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Abstract. In this paper we present a static analysis to determine how
events influence each other in Event-B models. The analysis, called an
enabling analysis, uses syntactic and constraint-based techniques to com-
pute the effect of executing one event on the guards of another event.
We describe the foundations of the approach along with the realisation
in ProB. The output of the analysis can help a user to understand the
control flow of a formal model. Additionally, we discuss how the infor-
mation of the enabling analysis can be used to obtain a new optimised
model checking algorithm. We evaluate both the performance of the en-
abling analysis and the new model checking technique on a variety of
models. The technique is also applicable to B, TLA+, and Z models.
Key words: Model Comprehension · Model Checking · Static Analysis
· Event-B · Constraint-Based Analysis

1 Introduction

In Event-B [2] the dynamic behaviour of a system is described by (atomic)
events and a system model is often composed of various components affecting
each other and also possibly having each their own control flow. In this context,
it can be very interesting to infer which events enable or disable which other
events, i.e., to infer the control flow inherent in a model. This information can be
useful to better understand the model, to find hidden control flow dependencies
and, in general, to validate the model. Moreover, this information can be highly
beneficial for other analyses, such as model checking or test-case generation.
For the latter, we have presented an application in [25], where a considerable
reduction in test-case generation time was achieved.

In this paper, we present the foundation of a static, constraint-based analysis
to infer the control-flow for Event-B models. The analysis, which we denote
in this work as enabling analysis, is implemented in ProB [21] and can be
applied also for B [1], TLA+ [18], and Z [27] since ProB supports also these
formalisms [16], [24]. We validate the performance of the enabling analysis on
a variety of models and present the results of the analysis on one particular
model [28], presented within the landing gear case study track of ABZ 2014, and
discuss the possible representations of the enabling information.

In addition, a new technique for state space exploration for B and Event-B
is introduced, which makes use of the enabling information during model check-
ing. The new method of state space exploration is implemented in ProB, which



comprises a model checker for automatic verification of specifications written
in B, Event-B, TLA+, Z, and CSP. The technique is thoroughly discussed and
evaluated on various B and Event-B models. For simplicity of the presentation,
we will concentrate mainly on Event-B models in this paper.

In the next section, we give a brief overview of the Event-B formalism. The
foundations of the enabling analysis are introduced in Section 3. In Section 4
we present and evaluate our new state space exploration technique for Event-B.
The related work is outlined in Section 5. Finally, we discuss future directions
and draw the conclusions of our work.

2 Preliminaries

The static parts of an Event-B model, such as carrier sets, constants, axioms,
and theorems, are contained in contexts, whereas the dynamic parts of the model
are included in machines. A machine comprises variables, invariants, and events.
We denote the conjunction of all invariants by Inv and the set of all events by
Events. The variables make up the states of the model. An event consists of two
main parts: guards and actions. Formally, an event has the following form:

event e =̂ any t when G(x, t) then S(x, t, x′) end

The symbols x and x′ stand for the evaluation of the machine variables before
and after the execution of the event e, and t for the parameters of the respective
event. The parameters t in the any clause are typed and restricted in the guard
G(x, t) of the event. The action part S(x, t, x′) of an event is comprised of a list
of assignments to machine variables. When the event is executed, all assignments
in the action part are completed simultaneously. All variables that have not been
assigned to remain unchanged. In case an event has no parameters we will denote
the guard of the event by G(x) and the action part by S(x, x′). Note that the
guard of an event can simply be truth (>) and the action part can be empty
(also known as skip).

Every machine contains the special initialisation event, which has no guards
and whose actions are not allowed to refer to the current variable values x of the
machine. A state of an Event-B machine with variables x is a vector of values of
the correct type. We write s |= p(x) to denote that the predicate p over variables
x is true in s.

Definition 1. (Event Enabledness) For an event e we define grde by

grde(x) =

{
G(x), if e has no parameters

∃t · G(x, t), otherwise

An event e is said to be enabled (respectively disabled) in a state s iff s |= grde

(respectively s |= ¬grde ). Further, we define

enabled(s) = {e ∈ Events | s |= grde}

to denote the set of all enabled events in state s.



