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Abstract. Partial order reduction has been very successful at combat-
ting the state explosion problem [4, 11] for lower-level formalisms, but
has thus far made hardly any impact for model checking higher-level
formalisms such as B, Z or TLA+. This paper attempts to remedy this
issue in the context of the increasing importance of Event-B, with its
much more fine-grained events and thus increased potential for event-
independence and partial order reduction. This paper provides a de-
tailed description of a partial order reduction in ProB. The technique
is evaluated on a variety of models. Additionally, the implementation of
the method is discussed, which contains new constraint-based analyses.
Further, we give a comprehensive description for elaborating the imple-
mentation into the LTL model checker of ProB.
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1 Introduction

ProB [16] is a toolset for validating systems formalised in B, Event-B, CSP,
TLA+ and Z. Initially developed for B, ProB comprises an animator, a model
checker, and a refinement checker. Using the ProB model checker for consistency
checking of B and Event-B models is a convenient way of searching for errors in
the model. In contrast to interactive theorem provers, model checking performs
tasks like invariant and deadlock freedom checking automatically.

B offers a variety of data structures and B models are often infinite state.
Making such a B machine manageable for model checking requires setting bounds
on the types of the variables. However, even systems with finite types can have
very large state spaces. Therefore, applying various optimisation techniques is
essential for practical model checking of B or Event-B specifications.

Partial order reduction reduces the state space by taking advantage of inde-
pendence between actions. The reduction relies on choosing only a subset of all
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enabled actions in each reachable state of the state space. In the process of choos-
ing such a subset, certain requirements have to be satisfied so that no new error
states (deadlocks) are introduced and no important executions for the verifica-
tion of the underlying system are pruned. There are several theories [10, 13, 27]
ensuring the soundness of such a type of reduction. Our implementation of par-
tial order reduction uses the ample set theory which is suggested as a method
for partial order reduction in [4, 10,11].

Our optimisation uses a static analysis for determining the relations between
each pair of operations or events in a B or Event-B machine, respectively. The
static analysis is executed prior to the model checking and is based on both
syntactic and new constraint-based analyses. These analyses are used for dis-
covering the mutual influences of actions inside the model. In this paper we
present an implementation of partial order reduction in the standard ProB
model checker [16] for the formalisms B [1] and Event-B [2]. In addition, we
evaluate the implementation on several case study models, and discuss the im-
plementation and its limitations. We give also a comprehensive description of the
LTL[e] model checking algorithm in ProB and consider ways of incorporating the
reduction method for model checking LTL−X properties in ProB. For practical
reasons, we will concentrate our review of the implementation of partial order
reduction on Event-B only.

Indeed, Event-B events are much more fine-grained than typical operations
in classical B (e.g., an if-then-else is decomposed into two separate events in
Event-B). As such, the potential for finding independent events and partial order
reduction is greater. Our intuition is that the more fine-grained nature of events
in Event-B should dramatically increase the potential for partial order reduction.

In the next section, we give a brief overview of the Event-B formalism and
consistency checking algorithm in ProB, as well as basic definitions and notation
are introduced. In Section 3, we discuss and define formally relations between
events that are relevant for this work. Section 4 presents the method and the
algorithm. The evaluation and the discussion of the implementation are given in
Section 5. The related work is outlined in Section 6. Finally, we discuss future
improvements and features for the reduced state space search, and draw the
conclusions of our work.

2 Preliminaries

2.1 Event-B

Event-B is a formal language for modelling and analysing of hardware and soft-
ware systems. The formal development of a system in Event-B is a state-based
approach using two types of components for the description of the system: con-
texts and machines.

The machines represent the dynamic part of the model and each machine is
comprised primarily of variables, invariants, and events. The variables are type-
cast and constrained by the invariants. The variables determine the states of the
machine. In turn, the states of the machine are related to each other by means of



the events. Each event consists of two main parts: guards and actions. Formally,
an event can be described as follows:

Event with local variables:

event e =
any

t /* the local variables */
where

G(x, t) /* the guards */
then

S(x, t, x′) /* the actions */
end

Event without local variables:

event e =
when

G(x) /* the guards */
then

S(x, x′) /* the actions */
end

In the definition above x stands for the evaluation of the variables before
the execution of the event e and x′ for the evaluation of the variables after the
execution of the event e. In the any clause the parameters t of the event will be
defined, these will be typecasted and restricted in the guards of the event. Note
that events may have no parameters. In that case the any clause will be omitted
and the keyword when is used instead of where. We will denote in this work
G(x, t) as the guard of the event e. Basically, in Event-B G(x, t) is a predicate
which is a conjunction of all particular guards of e. The actions part S(x, t, x′)
of an event is composed of a number of assignments to state variables. When the
event is executed, all assignments in S(x, t, x′) are completed simultaneously, all
non-assigned variables remain unaltered. It is possible that an event does not
assign any variable of the machine. In this case all variables remain unchanged
and the actions block consists of the skip declaration only.

The event e is said to be enabled in a particular state s of the machine if
G(x, t) holds for the current evaluation of the variables of s. Otherwise, we say
that the event e is disabled at s. An event e that is enabled at some state s can
be executed and as a result of executing its actions a state s′ is reached. Each
state s at which e is enabled we will denote as a before-state of e and each state
reached by e will be characterized as an after-state of e.

In this work we are particularly interested in how events of an Event-B ma-
chine are related to each other. Since it is often the case that events have common
write and read variables, they can affect each other in the process of their exe-
cution. For example, an event e1 may enable or disable another event e2 after
its execution if e1 assigns variables whose values will be read in the guard of
the event e2. On the other hand, events that do not affect one other and do
not interfere also exist and are called independent events. In this article we will
define and compute such types of dependence and independence relations and
explain how we take advantage of such information in order to optimise model
checking. In Section 3 we will give more detailed definitions of these relations
between events.



2.2 Notation and Basic Definitions

When we talk about the state space of a finite-state Event-B machine M we
mean the resulting state transition graph after the exploration of all possible
states of the machine M . The state transition graph of an Event-B machine will
be denoted as a transition system defined as a tuple

TSM = (S, S0, EventsM , R,AP,L),

where S is the set of states, S0 ⊆ S is a set of initial states, EventsM the set of
events of M , R ⊆ S ×EventsM × S the set of transitions, AP the set of atomic
propositions, and L : S → 2AP a labeling function assigning to each state s a
set of atomic propositions L(s) (basically L(s) comprises all atomic propositions

that hold in s). A transition (s, e, s′) ∈ R will often be written as follows: s
e→ s′.

When we talk about enabled events in a particular state s, we mean all events
whose guards all hold in s. The set of all events that are enabled in a state s
will be denoted by enabled(s). If enabled(s) = ∅ for some state s in TSM , then
we say that s is a deadlock state or just a deadlock.

The implementation of the partial order reduction technique presented in this
work is realised by the ample set theory. The reduction of the state space happens
by choosing a subset of enabled(s) in each state s. These subsets we will denote
by ample(s). In the context of partial order reduction, a state s is then said to
be fully expanded if ample(s) = enabled(s).

By definition, an event in Event-B may have parameters and non-deterministic
assignments. Thus, in some state s an event e can be executed in several ways,
i.e. there is more than one successor state s′ such that s

e→ s′. In that case,
we say that e is a non-deterministic event. For simplicity, from now on we will
assume that each event is deterministic. However, the optimisation in this work
has been implemented for the general case where non-determinism is present.

An event is called a stutter event if it preserves the truth value of each atomic
proposition of the property being checked. Formally, this means that an event e
is stutter with respect to a property φ if for each transition s

e→ s′ in TSM we
have L(s)∩APφ = L(s′)∩APφ, where APφ is the set of the atomic propositions
in φ. By property, we basically mean an LTL formula or invariant of an Event-B
machine. In some literature sources like in [11] the stutter events are referred as
invisible events and events that are non-stutter as visible events.

A path in TSM is a finite or infinite alternating sequence of states and events
π = s0

e0→ s1
e1→ . . . in TSM such that for all i ≥ 0 we have (si, e, si+1) ∈ R.

By πi = si
ei→ si+1

ei+1→ . . . we denote the suffix of the path π. By means
of the temporal logic LTL [23] one can make assertions about the temporal
behaviours of a system. In [22] an extension of LTL, denoted by LTL[e], has
been introduced allowing to state propositions also on transitions. For a finite
set of atomic propositions AP , an LTL[e] formula is formed inductively as follows:

– true and each a ∈ AP is an LTL[e] formula
– [e] is an LTL[e] for each event e ∈ EventsM
– if φ, φ1 and φ2 are LTL[e] formulae, then so are ¬φ, φ1∨φ2, Xφ, and φ1Uφ2.



