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Abstract. Model checking of liveness properties often results in unre-
alistic, unfair infinite behaviors as counterexamples. Fairness is a notion
where the search is constrained to infinite paths that do not ignore in-
finitely the execution of a set of enabled actions. In this work we present
an implementation for efficient checking of LTL formulas under strong
and weak fairness in ProB, available for model checking B, Event-B, Z,
CSP and CSP‖B models. The fairness checking algorithm can cope with
both weak and strong fairness conditions, where the respective fairness
conditions can be joined by means of the logical operators for conjunc-
tion and disjunction, which makes setting up and checking fairness to a
property more flexible. We evaluate the implementation on various CSP
models and compare it to the fairness implementation of the PAT tool.

1 Introduction and Motivation

Many system requirements can be readily specified in temporal logic such as the
linear-time temporal logic (LTL). Subsequently, using an LTL model checker one
can check automatically the property specified in LTL on the respective finite
state model. There are two general approaches for developing an LTL model
checker: the tableau approach [10] and the automata-theoretic approach [14].

The ProB LTL model checker, introduced in [11], follows the tableau ap-
proach from [10] and can check properties specified in LTL[e][11], an extended
version of LTL providing also support for transition propositions. The algorithm
presented in [11] can cope with deadlock states and partially explored state
spaces. The LTL search algorithm of ProB is implemented in C using a call-
back mechanism for exploring the states and evaluating the atomic propositions
in SICStus Prolog.

Adding fairness constraints to liveness properties is sometimes necessary in
order to exclude unreasonable behaviors of the model and to direct the search
for counterexamples on ”fair” paths only. The fact that the ProB LTL model
checker can deal with transition propositions using LTL[e] enables the user to
easily express the fairness conditions as an LTL[e] formula [15]. That is, fair-
ness constraints fair can be added as a premise to a liveness property f by
means of implication. Then, one can check ”fair ⇒ f” in order to restrict the
search for fault system behaviors on paths fair in regard to the imposed fairness
constraints fair . However, setting fairness constraints to an LTL[e] formula via
re-formulating the formula causes an exponential growth of the search graph and
on that account is considered to be in most cases a very inefficient approach.



In this work we briefly describe the implementation of the fairness algorithm
in ProB’s LTL model checker [11] and explain how one can flexibly impose fair-
ness conditions. Additionally, we discuss the enhancements of the LTL model
checking process in ProB and evaluate the fairness implementation by compar-
ing ProB and PAT on various CSP specifications.

2 Preliminaries

Linear time properties that require some progress in the system are called live-
ness properties. Intuitively, liveness properties state that ”something good” will
happen in the future [8]. Liveness properties are violated by infinite computa-
tions comprising a bad cycle for the property.

The LTL model checker of ProB uses a tableau approach for checking
whether an LTL[e] formula is satisfied or violated by a model. In general, the
model checker algorithm searches for a strongly connected component (SCC)
with certain properties, referred also as self-fulfilling SCC [10]. Such an SCC
contains a (bad) cycle that represents a violation of the liveness property.

Fairness is used to rule out bad behaviors that may be considered as unrealis-
tic by the developer of the formal model. There are different variants of fairness
in terms of at which granularity level of the system are imposed: action-based [7],
state-based fairness [4], process fairness [5], etc. In this work we concentrate on
action-based fairness and more particularly, on weak and strong fairness, notions
often used in verification of many applied systems [2], [15].

An infinite computation is weakly fair with respect to an action a when: if
a is continuously enabled from some point, then a is executed infinitely often.
Further, an infinite computation is said to be strongly fair with respect to an
action a when: if a is enabled infinitely many times, then it is executed infinitely
often. In LTL[e] the fairness conditions can be imposed by means of the execu-
tion operator [·] and the derived LTL operators G (globally) and F (eventually).
If, for example, a search for a counterexample for some LTL formula f should
be constrained on infinite paths that are weakly fair with respect to some action
a, then one can re-formulate f as follows:

(FG e(a)⇒ GF [a])⇒ f.

Similarly, one can constrain the search to computations violating the property f
which are strongly fair in regard to some event a by re-formulating f as follows:

(GF e(a)⇒ GF [a])⇒ f.

In both formulae e(a) is an atomic proposition stating that a is enabled at
the currently processed state.