By s
e→ s′ we will denote the transition that goes from s to s′ by executing

the event e from s, where s and s′ are states of the machine to which e belongs
and further s |= grde. As a running example throughout the next section we will
use the Event-B machine in Example 1.

Example 1 (Example of an Event-B Machine).

machine Mv,w

variables v, w
invariants v ≥ 0 ∧ w ≥ v
events

initialisation =̂ v := 0 ‖ w := 1
event vinc =̂ when v < w then v := v + 1 end
event w2inc =̂ when v = w then w := w + 2 end

end

Referring to Example 1 and Definition 1, we can observe that in the state
〈v = 0, w = 1〉 the event vinc is enabled and w2inc is disabled, whereas in
〈v = 1, w = 1〉 the event vinc is disabled but w2inc is enabled.

3 Enabling Analysis

In this section, we study the effect of executing one event on the status of the
guard of another event. At first, we introduce the definition of the before-after
predicate of an event e which expresses a logical statement relating the values
of the variables before e (also denoted by x) to the values of the variables after
e (also denoted by x′).

Definition 2. (Before-After Predicate BAe) We define the before-after predi-
cate BAe of an event e by BAe(x, x

′) = ∃t.G(x, t) ∧ S(x, t, x′) in case the event
has parameters. If e has no parameters, then BAe(x, x

′) = G(x) ∧ S(x, x′).

The next definition captures whether—provided the invariant holds1 and a
pre-condition P— an event can be executed and make a post-condition Q true.

Definition 3. (Conditional Event-Feasibility ;e) For an event e and the pred-
icates P and Q, we say that an event e is feasible under the conditions P and
Q, denoted by P ;e Q, iff there exists a state s such that s |= Inv ∧ P and
s |= ∃s′.(BAe(s, s

′) ∧Q). If there is no such a state s, then we write P 6;e Q to
denote that e is not conditionally feasible under P and Q.

1 Note: we include the invariant Inv here, meaning that all results are only valid so-
long as the invariant remains true. In practice, this is usually ok: animation and
model checking with ProB will detect invariant violations. Adding the invariant is
often important to help the constraint solver. On the other hand, it is possible to
remove the invariant from Definition 3 and one would then obtain an analysis that
is also valid for states which do not satisfy the invariant.



For the machine Mv,w in Example 1, we have that (v = 10) ;w2inc (w = 12),
(v = w) 6;w2inc (v = w), (v = w) 6;vinc (v = w), or (v < w) ;vinc (v = w).
To establish that (v < w) ;vinc (v = w) is satisfied according to Definition 3,
we can find for Mv,w, for example, the state s = 〈v = 1, w = 2〉 satisfying v < w
and the solution for s′ with 〈v = 2, w = 2〉 for the conditional feasibility
of vinc. Note that in contrast to the Hoare triple {P}S{Q}, P 6;e Q does not
ensure that Q holds after e, only that Q may hold, for some parameter values and
non-deterministic execution. Based on Definition 3 we can already characterise
certain possible effects of the execution of an event e1 on the status of another
event e2 as given in Definition 4.

Definition 4. (feasible, guaranteed, impossible) An event e is feasible if there
exists a state s such that s |= Inv ∧grde. A feasible event e is guaranteed if there
exists no state s such that s |= Inv ∧ ¬grde.
Event e2 is impossible after a feasible event e1 iff > 6;e1 grde2 . Event e2 is
guaranteed after a feasible event e1 iff > 6;e1 ¬grde2 .

In our example Example 1, both events are feasible, and vinc is guaranteed
after w2inc but w2inc itself is impossible after w2inc. After vinc neither event
w2inc nor vinc is impossible or guaranteed.

We now want to obtain a more precise characterisation of the effect of an
event e1 on the enabling condition of another event e2. We say that an event e2
is enabled by some event e1 if there is a transition s

e1→ s′ such that s |= ¬grde2
and s′ |= grde2 . Similarly, we say that e2 is disabled by e1 if there is a transition

s
e1→ s′ such that s |= grde2 and s′ |= ¬grde2 .
In the Definition 5 below we check four different conditions: can e1 enable e2,

can e1 disable e2, can e1 keep e2 enabled, and can e1 keep e2 disabled. The
answer to each of these questions can be true or false, giving rise to 16 different
combinations. We can view the above four conditions as possible edges in graph,
consisting of possible values of the guards before and after an execution. This
leads to the following definition of an enabling relation.

