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Abstract. Partial order reduction has been very successful at combatting the state explosion problem
[BK08], [CEGP99] for lower-level formalisms, but has thus far made hardly any impact for model checking
higher-level formalisms such as B, Z or TLA+. This paper attempts to remedy this issue in the context of
Event-B, with its much more fine-grained events and thus increased potential for event-independence and
partial order reduction. In this work, we provide a detailed description of a partial order reduction for explicit
state model checking in ProB. The technique is evaluated on a variety of models. The implementation of
the method is discussed, which is based on new constraint-based analyses. Further, we give a comprehensive
description for elaborating the implementation into the LTL model checker of ProB for checking LTL−X
formulae.
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1. Introduction

ProB [LB08] is a toolset for validating systems formalised in B, Event-B, CSP, TLA+ and Z. Initially
developed for B, ProB comprises an animator, a model checker, and a refinement checker. ProB consists
also of an LTL model checker [PL10] that enables one to check properties expressed in LTL[e], an extended
version of LTL. Using the ProB model checker for consistency checking of B and Event-B models is a
convenient way of searching for errors in the model. In contrast to interactive theorem provers, model
checking performs tasks like invariant and deadlock checking automatically.

B offers a variety of data structures and B models are often infinite state. Making such a B machine man-
ageable for model checking usually requires to restrict the domains of the variables of the machine. However,
even systems with finite types can have very large state spaces. Therefore, applying various optimisation
techniques is essential for practical model checking of B and Event-B specifications.

Partial order reduction reduces the state space by taking advantage of independence between actions. The
reduction relies on choosing only a subset of all enabled actions in each reachable state of the state space.
In the process of choosing such a subset, certain requirements have to be satisfied so that no new error
states (deadlocks) are introduced and no important executions for the verification of the underlying system
are omitted. There are several methods of partial order reduction [CGMP99], [G96], [V89a] ensuring the
soundness of such a type of reduction. Our implementation of partial order reduction uses the ample set
theory which is suggested as a method for partial order reduction in [BK08], [CGMP99], [CEGP99].
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Our optimisation uses a static analysis for determining the relations between each pair of operations or
events in a B or Event-B machine, respectively. The static analysis is executed prior to model checking and
is based on both syntactic and new constraint-based analyses. These analyses are used for discovering the
mutual influences of actions inside the model. In this paper we present an implementation of partial order
reduction in the standard ProB model checker [LB08] for explicit state model checking of models written in
B [A96] and Event-B [A10]. The implementation is evaluated on different case study models and thoroughly
discussed, as well as a proof of correctness is provided. Additionally, we give a comprehensive description
of the LTL[e] model checking algorithm in ProB and consider ways of incorporating the reduction method
for model checking LTL−X properties in ProB. For practical reasons, we will concentrate our review of the
implementation of partial order reduction on Event-B only.

Indeed, Event-B events are much more fine-grained than typical operations in classical B (e.g. an if-then-
else is decomposed into two separate events in Event-B). As such, the potential for finding independent events
and partial order reduction is greater. Indeed, while partial order reduction has proven very effective for lower
level formalisms such as Promela, it has thus far made little impact on high-level modelling languages such
as B, Z or TLA+ (some recent exceptions are [RMQ10] for TLA+ and [ZSS+14] in the context of the PAT
model checker). Our intuition is that the more fine-grained nature of events in Event-B should substantially
increase the potential for partial order reduction.

This work was initially published as an SEFM conference paper in 2014 [DL14]. Some changes were made
to this version, as well as additional material was included. The most significant change is the corrected
version of Algorithm 4 in [DL14]. A proof of correctness to the corrected version of Algorithm 4 is provided
in Section 4. Additionally to the contributions in the conference article, more examples have been added
for more clear and convenient presentation of the work in [DL14], as well as new definitions and remarks
were included. Further, we discuss ways of adapting our reduction algorithm into the ProB LTL[e] model
checker [PL10] for efficient checking of LTL−X properties of B and Event-B models in ProB. A comprehensive
outlook of the logical formalism LTL[e] is given in the Preliminaries section. The ideas of applying partial
order reduction for checking LTL−X properties in ProB for B are presented in Section 5. We also elaborated
on the Discussion section (Section 6.1) and added more related work in terms of existing implementations
of partial order reduction in other prominent model checkers (Section 7.2).

