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ABSTRACT
Object Petri nets (OPNs) provide a natural and modular
method for modelling many real-world systems. We give a
structure-preserving translation of OPNs to Prolog by en-
coding the OPN semantics, avoiding the need for an unfold-
ing to a flat Petri net. The translation provides support
for reference and value semantics, and even allows differ-
ent objects to be treated as copyable or non-copyable. The
method is developed for OPNs with arbitrary nesting. We
then apply logic programming tools to animate, compile and
model check OPNs. In particular, we use the partial evalu-
ation system logen to produce an OPN compiler, and we
use the model checker xtl to verify CTL formulae. We also
use logen to produce special purpose model checkers. We
present two case studies, along with experimental results.
A comparison of OPN translations to Maude specifications
and model checking is given, showing that our approach is
roughly twice as fast for larger systems. We also tackle in-
finite state model checking using the ecce system.

Keywords
Object Petri nets, Model checking, Prolog, Animation, Com-
pilation

1. INTRODUCTION
Petri nets [21],[23] are a well-established formalism for

modelling and verifying concurrent and reactive systems. A
basic Petri net, also called Place Transition (P/T) net, con-
sists of places, holding a varying number of indistinguishable
tokens, and of transitions. A transition is enabled if a suf-
ficient number of tokens is present in its input places. It
can then be fired , thereby consuming tokens from its input
places and generating tokens in its output places. Coloured
Petri nets (CPNs) were introduced as an extension to P/T
nets by Jensen [8],[9], allowing tokens to carry a colour, i.e.,
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individual tokens carry a datatype and value. This often
allows for more natural and high-level models than using
P/T nets. More recently, further efforts towards expressivity
have lead to the development of various so-called object Petri
net (OPN) formalisms. They allow various structured ob-
jects as tokens, called token nets, including P/T nets, CPNs
or even subsidiary OPNs (which themselves can have OPNs
as tokens, and so on . . . ). Hence tokens can carry structure
and an independent state, the latter of which can be mod-
ified by firing transitions.1 This often allows for very nat-
ural modelling, especially for workflow, business processes,
protocol specification, communication and flexible manufac-
turing. Hierarchical decomposition of systems – such as
assembly systems – is directly supported by object Petri
nets, providing means for the reuse of objects. For example,
in a workflow setting it is natural to layer the workflow in
a hierarchy, and it is natural for individual items to carry
their own state which can be modified in different ways (e.g.,
adding a signature to a document).

The advantages of object-based modelling are obvious:
Natural objects can be modelled as separate Petri nets,
which can be studied – to a certain extent – even without
knowing the context of the system net or other objects in
the model. Re-usability is another benefit of such modelling
approaches.

Apart from modelling, the issues of validation and ver-
ification are central in the study of Petri nets and other
formal modelling methods. Most Petri net extensions that
incorporate notions of objects use translations to P/T nets
or coloured Petri nets, in order to perform model checking
or other analysis. While this works fairly well if the model
proves to be correct, in the case of the detection of errors, it
may not be so straightforward to transfer the result back to
the object-based model. Therefore, it would be preferable to
do the model checking on an object-based description of the
object Petri net. To the best knowledge of the authors, such
approach has not yet been pursued for object Petri nets.

The paper presents transformations of object Petri nets
into Prolog that allow the execution2 of the net and the
application of model-checking techniques. In Section 2 we
treat a transformation to a Prolog-style notation. Section 3
covers the execution and animation of these OPNs trans-

1Similar to the way the state of objects can be updated by
calling methods. However, one should not confuse object
nets with object orientation, as there is currently no notion
of inheritance in OPNs.
2by execution we mean the automated simulation of a Petri
net



lations and Section 4 introduces CTL model checking to
OPNs. Two case studies are presented in Section 5. Sec-
tion 6 summarises a translation of OPNs to the Maude im-
plementation of conditional rewriting logic with LTL model
checking.

2. TRANSLATING OPNS TO PROLOG

2.1 Basic Terminology
The most basic Petri net formalism allowing dynamism is

the P/T-net formalism.

Definition 1 (P/T net). A P/T net is simply a quadru-
ple (P,T,F,W) where P is a finite set of places, T is a finite
set of transitions, such that P ∩T = ∅, F ⊆ (P×T )∪(T×P )
is the flow relation, i.e. the arcs of the net, and W : F → IN
assigns weights to the arcs.

Here tokens are indistinguishable from one another. This
kind of token is often referred to as black token, due to its
usual representation as a black dot.

When using nets as tokens of another net, the token nets
are often called object nets and the OPN whose places con-
tain token nets on the highest level is called the system net.

To describe the dynamic behaviour of object Petri nets,
a distinction is needed between two fundamentally different
kinds of transitions. Autonomous transitions can occur in
the system net or in an object net. They locally change the
marking of the respective net only, i.e., the marking of all
other nets are preserved by an autonomous transition firing.
On the other hand, synchronous transitions have synchroni-
sation requirements, that prevent them from occurring au-
tonomously.

A simple example of an autonomous system net transition
firing is shown in Figure 1(a). Here the object net is simply
moved to a different place of the system net. In contrast,
a synchronous firing of the system net transition and the
object net transition is shown in Figure 1(b). The synchro-
nisation requirement is shown in the Figure 1(b) by the use
of the label <1> for the respective transitions. These tran-
sitions cannot fire autonomously, and the pair of them are
in the synchronisation relation %(which we define formally
below).

Another important attribute of object Petri nets is the ex-
istence of various semantics that differ mainly in the treat-
ment of the token nets (e.g. in [3], [26]). Reference semantics
treat a token net (name) in a place of the system net as a
reference to a net instance. Hence, if the same token net
(name) appears in different places of the net, they point to
the same object net instance. In particular, the marking of
each object net instance is applicable for all tokens referring
to it. When using value semantics, each token net is treated
as an individual copy with its own marking.

Different definitions of object Petri nets have been studied
in [12], [25], [20], [3], and [4]. We follow a generic approach,
that is easily transferable to any of these formalisms.

We use *X+ to denote the set of multisets over the set X.
An object Petri net consists of a system net (Def. 2), a

set of object nets (Def. 3), and a synchronisation relation
(Def. 4). For simplicity of the presentation, we only give
a formal definition of OPNs with 2-level nesting. Allowing
arbitrary OPNs as object net tokens leads to the multi-level
case. (Our translation to Prolog and toolset can cope with
arbitrary nesting.)