Definition 5. Let e1, e2 be events. By ER(e1, e2), the enabling relation for
e2 via e1, we denote the binary relation over {>,⊥} defined by

1. ⊥ 7→ > ∈ ER(e1, e2) iff ¬grde2 ;e1 grde2 (e1 can enable e2)
2. > 7→ ⊥ ∈ ER(e1, e2) iff grde2 ;e1 ¬grde2 (e1 can disable e2)
3. > 7→ > ∈ ER(e1, e2) iff grde2 ;e1 grde2 (e1 can keep e2 enabled)
4. ⊥ 7→ ⊥ ∈ ER(e1, e2) iff ¬grde2 ;e1 ¬grde2 (e1 can keep e2 disabled)

We provide a graphical representation of enabling relations, explained and
illustrated on Example 1 in Fig. 1.

Providing the user with a table containing enabling diagrams will probably
turn out to be overwhelming. We have therefore tried to group the 16 possibilities
into concepts which can be more easily grasped by users. Earlier in Definition 4
we have already introduced the concepts of guaranteed and impossible. Three
further concepts are those introduced in Definition 6.
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Fig. 1. Graphical representation of the effect ER(e1, e2), illustrated on Example 1

Definition 6. We say that e1 keeps e2 if e2 remains enabled respectively dis-
abled after e1, i.e. we have: (grde2 6;e1 ¬grde2) ∧ (¬grde2 6;e1 grde2).
We say that e2 can enable e1 if e2 cannot disable e1 and may enable e1, i.e. the
following constraints are fulfilled: (grde2 6;e1 ¬grde2) and (¬grde2 ;e1 grde2).
We say that e2 can disable e1 if e2 cannot enable e1 and may disable e1, i.e. the
following constraints are fulfilled: (¬ grde2 6;e1 grde2) and (grde2 ;e1 ¬grde2).

Fig. 2 shows all possible enabling relations, and shows how we have grouped
them using the concepts from Definition 4 and Definition 6. These concepts are
also presented to the user in our implementation of the enabling analysis in
ProB, either as a table or a graph. All combinations in Fig. 2 can actually arise
in practice. 2

Implementation and Empirical Evaluation

We have implemented the enabling analysis within the ProB toolset, also to
answer the questions whether the analysis can provide interesting feedback to
the user and whether the analysis can scale up despite the inherent quadratic
complexity and the possibly complex constraints. Indeed, for any given e, P,Q
we use ProB’s constraint solver to determine whether P ;e Q or P 6;e Q
holds. For example, for (w > v) ;vinc (v = w) the constraint solver would find
a solution state s satisfying v > w from which after executing vinc at s a solution
state s′ will be found that fulfils v = w. Possible solution states could be, for
instance, s = 〈v = 1, w = 2〉 and s′ = 〈v = 1, w = 2〉. In case a time-out occurs
during constraint solving, we have no information about whether P ;e Q or
P 6;e Q holds. An occurrence of a time-out during constraint solving means
that the solver could not find a solution for the constraints in the given time
from the user. In the graphical representation, an occurrence of a time-out could
be visualised by having a dashed edge. This would also mean that considering a
time-out for the definition of the different types of enabling relations gives rise
of 34 = 81 combinations rather than 16.

In addition to determining ER(e1, e2) for each pair of events, including e1 = e2,
we also compute for every event e2 the possible status after the initialisation
event. That is, we compute also > ;INIT grde and > ;INIT ¬grde, the con-
ditional feasibility operator in Definition 3, where BAINIT (s, s′) is the after-

2 In addition, we illustrate some of the enabling relations on concrete examples in
https://www3.hhu.de/stups/prob/index.php/Tutorial Enabling Analysis.
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Fig. 2. Classification of the possible effects of an event e1 on the guards of e2. Dotted-
edges mean the absence or presence of the edge does not influence the classifciation.

predicate of the initialisation event when determining the respective ;INIT

conditional-feasibility of INIT in regard to some event e.
Syntactic conditions: The enabledness of an event e is determined by the

values of the variables that are read in the guard of e (grde). The set of read
machine variables in grde will be denoted by readG(e). Accordingly, by readS(e)
and write(e) we will denote the variables that are read and the variables that
are written in the action part of e, respectively.