An LTL[e] formula φ is said to be satisfied by a path π in TSM (denoted by
π |= φ) by means of the following semantics:

– π |= true
– π |= p ⇔ π = s0 . . . and p ∈ L(s0), for p ∈ APφ
– π |= [e] ⇔ |π| ≥ 2 and π = s0

e→ π1 for e ∈ EventsM
– π |= ¬φ ⇔ π 2 φ
– π |= φ1 ∨ φ2 ⇔ π |= φ1 or π |= φ2
– π |= Xφ ⇔ |π| ≥ 2 and π1 |= φ
– π |= φ1Uφ2 ⇔ there is a k ≥ 0 such that πk |= φ2 and πi |= φ1 for all

0 ≤ i < k

Using the boolean connectivities ¬ and ∨ other boolean operators such as ∧
and ⇒ can be derived: φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2) and φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2. The
temporal operators F (finally), G (globally), R (release), and W (weak-until)
can be derived using the basic LTL operators ¬, ∨, and U :

F φ ≡ trueUφ
G φ ≡ ¬(true U¬φ)
φ1Rφ2 ≡ ¬(¬φ1U¬φ2)
φ1Wφ2 ≡ ¬(true U¬φ1) ∨ (φ1Uφ2)

We say that a state s in TSM satisfies an LTL[e] formula φ if for every path
π starting in s we have π |= φ. Subsequently, an Event-B model M satisfies an
LTL[e] formula φ if for each initial state s ∈ S0 of TSM we have s0 |= φ. By
M |= φ we will denote that the model M satisfies the formula φ.

A closure of an LTL[e] formula φ, denoted by Cl(φ), is the smallest set of
formulae containing φ and which satisfies the following rules:

– ψ ∈ Cl(φ) ⇔ ¬ψ ∈ Cl(φ) (¬¬φ is identified with φ)
– ψ1 ∨ ψ2 ∈ Cl(φ) ⇔ ψ1, ψ2 ∈ Cl(φ)
– Xψ ∈ Cl(φ) ⇔ ψ ∈ Cl(φ)
– ¬Xψ ∈ Cl(φ) ⇔ X¬ψ ∈ Cl(φ)
– ψ1Uψ2 ∈ Cl(φ) ⇔ ψ1, ψ2, X(ψ1Uψ2) ∈ Cl(φ)

A subset of formulae F ⊆ Cl(φ) ∪ AP is consistent for a state s ∈ S if it
satisfies the following rules:

– for each atomic proposition a ∈ (F ∩AP ) ⇔ a ∈ L(s),
– ψ ∈ F ⇔ (¬ψ) /∈ F for every ψ ∈ Cl(φ),
– ψ1 ∨ ψ2 ∈ F ⇔ ψ1, ψ2 ∈ Cl(φ) for every ψ1 ∨ ψ2 ∈ Cl(φ),
– if s is not a deadlock, then (¬Xψ) ∈ F ⇔ X¬ψ ∈ F for every ¬Xψ ∈ Cl(φ),
– if s is a deadlock, then (¬Xψ) ∈ F for every Xψ ∈ Cl(φ),
– ψ1Uψ2 ∈ Cl(φ) ⇔ ψ2 ∈ F or ψ1, X(ψ1Uψ2) ∈ F for every ψ1Uψ2 ∈ Cl(φ),

A pair (s, F ), where s is a state and F a consistent subset of Cl(φ), is called an
atom. Using the tableau construction algorithm from [19] for checking M |= φ is
based on attempting to construct a directed graph A(TSM ) that has an infinite
α-path

πα = (s0, F0)
e0→ (s1, F1)

e1→ (s2, F2)
e2→ . . . where Fi ⊆ Cl(¬φ) for all i ≥ 0 such that:



1. for every edge (si, Fi)
ei→ (si+1, Fi+1) and for every Xψ ∈ Fi it follows that

ψ ∈ Fi+1,

2. π = s0
e0→ s1

e1→ s2
e2→ . . . is a path in TSM , and

3. for every i ≥ 0 and for every ψ1Uψ2 ∈ Fi there exists some j ≥ i such that
ψ2 ∈ Fj .

Clearly, (si, Fi)
ei→ (si+1, Fi+1) is an edge in A(TSM ) if and only if si

ei→ si+1

is a transition in TSM and for every formula Xψ ∈ Fi it follows that ψ ∈ Fi+1.
For finite state systems M the transition system TSM and so the graph A(TSM )
have finite number of states. An infinite α-path πα is then represented by a finite
path π1 leading to an atom (sk, Fk) that is an entry point of a strongly connected
component (SCC) C in A(TSM ). An SCC C is called self-fulfilling if for every
atom (s, F ) in C and for every formula ψ1Uψ2 ∈ F there is an atom (s′, F ′)
in C such that ψ2 ∈ F ′. We then say that if there exists a path in A(TSM )
starting in (s0, F0) reaching a self-fulfilling SCC where s0 ∈ S0 and ¬φ ∈ F0,
then M 2 φ (a counterexample has been found). Otherwise, if there is no such
a path in A(TSM ), we have shown that M |= φ.

2.3 The Consistency Checking Algorithm

Since the main contribution of this work is the optimisation of the consistency
checking algorithm for Event-B and B, we will give a quick overview of it in this
section.

The pseudo code in Algorithm 1 describes a graph traversal algorithm for
exhaustive error search in a directed transition system. All unexplored nodes
in the state space are stored in a standard queue data structure Queue while
running the consistency check for the particular Event-B machine. By popping
unexplored states from the front or the end of the queue a depth-first search
or a breadth-first search through Graph can be achieved, respectively. A mixed
depth-first/breadth-first search can be simulated by a randomised popping from
the front and end of the queue. This is the standard search strategy in ProB.

Once an unexplored state has been chosen from the queue, it will be checked for
errors by the function error (line 8). An error state, for example, can be a state
that violates the invariant of the machine or that has no outgoing transitions.

If no error has been found in the current state, then it will be expanded. In
this context, expansion means that all events from the current machine will be
applied to the current state. Each event whose guard G(x, t) holds for the current
variables’ evaluation will be executed and possible new successor states succ will
be generated. Subsequently, a transition will be added to the state space (line
12) and the state succ will be adjoined to the queue (line 14) if not already
visited. The algorithm runs as long as the queue is non-empty and no error state
has been found.

Since the way of adding transitions to the state space will become slightly
different in order to apply partial order reduction, the most relevant part of
Algorithm 1 for this paper is thus the pseudo code in lines 11-18.



Algorithm 1: Consistency Checking

1 Queue := {root} ; Visited := {}; Graph := {};
2 while Queue is not empty do
3 if random(1) < α then
4 state := pop from front(Queue) /* depth-first */

5 else
6 state := pop from end(Queue) /* breadth-first */

7 end if
8 if error(state) then
9 return counter-example trace in Graph from root to state

10 else

11 for all succ,evt such that state
evt→ succ do

12 Graph := Graph ∪ {state
evt→ succ};

13 if succ 6∈ Visited then
14 push to front(succ, Queue);
15 Visited := Visited ∪ {succ}
16 end if

17 end for
18

the code to
be optimised

19 end if

20 end while
21 return ok

3 Event Relations

Finding out how the events of an Event-B machine are related to each other
is a key step for applying partial order reduction. The simplest approach just
analyses the syntactic structure. For this, we first need to determine the read
and write sets for each event. For an event e, we denote by read(e) the set of the
variables that are read by e, and by write(e) the set of the variables that are
written by e. With readG(e) and readS(e) we will denote the sets of the variables
that are read in the guard and in the actions part of the event e, respectively.
To simplify the presentation we assume that each event is deterministic.

3.1 Introducing Independence

The most important event relation is independence. Formally, one can define
independence between two events as follows:

Definition 1 (Independence). Two events e1 and e2 are independent if for

any state s with e1, e2 ∈ enabled(s) the executions s
e1→ s1

e2→ s′ and s
e2→ s2

e1→
s′′ are both feasible in the state space (enabledness), and additionally s′ = s′′

(commutativity).

Two events e1 and e2 are said to be syntactically independent if the following
three conditions are satisfied:



(SI 1) The read set of e1 is disjoint to the write set of e2 (read(e1)∩write(e2) = ∅).