3 Fairness Algorithm and Implementation

Given a model M and an LTL[e] formula f , the ProB LTL model checker checks
M � f by searching for self-fulfilling strongly connected components (SCCs) that



can be reached from some initial state of M . In case that such a self-fulfilling
SCC is found the model checker will return a counterexample for f . Otherwise,
if no self-fulfilling SCC is discovered, we have proven that M � f . The search for
SCCs in the ProB LTL[e] model checker is based on the Tarjan’s algorithm [13].

We extended the search algorithm of the LTL model checker [11] for sup-
porting fairness checking separately, i.e. not adding the fairness constraints by
encoding them as a premise to the original LTL[e] formula. In general, the idea
of our fairness implementation is to check if each found self-fulfilling SCC C sat-
isfies the imposed fairness conditions. If C is unfair with respect to the fairness
constraints, then the model checker declines C as a possible counterexample for
f and continues the search for fair self-fulfilling SCCs until a fair self-fulfilling
SCC is found or all possible states are visited. Otherwise, if the discovered SCC
C is fair, then the search finishes with generating a counterexample satisfying the
imposed fairness constraints and violating the formula being checked. The pro-
cess of model checking under fairness in ProB can be illustrated as in Figure 1.

search for SCCs

found a self-
fulfilling SCC?

is fair?

Return counterexampleM is correct

all states
visited?

Yes
No

Yes

NoNo

Yes

Fig. 1. LTL model checking under fairness

Since the fairness checks are performed on the discovered self-fulfilling SCCs,
it was not necessary to modify the main search algorithm. Basically, we added
a new procedure testing additionally the respective SCC in case the user has
set some fairness constraints. We implemented support for action-based weak
and strong fairness. The implementation allows setting fairness constraints on
all possible actions of the system or on a subset thereof. Furthermore, both
the weak and strong fairness assumptions can be imposed simultaneously for a
given formula. That is, a property that should be satisfied under certain weak
and strong fairness conditions can be checked in one run of the model checker.

We extended the LTL[e] grammar with four new operators: sef and wef

for imposing strong fairness and weak fairness in regard to all actions of the
system, respectively, and sf(·) (strong fairness) and wf(·) (weak fairness) for



setting fairness conditions on single actions of the system. Both operators sf(·)
and wf(·) expect a transition proposition as an argument and can be used in
combination with conjunction and disjunction in order to allow to impose more
sophisticated fairness assumptions. The syntactic extensions enable the user to
set the fairness constraints fair to a formula f in the well-known way: fair ⇒ f .
Both the strong and weak fairness requirements, can be given simultaneously as a
premise to the LTL[e] property by joining them with the conjunction operator.
The fairness constraints are recognised on the syntactical level by the LTL[e]

parser and are not included in the original property. The syntax for imposing
fairness conditions in ProB can be outlined by the following grammar:

fair ::= wfair | sfair | wfair ∧ sfair | wef | sef
wfair ::= wf(tp) | wfair ∨ wfair | wfair ∧ wfair | (wfair)
sfair ::= sf(tp) | sfair ∨ sfair | sfair ∧ sfair | (sfair)

where tp is a transition proposition, and wef and sef are the tokens for setting
weak and strong fairness conditions on all possible transitions, respectively.

To give an example of how one can set up fairness constraints to an LTL[e]

formula in ProB consider a semaphored-based mutual exclusion algorithm for
two processes.1 Assume that each process is simplified to perform three types of
actions: req (sending a request for entering the critical section), enter (entering
the critical section), and rel (leaving the critical section). Further, consider the
following property P : ”each process gets access to its critical section infinitely
often”. To prove P on the model one needs to assume that all executions are
weakly fair in regard to the req actions of both processes and that every exe-
cution is strongly fair in regard to the enter actions of both processes. Suppose
that req.1 and req.2 denote the request actions of process 1 and process 2, re-
spectively; and enter.1 and enter.2 the enter actions of process 1 and process 2,
respectively. The corresponding fairness conditions can then be expressed by the
grammar above as follows:(

wf(req.1) ∧ wf(req.2)
)
∧
(
sf(enter.1) ∧ sf(enter.2)

)
Evaluation. First of all, encoding the fairness conditions by means of an LTL[e]

formula and then adding it as a premise to the property is very inefficient since
the state space of the search graph grows exponentially in the length of the
formula [10]. For instance, if we encode the fairness conditions of the semaphored-
based mutual exclusion model for two processes in LTL[e] and then check the
re-formulated formula on the model, then the ProB LTL model checker would
need to explore overall 1,048,576 atoms (the number of nodes in the search
graph) to check P . On the other hand, checking P on the model using the
fairness checking capabilities of ProB will need to explore only 44 atoms.