In our implementation we have used syntactic conditions to avoid calling the
constraint solver as much as possible. The following lemma captures this op-
timisation. It decomposes the guard of the second event into two parts: those
conjuncts that cannot be influenced by the execution of the first event (grd static)
and those that can (grddyn).

Lemma 1. Let e1 and e2 be two events and let grde2 = (grd static∧grddyn) where
vars(grd static) ∩ write(e1) = ∅. Then

grde2 ;e1 grde2 iff grde2 ;e1 grddyn

grde2 ;e1 ¬grde2 iff grde2 ;e1 ¬grddyn

¬grde2 ;e1 grde2 iff (grd static ∧ ¬grddyn) ;e1 grddyn

¬grde2 ;e1 ¬grde2 iff (grd static ∧ ¬grddyn) ;e1 ¬grddyn or ¬grd static ;e1 >



If write(e1) ∩ readG(e2) = ∅, then the following hold:

¬grde2 6;e1 grde2 and grde2 6;e1 ¬grde2

In our evaluation we have applied the enabling analysis to Event-B and B
models. For the latter, the computation of grde is more intricate and actually
impossible for while-loops. In principle, the guard can be extracted by transform-
ing operations into normal form [1]. Our implementation traverses the B opera-
tions and collects and combines guards. The implementation does not support
while-loops and does not allow operation calls to introduce additional guards.

Table 1. Runtimes of the Enabling Analysis (times in seconds)

Benchmark # Events # Pairs # Timeouts Analysis Time

CAN BUS 21 462 2 1.565
Cruise Control 26 702 14 9.480
DeMoney 8 72 0 0.685
DeMoney Ref1 8 72 11 5.503
Scheduler 5 30 0 0.687
USB 4 Endpoints 28 1482 0 5.708
Travel Agency 10 110 77 36.123

Landing Gear v1 16 272 0 0.599
Landing Gear v4 32 1056 208 151.622
LandingGear Abrial3 m0 6 42 2 3.502
LandingGear Abrial3 m1 7 56 7 5.537
LandingGear Abrial3 m2 11 132 8 7.951
LandingGear Abrial3 m3 21 462 27 29.996
LandingGear Abrial3 m4 26 702 138 96.190

In Table 1 we present some timing results, showing that the technique can
scale to interesting B and Event-B models.3 In column “# Pairs” we have listed
the number of pairs of events (e1, e2) needed to determine all possible enabling
relations. Note that for the enabling analysis we also determine ER(INIT, e)
for each event e of the respective machine. The table also shows the number of
time-outs that occurred: a time-out means that one of the four edges had a time-
out. We have used a time-out of at most 300 ms for every solver call P ;e Q.
(See [10]) All measurements were made on an Intel Xeon Server, 8 x 3.00 GHz
Intel(R) Xeon(TM) CPU with 8 GB RAM running Ubuntu 12.04.3 LTS.

At the lower part of the Table 1 we have listed the results of the enabling ana-
lysis of two Event-B models describing a landing gear system: Landing Gear [15]
and LandingGear Abrial3 [28]. Both models were developed using refinement. In
the case of the Landing Gear model we have listed the first and fourth refinement
of the model, whereas for LandingGear Abrial3 we have given the abstract model
and its four consecutive refinements from [28]. In the upper part of the table the
following specifications are given: CAN BUS represents an Event-B model spec-
ifying a controller area network bus. Cruise Control is a model written in B

3 The models and the results of the enabling analysis can be obtained from the fol-
lowing web page http://nightly.cobra.cs.uni-duesseldorf.de/enabling analysis/.



representing a case study at Volvo on a typical vehicle function. DeMoney and
Demoney Ref1 present the first two levels of an electronic purse used to demon-
strate GeneSyst in [6]. Scheduler is the model of a process scheduler from [19]
and USB 4 Endpoints a B specification of a USB protocol, developed by the
French company ClearSy. The Travel Agency model is a 296 lines B specifica-
tion of a distributed online travel agency, through which users can make hotel
and car rental bookings. Some operations of the Travel Agency specification are
very complex consisting up to 98 lines of nested conditionals and any statements.