Definition 2 (system net). A system net is a tuple
SN = (Σ, P, T, F, C, V, E) where the following hold:

(i) Σ is the set of types or colours with a subtype relation
v that is reflexive and transitive.

(ii) P is the set of system net places and T is the set of
system net transitions such that P ∩ T = ∅.

(iii) F ⊆ (P × T )∪ (T ×P ) is the flow relation, also called
the set of arcs.

(iv) C : P → Σ is a total function, called the typing func-
tion or colouring function of the system places.

(v) V is the set of variable symbols and to every v ∈ V
there is associated a type type(v) ∈ Σ.

(vi) E : F → *V + is the arc labelling function.

(vii) The set of variables on the incoming arcs of transition
t is denoted by Vt (i.e, Vt = {E((p, t))|(p, t) ∈ F})
and, for every variable v on an outgoing arc v ∈ Vt

must be true. We also require that
S

t∈T Vt = V .

[Missing: explain the purpose of the arc labelling function.
I suggest: also put arc labels into Figure 2 !!]

For the two-level case we define object nets as P/T nets.

Definition 3 (object net). An object net ON =
(P, T, F, W ) is a P/T net.

As with the system net from Definition 2 we have omit-
ted the marking, which is introduced in the respective net
systems.

The crucial addition to the system net and the object
nets is a synchronisation relation, which is used to allow
communication between the different nets.

Definition 4 (synchronisation relation). Let SN
= (Σ, P, T, F, C, V, E) be a system net and let {ONi}i∈I be
a set of object nets ONi = (Pi, Ti, Fi, Wi) such that T and

all Ti are disjoint. Let eT =T ∪
S

i∈I Ti denote the set of all
transitions.

Then a synchronisation relation is a tree-like relation % ∈eT × eT , such that its reflexive and transitive closure %∗ is
asymmetric and (t′, t) ∈ % ∧ (t′′, t) ∈ % ⇒ t′ = t′′.

The intention of the synchronisation relation is, that a

transition t ∈ eT in an object Petri net is enabled, if it is en-
abled in the usual sense in its net and the following condition
holds:

If there is a transition t′ ∈ eT such that (t, t′) ∈ % or (t′, t) ∈
%, then t and t′ can only fire together synchronously. A
transition t that has no partner in % is autonomously enabled
whenever it is enabled in the usual sense of P/T nets, i.e.,
whenever all places in •t hold at least the amount of tokens
specified by the weight function. 3

A (2-level) OPN is essentially a system net with an associ-
ated set of object net tokens and a synchronisation relation
between transitions of the system net and object nets.
3The synchronisation relation will usually underly some lo-
cality constraints. For instance, in the multi-level case, syn-
chronnisations may be restricted to take place only between
two object nets’ transitions if they reside in the same place
of a higher-level net or between an ON transition t and a SN
transition t′, if the ON resides in an input place of t′. Our
encoding can easily be extended to cover these constraints.



place¡ place™ place¡ place™

(a) Autonomous transition firing

place¡ place™ place¡ place™

<1>
<1>

<1>
<1>

(b) Synchronised transition firing

Figure 1: Firing modes in object Petri nets

Definition 5 (object Petri net). An object Petri net
(“OPN”) is a quadruple (SN, {ONi}i∈I , I, %) where SN is
a system net, the ONi are object nets, I is a finite indexing
set and % is a synchronisation relation.

For simplicity of the presentation we require that all tran-
sition sets (from SN and ONi) are disjoint. The definitions
given above apply to the two level case. Arbitrary levels of
nesting can be introduced into the model by allowing the
object nets to be OPNs. In that case, the synchronisation
must be restricted to conform to some locality conditions.
These restrictions do not in any way compromise the encod-
ing proposed in this paper.

Some commonly used notations for Petri nets are •t :=
{x | (x, t) ∈ F} for the preset and t • := {x | (t, x) ∈ F} for
the postset of a transition t.

The treatment of object nets depends to a great extent
upon the semantic paradigm used. This shows particularly
in the events of fork and join transitions. A fork transi-
tion (see Figure 2(a)) in value semantics produces multiple
copies of the token nets removed from its input places. Each
of the copies can evolve independently. Considering refer-
ence semantics, on the other hand, would produce multiple
references to the same net, so that any evolution of the ob-
ject net is reflected in all ‘copies’. Similar effects have been
studied for join transitions.

A translation of an object Petri net has to include informa-
tion on the synchronisation requirements for its system and

object net transitions. Let eT denote the union of all tran-
sitions from the system net and the object nets. To encode

the synchronisation relation % ∈ eT× eT of an OPN we include

for every t ∈ eT such that ¬∃t′ ∈ eT .((t, t′) ∈ % ∨ (t′, t) ∈ %) a
Prolog fact:4

autonomous(N , t).

where N is the name the OPN’s component net containing
t (i.e., either the system net or one of the object nets).

Furthermore, include in the encoding for each transition

t ∈ eT such that (t, t′) ∈ %∧¬∃t′′ ∈ eT .(t′′, t) ∈ % the following

4Note, that this is a generalisation to the usual case[WHICH
ONE??], where synchronisation of transitions within the
same net are disallowed. Often, only system/object syn-
chronisation is permitted.

fork
x

x

x

(a) A fork transiton

join
y

y

y

(b) A join transiton

Figure 2: The transition in (a) consumes a token
from its input place and produces a token in each
output place. The transition in (b) consumes a to-
ken from each input place and produces a single to-
ken in the output place.

fact:
init synch(N , t).

This is done in order to define a transition that will initialise
the synchronisation. By requiring the synchronisation rela-
tion to represent a tree, it is granted that such transition
exists.

2.2 Value Semantics
In this section we describe a transformation of object Petri

nets with value semantics into Prolog, and thus suitable for
model checking as well as for animation/execution by exist-
ing tools (cf. Section 3). Section 2.3 shows the modifications
necessary to reflect reference semantics in object Petri nets.
The latter is used in the model checking case study of Sec-
tions 4–5. Below we use two predicates, =-=> to extract
tokens from places and <=+= to deposit tokens in places.
Both of these take four arguments: the place identifier, the
tokens to be extracted or deposited, the state of the net



before and the state after the operation. As we use DCG
(definite clause grammar) notation, the last two arguments
will not be shown.