For the evaluation of the algorithm we have tested various CSP specifica-
tions where imposing fairness constraints is necessary to prove certain liveness
properties. Further, we have evaluated model checking under fairness on ProB

1 A detailed description of the algorithm could be viewed, for example, in [1] Chapter 2.



and PAT. PAT provides among others support for LTL model checking with
fairness assumptions [12] for CSP#. A part of the results2 of the evaluation is
given in Table 1. It has been acquired by executing each test case 10 times with
ProB 1.5.1 and PAT 3.5.1 on a Virtual Machine Version of Windows 7 (64 Bit)
installed on a MacBook Pro Intel Core i5 Dual 2.90 GHz with 16 GB RAM.

Table 1. Part of the Experimental Results (times in seconds)

Model & State Space

# Procs LTL[e] Formula Fairness Tool States States×Aut Time (+)

Peterson∗
GF [cs.0] Weak

ProB 514 2,113 1.415 (1.387)
# Procs: 3 PAT 513 2,099 0.092 (0.052)

Peterson∗
GF [cs.0] Weak

ProB 10,369 42,001 38.869 (37.035)
# Procs: 4 PAT 10,368 53,122 1.504 (0.207)

DP ProB 1,763 7,604 4.131 (3.898)
# Procs: 6

GF [eat.0] Strong
PAT 1,762 4,273 0.333 (0.121)

DP ProB 22,363 96,500 188.800 (149.220)
# Procs: 8

GF [eat.0] Strong
PAT 22,362 240,620 24.098 (1.291)

Scheduler G([enter.1]
Strong

ProB 9,478 46,656 16.644 (11.976)
# Procs: 7 ⇒ F [leave.1]) PAT 7,290 61,238 4.785 (0.384)

Scheduler G([enter.1]
Strong

ProB 30,619 148,716 97.913 (87.074)
# Procs: 8 ⇒ F [leave.1]) PAT 24,057 227,450 18.233 (0.808)
(∗) In ProB the model is specified and verified using the CSP ‖ B methodology [9].
(+) The time needed for exploring the state space of the model.

All models in Table 1 are provided as examples with the PAT tool and have
been translated into CSP-M and CSP ‖ B to be tested also within ProB. In all
test cases the respective fairness constraints (Weak and Strong) were imposed
on all transitions. The first sub-column of the State Space column reports the
number of states of the model, whereas the second one the number of states of
the product of the system with the respective automaton of the formula. In the
Time column we have listed the time needed for checking the LTL[e] formula on
the model. In the parentheses of the Time column we have also given the times
needed for the exploration of the complete state space of the respective model.3

In all test cases in Table 1 the PAT tool has outperformed ProB. Observing
the times just for the state space exploration (the times in parentheses), we can
see that the discrepancy in the performance of both tools remains. On the other
hand, comparing the overhead in PAT caused for checking the property on the
model and for performing all fairness checks with this of ProB one can observe
that the differences are very small. For instance, for Scheduler8 ProB needed
87.074 seconds to explore the state space of the model and 97.913 to explore
the state space of the specification and check the LTL[e]formula, i.e. ProB
needed about ten seconds to check the property on the already explored state
space and perform all necessary fairness checks. In the same time, the overhead

2 The models and the results of the experiments can be obtained from the following
web page http://nightly.cobra.cs.uni-duesseldorf.de/fairness/.

3 Generally, we have performed deadlock checking on the model for both tools in order
to measure the times for state space exploration.

http://nightly.cobra.cs.uni-duesseldorf.de/fairness/


for testing the LTL property under fairness in PAT is about 17 seconds. This
suggests that the main reason for ProB being outperformed by PAT is due to
the poor performance of ProB’s CSP interpreter responsible for the state space
exploration of CSP specifications.