We have found the analysis to be very useful on many practical problems. For
example, on the CAN BUS the analysis clearly shows that the system cycles
through three distinct phases. It can help getting an understanding of models
written by somebody else, or even confirm one’s intuition about the control flow
of a model. Our technique can be applied to classical B, TLA, Z models, but
is probably most useful for Event-B and Event-B style models. Indeed, due to
the lack of constructs such as sequential composition, conditional statements or
loops, Event-B models tend to have many relatively simple events. Also, the
control flow tends to be encoded using explicit program counters, which can be
dealt with quite well by our constraint solver. So, the enabling analysis is more
useful to the user, and scales better due to the events being much simpler.
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Fig. 3. Enabling Results for LandingGear Abrial3 m0.mch



For the LandingGear Abrial3 specifications one can observe in Table 1 the
increasing number of events for the advancing refinement levels. Another inter-
esting fact is the increasing number of time-outs in each further refinement of
LandingGear Abrial3. This could be explained by the fact that at each next re-
finement level of LandingGear Abrial3 the invariant and the guards of the events
are getting more involved and thus the constraint solver needs to handle more
complex constraints. In our opinion, the only disappointing result in Table 1 is
the Travel Agency model, for which a large number of time-outs occurs. This
is due to the use of complicated substitutions in the machine, where there are
some operations consisting of up to 98 lines with nested conditionals and any
statements. The enabling analysis, however, still provides some useful insights
for the Travel Agency model. For instance, there are various operations in the
model such as bookRoom or bookCar that can possibly disable themselves.

Below we show one particular result, the model m0 of the third landing gear
model in [28] (LandingGear Abrial3 m0.mch). The results of the enabling ana-
lysis can be exported as table, which we reproduce here. It uses the classification
from Fig. 2, rather than showing the individual enabling graphs (but which are
also available if the user wishes to inspect them).

Origin act1 X act X chg act6 beg X end X

INIT. guaranteed impossible impossible impossible impossible impossible
act1 impossible impossible* guaranteed impossible* guaranteed impossible*
X act impossible* impossible guaranteed possible enable can enable can enable
X chg impossible* possible guaranteed possible possible keep
act6 guaranteed impossible* impossible impossible impossible* impossible*
beg X unchanged impossible* unchanged impossible* impossible guaranteed
end X unchanged can enable unchanged can enable impossible* impossible
unchanged = syntactic unchanged,
impossible* = impossible keep (must be disabled before)

Instead of a tabular representation, we have also provided a graph represen-
tation of the enabling information in Fig. 3. It contains the events as nodes and
the above classification as edges, with the exception that combinations marked
as impossible and unchanged are not shown in the graph. One can clearly see
the control flow of the model in Fig. 3, e.g. that beg X is guaranteed to enable
end X.

4 Optimising the Model Checker

Consistency Checking Algorithm. The results of the enabling analysis can
be used for optimising a model checker for B and Event-B. In particular, one
can use the outcome of the enabling analysis to improve model checking in
ProB [20], [21]. The optimisation, designated as partial guard evaluation (PGE),
uses the event relations impossible (see Definition 4) and keep (see Definition 6)
for improving the process of consistency checking of Event-B models.

When checking an Event-B model for consistency (e.g., invariant satisfaction
and deadlock freedom) the ProB model checker (see also Algorithm 5.1 in [21])



traverses the state space of the model beginning at the initial states and checking
each reachable state for errors. If no error is detected in the currently explored
state, then its successor states are computed. When computing the successors
of a state s the guard of each event of the machine is tested in s. If an event is
enabled, then the actions of the event are applied to s, which results in various
(possibly new) successor states. The search for errors proceeds until an error state
is found or all possible states of the model are visited and checked. The effort for
checking a state amounts to checking the state for errors (testing for invariant
violation, assertion violations, etc.) plus the computation of the successors.

Checking the guard of every event in each reachable state can sometimes be
a time-consuming task. In some cases one can examine whether an event is
disabled by just observing the incoming transitions. If, for example, event e2 is
impossible after e1 (i.e. > 6;e1 grde2) and the currently explored state s is
reachable by e1, then we can safely skip the evaluation of the guard of e2 in s
when computing the enabled events in s. The information for the impossibility
of e2 to be enabled after e1 can be obtained from our enabling analysis.