In the next section, we give a brief overview of the Event-B formalism and consistency checking algorithm
in ProB, as well as basic definitions and notation are introduced that will be used in the later sections.
In Section 3, we discuss and define formally relations between events that are relevant for this work. Sec-
tion 4 presents the ample set method and our reduction algorithm accompanied with a proof of correctness.
Additionally, two different approaches are presented and discussed for adapting the reduction algorithm for
LTL[e] model checking in ProB in Section 5. The evaluation and the discussion of the implementation are
given in Section 6. The related work is outlined in Section 7. Finally, we discuss future improvements and
features for the reduced state space search, and draw the conclusions of our work.

2. Preliminaries

2.1. Event-B

Event-B is a formal language for modelling and analysing of hardware and software systems. The formal
development of a system in Event-B is a state-based approach using two types of components for the
description of the system: contexts and machines.

The machines represent the dynamic part of the model and each machine is comprised primarily of
variables, invariants, and events. The variables are typecast and constrained by the invariants. The variables
determine the states of the machine. In turn, the states of the machine are related to each other by means of
the events. Each event consists of two main parts: guards and actions. Formally, an event can be generally
described as shown in Fig.1.

In the definition above x stands for the evaluation of the variables before the execution of the event e and
x′ for the evaluation of the variables after the execution of the event e. In the any clause the parameters
t of the event will be defined, these will be typecast and restricted in the guards of the event. Note that
events may have no parameters. In that case the any clause will be omitted and the keyword when is used
instead of where. We will denote in this work G(x, t) as the guard of the event e. Basically, in Event-B
G(x, t) is a predicate which is a conjunction of all particular guards of e. The actions part S(x, t, x′) of an
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Event with local variables:

event e =
any

t /* the local variables */
where

G(x, t) /* the guards */
then

S(x, t, x′) /* the actions */
end

Event without local variables:

event e =
when

G(x) /* the guards */
then

S(x, x′) /* the actions */
end

Fig. 1. A General Event Structure.

event is composed of a number of assignments to state variables. When the event is executed, all assignments
in S(x, t, x′) are completed simultaneously, all non-assigned variables remain unaltered. It is possible that
an event does not assign any variable of the machine. In this case all variables remain unchanged and the
actions block consists of the skip declaration only.

The event e is said to be enabled in a particular state s of the machine if G(x, t) holds for the current
evaluation of the variables of s. Otherwise, we say that the event e is disabled at s. An event e that is enabled
at some state s can be executed and as a result of executing its actions a state s′ is reached. Each state s at
which e is enabled we will denote as a before-state of e and each state reached by e will be characterized as
an after-state of e.

In this work we are particularly interested in how events of an Event-B machine are related to each other.
Since it is often the case that events have common write and read variables, they can affect each other in
the process of their execution. For example, an event e1 may enable or disable another event e2 after its
execution if e1 assigns variables which later may be read in the guard of e2. On the other hand, events that
do not affect one other and do not interfere each other are called independent events. In this article we will
define and compute such types of dependence and independence relations and explain how we take advantage
of such information in order to optimise model checking. In Section 3 we will give more detailed definitions
of these event relations.

2.2. Notation and Basic Definitions

When we talk about the state space of a finite-state Event-B machine M we mean the resulting state
transition graph after the exploration of all possible states of the machine M . The state transition graph of
an Event-B machine will be also denoted as a transition system defined as a 6-tuple

TSM = (S, S0,EventsM , R,AP , L),

where S is a set of states, S0 ⊆ S is a set of initial states, EventsM a set of events of M , R ⊆ S×EventsM×S a
set of transitions, AP the set of atomic propositions, and L : S → 2AP a state-labelling function. A transition

(s, e, s′) ∈ R will often be written as follows: s
e→ s′. The state-labelling function assigns to each state s a

set of atomic propositions L(s), L(s) comprises all atomic propositions that hold in s. For a given Event-B
machine M , the set of atomic propositions are first-order logic formulae that are built from B predicates
over the variables and constants of M .