Table 2. Experimental Results on MINT Linux (64 Bit) - (times in seconds)

Model LTL[e] Formula Fairness Tool States × Aut Time

DP ProB 96,500 362.452
# Procs: 8

GF [eat.0] Strong
PAT (Mono) 240,620 380.755

Scheduler
G([enter.1]⇒ F [leave.1]) Strong

ProB 148,716 110.454
# Procs: 8 PAT (Mono) 227,450 777.441

To reproduce the results from Table 1 one needs to run the experiments on
Windows as PAT is mainly developed for Windows. On other operating systems
such as Linux one can run PAT with the mono platform. However, experiments
have shown that PAT 3.5.1 with mono performs poorly on other systems such
as Linux and in most cases will be outperformed by ProB as can be seen in
Table 2. The PAT experiments in Table 2 were performed with mono 3.2.8.

Table 3. Fairness Checking Statistics in ProB (times in seconds)

Model & # Rejected Fairness Total

# Procs LTL[e] Formula # Atoms SCCs Checking Time Time

DP 7 sef ⇒ GF [eat.0] 27,093 291 0.824 29.188

DP 8 sef ⇒ GF [eat.0] 96,501 824 4.311 205.559

ME Sem 10 sef ⇒ GF [enter.1] 26,628 2,305 0.664 36.044

ME Sem 11 sef ⇒ GF [enter.1] 57,349 5,121 1.898 162.136

In Table 3 we have listed several experiments run with ProB to reveal the
overhead caused by the fairness check. We have measured the time needed for
checking and rejecting of all non-fair SCCs violating the checked property. Al-
though the number of non-fair SCCs is considerably high, the fairness checking
times in all cases are very small in comparison to the overall checking times.

Related Work. Besides the two notions of action-based fairness discussed in this
paper, PAT [12] supports also verification under weak and strong process fair-
ness. Furthermore, PAT provides also support for strong global fairness, fairness
notion concerned with the infinite execution of both actions and states. One of
the most prominent model checkers, SPIN [6], provides support for weak fairness.
In [12], the performance of verification under weak fairness in SPIN is compared
with that of PAT. In most of the test cases in [12], PAT performed better than
SPIN. Another model checker that provides support for fairness is NuSMV [3], a
symbolic model checker supporting two types of state-based fairness: justice and
compassion. A justice constraint assumes that a given state formula is fulfilled
infinitely often, whereas the compassion assumption requires that a formula must
be true infinitely often if another state formula is true infinitely often.

Conclusion. We have presented a fairness implementation in ProB support-
ing verification under weak and strong action-based fairness for B, Event-B,



Z, CSP, and CSP‖B. Fairness assumptions in ProB can be easily imposed on
all actions of the checked model, or on a subset thereof; it is even possible to
specify action parameters. It appears that for LTL model checking of large-scale
CSP specifications ProB performs poorly compared to other model checkers for
CSP. However, the main motivation of ProB’s CSP support was to provide an
FDR/CSP-M compliant interpreter which can be used for CSP‖B, and which
has not been tuned for model checking. On the positive side, experiments have
shown that the overhead caused by the fairness checking procedure is consider-
ably small and it can be applied to a wide range of specification formalisms.
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A Experimental Setup (for referees)

The purpose of this appendix is to give an overview of how the experiments in
Table 1 were carried out and to allow the reviewers to experiment with the model
checkers of ProB and PAT. Furthermore, it should enable them to reproduce
our experiments.

We ran our benchmarks with ProB version 1.5.1-beta6 and with the latest
release of the PAT tool (version 3.5.1). A current nightly build of ProB is avail-
able from http://nightly.cobra.cs.uni-duesseldorf.de/tcl/. The latest
release version of the PAT tool can be downloaded from the PAT tool home-
page: http://pat.comp.nus.edu.sg/. All CSP and CSP# specifications can be
downloaded from http://nightly.cobra.cs.uni-duesseldorf.de/fairness/,
which are wrapped into the TestCasesExport.zip file. TestCasesExport.zip con-
tains three folders:

– ProB: comprising all CSP and CSP‖B models for evaluating ProB and
corresponding benchmark results,

– PAT: comprising all CSP# specifications for evaluating PAT and correspond-
ing benchmark results,

– ProBFairnessStats: containing the results and CSP specifications of the bench-
marks presented in Table 3,

– Linux: comprising the test cases and benchmarks results provided in Table 2.