Especially, when the model checker has to check exhaustively Event-B models
with large state spaces and a large number of events, the effort of testing the
guards in every state may be considerable. The idea of our PGE optimisation is
to identify a set of disabled events in each visited state, using the information
of the enabling analysis. The set of disabled events in each state s is determined
with respect to the predecessor states and the incoming events of s.

The Optimisation. The algorithm of the PGE optimisation is outlined in Al-
gorithm 1 and can be described as follows. Consider a state s that is currently
explored and has a set of disabled events s.disabled. Each event evt that is not
an element of s.disabled is tested for being enabled in s (for-loop condition in
line 7). If evt is enabled at s, then its actions are applied at s. The effect of
executing evt at s results in a set of successor states Succ (line 9). Subsequently,
the set of disabled events Disabled in the successors of s is computed (line 10).
All events that are asserted by the enabling analysis to be impossibly enabled
after evt are considered to be disabled at each s′ ∈ Succ. Further, each event
e, regarded as disabled in s, will be included into the set of disabling events of
each s′ ∈ Succ if evt cannot influence the guard of e, i.e. evt keeps e disabled.

Once the set of disabled events with respect to s and evt is computed, we
should initialise s′.disabled for each s′ ∈ Succ. This depends on whether the
respective successor state s′ was already generated (s′ ∈ V isited) or it occurs
for the first time during the state space exploration (s′ /∈ V isited). If s′ has
not yet been visited, then we assign to s.disabled the set of disabled events
Disabled . Otherwise, if s′ has already been visited, then we update the set of
disabled events s′.disabled for s′ (line 17) as there could be “new” events that
have not yet been added to s′.disabled. In the latter case we update the set
s′.disabled by adding Disabled in order to increase the possibility for saving
more unnecessary guards evaluations when s′ is explored later. As a consequence,
the optimisation in Algorithm 1 can sometimes perform differently for different
exploration strategies.



For each state s the set of disabled events s.disabled comprises the obviously
disabled events in s. Usually, there are events in the model which are not enabled
in s and their disabledness in s cannot be determined by means of the information
provided by the enabling analysis. These events are also included to the set of
disabled events s.disabled in the process of exploration of s (line 21). In this
way, the possibility is increased for adding more events to the sets of disabled
events of the successor states by means of the keep relation.

Algorithm 1: Consistency Checking with Partial Guard Evaluation

1 Queue := 〈root〉; root .disabled := ∅; Visited := {}; Graph := {};
2 while Queue is not empty do
3 s := get state(Queue);
4 if error(s) then
5 return counter-example trace in Graph from root to s
6 else
7 foreach evt ∈ EVENTS such that evt /∈ s.disabled do
8 if evt is enabled at s then
9 Succ := {s′ | BAevt(s, s

′)} /* compute successors of s for evt */ ;
10 Disabled := {e ∈ EventsM | e impossible after evt}

∪ {e ∈ s.disabled | evt keeps e};
11 foreach s ′ ∈ Succ do

12 Graph := Graph ∪ {s evt−→ s ′};
13 if s ′ /∈ Visited then
14 push to front(s ′, Queue) ; Visited := Visited ∪ {s ′};
15 s ′.disabled := Disabled

16 else
17 s ′.disabled := s ′.disabled ∪Disabled
18 end if

19 end foreach

20 else
21 s.disabled := s.disabled ∪ {evt}
22 end if

23 end foreach

24 end if

25 end while
26 return ok

Evaluation. For evaluating the approach we focussed on Event-B models with
large state spaces, so that a large number of skipped guard evaluations allows
us to recover the cost of the static enabling analysis. The performance of Algo-
rithm 1 does not depend solely on the overall number of skipped guard evalua-
tions, but also on the guard complexity of the events whose enabledness tests are
omitted in the various states. The detection of the redundant guard evaluations
depends also on how the events influence each other in the respective model, as
well as on the accuracy of the results of the enabling analysis. We have evaluated



the optimisation on various Event-B models4. In Table 2 we list a part of the
results of the evaluation.