• Assume the system net is named sn. For an autonomous
system net transition t with •t = {p1, . . . , pmt} and
t • = {q1, . . . , qnt} include the following DCG code

fragment, where each Tokenxa,b
i,j is a variable where the

variable name is determined by the OPN’s arc-weight
function E : F−→*V+ with E(a, b) = [[xa,b

1 , . . . , xa,b
ka,b

]]

for (a, b) ∈ F :

obj trans(sn,t) -->

p1 =-=> Tokenxp1,t
1,1 , ..., p1 =-=> Tokenxp1,t

kp1,t
,

.

.

.
.
.
.

pmt =-=> Tokenx
pmt ,t

1,mt
, ..., p1 =-=> Tokenx

pmt ,t

kpmt ,t
,

q1 <=+= Tokenxt,q1
1,1 , ..., q1 <=+= Tokenxt,q1

kt,q1
,

.

.

.
.
.
.

qnt <=+= Tokenx
t,qnt
1,nt

, ..., qnt <=+= Tokenx
t,qnt
kt,qnt

.

• For an autonomous object net transition t of an object
net on with •t = {p1, . . . , pmt}, t • = {q1, . . . , qnt}
include the same DCG code fragment as for an au-
tonomous system net transition, exchanging only the
name sn with on and using the flow relation F of on
[+ we use the weight function as the labelling function
?? W (a, b) = ... to determine the x’s ??!!!].

• For a transition t of the system net sn which is synchro-
nised with transition t′ of an object net with •t = {p1},
t • = {q1}, include:

obj trans(sn,t) -->
p1 =-=> TokenNet,
{obj trans(t′,TokenNet,TokenNetAfterFire)},
q1 <=+= TokenNetAfterFire.

The encoding is done analogously for other pre- and
postsets. The call to obj trans ensures that the token
net fires the transition t′, and computes the state of
the token nate after firing t′.

• The initial marking is represented as:

start([ obj(sn,[ bind(psn1 ,[markingsn1 ]),

.

.

.
bind(psnnsn

,[markingsnnsn
])]) ]).

Here, markingsn
i denotes a marking of the respective

place of the system net. This is encoded as a list con-
taining a finite number of (coloured) tokens and object
tokens. For example [b, b, c, obj(net2, [bind(q1,

[one]), bind(q2, [])])] represents a marking contain-
ing two tokens b, one token c, and an object net net2
with a coloured token of type one in its place q1 and
the empty marking in q2.

Note that some more elaborate unification tasks may be
required for the case of join transitions involving object nets.
These are subject to the precise OPN formalism and cannot
be discussed here due to space limitations. Furthermore,
our main results rely upon the encoding of reference nets
described in the following section, where no further measures
have to be taken for join transitions.

2.3 Reference Semantics
In reference semantics, object nets do not occur in any

markings. Instead only references to the object nets are used
as tokens apart from traditional (coloured) tokens. Synchro-
nisation is realised by synchronous channels shown as up-
links and downlinks in the graphical representation. Some
changes have to be applied to the previous encoding, namely:

• The initial marking can contain a finite number of
(coloured) tokens and references to object tokens. A
reference to an object net object_net is represented
as ref(object_net). The object net’s marking is then
given separately in the global marking, for instance by

start([ obj(sn,[bind(p1,[ref(low),ref(low), b,b,c]),
bind(p2,[b]), bind(p3,[c])]),

obj(low,[bind(q1,[1,1]),bind(q2,[])]) ]).

Here, place p1 of the system net initially contains two
references two the token net low.

• A synchronisation requirement for a system net tran-
sition t with •t = {p1} and t • = {q1} to be exe-
cuted in parallel with an object net transition t′ can
be expressed by the following code fragment, where
TokenNet and TokenNetAfterFire are references to
the same object net.

obj trans(sn,t,Ref) -->
p1 =-=> TokenNet,
{token trans(t′,TokenNet,TokenNetAfterFire,Ref)},
q1 <=+= TokenNetAfterFire.

The predicate token trans ensures that obj trans gets
called on the token net. The last argument Ref will
contain a list of updates that have to be performed
to token nets passed by reference. These are handed
back to the top-level loop of our interpreter, who will
perform these updates.

The encoding of an object Petri net with reference seman-
tics R will be referred to by η(R) in the following.

Lemma 1. If a transition t of net R is enabled then its
encoding is executable, i.e., there exists a binding satisfying
the predicate obj_trans(N,t) in its encoding η(R).

Proof. We have to inspect two cases:

(i) enablement of an autonomous transition

(ii) enablement of a set of synchronised transitions

Case (i) again consists of two sub-cases, which are studied below.

System autonomous enablement is limited to those transi-
tions of the system net that do not have a counterpart in
the synchronisation relation %. All transitions that have no
synchronisation requirement can occur subject to the usual
Petri net firing rule. This coincides with the requirement
that there are sufficiently many tokens available on the in-
put places of the transition. Since we are not considering
place capacities, there are no further requirements in the
case of P/T nets.

Autonomous reference net transitions are such that their
names do not appear in any synchronisation pair, i.e., they
do not have any uplink or downlink inscription.

In η(R) these transitions are precisely the ones for which
a proof of the predicate autonomous/2 exists, thus enabling
the execution of the respective transition’s encoding in the
presence of an enabling marking. This is provided in the
object interpreter by



trans(Trans,O,N) :- autonomous(NetID,Trans),
global_trans(Trans,NetID,O,N).

Object autonomous enablement are encoded in the same way
as system autonomous transitions. Hence the reasoning
from above also holds for this case.

For case (ii) let us consider the requirements for the enablement
of a transition that appears in the synchronisation relation.

The transition can have one of the following properties:

1. it is invoked by some other transition (uplink)

2. it invokes another transition (downlink)

3. it is both downlink and uplink to some other transitions

In either case, we have ruled out infinite chains and cycles in
the synchronisation relation.

The object interpreter governs the execution of synchronised
transitions by the predicate trans/3 which can only be satisfied
in the clause

trans(Trans,O,N) :- init_synch(Name,Trans),
global_trans(Trans,net(ID,Name),O,N).

The transformation adds the fact
init_synch(N , t).
for every least element in a transition synchronisation chain. The

existence of a least element is guaranteed by ∀x, y ∈ eT .(x, y) ∈
% → (y, x) 6∈ %+. For each downlink, an entry is generated in the
list representing the obligations that arise from the prospective
execution of the transitions encoding. A satisfying binding exists
if all transitions involved in the synchronisation are simultane-
ously enabled.