Experimenting with ProB. To run the experiments from Table 1 with ProB
use the command line version probcli (probcli.exe for Windows) of ProB.
Each test case in Table 1 was run with the -assertions option of probcli. To
check, for example, the LTL formula ”G([enter.1] ⇒ F [leave.1])” under strong
fairness on scheduler6.csp specification in the ProB/Scheduler folder type the
following command in the command line:

probcli -assertions scheduler6.csp

As a result, the assertion

SCHEDULER0 |= LTL: "SEF => G ([enter.1] => F [leave.1])"

will be successively checked. Besides the notification that the check was succes-
sively performed probcli will also print out other relevant informations such
as number of callbacks, states, atoms (all possible valuations of the LTL for-
mula × the number of states, see also table column States × Aut), number
of rejected SCCs, fairness checking time, etc. For more details on how to inter-
pret the results printed out on the console by the ProB LTL model checker
consult the following tutorial: https://www3.hhu.de/stups/prob/index.php/
LTL_Model_Checking. In the tutorial you will also find out how to use the LTL
model checker in Tcl/Tk.

The model of the Peterson’s algorithm in Table 1 is created using the CSP‖B
methodology which is supported by ProB. To run the experiment for Peterson
with 3 processes, for example, use the following commando

http://nightly.cobra.cs.uni-duesseldorf.de/tcl/
http://pat.comp.nus.edu.sg/
http://nightly.cobra.cs.uni-duesseldorf.de/fairness/
https://www3.hhu.de/stups/prob/index.php/LTL_Model_Checking
https://www3.hhu.de/stups/prob/index.php/LTL_Model_Checking


probcli Peterson3.mch -csp-guide Peterson3.csp -ltlassertions

where Peterson3.mch and Peterson3.csp are the specifications used for formalis-
ing the Peterson algorithm in CSP‖B, and -ltlassertions the option to start
checking the LTL[e] formula GF [cs.0] by the LTL model checker.

Experimenting with PAT. Note that to be able to reproduce the results from
Table 1 for PAT you will need to run the experiments on Windows since PAT is
mainly developed for Windows. PAT can be run also on other operating systems
using the mono platform. However, initial experiments have shown that running
PAT with mono is in almost all experiments outperformed by ProB. Similar to
the CSP and CSP‖B specifications, all CSP# specifications are provided with
one assertions that is checked for the respective specification. To run the experi-
ments from Table 1 with PAT use the command line version PAT3.Console.exe

of PAT. To check an LTL formula under weak and strong fairness use the options
-behavior 1 and -behavior 2, respectively. To check, for example, the LTL
formula ”G([enter.1] ⇒ F [leave.1])” under strong fairness on scheduler6.csp
specification in the PAT/Scheduler folder type the following command in the
command line:

PAT3.Console.exe -behavior 2 -v scheduler6.csp result.txt

In the command above the result.txt that will be written after the respective
assertion check. In result.txt all statistics of the respective assertion check such
as number of states, time to perform the assertion check, etc. will be recorded.
The option -v is optional and is used to print out the text written in result.txt

on the command line prompt.

A short description of the specifications. All specifications represent prominent
examples from the parallel and distributed computing. As one can see from the
tables in Section 3, we have tested each model for different number of processes.
There is an identifier, named N, on the top of each specification that is used to
set the number of the processes. The abbreviations in the first column Mode &

# Procs of both tables denote the following specifications:

– DP: An example of the dining philosophers resolving the starvation problem
by forcing the first philosopher to pick at first the right fork instead of the
left one. The process which has been tested is College process.

– ME Sem: A model of a mutual exclusion algorithm guaranteeing that maxi-
mum one process has an access to its critical section by a semaphore. The
process that has been checked here is the MAIN process.

– Peterson: A specification of the Peterson’s mutual exclusion algorithm. The
process that has been tested here is the MAIN process. Note that in the case
of ProB the algorithm was specified by means of the CSP‖B methodology.

– Scheduler: A model of a simple scheduler. The process being tested for this
test cases was the SCHEDULER0 process.
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