(SI 2) The write set of e1 is disjoint to the read set of e2 (write(e1)∩read(e2) = ∅).

(SI 3) The write sets of e1 and e2 are disjoint (write(e1) ∩ write(e2) = ∅).

From the three conditions above one can infer that two events that are syn-
tactically independent cannot disable each other since the effect of executing the
one event cannot change the value of each variable in the guard of the other
event ((SI 1) and (SI 2)). And, additionally, both events cannot interfere each
other as they write different variables ((SI 3)), and each variable written by the
one event is not read in the action part of the other event ((SI 1) and (SI 2)).
Thus, the definition of syntactic independence ensures independence according
to Def. 1.

On the other hand, syntactical independence is obviously a quite coarse con-
cept: two events of an Event-B machine can be independent even if some of the
conditions (SI 1) - (SI 3) are violated. Take for example the following two events:

Example 1 (Event Dependency).

event e1 =

when

x ∈ N
then

y := y + 1

end

event e2 =

when

z ≥ 1 ∧ z ≤ 10

then

x := z ‖ z := z + 1

end

Apparently, e1 and e2 are not syntactically independent as (SI 1) is violated
(read(e1)∩write(e2) = {x}). However, e2 cannot affect the guard of e1 because
e2 can assign to x only values between 1 and 10, and e1 is enabled when x is
a natural number. Since additionally write(e1) ∩ read(e2) = ∅, it follows that
the enabledness condition for independence for e1 and e2 is fulfilled. Further, no
variable written by the one event will be read in the actions part of the other
event and the write sets of e1 and e2 are disjoint. Thus, both events cannot
interfere each other and herewith the commutativity condition for independence
is fulfilled for e1 and e2. Hence, e1 and e2 are indeed independent events.

Since partial order reduction takes advantage of the independence between
events, it is important to determine independence as accurately as possible. The
higher the degree of independence in a system, the higher is the chance to reduce
its state space significantly. This motivates the following, more precise approach
to determine independence by using the ProB’s constraint solving facilities.

3.2 Refining the Dependency Relation

We use the constraint solver to find feasible sequences of events for the analysed
Event-B model. First, we define a procedure stating a Prolog predicate in ProB
used for testing whether a given sequence of events is feasible. This will form the
basis of our analysis.



Definition 2 (The test path procedure). For a given Event-B machine M ,
let Φ and Ψ be B predicates for M , and e1, . . . , en events of M . Then, we define
test path as follows:

test path(Φ, 〈e1, . . . , en〉, Ψ) =

 true if there is an execution s
e1→ . . .

en→ s′

such that s |= Φ and s′ |= Ψ
false otherwise

The predicates Φ and Ψ are used in order to constrain the search for possible
test paths for M . If, for example, Φ and Ψ are both tautologies (e.g., 1 = 1)
then test path will return true if the given sequence of events is possible from
some state of M . Accordingly, if Φ is an obvious inconsistency (e.g., 1 = 2) then
test path will return false as there is no state s such that s |= Φ.

We can now refine our definition of independence. We introduce the binary
relation DependentM ⊆ EventsM ×EventsM which is intended to comprise all
dependent pairs of events of a given Event-B machine M . Two events e1 and
e2 will be denoted as dependent if (e1, e2) ∈ DependentM , otherwise they are
considered to be independent. The dependency relation is defined as follows:

DependentM := {(e, e′) | (e, e′) ∈ EventsM × EventsM ∧ dependent(e, e′)},

where M is the observed Event-B machine, EventsM is the set of events of M
and dependent is the procedure showed in Algorithm 2.

Algorithm 2: Determining Events’ Dependency

1 procedure boolean dependent(e1, e2)
2 if write(e1) ∩ write(e2) 6= ∅ then
3 return true /* events are race dependent */

4 else if (readS(e1) ∩ write(e2) 6= ∅ ∨ write(e1) ∩ readS(e2) 6= ∅) then
5 return true /* events influence each others’ effect */

6 else
7 return

8 ((readG(e1) ∩ write(e2) 6= ∅ ∧ test path(Ge1 ∧Ge2 , ·
e2→ ·,¬Ge1))

9 ∨ (write(e1) ∩ readG(e2) 6= ∅ ∧ test path(Ge2 ∧Ge1 , ·
e1→ ·,¬Ge2))

10 end if
11 end procedure

The procedure dependent presents a refined strategy for determining the de-
pendency between two events. On syntactical level we would say that two events
are dependent if their write sets are not disjoint or if the write set of the one
event has variables in common with the read set of the other one. As we already
have seen (in Example 1), the syntactic analysis is not precise enough to exactly
determine how two events are related to each other. Therefore, in lines 8-9 in
Algorithm 2 we further check if the events can disable each other by means of



the test path procedure. In order to test whether two events are independent, we
need to check the two independence conditions enabledness and commutativity.
Obviously, the commutativity conditions for two events may not be satisfied if
both events have write variables in common (line 2) or if at least one of the
events may write a variable read in the actions part of the another event (line
4). If the tests in line 2 and in line 4 do not pass, then we just need to examine
if some of the events can disable the other one in order to show whether they
are independent (the enabledness condition).

Once we have entered the else branch, we test the enabledness condition. The
enabledness condition is tested by the two disjunction arguments in lines 8 and
9. If at least one of the arguments is fulfilled, we have deduced that e1 and e2 are
indeed dependent. Otherwise, we have proven that e1 and e2 are independent.

Checking whether the events can disable one other is realised by means of
the test path procedure. If, for example, e2 assigns a variable that is read in
the guard Ge1 of e1 (i.e. if readG(e1) ∩ write(e2) 6= ∅) then we can further
check whether e2 eventually can disable e1. This can be additionally examined
by searching for a possible transition s

e2→ s′ such that e1 and e2 are enabled in
s (s |= Ge1 ∧ Ge2) and e1 disabled in s′ (s′ |= ¬Ge1). The call for this case is

then test path(Ge1 ∧ Ge2 , ·
e2→ ·,¬Ge1). If the result of the call is true then we

have found a case in which e2 can disable e1 and thus inferred that e1 and e2 are
dependent. Otherwise, we have shown that the enabling condition of e1 cannot
be affected by the execution of e2.

3.3 The Enabling Relation

In addition to the independence of events, we are also interested in the partic-
ular way events may influence each other. Concretely, if event e1 modifies some
variables in the guard of event e2 we are asking in which way the effect of e1
may affect the guard of e2. In that case, the possible direct influences of e1 to
e2 can be enabling and disabling. The enabling relation is the residual relation
needed for applying the optimisation technique in this work.

In the next section we are interested whether events can be enabled after the
successively execution of a number of certain events. We will retain the enabling
information between events in terms of a directed edge labelled graph, defined
as follows:

Definition 3 (Enable Graph). An enable graph for an Event-B machine M
is a directed edge graph EnableGraphM = (V,E), where

– V = EventsM are the vertices, and
– E = {e1 7→ e2 | e1, e2 ∈ EventsM ∧ can enable(e1, e2)} the edges of

EnableGraphM .

In Definition 3, e1 7→ e2 means that e1 can enable e2, while can enable con-
stitutes a procedure which returns false when write(e1) ∩ readG(e2) = ∅, oth-
erwise tests if e1 can enable e2 by means of the test path procedure. The call of
test path for testing whether e1 may enable e2 is then test path(Ge1 ∧¬Ge2 , ·

e1→
·, Ge2).



Algorithm 3: Determining Enabling Relations

1 procedure boolean can enable(e1, e2)
2 if (e1 = e2) ∨ (write(e1) ∩ readG(e2) = ∅) then
3 return false
4 else

5 return test path(Ge1 ∧ ¬Ge2 , ·
e1→ ·, Ge2)

6 end if
7 end procedure

4 Partial Order Reduction Algorithm based on Ample
Sets

In this section we introduce the ample set theory and the algorithm for the
expansion of states by using the ample set method. The reduction of the original
state space using ample sets is realised by choosing of a subset of all enabled
events in each state.

4.1 The Ample Set Requirements

An ample set is a subset of the enabled events, chose for expansion. All events
not in the ample set will be ignored (leading to a state space reduction).

There are four requirements that should be satisfied by each ample set to make
the reduction of the state space sound:

(A 1) Emptiness Condition
ample(s) = ∅⇔ enabled(s) = ∅

(A 2) Dependency Condition
Along every finite execution in the original state space starting in s, an
event dependent on ample(s) cannot appear before some event e ∈ ample(s)
is executed.