Thus, a transition’s encoding can be executed if the transition

is enabled.

Lemma 2. Any non-synchronised state change in the en-
coding η(R) with respect to the encoded marking of R corre-
sponds to an autonomous transitions occurrence of the ref-
erence net R.

Proof. The crucial predicate for making changes to the en-
coded marking in the OPN encoding is trans/3.

The definition of this predicate in the object interpreter is:

trans(Trans,O,N) :- autonomous(Name,Trans),
global_trans(Trans,net(ID,Name),O,N).

trans(Trans,O,N) :- init_synch(Name,Trans),
global_trans(Trans,net(ID,Name),O,N).

Hence, any state change with respect to the encoded marking

of R must occur by executing an encoded transition, which can

be accomplished either by firing an autonomous transition or by

initiating a synchronisation chain.

Lemma 3. Synchronisation requirements in a reference
net R are correctly reflected in its encoding η(R), i.e., a
transition’s code will only be executed if its synchronisation
requirements are met.

Proof. First, let us note that the code for a transition in-
voked in a synchronisation cannot be invoked individually. This
is due to the requirement that the transition has to satisfy ei-
ther autonomous/2 or init_synch/2 in order for its code to be
executed.

The encoding will not provide provability of autonomous/2 for
any transition involved in a synchronisation. Furthermore, for no
transition invoked by another transition, will init_synch/2 be
provable. This restricts those transitions’ code to be executed in
all circumstances apart from an invocation in a synchronisation
step.

For the synchronisation requirements we have ruled out the
possibility of circular invocations, i.e., a chain of synchronisation

requirements may never form a loop. This is formally expressed

by the assumption: ∀x, y ∈ eT .(x, y) ∈ % → (y, x) 6∈ %+.
What remains to be shown is that an enabled synchronisation

step in the reference net will indeed lead to its code being exe-
cutable. This follows directly from Lemma 1 and the fact that
the uplinks and downlinks are correctly encoded.

The object interpreter will allow synchronisations to be ini-
tialised by the least element in a chain though the following code:

trans(Trans,O,N) :-
init_synch(NetID,Trans),global_trans(Trans,NetID,O,N).

Theorem 1. The encoding η(R) of an object Petri R
nets with reference semantics is faithful.

Proof. Lemmas 2 and 3 state that the behaviour with re-
spect to the encoded transitions and markings in η(R) is a subset
of the behaviour ofR. Furthermore, Lemma 1 states the converse,
i.e., any enabled transition can be executed in its encoding.

Thus, we neither loose nor gain any behaviour and the encoding

is faithful.

2.4 Combining Value and Reference Seman-
tics

In the xtl model it is easy to combine the concepts of
value and reference semantics, to be used in the same model.
A simple example of an initial marking mixing the two con-
cepts is given below.

start([obj(high_level_net,
[bind(p1,[ref(low),ref(low),obj(low,[bind(q1,[1]),
bind(q2,[])])]),bind(p2,[b]), bind(p3,[c])]),
obj(low,[bind(q1,[1,1]),bind(q2,[])])
]).

The combination of value and reference semantics makes
sense for systems in which there are objects that can be
(physically) copied, like an immigration form, and also ob-
jects that cannot be copied, like a vehicle in a production
line. Both kinds of objects can be concurrently worked on,
but only the former can be independently manipulated in a
way that the merged information is no longer consistent.

An object net formalism with such combined semantics
is the subject of current and ongoing research. From our
translation into Prolog and the animation in xtl arises a
strong candidate for the defining semantics of such object
Petri net extensions.

3. ANIMATING AND COMPILING

3.1 Animation
We have applied our generic animator package written in

Tcl/Tk and SICStus Prolog, which has been previously used
for ProB [14] and a CSP animator [13]. The interface was
initially inspired by [7] and supports (backtrackable) step-
by-step animation of the specifications, coverage analysis, as
well as visualisation of the state space using the “dot” tool.
A screen-shot of the animator can be found in Figure 3, while
Figure 4 shows the state space that it displays for one of our
case studies (cf. Section 5.1) consisting of a system net and
two object nets. An important aspect of the animator is its
ability to cope with non-determinism: all possible choices
are presented to the user, if he so wishes, and he can decide
upon the exact behaviour. There is also a random mode



of animation, where the choices are made by the animator.
Finally, the object Petri net execution can be linked with
a Java implementation, i.e., the object Petri net “drives”
the Java code. One can thus use the object Petri net as a
test-case generator for an implementation, or one can use the
Java to provide a custom user interface for OPNs, effectively
using OPNs for rapid prototyping.
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Figure 4: State space produced by the OPN Anima-
tor

3.2 Compiling by Partial Evaluation
In a sense our translation already compiles OPNs into

Prolog. However, using partial evaluation we can further
improve the efficiency of that translation.

Partial evaluation [10] is a source-to-source program trans-
formation technique which specialises programs by fixing
part of the input of some source program P and then pre-
computing those parts of P that only depend on the known
part of the input. The so-obtained transformed programs
are less general than the original but can be much more ef-
ficient. The part of the input that is fixed is referred to as
the static input, while the remainder of the input is called
the dynamic input.

Partial evaluation has been especially useful when applied
to interpreters. In that setting the static input is typically
the object program being interpreted, while the actual call
to the object program is dynamic. Partial evaluation can
then produce a more efficient, specialised version of the in-
terpreter, which is akin to a compiled version of the object
program.

Thanks to our translation of object Petri nets into Pro-
log code, we are able to apply partial evaluation techniques
for logic programs to compile object Petri nets into more
efficient Prolog code. In particular, we will use the logen
system [15], which uses the so-called compiler generator (co-
gen) approach to specialisation. Figure 5 highlights the way

the logen system works. Typically, a user would proceed
as follows:

• First the source program is annotated using a binding-
time analysis (BTA). This annotated source program
can be further edited, by using the logen Emacs mode.
This allows a user to manually refine the annotations
to make the specialisation more or less aggressive.

• Second, logen is run on the annotated source pro-
gram and produces a specialised specialiser, called a
generating extension or also compiler.

• This compiler can now be used to specialise the source
program for some static input. Note that the same
compiler can be run many times for different static
inputs (i.e., there is no need to re-run logen on the
annotated source program unless the annotated source
program itself changes).

In our case the source program is the object Petri net
interpreter and the static input is the encoding of a
given object Petri net. The specialised program is then
a compiled version (in Prolog) of the object Petri net.