When we talk about an enabled event in a particular state s, we mean an event the guards of which all
hold in s. The set of all events that are enabled in a state s will be denoted by enabled(s). If enabled(s) = ∅
for some state s in TSM , then we say that s is a deadlock state or just a deadlock.

The implementation of the partial order reduction technique presented in this work is realised by the
ample set theory. The reduction of the state space happens by choosing a subset of enabled(s) in each state
s. These subsets we will denote by ample(s). In the context of partial order reduction, a state s is then said
to be fully expanded if ample(s) = enabled(s).

By definition, an event in Event-B may have parameters and non-deterministic assignments. That is, for
a given state s an event e can be executed in several ways, i.e. there is more than one successor state s′ such
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that s
e→ s′. In that case, we say that e is a non-deterministic event. For simplicity, from now on we will

assume that each event is deterministic. However, the optimisation in this work has been implemented for
the general case where non-determinism is present.

By means of the temporal logic LTL [P77] one can make assertions about the temporal behaviours of a
system. In [PL10] an extension of LTL, denoted by LTL[e], was introduced allowing to state propositions
also on transitions. A similar event extension of LTL was also introduced in [CCO+04], where the extension
is denoted as State/Event-LTL and the definition there is limited to infinite paths.

For a finite set of atomic propositions AP and a finite set of transition propositions TP , an LTL[e] formula
is formed inductively as follows:

• true and each a ∈ AP is an LTL[e] formula,

• [e] is an LTL[e] formula for each e ∈ TP , and

• if φ, φ1 and φ2 are LTL[e] formulae, then so are ¬φ, φ1 ∨ φ2, Xφ, and φ1 U φ2.

In the context of Event-B, an atomic proposition is a first-order logic formula that is built from B predicates
over the constants and variables of the Event-B machine intended to be checked. For example, if we check the
LTL[e] formula φ = (x > 1) U (y = 1∧ z > x) in the context of Event-B, then the set of atomic propositions
APφ with respect to φ is equal to {x > 1, y = 1, z > x}, where x > 1, y = 1, and z > x are the atomic

propositions of φ. Later, we will concentrate on certain class of LTL[e] formulae, which we will denote by
LTL−X . The class LTL−X consists of all LTL[e] formulae without the [·] and X operators.

An LTL[e] formula φ is said to be satisfied by a path π in TSM (denoted by π |= φ) by means of the
following semantics:

• π |= true

• π |= a ⇔ π = s0 . . . and a ∈ L(s0), for a ∈ APφ

• π |= [e] ⇔ |π| ≥ 2 and π = s0
e→ π1 for e ∈ EventsM

• π |= ¬φ ⇔ π 2 φ
• π |= φ1 ∨ φ2 ⇔ π |= φ1 or π |= φ2
• π |= Xφ ⇔ |π| ≥ 2 and π1 |= φ

• π |= φ1 U φ2 ⇔ there is a k ≥ 0 such that πk |= φ2 and πi |= φ1 for all 0 ≤ i < k

Using the boolean connectivities ¬ and ∨ other boolean operators such as ∧ and ⇒ can be derived:
φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2) and φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2. The temporal operators F (finally), G (globally), R
(release), and W (weak-until) can be derived using the basic LTL operators ¬, ∨, and U :

F φ ≡ true U φ
G φ ≡ ¬(true U ¬φ)

φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2)

φ1Wφ2 ≡ ¬(true U ¬φ1) ∨ (φ1 U φ2)

We say that a state s in TSM satisfies an LTL[e] formula φ if for every path π starting in s we have π |= φ.
Subsequently, an Event-B model M satisfies an LTL[e] formula φ if for each initial state s ∈ S0 of TSM we
have s0 |= φ. By M |= φ we will denote that the model M satisfies the formula φ.