(A 3) Stutter Condition
If ample(s) ( enabled(s) then every e ∈ ample(s) has to be a stutter event.

(A 4) Cycle Condition
For any cycle C in the reduced state space, if a state in C contains an enabled
event e, then there exists a state s in C such that e ∈ ample(s).

4.2 The Need of Local Criteria for (A 2)

We are interested in how efficiently each of the requirements can be checked.
For a state s, the conditions (A 1) and (A 3) can be checked by examining the
events in ample(s). In contrast to conditions (A 1) and (A 3), condition (A 2)
is a global property which requires for ample(s) the examination of all possible
executions (in the original state space) starting in s. A straightforward checking
of (A 2) will demand the exploration of the original state space. Local criteria



thus need to be given for (A 2) that facilitate an efficient computation of the
condition.

For our implementation, we define the following two local conditions (which
will replace (A 2)), where M is the observed Event-B machine, EventsM the set
of events in M , and s a state in the original state space:

(A 2.1) Direct Dependency Condition
Any event e ∈ enabled(s) \ ample(s) is independent of ample(s).

(A 2.2) Enabling Dependency Condition
Any event e ∈ EventsM \ enabled(s) that depends on ample(s) may not
become enabled through the activities of events e′ /∈ ample(s).

The following theorem states that (A 2.1) and (A 2.2) are sufficient local
criteria for (A 2).

Theorem 1 (Sufficient Local Criteria for (A 2)). Let s be a state in the
original state space. If ample(s) is computed with respect to the local criteria (A
2.1) and (A 2.2), then ample(s) satisfies (A 2) for all execution fragments in
the original state space starting in state s.

Proof. By contraposition. Let conditions (A 2.1) and (A 2.2) hold for ample(s).
Assume that (A 2) does not hold. Then there exists an execution fragment

σ = s
β1→ s1

β2→ . . .
βn→ sn

βn+1→ . . .

where β1, . . . , βn /∈ ample(s) and βn+1 is dependent on ample(s).
Since (A 2.1) holds for ample(s) it follows that any α ∈ ample(s) is enabled

in s1 (β1 is independent from ample(s) by (A 2.1)). Furthermore, β2 cannot
be dependent on ample(s) since β2 /∈ ample(s) and β1 cannot enable depen-
dent action by (A 2.2). Thus, it follows that β2 is independent from ample(s).
Continuing applying the same procedure inductively for the residual states si
and events βi with 2 ≤ i ≤ n on ample(s) one can conclude that βn+1 is not
dependent on ample(s). The independence of βn+1 to ample(s) contradicts the
assumption that there exists a fragment execution σ for which (A 2) is violated.
Hence, (A 2) is satisfied by any ample(s) fulfilling conditions (A 2.1) and (A
2.2).2

4.3 Computing ample(s)

We can now present our algorithm for computing an ample set satisfying (A 1)
through (A 3). The procedure ComputeAmpleSet in Algorithm 4 gets as argu-
ment a set of events.DependentM and EnableGraphM are the dependent rela-
tion and the enable graph computed for the corresponding Event-B machine M ,
respectively (see Algorithm 2 and Definition 3). The procedure ComputeAmpleSet
uses the DependencySet procedure for computing a set S satisfying the local
dependency condition (A 2.1). In the body of procedure DependencySet the set
G is regarded as directed graph where the vertices are represented by the events



of T and the edges by tuples α 7→ β. The tuple α 7→ β, for example, represents an
edge from vertex α to vertex β. By reachable(α,G) we denote the set of vertices
that are reachable from vertex α in G. The set T is meant to be enabled(s),
where s is the currently processed state. Accordingly, the set S in Algorithm 4
is intended to be ample(s). The output of the ComputeAmpleSet is an ample
set ample(s) satisfying the first three conditions of the ample set constraints.

Algorithm 4: Computation of ample(s)

Data: EnableGraphM , DependentM
Input: The set of events T enabled in the currently processed state s

(T = enabled(s))
Output: A subset of T satisfying (A 1) - (A 3)

1 procedure set ComputeAmpleSet(T )
2 foreach α ∈ T such that α randomly chosen do
3 b := true;
4 S := DependencySet(α, T ); /* (A 2.1) holds */

5 I := T \ S ;
6 foreach β ∈ I do /* checking whether S fulfils (A 2.2) */

7 if there is a path β → γ1 → . . .→ γn → γ in EnableGraphM such
that γ1 , . . . , γn , γ /∈ S ∧ γ depends on S then

8 b := false;
9 break

10 end if

11 end foreach
12 if b ∧ (S is a stutter set) then /* checking (A 3) */

13 return S
14 end if

15 end foreach
16 return T
17 end procedure

18 procedure set DependencySet(α, T )
19 G := ∅;
20 foreach (β, γ) ∈ DependentM ∩ (T × T ) do
21 G := {β 7→ γ} ∪G
22 end foreach
23 return reachable(α,G)
24 end procedure

The first step of computing ample(s), in case that T is a non-empty set, is
choosing randomly an event α from T . After that, a subset S of all enabled
events in s in regard to α is computed such that condition (A 2.1) is satisfied
(line 4). The set of events S is determined by means of the DependencySet
procedure (lines 18-24). Once the set S in regard to the randomly chosen event
α is computed, we test whether there may be an event β that is not from S and



from which a finite execution fragment

σ = s
β→ s1

γ2→ . . .
γn→ sn

γ→ sn+1

can start such that an event γ dependent on S may be enabled before execut-
ing some event from S (i.e. γ1, . . . , γn /∈ ample(s)). This we do by means of
looking for paths in EnableGraphM having as a starting point the event β and
reaching an event γ /∈ S which is dependent on S. In other words, in lines 6-11
of procedure ComputeAmpleSet we test if S further satisfies the second local
dependency condition (A 2.2). If there is some event β ∈ I for which condi-
tion (A 2.2) is violated we choose randomly the next event from T in order to
compute a new potential ample set. Otherwise, if for all β ∈ I there is no path
in EnableGraphM that presumptively represents an execution in TSM violating
(A 2.2), we check whether S fulfils the stutter condition (line 12). The procedure
ComputeAmpleSet in Algorithm 4 runs until an appropriate ample set has been
found or all potential ample sets fail to satisfy conditions (A 2) and (A 3) (the
we return T ).

In the following we will present our proof of correctness for computing an
ample set satisfying condition (A 1) to (A 3) by means of Algorithm 4. The
main statement, the procedure ComputeAmpleSet returns a set satisfying (A
1) to (A 3), will be given by means of a theorem. For proving the theorem we
will use three lemmas which show that the result returned by the procedure
ComputeAmpleSet accordingly satisfies the ample set conditions (A 1), (A 2.1),
and (A 2.2). The stutter condition (A 3) will not be handled specifically for
proving the theorem as we assume at this point that the procedure for checking
whether S is a stutter set is correct.

Lemma 1. Let A be a set computed by means of the ComputeAmpleSet procedure
for some set of events T . Then, it is satisfied that A is an empty set if and only
if T is an empty set.

Proof. Let T = ∅. In this case the outer foreach-loop will not be entered and
the argument T of the procedure ComputeAmpleSet will be returned as a result
(line 16). This infers that A is also an empty set.

Let T 6= ∅. Then, there are two ways of computing the set A. The first one is
when for no one of the events α ∈ T a set S can be computed that is returned as
a result in line 13. In this case ComputeAmpleSet will return the set T , which
by assumption is a non-empty set. The second possibility for computing A by
means of ComputeAmpleSet is when there exists an event α ∈ T such that a
set S is determined which is returned in line 13. In that case S has at least
one element, the event α, since α ∈ reachable(α,G). Note that the currently
computed set S is returned as a result if for all β ∈ I the if -condition in line 7
does not hold and all events in S should be stutter events.2

Lemma 1 states that ComputeAmpleSet(T ) = ∅ if and only if T is an empty
set. Hence, (A 1) is satisfied by the procedure ComputeAmpleSet in Algo-
rithm 4. As next, we want to show that each set A computed by the procedure



ComputeAmpleSet fulfils condition (A 2). This statement we will show by show-
ing that each A satisfies both local dependency conditions (A 2.1) and (A 2.2).
We already have shown in Theorem 1 that (A 2.1) and (A 2.2) are sufficient
criteria for (A 2). Thus, proving that A satisfies (A 2.1) and (A 2.2) will infer
that Algorithm 4 also satisfies the Dependency condition (A 2).