• When the remainder of the input is known, the spe-
cialised program can now be run and will produce the
same output as the original source program. Again,
the same specialised program can be run for differ-
ent dynamic inputs; one only has to re-generate the
specialised program if the static input changes (or the
original program itself changes).

After annotation of our interpreter, generation of the ob-
ject Petri net compiler was very quick (about 240 ms) and
compilation itself was also relatively quick (less than half
a second for most of our examples, cf. Section 5.3), and
could be made faster by making the compiler less aggres-
sive. The improvements for animation speed were about 40
% (speed improvements for verification are much more dra-
matic due to a decrease in memory usage and specialisation
of the model checking component; cf. Section 5.3). The
following shows a piece of compiled Prolog code produced
by the object Petri net compiler. Basically, every place has
become an argument of the specialised procedures and ac-
cessing place markings is is thus much faster. The memory
usage of the specialised code is also much reduced, as all the
encodings of the net structure have been compiled away.

compute_trace__4(B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,
S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1,
[tribunal(charge)|I1]) :-

delete__2(ref(task(t1)),I,J1),
insert__3(ref(task(t1)),J,K1),
delete__2(L1,F1,M1),
insert__3(L1,H1,N1),
compute_trace__4(B,C,D,E,F,G,H,J1,K1,K,L,M,N,O,P,

Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,M1,G1,N1,I1).

Thanks to our translation into Prolog, we can also apply
other logic programming tools such as termination analy-
sers, type inference tools, verification tools, or static analy-
sers. In the next section, we will show how one can achieve
finite and infinite model checking using some of these.

4. MODEL CHECKING USING LOGIC PRO-
GRAMMING TOOLS
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4.1 Finite State Model Checking using XTL

The temporal logic CTL (Computation Tree Logic) intro-
duced by Clarke and Emerson in [2], allows to specify prop-
erties of specifications generally described as Kripke struc-
tures. The syntax and semantics for CTL are given below.

Given Prop, the set of propositions, the set of CTL formu-
lae φ is inductively defined by the following grammar (where
p ∈ Prop):

φ := true | p |¬φ | φ ∧ φ | ∀ © φ | ∃ © φ | ∀φUφ | ∃φUφ

A tabled Prolog system such as xsb [24] provides very
efficient data structures and algorithms to tabulate calls,
i.e., it remembers which calls it has already encountered.
As was realised in [22] this enables one to write efficient
model checkers, with relatively little effort. This has lead to
the development of the XMC model checking system, whose
performance is comparable to that of SPIN.

Furthermore, as shown in [18], a complete CTL model
checker can be written as a relatively simple tabled logic pro-
gram, called xtl in [19]. Contrary to [22] the aim in [18, 19]
was not maximum efficiency, but writing a provably correct
interpreter that can be fed into existing analysis and optimi-
sation tools.5 One of the motivations is to use these analysis
tools to perform infinite state model checking. Also, xtl is
independent of any underlying formalism. It only supposes
that the successors of a state s can be computed (through a
predicate trans) and that the elementary proposition of any
state s can be determined (through a predicate prop). The
interpreter can thus be easily applied to many formalisms,
by providing the predicates trans and prop. This is exactly
the feature we will use to apply to to object Petri nets.

Despite its simplicity and flexibility, xtl has been shown
to be on par with some of the most well-known model check-
ers [19]. Our experiments later in the paper will further
underpin this.

4.2 Infinite State Model Checking using ECCE

5These tools work best on declarative programs, and hence
the full XMC system is probably not as well suited to anal-
ysis and optimisation.

One of the key issues of model checking of infinite systems
is abstraction, whereby one approximates an infinite system
by a finite one. If proper care is taken, the results obtained
for the finite abstraction will be valid for the infinite system.

In earlier work we have tried to solve the abstraction prob-
lem by applying existing techniques for the automatic con-
trol of online partial evaluation. Indeed, in partial evalua-
tion one faces a very similar (and extensively studied) prob-
lem: To be able to produce efficient specialised programs, in-
finite computation trees have to be abstracted in a finite but
also as precise as possible way. [16] showed that when we en-
code Petri nets as logic programs, the specialised programs
can be viewed as a finite abstraction of state space cov-
ering all (possibly infinite) reachable markings of the Petri
net. This allowed one to decide coverability problems (which
encompass quasi-liveness, boundedness, determinism, regu-
larity,. . . ) for any Petri net using the specialiser ecce [17].
Quite surprisingly, the control algorithms behaved very sim-
ilar to well known Petri net algorithms by Karp–Miller [11]
and by Finkel [5]. The advantage of the logic programming
approach is that it can in principle be applied to more com-
plicated systems, with richer state structures, provided the
system is encoded as a logic program. We can thus ap-
ply ecce to our OPN interpreter and attempt infinite state
model checking. Note that ecce’s control algorithms are
no longer guaranteed to provide a decision procedure (we
may get a “don’t know” answer), but as we show later some
interesting systems and properties can still be tackled.

5. TWO CASE STUDIES
In Section 5.1 we give a real-world example of a workflow

specification. the specification is given as a reference net.
Section 5.2 presents some model checking results carried out
in xtl on an encoding of that net. Possibilities of optimising
these results are provided in Section 5.3. We then present
an infinite state case study in Section 5.4 and perform some
infinite state model checking in Section 5.5.

5.1 The Prosecution Example
Our example deals with tasks common to many legal sys-

tems. The example is taken from [25], where its origin is at-
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tributed to W.M.P. van der Aalst. There are several actions
involved in this scenario provided by the example. They
range from people carrying out sub-tasks (like a secretary
verifying some data, an officer filing the case, and a prose-
cutor deciding upon the legal action to be taken) to more
abstract actions (such as a printer producing two copies of
a form).

The scenario of a law enforcement agency can be sum-
marised in 7 stages:

1. An offence is filed by officer 1

2. a report and legal form is printed and distributed to
be processed by a secretary and another officer, respec-
tively

3. the secretary verifies the details of the report

4. officer 2 fills out the form accompanying the initial
report

5. the completed form + report are sent back to officer 1

6. officer 1 checks whether the completed report + form
accurately describe the offence reported in stage 1

7. the prosecutor decides whether the offender be sum-
moned, charged right away, or the case is suspended

8. Appropriate action against the offender is taken or the
case is dropped.

It is easy to see that there are dependencies as well as
concurrency in this example. For instance stages 3 and 4
are independent of each other, while action 5 relies on both
3 and 4 to have been accomplished prior to 5. Also, there are
two actions that are carried out by officer 1. For the model
it is desirable not to distribute the possible actions of the
same person over the net. Thus, the tasks to be performed
by one person are put into the same place and the marking
of the task net ‘decides’ which action, i.e., which transition
is chosen.