A closure of an LTL[e] formula φ, denoted by Cl(φ), is the smallest set of formulae containing φ and which
satisfies the following rules:

• ψ ∈ Cl(φ) ⇔ ¬ψ ∈ Cl(φ) (¬¬φ is identified with φ)

• ψ1 ∨ ψ2 ∈ Cl(φ) ⇔ ψ1, ψ2 ∈ Cl(φ)

• Xψ ∈ Cl(φ) ⇔ ψ ∈ Cl(φ)

• ¬Xψ ∈ Cl(φ) ⇔ X¬ψ ∈ Cl(φ)

• ψ1 U ψ2 ∈ Cl(φ) ⇔ ψ1, ψ2, X(ψ1 U ψ2) ∈ Cl(φ)

A subset of formulae F ⊆ Cl(φ) ∪AP is consistent for a state s ∈ S if it satisfies the following rules:

• for each atomic proposition a ∈ (F ∩AP) ⇔ a ∈ L(s),

• ψ ∈ F ⇔ (¬ψ) /∈ F for every ψ ∈ Cl(φ),
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• ψ1 ∨ ψ2 ∈ F ⇔ ψ1, ψ2 ∈ Cl(φ) for every ψ1 ∨ ψ2 ∈ Cl(φ),

• if s is not a deadlock, then (¬Xψ) ∈ F ⇔ X¬ψ ∈ F for every ¬Xψ ∈ Cl(φ),

• if s is a deadlock, then (¬Xψ) ∈ F for every Xψ ∈ Cl(φ),

• ψ1 U ψ2 ∈ Cl(φ) ⇔ ψ2 ∈ F or ψ1, X(ψ1 U ψ2) ∈ F for every ψ1 U ψ2 ∈ Cl(φ),

A pair (s, F ), where s is a state and F a consistent subset of Cl(φ), is called an atom. Using the tableau
construction algorithm from [LP85] for checking M |= φ is based on attempting to construct a directed
graph A(TSM ) that has an infinite path

πα = (s0, F0)
e0→ (s1, F1)

e1→ (s2, F2)
e2→ . . . , where Fi ⊆ Cl(¬φ) for all i ≥ 0 such that:

1. for every edge (si, Fi)
ei→ (si+1, Fi+1) and for every Xψ ∈ Fi it follows that ψ ∈ Fi+1,

2. π = s0
e0→ s1

e1→ s2
e2→ . . . is a path in TSM , and

3. for every i ≥ 0 and for every ψ1 U ψ2 ∈ Fi there exists some j ≥ i such that ψ2 ∈ Fj .
Such paths as πα are called also α-paths.

Clearly, (si, Fi)
ei→ (si+1, Fi+1) is an edge in A(TSM ) if and only if si

ei→ si+1 is a transition in TSM and
for every formula Xψ ∈ Fi it follows that ψ ∈ Fi+1. For finite state systems M the transition system TSM
and so the graph A(TSM ) have finite number of states. An infinite α-path πα is then represented by a finite
path π1 leading to an atom (sk, Fk) that is an entry point of a strongly connected component (SCC) C in
A(TSM ). An SCC C is called self-fulfilling if for every atom (s, F ) in C and for every formula ψ1 U ψ2 ∈ F
there is an atom (s′, F ′) in C such that ψ2 ∈ F ′. We then say that if there exists a path in A(TSM ) starting
in (s0, F0) reaching a self-fulfilling SCC where s0 ∈ S0 and ¬φ ∈ F0, then M 2 φ (a counterexample has
been found). Otherwise, if there is no such a path in A(TSM ), we have shown that M |= φ.

An event is called a stutter event if it preserves the truth value of each atomic and transition proposition
of the property being checked. Formally, this means that an event e is stutter with respect to an LTL[e]

property φ if for each transition s
e→ s′ in TSM we have L(s) ∩ APφ = L(s′) ∩ APφ and e /∈ TPφ, where

APφ and TPφ are the sets of the atomic propositions and transition propositions in φ, respectively. In some
literature sources like in [CEGP99] the stutter events are referred as invisible events and events that are
non-stutter as visible.

A path in TSM is a finite or an infinite alternating sequence of states and events π = s0
e0→ s1

e1→ . . . in

TSM such that for all i ≥ 0 we have (si, e, si+1) ∈ R. By πi = si
ei→ si+1

ei+1→ . . . we denote the suffix of
the path π. Two paths π1 and π2 are called stutter-equivalent if both have identical state labellings after
collapsing in each of them every finite sequence of identically labelled states to a single state. Two transition
systems TS 1 and TS 2 are stutter-equivalent if for each path π1 in TS 1 there exists a path π2 in TS 2 that
is stutter-equivalent to π1 and vice versa.