Lemma 2. Let A be a set of events computed by means of the procedure ComputeAmpleSet
for some set of events T . Then, any β ∈ T \A is independent of A.

Proof. First, if the procedure ComputeAmpleSet returns T as a result, it is clear
that A (= T ) satisfies condition (A 2.1). If A ( T , then the returned subset A
is the set computed by the procedure DependencySet for some event α in T .
Thus, to show that all events β ∈ T \A are independent of A, it suffices to show
the following claim:

Let S be a set of events computed by means of the procedureDependencySet
in regard to a set of

events T and an event α ∈ T . Then, any β ∈ T \ S is independent of S.

We prove the claim by contraposition. Assume there is an event γ ∈ T \S such
that γ is dependent on S. This means γ is dependent on some event β that is an
element of S. Recall that the set G in procedure DependencySet is regarded as
a directed graph where the vertices are the elements of T . The procedure spans
a directed graph G by adding an edge β 7→ γ for each tuple of events (β, γ) in
DependentM for which both events β and γ are lying in T (see lines 20-22 in
Algorithm 4). Note that β 7→ β for each (β, β) ∈ T × T are also added to G as
the relation DependentM is reflexive.

Remark that reachable(α,G) denotes the set S that is returned in line 4
in procedure ComputeAmpleSet. By assumption, there is an event γ ∈ T \
reachable(α,G) such that there exists an event β ∈ reachable(α,G) with (β, γ) ∈
DependentM . As β ∈ reachable(α,G) there is a path α 7→ α1 7→ . . . 7→ αn 7→ β
in G where (α, α1), (αn, β) ∈ DependentM and (αi, αi+1) ∈ DependentM for all
1 ≤ i ≤ n− 1. The foreach-block in procedure DependencySet guarantees that
each pair (α′, β) ∈ DependentM is added as an edge to G if α′ and β are elements
of T . Since γ and β are elements of T , and β is dependent on γ (by assumption) it
follows that there is also an edge β 7→ γ in G. This implies that γ is also reachable
from α which is a contradiction to the assumption γ ∈ T \ reachable(α,G). 2

Since for each set computed by the DependencySet procedure Lemma 2 is
satisfied, we can deduce that the local dependency condition (A 2.1) is fulfilled
for each set returned by the procedure ComputeAmpleSet. It remains to show
that the sets computed by Algorithm 4 fulfil also condition (A 2.2). This we will
demonstrate by means of the following lemma.

Lemma 3. Let A be an ample set computed by the procedure ComputeAmpleSet
in Algorithm 4 at some state s and let T denotes the set enabled(s). For each
β ∈ T \A and for all n ≥ 0 there is no execution fragment

σ = s
β→ s1

γ1→ s2
γ2→ . . .

γn→ sn+1
γ→ s′



in TSM such that γ1, . . . , γn, γ /∈ S and γ depends on A.

Proof. By Lemma 2 we know that A fulfils the local dependency condition (A
2.1). In other words, for each β ∈ T \A we know that β is independent from all
events in A. Without loss of generality we assume that A ( T . Let β be some
event from T \A. As next, we show that for all n ≥ 0 the execution fragment

σ = s
β→ s1

γ1→ s2
γ2→ . . .

γn→ sn+1
γ→ s′

with γ1, . . . , γn, γ /∈ S and γ depends on A does not exists in TSM .
We carry out the proof of the claim by induction on n. In the following we will

denote by σi, where i ≥ 0, the execution fragment s
β→ s1

γ1→ s2
γ2→ . . .

γi→ si+1
γ→

s′, and by Paths(EnableGraphM ) all paths in the enable graph EnableGraphM
of the currently checked machine M .

Basis Step: Let n = 0. Suppose the execution fragment σ0 = s
β→ s1

γ→ s′

where β, γ /∈ A and γ depends on A exists in TSM . Then, there are two cases to
consider.

(1) b 7→ γ /∈ Paths(EnableGraphM ): If β cannot enable γ, then γ must be
enabled in s. By assumption γ /∈ A. We also know that A satisfies condition
(A 2.1) and thus by Lemma 2 γ is independent from A. This, however, is a
contradiction to the assumption that γ depends on A. It follows that σ0 does
not exist for this case.

(2) b 7→ γ ∈ Paths(EnableGraphM ): If there is a path β 7→ γ in EnableGraphM
such that β, γ /∈ A and γ depends on A, then the set A will be denied as an
ample set in procedure ComputeAmpleSet as the if -condition in line 7 holds
for this case. Since A is returned as an ample set by ComputeAmpleSet we can
infer that σ0 with β, γ /∈ A and γ dependent on A does not exists in TSM for
this case.

Inductive Step: Assume, for n = k, that there is no execution fragment

s
β→ s1

γ1→ s2
γ2→ . . .

γk→ sk+1
γ→ s′ in TSM such that γ1, . . . , γk, γ /∈ A and γ

depends on A. We show that there is no execution

σk+1 = s
β→ s1

γ1→ s2
γ2→ . . .

γk→ sk+1
γk+1→ sk+2

γ→ s′

in TSM such that γ1, . . . , γk+1, γ /∈ A and γ is dependent on A.
Suppose again that there is such an execution fragment σk+1 in TSM . Then,

we need to consider again two cases.
(1) γk+1 7→ γ /∈ Paths(EnableGraphM ): The absence of such an edge γk+1 →

γ in EnableGraphM infers that γ cannot become enabled after the execution of
the event γk+1 and as a consequence we deduce that γ must already be enabled
in sk+1. This, however, contradicts with the induction hypothesis for σk. Hence,
in this case there is no sequence σk+1 such that γ1, . . . , γk+1, γ /∈ A and γ is
dependent on A.

(2) γk+1 7→ γ ∈ Paths(EnableGraphM ): In the following we intend to con-
struct an enabling path πk+1 ∈ Paths(EnablingGraphm) from the execution
fragment σk+1 by means of the following procedure: Beginning with π0 = γk+1 7→



γ and starting with γk+1 we examine whether γk may enable γk+1. If γk 7→
γk+1 ∈ Paths(EnableGraphM ), then we create a new enabling path as follows
π1 = γk 7→ π0. Otherwise, if γk cannot enable γk+1, we set π1 to be equal to
π0. Continuing this procedure inductively until s is reached we have constructed
as a result an enabling path πk+1 that is an element of Paths(EnableGraphM ).
We consider two cases for the enabling path πk+1.

(2.1) In the first the enabling path starts with β: πk+1 = β 7→ γ̂1 7→ . . . 7→
γ̂j 7→ γk+1 7→ γ, where each γ̂i corresponds to some event γl in σk+1 with
1 ≤ i ≤ j and 1 ≤ l ≤ k. Note that j ≤ k as there may be events in σk+1 that
cannot be enabled by its preceding events in the execution fragment σk+1. The
path πk+1 is an enabling path in EnableGraphM , which means that in this case
the if -condition in line 7 in Algorithm 4 holds and as a consequence A will be
refused as an ample set in procedure ComputeAmpleSet. Since A is returned
as a result by ComputeAmpleSet it follows that there is no execution fragment
σk+1 such that γ1, . . . , γk+1, γ /∈ A and γ is dependent on A.

(2.2) The second case we need to observe is when πk+1 = γ̂1 7→ . . . 7→ γ̂j 7→
γk+1 7→ γ, where each γ̂i corresponds to some event γl in σk+1 with 1 ≤ i ≤ j and
1 ≤ l ≤ k. In this case we know that γ̂1 is enabled in state s since all preceding
events of γ̂1 in σk+1 may not enable γ̂1. By assumption of σk+1 we know that
γ̂1 /∈ A. Thus, it follows that there exists a path γ̂1 7→ . . . 7→ γ̂j 7→ γk+1 7→ γ
in EnableGraphM such that γ̂1, . . . , γ̂j , γk+1, γ /∈ A and γ dependent on A for
some event γ̂1 ∈ T \ A. This, however, contradicts with the choice of the set A
since no such a set can be returned by the procedure ComputeAmpleSet when
the variable b is set to false.

Thus, we can conclude from the induction proof that for β and for all n ≥ 0
there is no execution fragment σn in TSM such that γ1, . . . , γn, γ /∈ A and γ
is dependent on A. It is readily to see that the proposition is fulfilled for all
β ∈ T \A. 2

Now using the results from Lemma 1, 2, and 3 we can state the following
theorem.