The overall task is modelled by an object net that repre-
sents a protocol of actions to be performed. Each transition
in the task net has an uplink that allows it only to occur
if a transition with appropriate downlink in the system net
is fired simultaneously. The system net and the token net
is depicted in Figure 6. Before entering the scenario de-
scribed above, the system net creates a finite number of
tasks (references to token net instances). In Figure 6, the
initial marking (a black token in place p1) is consumed, two
distinct instances of the task net are created and uniquely
named instances to these nets are produced on the input
place to officer 1’s transitions.

Note, that the transition printer does not produce two in-
stances of the task on its output places, but rather duplicates
the reference to the task net instance, such that each of the
tokens produced points to the same instance of the task.
Thereby, inconsistencies in the completion of the report and
the form are avoided.

5.2 Model Checking Results
Some interesting properties to study in this example are:

• termination of all separate tasks

• termination in the system net with all tasks accom-
plished

• eventual summoning, suspension, or charging after the
case/task has been recorded

• mutual exclusion of the task net’s places f9, f10, f11

• deadlock-freeness.

We analysed these properties using xtl for various
numbers of tasks. For example, to find out whether a
two task system can reach a state where all tasks are
terminated, we check the CTL formula EFflow .f9 ≥ 2.
xtl then produced the following witness trace after 0.02 s:
start, official1(rec), official1(rec), printer,
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printer, secretary(verify), secretary(verify),

official2(complete), official2(complete), put together,

official1(ex), put together, official1(ex),

prosecutor(decide(summon)), prosecutor(decide(summon)),

tribunal(summon), tribunal(summon) .
A summary of our experiments can be found in Table 1.

The timings were taken on a PowerBook G4 1Ghz, 1Gb
Ram, running Mac OS X 10.2.6 and xsb Prolog version 2.6
compiled for batched scheduling and early completion. The
full state space for the example with 2 tasks which contains
145 states and 337 transitions can be found in Figure 4.
With 4 tasks it contains 20737 states and 96769 transitions.

5.3 Optimising using partial evaluation
As the experiments have shown, xtl performs quite well

on the OPN interpreter, checking more than 400 states per
second. However, there are various ways to substantially
improve the model checking performance. First, xtl can
be used in a mode where the counter example trace is not
constructed during the model checking. For technical rea-
sons6 this is more efficient, as can be seen in the “No Trace”
column of Table 2. Note that the counter example can still
be extracted from the xsb table structures [6].

Second, we can apply our compilation techniques of Sec-
tion 3.2. In fact, we can now not only specialise the OPN
interpreter but the model checker as well, i.e., we can spe-
cialise the model checker for a particular temporal logic for-
mula and for using our OPN interpreter for a particular
object Petri net. This is what we have undertaken, and the

6We can use xsb in “local scheduling” rather than in batched
mode with early completion.

results can be found in Table 2. Note that we have derived
the compiler from the model checker that does not compute
traces (but it would have been possible to do so for the model
checker that does compute them). For the second example,
the specialised model checker was thus able to explore 3644
states and 17004 transitions per second.

Note that generating the object Petri net/temporal logic
compiler took 270 ms (a compiler that can be used for any
CTL temporal logic formula and any object Petri net encod-
ing). Compilation for the formula EFflow .f9 ≥ 5 and the
object Petri net with 4 tasks took 460 ms. So, counting the
460 ms, compiling still gives a very respectable 3.11 times
improvement in speed. One can reduce compilation time by
making the specialisation less aggressive (e.g., if one works
mainly on small examples). Also, if one compiles the same
object Petri net for different formulae, not all of the compi-
lation has to be redone. Finally, it is interesting to note that
the more complicated AF formulae lead to bigger speedups,
as more of the model checking component is specialised.

5.4 Immigration Example
Figure 7 depicts the components of an OPN representing

the usual immigration procedure. It involves

• receiving a passport

• applying for a visa (single entry or lifetime)

• entering the country

• leaving the country

• re-entering the country



Table 1: Using xtl to model check the prosecution example
With 2 tasks

Formula Result Time
Overall Termination

AFflow .f9 = 2 true 0.289 s
EFflow .f9 ≥ 2 true 0.020 s
EFflow .f9 = 2 true 0.019 s
EFflow .f9 ≥ 3 false 0.180 s

Mutual Exclusion
EF (t.p9 ≥ 1 ∧ t.p10 ≥ 1) false 0.219 s
EF (t.p9 ≥ 1 ∧ t.p11 ≥ 1) false 0.201 s
EF (t.p10 ≥ 1 ∧ t.p11 ≥ 1) false 0.219 s

EFt.p9 ≥ 2 false 0.191 s
EF (t.p9 ≥ 1 ∧ t1.p10 ≥ 1) true 0.219 s

Termination of all Tasks
AFt.p12 = 1 true 0.270 s
AFt1.p12 = 1 true 0.310 s

AFAGt1.p12 = 1 true 0.650 s

With 4 tasks
Formula Result Time

EFflow .f9 ≥ 4 true 0.071 s
EFflow .f9 = 4 true 0.05 s
EFflow .f9 ≥ 5 false 47.78 s

With 5 tasks
EFflow .f9 = 5 true 0.091 s

With 6 tasks
EFflow .f9 = 6 true 0.13 s

Table 2: Using Logen to speedup model checking
Formula Result With Trace No Trace After Logen Logen Total

runtime runtime runtime Speedup Speedup
With 2 tasks

AFflow .f9 = 2 true 0.29 s 0.26 s 0.01 s 26.0 28.9
EFflow .f9 ≥ 3 false 0.18 s 0.08 s 0.01 s 8.0 18.0

With 4 tasks
AFflow .f9 = 4 true 83.63 s 78.40 s 6.62 s 11.8 12.6
EFflow .f9 ≥ 5 false 47.78 s 19.11 s 5.69 s 3.36 8.4

• re-applying for a visa

This system is infinite state, so without further restriction
it cannot be analysed using finite state model checkers such
as xtl (due to their depth-first exploration, they will often
not find counterexamples). We will thus now attempt to
apply the ecce tool, as outlined in Section 4.2.

