented specialised versions of various operations. E.g. an
expression like dom(r)<:1..10 can be checked very efficiently when r is repre-
sented by an AVL tree. We can exploit the feature that the tree’s elements are sorted
and just check if the smallest and largest elements are in the interval.

Infinite sets. Several industrial specifications make use of definition of infinite
sets like INTEGER \ {x}. PROB now detects certain patterns and keeps them
symbolic. I.e. instead of trying to calculate all elements PROB just stores the condi-
tion that all elements fulfill and uses that condition for member checks and function
applications. Examples for expressions that can be kept symbolic are

• integer sets and intervals,
• complement sets (like the example above),
• some lambda expressions and
• union and intersection of symbolic sets.

1.8 Tool validation

In order to be able to use PROB without resorting to Atelier-B, Siemens have asked
UDUS to validate PROB. There are no general requirements for using a tool within
a SIL 4 development chain; the amount of validation depends on the criticality of
the tool in the development or validation chain. In this case, Siemens require:

• a list of all critical modules of the PROB tool, i.e., modules used by the data
validation task, that can lead to a property being marked wrongly as fulfilled

• a complete coverage of these modules by tests.
• a validation report, with description of PROBfunctions, and a classification of

functions into critical and non-critical, as long with a detailed description of the
various techniques used to ensure proper functioning of PROB.

Two versions of the validation report have already been produced, and a third ver-
sion is under development. The test coverage reports are now generated completely
automatically using the continuous integration platform “Jenkins”.1 This platform
also runs all unit, regression, integration and other tests.

1 See http://en.wikipedia.org/wiki/Jenkins (software).

1.8 Tool validation 15

Below, we briefly describe the various tests as well as additional validation safe-
guards. In addition, the successful case studies in described earlier in this chapter
also constitute a validation by practical experience: in all cases the PROB based
approach has proven to be strictly superior to the existing approach.

Unit Tests PROB contains over a 1,000 manually entered unit tests at the Prolog
level. For instance, these check the proper functioning of the various core predicates
operating on B’s data structures. In addition, there is an automatic unit test generator,
which tests the PROB kernel predicates with many different scenarios and different
set representations. For example, starting from the initial call:
union([int(1)],[int(2)],[int(1),int(2)]),
the test generator will derive 1358 unit tests. The latter kind of testing is particularly
important for the PROB kernel which relies on co-routining: we want to check that
the kernel predicates behave correctly no matter in which order (partial) information
is propagated.

Integration and Regression Tests PROB contains over 500 regression tests
which are made up of B models along with saved animation traces. These models
are loaded, the saved animation traces replayed and the models are also run through
the model checker. These tests have turned out to be extremely valuable in ensur-
ing that a bug once fixed remains fixed. They are also very effective at uncovering
errors in arbitrary parts of the system (e.g., the parser, type checker, the interpreter,
the PROB kernel, etc.).

Self-Model Check with Mathematical Laws With this approach we use PROB’s
model checker to check itself, in particular the PROB kernel and the B interpreter.
The idea is to formulate a wide variety of mathematical laws (e.g., taken from [1])
and then use the model checker to ensure that no counterexample to these laws can
be found. The self-model check has been very effective at uncovering errors in the
PROB kernel and interpreter. Furthermore, the self-model checking tests rely on ev-
ery component of the entire PROB execution environment working perfectly; other-
wise a violation to a mathematical law could be found. I.e., in addition to the PROB
main code, the parser, type checker, Prolog compiler, hardware and operating sys-
tem all have to work perfectly. Indeed, we have identified a bug in our parser (FIN
was treated like FIN1), using the self-model check. Furthermore, we have even
uncovered two bugs in the underlying SICStus Prolog compiler using self-model
check.

Validation of the parser We execute our parser on a large number of our re-
gression test machines and pretty print the internal representation. We then parse
the internal representation and pretty print it again, verifying (with diff) that we
get exactly the same result. This type of validation can easily be applied to a large
number of B machines, and will detect if the parser omits, reorders or modifies
expressions, provided the pretty printer does not compensate errors of the parser.