Theorem 2. Every set A computed by means of the procedure ComputeAmpleSet
in Algorithm 4 satisfies the ample set conditions (A 1) to (A 3).

The way of computing an ample set in Algorithm 4 tells us that more than one
ample set can exist per state. Randomly choosing an event from T for building
an ample set for the particular state s is equivalent to computing all possible
ample sets for s and then randomly choosing one of them. Another heuristic
for choosing which subset of enabled events in the currently expanded state
to be chosen would be always to choose the ample set with the least number of
elements in order to achieve maximal state space reduction. Always choosing the
ample set with the least number of events is, however, not a premise for achieving
maximal state space reduction as discussed in [26]. Therefore, we believe that
randomly choosing an ample set should result in an approximatively good state
space reduction. Note also that model checking with partial order reduction
using randomised choosing of an ample set in each state sometimes can result in



checking different number of states every time the model checker has been run
on the same model.

4.4 The Ignoring Problem

Condition (A 3), which requires adding only of stutter events to the ample sets
of each state (assuming that (A 1) and (A 2) are also satisfied), can sometimes
cause ignoring of certain (non-stutter) events in the reduced state space. Ignoring
of non-stutter events may happen when the reduction results in a cycle of stutter
events only. If some events are ignored in the reduced state space of the model,
then computing ample sets w.r.t. (A 1) through (A 3) may not be sufficient to
preserve some of the LTL−X properties. The issue is also known as the ignoring
problem [26].

To ensure that no events in the reduced state space are ignored, the cycle
condition (A 4) should be guaranteed by the reduced state space. We establish
(A 4) by means of the following condition:

(A 4’) Strong Cycle Condition
Any cycle in the reduced state space has at least one fully expanded state.

Using the strong cycle condition (A 4’) is a sufficient criterion for (A 4)
(Lemma 8.23 in [4]) and easier to implement. Since at least one of the states
should be fully expanded in any cycle, we expand fully each state s with an
outgoing transition reaching an expanded state generated before s, as well as
each state with a self loop. Note that this method of implementing the strong
cycle condition (A 4’) is approximative because it expands fully states sometimes
unnecessarily. We have chosen this way of realising (A 4’) in order to generalise
our algorithm of calculating ample sets for different exploration strategies. This
technique of implementing (A 4) has been also proposed in other works like
in [5], [8]. Furthermore, the implementation of condition (A 4) in this way is also
a design decision as we want easily to use the same reduction algorithm also for
LTL model checking.

4.5 Expanding a State by Applying the Ample Events Only

To apply the ample set approach for the consistency checking algorithm, we
change the way each state is expanded. Thus, the respective changes in Algorithm
1 take place in lines 7-13 of the algorithm. Basically, we can replace the code in
the else branch of Algorithm 1 by calling the procedure compute ample transitions
in Algorithm 5 with the currently processed state s as argument.

Algorithm 5 summarises the computation of the ample events in each state
and the execution of those in the reduced state space. The presented procedure
compute ample transitions gets as argument the state being expanded. The
computation of the successor states and the insertion of the new determined
transitions are realised by the procedure execute event.

In Algorithm 5 all enabled events in the currently processed state s will be
assigned to T (line 2). After that, an ample set S satisfying (A 1) through (A



3) is computed by means of the procedure ComputeAmpleSet. If the test of the
cycle condition in line 7 fails for each loop-iteration, then only the events from
S will be executed in s. Otherwise, the full expansion of s will be forced (lines
8-10), if a transition from S reaches an already expanded state s′ (s′ /∈ Queue)
generated before s or it is s itself (id(s) ≥ id(s′)).

Algorithm 5: Computation of the Ample Transitions

1 procedure compute ample transitions(s)
2 T := compute all enabled events in s;
3 S := ComputeAmpleSet(T );
4 foreach evt ∈ S do
5 s′ := execute event(s,evt);
6 T := T \ {evt}
7 if (id(s) ≥ id(s ′)) ∧ s ′ /∈ Queue then /* check (A 4) */

8 foreach e ∈ T do
9 execute event(s,e)

10 end foreach
11 break /* state s has been fully explored */

12 end if

13 end foreach
14 end procedure

15 procedure execute event(s, evt)
16 compute successor state s ′ by executing evt from s;

17 Graph := Graph ∪ {s evt→ s ′};
18 if s ′ 6∈ Visited then
19 push to front(s′, Queue);
20 Visited := Visited ∪ {s ′}
21 end if
22 return s ′

23 end procedure

4.6 Adapting the Reduction Algorithm for the ProB LTL[e] Model
Checker

Since ProB also supports LTL[e] model checking for Event-B (as well as B, Z,
CSP, and CSP‖B), we are also interested in elaborating the reduction algorithm
for the ProB LTL[e] model checker [22] for checking temporal properties on
models written in B and Event-B. In this subsection we discuss the adaptation
of the reduction algorithm above for reducing the state space in the process of
model checking LTL−X formulae. In particular, we consider which ample set
conditions should be regarded more carefully in order to adapt the reduction
algorithm to also effectively check LTL−X formulae by means of the LTL[e]

model checker algorithm in ProB.



LTL[e] Model Checking in ProB The ProB LTL[e] model checker follows
the tableau approach from [19] and can check properties specified in LTL[e]. The
algorithm presented in [22] additionally allows checking of properties stated in
Past-LTL[e] and can cope with deadlock states as well as partially explored state
spaces.

Given a model M and an LTL[e] formula φ, the ProB LTL[e] model checker
checks M � φ by searching for bad paths satisfying ¬φ, i.e. strongly connected
components (SCCs) that can be reached from some initial state of M and that
are self-fulfilling with respect to ¬φ. If such a path has been found, it will be re-
ported as a counterexample (failure behaviour of M) for φ. Otherwise, if no path
satisfying ¬φ has been discovered, we have proven that M � φ. The search for
SCCs in the ProB LTL[e] model checker is based on the Tarjan’s algorithm [24].

We can distinguish two approaches of checking an LTL[e] formula φ on an
Event-B model M with the LTL[e] model checker:

– Static approach: exploring the entire state space of M and then checking φ
by means of the tableau search algorithm, or

– Dynamic approach: expanding the state space of M while applying the
tableau search algorithm.

Both approaches have their advantages and disadvantages. On the one hand,
using the static approach one can benefit from the fact that the state space of the
model M has already been explored fully and thus various LTL[e] formulae may
be checked without re-exploring the state space every time. On the other hand,
by dynamically checking models one may profit from the fact that the state space
may not be required to be fully explored when a bad path in the yet partially
explored state space is found violating the checked property. The dynamical
LTL[e] model checking can be very effective especially when the checked model
has a very large state space. Checking LTL properties statically and dynamically
by means of the definitions above are also known as off-line and on-the-fly LTL
model checking in the literature [20], [11].

The tableau algorithm from [22] is implemented in C using a callback mech-
anism for evaluating the atomic propositions and the outgoing transitions in
SICStus Prolog. While constructing the directed graph A(TSM ), the tableau
algorithm expands the state space of M using the same procedure for expanding
each state as the consistency checking algorithm do (see Algorithm 1). The re-
duction presented in this section is based on computing just a subset ample(s) of
the set of enabled events enabled(s) in each state. Intuitively, what has changed
is just the way of expanding each state in the state space of the model being
verified. Since the LTL[e] model checker algorithm uses the same procedure to
expand each state we will use this fact to adapt the reduction algorithms for us-
ing these for reduced search in LTL[e] model checking in ProB. Basically, we need
to consider for which ample set conditions we have to adapt the algorithms 4
and 5 in order to make the reduction of the search graph A(TSM ) sound and
effective for off-line and on-the-fly LTL[e] model checking.



LTL[e] Formulae that are Invariant under Partial Order Reduction
Before discussing how the reduction algorithm can be adapted for LTL[e] model
checking with partial order reduction, we need to determine first which set of
LTL[e] formulae is invariant under reduction by partial order reduction. For-
mally, we study for which subset C of LTL[e] formulae the equivalence

∀φ ∈ C · (TSM |= φ⇔ T̂ SM |= φ) (1)

is satisfied, where T̂ SM denotes the reduced transition system of TSM using the
ample set theory. The equivalence is not satisfied for formulae with the next-
operator X since stutter equivalence does not preserve the truth values of such
formulae [21]. The extended version of LTL (LTL[e]) defines a new operator [·]
that allows one to make assertions about the executions of events along the paths
in TSM . For example, the formula “[e] ⇒ F {x = 2}” encodes the property ”if
e is executed at the current state the variable x will eventually be equal to 2”.
What we need to examine is whether formulae with the executed -operator [·]
violate the equivalence (1).