5.5 Infinite Model Checking
We have attempted to prove safety properties of the immi-

gration example. For example, we have attempted to prove
that the property EF immigration.i5 = 2 is false. For that,
we have first applied logen to compile the OPN and the
temporal logic formula. We have then applied ecce on the
resulting compiled program, which resulted in the following
(where sat 1 was the entry point of the compiled program):

/* Specialised program generated by Ecce 1.1 */
/* Transformation time: 758820 ms */

sat__1(immi,[1],[0],[],[],[],[],[]) :- fail.

This was achieved using the default settings of ecce (not
tuned for model checking) using the most-specific version
post-processing. ecce was hence able to prove that our
safety property cannot be violated! In order to achieve that,
ecce had effectively produced a symbolic abstraction of the
infinite state space, consisting of 19 nodes (not counting
many intermediate nodes that were thrown away); the most-
specific post-processor was then able to conclude that none
of these symbolic nodes could violate the safety property.

We have attempted another safety property, and have
been equally successful.

6. COMPARISON WITH MAUDE

In recent attempts to find a unifying framework for con-
currency formalisms, the theory of rewriting logic has turned
out to be very useful. P/T nets, coloured Petri nets, and
algebraic Petri nets amongst other formalisms have been
successfully modelled in Maude.

Maude is a general tool for formal specification and anal-
ysis that is based on a very efficient rewriting engine. Typi-
cally, the Maude specifications are executable, though there
is no nice GUI attached to the command line-based tool.

We use (conditional) rewriting rules to represent the OPN
transitions, specify properties, and prove them with the LTL
model checker. Downlinks of the OPN’s transitions are mod-
elled directly in the conditional part of their rewrite rules.

The translation of OPNs to equivalent rewrite specifica-
tion is very straightforward. Due to the lack of space, we
do not give a formal translation in this paper, but rather
study an example of a transition from the OPN depicted in
Figure 6.

Consider, for instance, the printer transition of the system
net. It is encoded as:

crl [FE-printer]:
fe-pool-2(on NM1) fe-for-secretary(NM2)

fe-for-official-2(NM3) Net(on,M1) =>
fe-pool-2(NM1) fe-for-secretary(on NM2)

fe-for-official-2(on NM3) Net(on,M2)
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Figure 7: Object Petri net for the immigration example

if M1 rprinting => M2 fprinting .

The string in square brackets supplies a name for refer-
ence in the traces of the rewriting process. We are faced
with a conditional rule (crl) that rewrites the system state
where the place fe-pool-2 contains (possibly among oth-
ers) a token on such that on is the name of an object net.
The effect of the rewrite is that the reference on is removed
from fe-pool-2 and copies of the reference are generated
on fe-for-secretary and fe-for-official-2. This oper-
ation does not change any other tokens in the system net,
but the rewrite can only be executed if the conditional is
satisfied and thus provides the successor marking M2 of the
object net on.

The conditional involves the downlink printing of the
system net transition. This is represented here as an ad-
ditional token that is provided only in this conditional. It
allows the object net transition print’s rule to be executed
in the encoding:

rl [print]:
task-recorded rprinting =>

task-printed-1 task-printed-2 fprinting .

This rule can only be executed, if the ‘token’ rprinting
is provided. It then produces – in addition to the tokens re-
quired by the modelled transition – a unique ‘token’ fprinting,
which is also handed over to the condition of the invoking
system net rule. This mechanism ensures the synchronisa-
tion of the two transitions.

The rewrite specification uses multiset sorts for the sys-
tem net markings and the object net markings. The syn-
chronous channels (downlinks and uplinks) are also treated
as markings in the above sense.

As the model checker in Maude works on LTL, in Table 3
we only give figures for properties that can be expressed both
in LTL and CTL to allow a comparison with the results of
Section 5.2. Note that the size of the state spec for 5 tasks
was 248,832 nodes, so xtl manages to process more than
2000 nodes per second. The table does not include the time
to compile the OPNs. But, even including the compile time
of 0.72 s for the 5 task net, xtl + logen is still 1.88 times
faster. However, for small systems compilation via logen
is not really beneficial: for the 2 task net compiling takes
0.22 s and it is thus better to use the unspecialised model
checker which runs in 0.289 s (unless one wants to check
many formulae for the 2 task net; in which case compilation
may still be beneficial).

We come to the conclusion that the conversion to Prolog
is fairly easy, roughly as straightforward as the conversion to
Maude, but in some crucial aspects the xtl model checker is
much faster than the Maude model checker. Especially, the
possibility of applying model checking techniques to certain
infinite state systems should not be under-estimated.

7. OUTLOOK AND CONCLUSION
In summary, the main contributions of this paper are:

• Animation and execution of object Petri nets via a
structure-preserving transformation to Prolog, where
the original structure of the OPNs are not lost. This
allows easy translation of animation or verification re-
sults back to the original OPNs. We have also shown
how to model both reference and value semantics-based
OPNs.

• We have shown how to apply an offline partial eval-
uation tool to automatically compile OPNs into effi-



Table 3: Using Maude to model check the prosecution example
No of Tasks Formula Result Maude xtl + logen Factor

2 AFflow .f9 = 2 true 0.04 s 0.01 s 4
4 AFflow .f9 = 4 true 15.70 s 6.62 s 2.37
5 AFflow .f9 = 5 true 218.61 s 115.65 s 1.89

cient Prolog code and have produced an OPN com-
piler. This allows fast animation, but also opens up
the possibilities to use OPNs for rapid prototyping or
maybe even full runtime execution.

• We have shown how to do efficient CTL model check-
ing of object Petri nets by applying the Prolog based
xtl on our OPN interpreter,

• We have used partial evaluation to further improve
the efficiency of model checking by producing special
purpose model checkers,

• We have applied this to a non-trivial example from the
literature and have compared our results with Maude,
showing the efficiency of our approach

• We have used the ecce tool to perform infinite state
model checking on another example.

Among the greatest limitations of many simulation tools
is the necessity of applying strategies to the execution en-
gine, in order to achieve fairness. Depending on the tool and
formalism this can be very hard to implement, and more im-
portantly the strategy is a further component that needs to
be verified or at least validated. Using model-checking tech-
niques, we avoid these problems altogether by inspecting
the full state space of the system model. Though restricted
by the nature of model checking, the method outlined in
this paper is, e.g., applicable to a large class of real-world
workflow systems, business processing systems, and manu-
facturing systems.