Table 2. Part of the Model Checking Experimental Results (times in seconds)

Model & Analysis Skipped/Total Model Checking
State Space Stats. Algorithm Time Guard Tests Time

Complex Guards BF/DF - 0/2,099,622 1350.641
(Best-Case) BF/DF+PGE 8.040 1,899,629/2,099,622 620.662

# Events: 21 BF - 0/2,099,622 1343.740
States: 99,982 BF+PGE 8.079 1,899,629/2,099,622 609.669
Transitions: 99,984 DF - 0/2,099,622 1337.831

DF+PGE 8.105 1,899,629/2,099,622 621.547

CAN BUS BF/DF - 0/2,784,600 496.922
BF/DF+PGE 0.682 2,257,505/2,784,600 251.275

# Events: 21 BF - 0/2,784,600 487.146
States: 132,600 BF+PGE 0.673 2,284,693/2,784,600 230.327
Transitions: 340,267 DF - 0/2,784,600 496.389

DF+PGE 0.660 2,242,223/2,784,600 268.185

Lift BF/DF - 0/1,257,986 390.713
BF/DF+PGE 5.508 783,429/1,257,986 364.272

# Events: 21 BF - 0/1,257,986 382.276
States: 58,226 BF+PGE 5.554 793,256/1,257,986 350.986
Transitions: 357,147 DF - 0/1,257,986 407.274

DF+PGE 5.693 788,464/1,257,986 369.104

Cruise Control BF/DF - 0/35,282 11.168
BF/DF+PGE 2.220 16,846/35,282 11.727

# Events: 26 BF - 0/35,282 10.498
States: 1,361 BF+PGE 2.199 15,192/35,282 11.656
Transitions: 25,697 DF - 0/35,282 10.925

DF+PGE 2.173 16,839/35,282 11.564

All Enabled BF/DF - 0/600,012 218.063
(Worst-Case) BF/DF+PGE 0.287 0/600,012 252.213

# Events: 6 BF - 0/600,012 211.401
States: 100,002 BF+PGE 0.285 0/600,012 254.937
Transitions: 550,003 DF - 0/600,012 198.161

DF+PGE 0.282 0/600,012 252.321

For every benchmark we carried out three types of performance comparisons:
mixed breadth- and depth-first (BF/DF) search, breadth-first (BF) search, and
depth-first (DF) search. For each of the three search strategies we analysed the
performance of checking by means of ProB’s original algorithm (Algorithm 5.1
in [21]) and Algorithm 1. The search strategy has an impact on the overall
number of skipped guard evaluations when exploring the state space of a model
by means of Algorithm 1. This is due to the fact that when we explore a state,
say s, in Algorithm 1 the set of the “obviously” disabled events in s is determined

4 The models and their evaluations can be obtained from the following web page
http://nightly.cobra.cs.uni-duesseldorf.de/pge/



by the predecessor states of s or, more precisely, by the incoming transitions of
s and the sets of disabled events in the predecessor states of s. If a state s has
multiple predecessor states, then at the moment of exploring s the number of
predecessor states may depend on the exploration strategy. The rule of thumb
is then the more predecessor states are explored before s is being processed, the
higher is the possibility that more events that are disabled in s are determined
without testing their guards for enabledness.

All tests with the option PGE (BF/DF+PGE, BF+PGE and DF+PGE) in
Table 2 use Algorithm 1 with the respective search strategy. All other entries
used ProB’s original consistency algorithm. The model checking times as well
as the times for performing the enabling analysis (in case the PGE optimisation
is used) are given in the table. We also report the number of the overall and the
skipped guard evaluations. Other statistics like number of states, transitions,
and events of every Event-B model are shown in the first column of Table 2.
Each of the experiments was performed ten times and the geometric mean of
the model checking and enabling analysis times are reported. All measurements
were made on an Intel Xeon Server, 8 x 3.00 GHz Intel(R) Xeon(TM) CPU with
8 GB RAM running Ubuntu 12.04.3 LTS.

The models Complex Guards and All Enabled are toy examples created in or-
der to show the best and worst case when model checking Event-B models using
partial guard evaluation, respectively. The best case example, Complex Guard,
constitutes a model with 21 events in which only one event is enabled per state
and in addition each event has a guard which is relatively expensive to be
checked. On the other hand, the worst case example, All Enabled, represents
a simple model for which all events are enabled in each state of the model and
thus no event can be disabled after the execution of some of the other events.
CAN BUS and Cruise Control are the models that we have introduced in Table 1
in Section 3. Lift represents an Event-B model of a lift.