Consider, for example, the LTL[e] formula “φ = ([e1]⇒ F {x = 2})” and the
transition system TSM on the left side of Figure 1. Obviously, TSM 2 φ as there
is a path π = s0

e1→ s1
e2→ s3

e3→ s3 . . . in TSM that violates the formula. The
ample set approach will reduce the state space TSM as shown on the right side of
Figure 1. The reduction algorithm will choose ample(s0) = {e2} because visibly
e1 modifies the variable x which is used in the atomic proposition {x = 2}. This
means that e1 will be considered as a non-stutter event as it may potentially
change the value of the atomic proposition in φ. The reduced transition system
T̂ SM at the same time satisfies φ as the only path in T̂ SM is s0

e2→ s2
e1→ s3

e3→ . . .
which obviously does not violate φ.

The example shows that, in general, LTL[e] formulae with the execute-operator
do not fulfil the equivalence TSM |= φ ⇔ T̂ SM |= φ. Thus, the set of LTL[e]

formulae that is invariant under partial order reduction is the set of all LTL[e]

formulae without the next-operator X and without the execute-operator [·]. This
subset of formulae we will denote by LTL−X .

The Static Approach The static approach of LTL[e] model checking in ProB
may be explained as a two-phase process: expanding the state space of the model
M and in the subsequent step checking a set of LTL[e] formulae by means of the
tableau approach. The main advantage of the approach is that various formulae
may be checked once the entire state space of the model has been expanded.
On the contrary, performing LTL[e] model checking in this way demands the
exploration of the entire state space which in many cases may be very large.

Applying partial order reduction for the static approach has some subtle dif-
ferences from the static approach without reduction. The static approach with
reduction will be completed in two steps: constructing the reduced state space
and then using the LTL[e] model checking algorithm to check the LTL−X for-
mula in the reduced state space. However, for each new formula φ the reduced
state space in regard to φ should be constructed. This requirement is necessary
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Fig. 1. Ample-set reduction does not preserve the truth value for the formula [e] ⇒
F {x = 2}.

because of the Stutter condition (A 3) of the ample set method. For a given
model M , the set of stutter events in M will be determined in regard to the
formula being checked. Thus, every time a new formula is checked the set of
stutter events changes and as a consequence the corresponding reduced state
space should be constructed.

To adapt the reduction algorithm for the static approach we construct the state
space by using a graph traversal algorithm that uses the compute ample transitions
procedure in Algorithm 5 for expanding each reachable state. Basically, we can
use the consistency checking algorithm (Algorithm 1) to expand the reduced
state space of an Event-B model in case that we modify it as follows: removing
the if -statement in lines 8-9 and replacing the pseudo code in lines 11-18 by the
call compute ample transitions(state), where state is the currently processed
state. The exploration strategy of the modified version of the consistency check-
ing algorithm is not relevant for the computation of the ample sets since the
implementation of the Strong Cycle condition (A 4’) in Algorithm 5 preserve
the soundness of computing ample sets by different exploration strategies.

The Dynamic Approach In contrast to the static approach, in the dynamic
approach the transition system TSM of the model is created while constructing
the tableau graph A(TSM ) for the negation of the checked LTL[e] property. One
can consider to use the compute ample transitions procedure from Algorithm 5
for the expansion of the states of the reduced transition system T̂ SM . However,
we should look closely at the way the Cycle condition (A 4’) can be ensured in



the dynamic approach. In the first place, a cycle in the transition system TSM
does not necessarily correspond to a cycle in the search graph A(TSM ). This
means that having a cycle

π = si → si+1 → . . .→ si+k → si

in TSM does not imply that we have a path in A(TSM ) of the form

ρπ = (si, Fi)→ (si+1, Fi+1)→ . . .→ (si+k, Fi+k)→ (si, Fi+k+1)

with Fi = Fi+k+1. Moreover, the path ρπ may not exist in A(TSM ) since the
condition for existing of an edge (sj , Fj)→ (sj+1, Fj+1) in A(TSM ) additionally
requires that for every formula X ψ ∈ Fj the sub-formula ψ is an element of
Fj+1.

Additionally, the LTL[e] model checker uses the Tarjan algorithm for finding
self-fulfilling SCCs. The Tarjan algorithm is based on a depth-first search for
finding SCCs. One can profit from the depth-first search using the fact that an
atom having an outgoing edge to an atom on the search stack is closing a cycle
in A(TSM ). In this way, we can identify the cycles in the reduced tableau graph
A(T̂ SM ), and by changing the implementation accordingly, we can check the
Strong cycle condition (A 4’) without checking more than the sufficient number
of states. Recall that the procedure for checking (A 4’) in Algorithm 5 is necessary
but not sufficient as it may cause that states are unnecessarily fully expanded.

To make use of the observations above, one has to revise the way the Strong
Cycle condition (A 4’) should be checked for the dynamic approach of LTL[e]

model checking. The idea is to expand fully a state s of the reduced transition
system T̂ SM if it is certain that there is a back transition from an atom (s, F )
closing a cycle in A(T̂ SM ). Therefore, we replace the Strong cycle condition (A
4’) by the following condition:

(D 4) Dynamic Cycle Condition
Any cycle in the reduced search graph A(T̂ SM ) has at least one atom (s, F )
such that state s is fully expanded in T̂ SM , i.e. ample(s) = enabled(s).

The next step would be to incorporate the ample set reduction method in
the LTL[e] model checker of ProB. The procedure for computing the ample sets
for the LTL[e] model checker will be the same as for the consistency checking
algorithm up to the satisfaction of the Cycle condition (A 4). For ensuring (A
4) we will use condition (D 4) instead of (A 4’). Accordingly, the realisation of
(D 4) should take place during the construction of the tableau graph A( ˆTSM ).
From the technical point of view, this means that we should extend the tableau
algorithm in ProB, which is implemented in C, in regard to checking (D 4).
Apart from that, the procedure for expanding some state s will be changed to
execute just the events from ample(s) ⊆ enabled(s), where ample(s) is the set of
events computed with respect to the ample set conditions (A 1) through (A 3).
A state s in T̂ SM will be fully expanded if there is an atom (s, F ) in A(T̂ SM )
such that an edge from (s, F ) exists going back to an atom on the search stack.



5 Discussion and Evaluation

5.1 Discussion

In Section 4, we presented the background of the ample set theory and our im-
plementation of partial order reduction (Algorithms 4 and 5). Our algorithm
reduces the original state space of an Event-B machine M by using the depen-
dence relation DependentM and the enable graph EnableGraphM . DependentM
and EnableGraphM are computed prior to the model checking by using a static
analysis on the events of M . We chose to determine the dependency and enabling
relations between the events in this way for performance reasons. Computing the
respective relations between events on-the-fly in each state can sometimes be ex-
pensive since we use constraint based analyses in addition to syntactic analysis.
In fact, timeouts are set by default in ProB for decreasing the possibility that
the overhead caused by static analysis and partial order reduction outweighs the
improvement achieved by the reduction of the state space. ProB can also apply
partial order reduction without using its constraint solving facilities. In this case,
the determination of the dependency and enabledness between events is provided
by inspecting their syntactic structure only. This, however, often results in less
state space reduction.

The reduction of the state space by using partial order reduction cannot only
be influenced by the independence of the events of the model being verified, but
also by the type of the checked property. For instance, deadlock preservation
is guaranteed by any ample set satisfying conditions (A 1) and (A 2) [14, 26].
We adapted the implementation to this fact to gain more state space reduction
when a model is checked for deadlock freedom only.

Another factor that can influence the effectiveness of the reduction is the
number of the stutter events. For example, if we check the full invariant I , then
every event that trivially fully preserves I is a stutter event. Systems specified
in Event-B often have a very low number, if any, of events that trivially fulfil
the invariant. This means that partial order reduction will probably only yield
minor state space reduction in such cases. A possible way to detect more stutter
events w.r.t. I is to use either proof information (from the Rodin provers) or
ProB for checking invariant preservation for operations: any event which we
can prove to preserve the invariant now becomes a stuttter event.

5.2 Evaluation

We have evaluated our implementation of partial order reduction on various
models that we have received from academia and industry1. A part of those
experiments are presented in Table 1. In particular, we wanted to study the
benefit of the optimisation on models with large state spaces.