2.3. Exhaustive Consistency Checking for B in ProB

Since the main contribution of this work is the optimisation of the algorithm for consistency checking of
Event-B and B in ProB, we will give a quick overview of it in this section. The consistency checking
algorithm (Algorithm 1) can be used to search a B model for deadlocks, invariant violation errors, assertion
violation errors, as well as for a user-specified goal predicate. The algorithm can be used for verifying only
invariant properties, i.e. properties that set conditions (called also invariant conditions) on all states of the
model and can be verified by traversing each reachable state of the model and checking whether it satisfies
the invariant condition.

The invariant of an Event-B machine is a condition on the state variables, which must hold permanently.
Formally, an invariant is fulfilled by the respective machine when it is true in all reachable states. Typically,
an invariant is proven in Event-B by induction: one proves that the initialisation establishes the invariant
and that every event preserves the invariant, i.e. provided that the invariant and the guard of an event hold,
the invariant still holds after execution of the event. This proof schema requires an invariant to be inductive1;

1 An invariant I of an Event-B model is called inductive if it satisfies both conditions: I holds in all initial states of the model
and each event preserves I. Note that not all invariants proven to hold in all reachable states of a finite Event-B machine are
inductive.
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this is something we do not check in this paper nor does ordinary model checking (see Section 5.3 in [LB08]).
In general, the invariant I of an Event-B machine is a conjunction of predicates and can be specified as an
LTL formula G (I ) that, in particular, is an invariant property.

Algorithm 1: Consistency Checking

1 Queue := {root} ; Visited := {}; Graph := {};
2 while Queue is not empty do
3 if random(1) < α then
4 state := pop from front(Queue) /* depth-first */
5 else
6 state := pop from end(Queue) /* breadth-first */
7 end if
8 if error(state) then
9 return counter-example trace in Graph from root to state

10 else

11 for all succ,evt such that state
evt→ succ do

12 Graph := Graph ∪ {state
evt→ succ};

13 if succ 6∈ Visited then
14 push to front(succ, Queue);
15 Visited := Visited ∪ {succ}
16 end if
17 end for
18

the code to
be optimised

19 end if
20 end while
21 return ok

The pseudo code in Algorithm 1 describes a graph traversal algorithm for exhaustive error search in a
directed transition system. All unexplored nodes in the state space are stored in a standard queue data struc-
ture Queue while running the consistency check for the particular Event-B machine. By popping unexplored
states from the front or the end of the queue a depth-first search or a breadth-first search through Graph
can be achieved, respectively. A mixed depth-first/breadth-first search can be simulated by a randomised
popping from the front and end of the queue. This is the standard search strategy in ProB.

Once an unexplored state has been chosen from the queue, it will be checked for errors by the function
error (line 8). An error state, for example, can be a state that violates the invariant of the machine or that
has no outgoing transitions.

If no error has been found in the current state, then it will be expanded. In this context, expansion means
that all events from the current machine will be applied to the current state. Each event whose guard G(x, t)
holds for the current variables’ evaluation will be executed and possible new successor states succ will be
generated. Subsequently, a transition will be added to the state space (line 12) and the state succ will be
adjoined to the queue (line 14) if not already visited. The algorithm runs as long as the queue is non-empty
and no error state has been found.

Since the way of adding transitions to the state space will become slightly different in order to apply
partial order reduction, the most relevant part of Algorithm 1 for this paper is thus the pseudo code in lines
11-18.

3. Event Relations

Finding out how the events of an Event-B machine are related to each other is a key step for applying
partial order reduction. The simplest approach just analyses the syntactic structure. For this, we first need
to determine the read and write sets for each event. The read and write sets of an event specify the set of
variables that are read and written by the event, respectively.
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Definition 3.1 (Read and Write Sets of an Event). Let e be an event of some Event-B machine M .
Then, we define the following sets concerning the variables of M which are read and modified by e:

• read(e) denotes the set of all variables that are read by e. As variables can be read in both parts, in the
guards and the actions, of e one can further define the following two types of read sets:

– readG(e): the set of variables that are read in the guards’ part of e, and

– readS(e): the set of variables that are read in the actions’ part of e.