Validation of the type checker For the moment we also read in a large num-
ber of our regression test machines and pretty print the internal representation, this
time with explicit typing information inserted. We now run this automatically gen-
erated file through the Atelier B parser and type checker. With this we test whether
the typing information inferred by our tool is compatible with the Atelier B type

16 1 Improving Railway Data Validation with ProB

checker. (Of course, we cannot use this approach in cases where our type checker
detects a type error.) Also, as the pretty printer only prints the minimal number of
parentheses, we also ensure to some extent that our parser is compatible with the
Atelier B parser. Again, this validation can easily be applied to a large number of B
machines. More importantly, it can be systematically applied to the machines that
PROB validates for Siemens: provided the parser and pretty printer are correct, this
gives us a guarantee that the typing information for those machines is correct. The
latest version of PROB has a command to cross check the typing of the internal
representation with Atelier B in this manner.

With this testing we actually identified 26 errors in the B syntax as described
AtelierB English reference manuals, upon which our pretty printer and parser was
based (the French versions were correct; our parser is now based on the French
reference manuals). We also detected that Atelier-B reports a lexical error (“illegal
token |-”) if the vertical bar (|) of a lambda abstraction is followed directly by the
minus sign.

Double Evaluation As an additional safeguard during data validation, all prop-
erties and assertions were checked twice, both positively and negatively. Indeed,
PROB has two Prolog predicates to evaluate B predicates: one positive version
which will succeed and enumerate solutions if the predicate is true and a negative
version, which will succeed if the predicate is false and then enumerate solutions
to the negation of the predicate. For an assertion to be classified as true the positive
Prolog predicate must succeed and the negative Prolog predicate must fail, introduc-
ing a certain amount of redundancy (admittedly with common error modes). In fact,
if both the positive and negative Prolog predicates would succeed for a particular B
predicate then a bug in PROB would have been uncovered. If both fail, then either
the B predicate is undefined or we have again a bug in PROB. This validation aspect
can detect errors in the predicate evaluation parts of PROB i.e., the treatment of the
Boolean connectives ∨, ∧,⇒, ¬,⇔, quantification ∀, ∃, and the various predicate
operators such as ∈, 6∈, =, 6=, <, ... This redundancy can not detect bugs inside ex-
pressions (e.g., +,−, ...) or substitutions (but the other validation aspects mentioned
above can).

1.9 Conclusions

In this paper we describe the successful application of the PROB tool for data val-
idation in several industrial applications. This required the extension of the PROB
kernel for large sets as well as an improved constraint propagation algorithm. We
also outline some of the effort and features that were required in moving from a tool
capable of dealing with medium-sized examples towards a tool able to deal with
actual industrial specifications.

References 17

Acknowledgements

We would like to thank Jens Bendisposto, Fabian Fritz and Sebastian Krings for
assisting us in various ways, both in writing the chapter and in applying PROB on
the Siemens models. Most of this research has been funded by the EU FP7 project
214158: DEPLOY (Industrial deployment of advanced system engineering methods
for high productivity and dependability). Parts of this chapter are taken from [7, 8].

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996
2. F. Steria, Aix-en-Provence. Atelier B, User and Reference Manuals, 2009. Available at

hhtp://www.atelierb.edu/
3. Siemens. B method - optimum safety guaranteed. Imagine, 10:12-13, June 2009.
4. F. Badeau and A. Amelot. Using B as a high level programming language in an industrial

project. In H. Treharne, S. King, M.-C. Henson and S.-A. Schneider editors, Proceedings of
ZB 2005 : Formal Specification and Development in Z and B, 4th International Conference
of B and Z Users. LNCS 3455, pages 334-354, Springer-Verlag, 2005.

5. D. Essamé and D. Dollé. B in large-scale projects: The Canarsie line CBTC experience. In
J. Julliand and O. Kouchnarenko, editors, Proceedings of B 2007 : 7th Int. Conference of B
Users. LNCS 4355, pages 252-254, Springer-Verlag, 2007.

6. E. Gagnon. SableCC, an object-oriented compiler framework. Masters thesis, McGill Uni-
versity, Montreal, Canada, 1998. Available at http://www.sablecc.org.

7. M. Leuschel, J. Falampim, F. Fritz, and D. Plagge. Automated property verification for large
scale B Models. In A. Cavalcanti and D. Dams, editors, Proceedings FM 2009, LNCS 5850,
pages 708–723, Springer-Verlag, 2009.

8. M. Leuschel, J. Falampim, F. Fritz, and D. Plagge. Automated property verification for large
scale B Models with ProB. Formal Asp. Comput. 23(6): 683–709, 2011.

9. M. Leuschel and M.-J. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi, and D.
Mandrioli, editors, Proceedings FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 2003.

10. R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348375, 1978.

11. M. Leuschel and M.-J. Butler. ProB: an automated analysis toolset for the B method. STTT,
10(2): 185–203, 2008.