Besides having sizeable state spaces, the particular models should also have a
certain number of independent concurrent events. Otherwise, the possibility of

1 The models and their evaluations can be obtained from the following web page
http://nightly.cobra.cs.uni-duesseldorf.de/por/



reducing the state space is very minor. If, for instance, we have a system where
there is no pair of independent events or a system where any two independent
events are never simultaneously enabled, then no reductions of the state space
can be gained at all.

Table 1 - Part of the Experimental Results (times in seconds)

Analysis Model Checking
Model Algorithm States Transitions Time Time

Counters MC 3,974 11,485 - 3.417*

MC+POR 961 1,807 < 0.001 0.823*

MC-NoINV 110,813 325,004 - 73.167
MC-NoINV+POR 152 154 0.010 0.097

Fact v2 MC 112,185 381,510 - 208.150
MC+POR 112,185 381,510 0.589 230.434
MC-NoINV 112,185 381,510 - 197.181
MC-NoINV+POR 27,628 62,950 0.476 50.051

BPEL v6 MC 2,248 4,960 - 7.437
MC+POR 2,248 4,960 0.748 7.884
MC-NoINV 2,248 4,960 - 6.944
MC-NoINV+POR 847 1,004 0.640 2.670

Token Ring MC 8,196 45,077 - 14.291
MC+POR 8,176 40,565 0.011 14.671
MC-NoINV 8,196 45,077 - 13.814
MC-NoINV+POR 4,776 12,129 0.016 7.807

Sieve MC 8,328 28,436 - 215.138
MC+POR 8,142 25,237 12.437 217.754
MC-NoINV 8,328 28,436 - 220.864
MC-NoINV+POR 6,421 14,557 12.439 186.101

Phil v2 MC 2,350 4,528 - 9.086
MC+POR 2,347 4,390 0.406 9.354
MC-NoINV 2,350 4,528 - 8.870
MC-NoINV+POR 2,346 4,336 0.378 9.167

(*) Invariant Violation

We have performed four different types of checks in order to measure the per-
formance of our implementation of partial order reduction. By all types of tests
we used the mixed depth-first/breadth-first search of ProB for the exploration
of the state space. The four types of checks are abbreviated in Table 1 as follows:

MC: Model checking by using the standard consistency checking algorithm.

MC+POR: Model checking by combining the standard consistency checking
algorithm with the partial order reduction algorithm.

MC-NoINV: Model checking by using the standard consistency checking al-
gorithm without invariant violations checking.

MC-NoINV+POR: Model checking by combining the standard consistency
checking algorithm with the partial order reduction algorithm without in-
variant violations checking.



The consistency checking algorithm and the partial order reduction algorithm
are respectively Algorithm 1 and Algorithm 5. For the evaluations we used model
checking for searching for deadlocks and invariant violations only2. Due to the
fact that checking for deadlock freedom only requires the satisfaction of the
ample set conditions (A 1) and (A 2) for the reduced search, we additionally
observed experiments with MC-NoINV+POR. For this type of checks, the results
produced by MC-NoINV+POR were compared with the results of MC-NoINV.

One specification, Counters, in Table 1 is given that represents the best case
for the reduced search in ProB. Counters is a toy example aiming to show the
benefit of partial order reduction when each event in the model is independent
to the executions of all other events. The worst case, when no reductions of the
state space are gained, is represented by checking Fact v2, and BPEL v6 with
MC+POR. Fact v2 is an Event-B model of a simple parallel algorithm for integer
factorisation. The factorisation algorithm’s model was re-created from [12] for
three computational slave processes searching for a factor of 53. In Fact v2 the
guard of the event newround was weakened. Phil [9] and BPEL [3] are case
studies of the dinning philosophers problem with four philosophers and of a
business process for a purchase order, respectively. Both are carried by a stepwise
development via refinement; their last refinement versions Phil v2 and BPEL v6
are presented in Table 1. Token Ring is a B model of a token ring protocol and
Sieve an Event-B model formalising a parallel version (for four processes) of the
algorithm of sieve of eratosthenes for computing all prime numbers from 2 to 40.

All measurements were made on an Intel Xeon Server, 8 x 3.00 GHz Intel(R)
Xeon(TM) CPU with 8 GB RAM running Ubuntu 12.04.3 LTS. The Analy-
sis times in Table 1 are the measured runtimes for the static analysis of each
machine. If the POR option is not set in an experiment, no static analysis is
performed. Each experiment has been performed ten times and its respective
geometric means (states, transitions and times) are reported in the results.

In general, the most considerable reductions of the state space were gained
with the reduced search when only deadlock freedom checks were performed.
We consider both the reductions of the number of states and transitions. In two
cases (Fact v2 and BPEL v6 ), no reductions of the state space were gained using
the reduced search MC+POR. However, the model checking runtimes in those
cases are not significantly different from the model checking runtimes for the
standard search MC. As expected, significant reduction of the state space and
thus the overall time for checking the Counters model were gained by both re-
duction searches MC+POR and MC-NoINV+POR. For the test cases MC and
MC+POR of Counters an invariant violation was found which led to a termi-
nation of the respective search. Interesting results were obtained when applying
any of the reduced searches on the Phil v2 model. Although the model has a
great magnitude of independence, the coupling between the events is so tight
that no significant reductions can be gained.

2 Another options like finding a goal or searching for assertion violations have not
been checked while model checking the particular model.



6 Related Work

Several works have been devoted to optimising the ProB model checker for
B and Event-B. In this section, we refer to some of the techniques have been
developed and analysed for the ProB model checker.

Symmetry reduction is a technique successfully implemented in ProB for
combating the state space explosion problem. Using the fact that symmetry
is induced by the deferred sets in B, two sorts of exhaustive symmetry reduc-
tion algorithms in ProB have been implemented: the graph canonicalisation
method [25] and the permutation flooding method [17]. The general idea of both
techniques is to check only a single representative of each symmetry class of
equivalent states during the consistency check of the model being verified. An
approximative symmetry reduction method [18] based on computing symmetry
markers for states of B machines has been also implemented in ProB. The idea
of the method is that two states are considered to be symmetrically equivalent if
they have the same symmetrical marker. All three methods showed good perfor-
mance results when model checking B or Event-B models with a certain degree
of symmetry induced by B’s deferred sets.

Another notion of optimising the ProB model checker has been presented
in [6]. The idea of this work is to improve the efficiency of the model checker by
using the already discharged proof information from the front-end environment.
The verification technique, known as proof assisted model checking, is used by
default in ProB and has shown a performance improvement up to factor two
on various industrial models.

Other techniques, such as using mixed breadth-first/depth-first search strategy
and heuristic functions for performing directed model checking [15], have been
also suggested as optimisation methods for the standard ProB model checker.

The notion of the enable graph for Event-B models has been first introduced
in [7]. In this work enable graphs are used to encode the information about
independence3 and dependence of events by means of enabling predicates. In
addition, the authors of this work suggest a method for optimising model check-
ing by skipping the evaluation of the predicates in some states by means of
evaluating the enabling predicates of the enable graph. Additionally, an algo-
rithm is proposed for constructing flow graphs of Event-B models as well as
possible applications of flow graphs are discussed.

7 Conclusion and Future Work

Partial order reduction has been very successful for lower-level models such as
Promela, but has had relatively little impact for higher-level modelling languages
such as B, Z or TLA+. Inspired by Event-B’s more simpler event structures and
more distributed nature, we have started a new attempt at getting partial order

3 The definition of independence between events in [7] is different from the definition
of independence in respect to partial order reduction. In [7] two events are considered
to be independent if each of the events cannot influence the guard of the other one.



reduction to work for high-level formal models. We have presented an imple-
mentation of partial order reduction in ProB for Event-B (and also classical B)
models. The implementation makes use of the ample set theory for reducing the
state space and uses new constraint-based analyses to obtain precise relations
of influence between events. Our evaluation of the reduction method has shown
that considerable reductions of the state space can be gained for models with
a high degree of independence and concurrency. We also observed that check-
ing only for deadlock freedom tends to provide more significant reductions than
checking simultaneously for invariant violations and deadlock freedom.

Next, we intend to integrate the reduction algorithm also in the ProB LTL[e]

model checker. In this work we discussed how to elaborate the reduction algo-
rithm for the LTL model checker in ProB. We considered two approaches (static
and dynamic approach) for providing LTL model checking in ProB using partial
order reduction. We plan to implement both approaches, as well as to make a
thorough evaluation.
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