In almost all experiments, except for Cruise Control and All Enabled, the new
PGE consistency checking algorithm (Algorithm 1) is faster than the original
one. For CAN BUS and Lift, the breadth-first search strategy works best with
PGE; indeed, in breadth-first mode a node is more likely to already have more
incoming edges when being processed as compared to depth-first. The number
of spared guard evaluations varies for the different search strategies for the cases
where the PGE optimisation is used.

In the worst case (All Enabled), the performance of Algorithm 1 is not sig-
nificantly different from the performance of the ordinary search. In this case
no guard evaluation has been skipped since all six events are always enabled.
No performance improvement was obtained in the Cruise Control experiment,
although a considerable number of guard evaluations were removed. However,
the guards are probably too simple (involving many boolean variables) and the
additional bookkeeping of Algorithm 1 seems more expensive than the guard
evaluations.



5 Related Work

Another approach for determining how events can influence each other was pre-
sented in [4]. It annotates the edges in a graph by predicates, which are derived
by proof and predicate simplification. Our approach is constraint-based and pro-
vides a new, more fine-grained way of presenting and visualising the enabling
information. Another related work is the GeneSyst system [6] which is also
semi-automatic and proof based, and tries to generate an abstract state space
representation. However, it does also support linking refinements with abstrac-
tions. It focusses more on the set of reachable states, not on enabling and dis-
abling of events as in this paper. The techniques from [17], [22] use the explicitly
constructed state space. This is more precise, but cannot be applied for infinite
or large state spaces and obviously cannot be used to optimise model checking.
An approach like UML2B [26] works the other way to our enabling analysis: the
B model is generated from a control flow description, rather than the other way
around. The works [12], [14] try to generate UML state charts from B models,
but do not specify how this is to be done ( [14] refers to [5], a precursor to [6]
described above). Maybe, our enabling analysis or alternatively [4] could be used
to generate UML state charts rather than, e.g., the graphs in Fig. 3.

The enabling analysis in the present paper was adapted in [9] for computing
the independence and enabling relations between events.5 Both types of rela-
tions, the independence and enabling relations, are used in the process of model
checking Event-B machines using partial order reduction. This technique is or-
thogonal to the PGE evaluation presented here and [9] does not discuss the
use of the enabling analysis for model comprehension. The enabling analysis
result has also been used to considerably improve the performance of test-case
generation [25], by pruning infeasible paths.

Model checking is a practical technique allowing an automatic formal veri-
fication of various properties on finite-state models. The state space explosion
impedes in most cases the formal verification via model checking. As a conse-
quence, various techniques have been proposed for combating the state space
explosion problem: partial order reduction ( [8], [13]), symbolic model checking
( [23]), symmetry reduction( [7], [11]), directed model checking, and etc. A lot of
work has been devoted to optimising the ordinary model checker of ProB for B
and Event-B in order to tackle the state space explosion problem. Besides par-
tial order reduction [9], several symmetry reduction techniques such as [29] were
developed for B. Another optimisation of model checking was presented in [3],
where proof information is used to optimise invariant preservation checking. This
optimisation was used in the experiments in this paper.

6 Conclusion and Future Work

We have described a new static analysis for computing enabling relations of
events for B and Event-B using syntactic and constraint-based analyses. The

5 Ideally the present paper should have been published before [9].



information of the enabling analysis can contribute to better understanding of
a model, as well as to identify the program flow of it. We have shown that
enabling analysis is not only beneficial for the better understanding, but also
that it delivers a valuable information for the model checker. We have presented
a more elaborated state space exploration that makes use of the results of the
enabling analysis. We have demonstrated that the new state space exploration
technique performs considerably better for very large state models than the
ordinary state space exploration.

Further work needs to be done in investigating whether other relations , besides
impossible and keep, can be used to optimise model checking of Event-B models.
Another interesting avenue of research would be to generate UML state diagrams
from Event-B models, possibly taking the refinement structure into account.
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