Future work
The translation of object Petri nets (and reference nets) is
completely canonical, so that an export of a net specifica-
tion in this format from the Renew tool will pose no prob-
lem. The plug-in architecture of Renew should allow direct
interaction with the model checker in a future release.

Due to the translation into Prolog, we can now integrate
OPNs with other formalisms for which similar interpreters
have already been written, such as CSP [13] or B [14]. A
promising avenue would be linking OPNs with B: indeed
B provides very good, high-level data modelling but it lacks
modelling of concurrency aspects. This has lead to researchers
trying to combine B with CSP [1]. However, OPNs would
also be an attractive formalism, where B machines would
be naturally passed as tokens, which would also naturally
suppport multiple B machines. Finally the translation into
Prolog also opens up the possibilities to extend OPNs with
new features such as constraints, or adapt them for specific
application domains.
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APPENDIX
A. THE OBJECT INTERPRETER
/* interpreter for object petri nets, both for

value and reference semantics */

/* exported predicates for XTL:

trans/3, prop/2 */

trans(Trans,O,N) :-

autonomous(Name,Trans),global_trans(Trans,net(ID,Name),O,N).

trans(Trans,O,N) :-

init_synch(Name,Trans),global_trans(Trans,net(ID,Name),O,N).

global_trans(Trans,Net,Env,NEnv) :-

global_trans2(Trans,Net,Env,E2,Pending),

perform_pending_actions(Pending,E2,NEnv).

global_trans2(Trans,net(ID,Name),[obj(net(ID,Name),Marking)|T],

[obj(net(ID,Name),NMarking)|T],Pending) :-

obj_trans(Name,Trans,Pending,Marking,NMarking).

global_trans2(Trans,Net,[H|T],[H|TT],Pending) :-

global_trans2(Trans,Net,T,TT,Pending).

perform_pending_actions([],Env,Env).

perform_pending_actions([H|T],Env,NEnv) :-

perform_pending_actions(H,Env,E2),

perform_pending_actions(T,E2,NEnv).

perform_pending_actions(ref(Trans,RefNet),Env,NEnv) :-

/* print(ref(Trans,RefNet)),nl, */

global_trans(Trans,RefNet,Env,NEnv).

perform_pending_actions(add(Net),Env,NEnv) :- add_net(Net,Env,NEnv).

add_net(NetID,[obj(ID,M)|T],[obj(ID,M2)|AT]) :-

((NetID=ID)

-> (start_marking(NetID,M2),T=AT) /* net already exists */

; (M2=M,add_net(NetID,T,AT)) ).

add_net(NetID,[],[NewNet]) :- new_net(NetID,NewNet).

prop(L,P) :- member(Net,L), prop2(Net,P).

prop2(obj(Net,Marking),card(Net,Place,Card)) :-

member(bind(Place,Val),Marking), len(Val,Card).

prop2(obj(Net,Marking),card_geq(Net,Place,Card)) :- nonvar(Card),

member(bind(Place,Val),Marking), len(Val,L), L >= Card.

prop2(obj(_,Marking),P) :-

member(bind(Id,Val),Marking), P =.. [Id,Val].

prop2(obj(_,Marking),P) :-

member(bind(Id,Val),Marking), member(obj(Net,MN),Val),

prop2(obj(Net,MN),NP), P =.. [Id,Net,NP].

len([],0).

len([_|T],L) :- len(T,L1), L is L1+1.

token_trans(Trans,obj(net(ID,Name),Marking),obj(net(ID,Name),M2),

Ref) :- obj_trans(Name,Trans,Ref,Marking,M2).

token_trans(Trans,ref(NetID),ref(NetID),ref(Trans,NetID)).

new_net(NetID,obj(NetID,Marking)) :- start_marking(NetID,Marking).

start_marking(net(ID,Name),Marking) :-

findall(bind(PlaceName,DefaultValue),

place(net(ID,Name),PlaceName,DefaultValue), Marking).

:- op(500,yfx,’=-=>’). :- op(500,yfx,’=*=>’).

:- op(500,yfx,’<=+=’). :- op(500,yfx,’<=*=’).

/* delete_all_tokens */

’=*=>’(Place,Tokens,Marking,AfterMarking) :-

lookup_value(Place,Marking,Tokens),

Tokens \= [],

store_value(Place,[],Marking,AfterMarking).

/* delete_one_token */

’=-=>’(Place,Token,Marking,AfterMarking) :-

lookup_value(Place,Marking,MultiSet),

delete(Token,MultiSet,NewMS),

store_value(Place,NewMS,Marking,AfterMarking).

/* add_all_tokens */

’<=*=’(Place,Tokens,Marking,AfterMarking) :-

lookup_value(Place,Marking,MultiSet),

insert_all(Tokens,MultiSet,NewMS),

store_value(Place,NewMS,Marking,AfterMarking).

/* add_one_token */

’<=+=’(Place,Token,Marking,AfterMarking) :-

lookup_value(Place,Marking,MultiSet),

insert(Token,MultiSet,NewMS),

store_value(Place,NewMS,Marking,AfterMarking).

store_value(Var,Value,[],[bind(Var,Value)]) :-

print(’!WARNING: Identifier not yet defined: ’), print(Var),nl.

store_value(Var,Value,[bind(Var,_)|T],[bind(Var,Value)|T]).

store_value(Var,Value,[bind(V,VV)|T],[bind(V,VV)|UT]) :-

\+(Var=V), store_value(Var,Value,T,UT).

lookup_value(Id,State,Val) :-

(member(bind(Id,Val),State) -> true

; (print(’!ERROR: Identifier does not exist for lookup: ’),

print(Id),nl,

fail) ).

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).

delete(X,[X|T],T).

delete(X,[H|T],[H|RT]) :- delete(X,T,RT).

insert_all([],MS,MS).

insert_all([H|T],InMark,OutMark) :-

insert(H,InMark,Int), insert_all(T,Int,OutMark).

insert(X,[],[X]).

insert(X,[H|T],Res) :-

( (X @=< H) -> (Res = [X,H|T]) ; (Res = [H|RT], insert(X,T,RT))).

insert(X,Z,[X,Z]) :- Z \= [], Z\=[_|_],

print(’!type error, place not a list: ’), print(Z),nl.