• write(e) denotes the set of all variables that are modified by e.

Note that the local variables of an event are not considered in the read sets of the event.

Example 3.1 (Read/Write Sets). Consider the following event:
event e =

any

t

where

t ∈ {2, 3, 4}
(x > 2 ∗ t) ∧ (z > 10)

then

y := x + y

end

Then, e has the following read sets: read(e) = {x, y, z}, readG(e) = {x, z}, and readS(e) = {x, y}. On
the other hand, the write set of e consists only of the variable y as this is the only variable which is assigned
in the actions’ part of e.

In the rest of this work we will assume that each event is deterministic in order to simplify the presentation.
However, our implementation does not make this assumption.

3.1. Introducing Independence

The most important event relation is independence. Formally, one can define independence between two
events as follows:

Definition 3.2 (Independence). Two events e1 and e2 are independent if for any state s with e1, e2 ∈
enabled(s) the executions s

e1→ s1
e2→ s′ and s

e2→ s2
e1→ s′′ are both feasible in the state space (enabledness),

and additionally s′ = s′′ (commutativity).

Two events e1 and e2 are said to be syntactically independent if the following three conditions are satisfied:

(SI 1) The read set of e1 is disjoint to the write set of e2 (read(e1) ∩ write(e2) = ∅).

(SI 2) The write set of e1 is disjoint to the read set of e2 (write(e1) ∩ read(e2) = ∅).

(SI 3) The write sets of e1 and e2 are disjoint (write(e1) ∩ write(e2) = ∅).

From the three conditions above one can infer that two events that are syntactically independent cannot
disable each other since the effect of executing the one event cannot change the value of each variable in the
guard of the other event ((SI 1) and (SI 2)). And, additionally, both events cannot interfere each other as
they write different variables ((SI 3)), and each variable written by the one event is not read in the action part
of the other event ((SI 1) and (SI 2)). Thus, the definition of syntactic independence ensures independence
according to Def. 3.2.

On the other hand, syntactical independence is obviously a quite coarse concept: two events of an Event-B
machine can be independent even if some of the conditions (SI 1) - (SI 3) are violated. Take for example
the events in Example 3.2. Apparently, e1 and e2 are not syntactically independent as (SI 1) is violated
(read(e1)∩write(e2) = {x}). However, e2 cannot affect the guard of e1 because e2 can assign to x only values
between 1 and 10, and e1 is enabled when x is a natural number. Since additionally write(e1)∩read(e2) = ∅, it
follows that the enabledness condition for independence for e1 and e2 is fulfilled. Further, no variable written
by the one event will be read in the actions part of the other event and the write sets of e1 and e2 are disjoint.
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Thus, both events cannot interfere each other and herewith the commutativity condition for independence
is fulfilled for e1 and e2. Hence, e1 and e2 are indeed independent events.

Example 3.2 (Event Dependency).

event e1 =

when

x ∈ N
then

y := y + 1

end

event e2 =

when

z ≥ 1 ∧ z ≤ 10

then

x := z ‖ z := z + 1

end

Since partial order reduction takes advantage of the independence between events, it is important to
determine independence as accurately as possible. The higher the degree of independence in a system, the
higher is the chance to reduce its state space significantly. This motivates the following, more precise approach
to determine independence by using the ProB’s constraint solving facilities.

3.2. Refining the Dependency Relation

We use the constraint solver to find feasible sequences of events for the analysed Event-B model. First, we
define a procedure stating a Prolog predicate in ProB used for testing whether a given event is feasible
under certain constraints. This will form the basis of our analysis.

Definition 3.3 (The test event procedure). For a given Event-B machine M , let Φ and Ψ be B predi-
cates for M , and e an event from M . Then, we define test event as follows:

test event(Φ, e,Ψ) =

{
true if there is a transition s

e→ s′ such that s |= Φ and s′ |= Ψ
false otherwise

The predicates Φ and Ψ are used in order to constrain the search for e transitions in the state space of
M . If, for example, Φ and Ψ are both tautologies (e.g., 1 = 1) then test event will return true if e is enabled
in some state of M . Accordingly, if Φ is an obvious inconsistency (e.g., 1 = 2), then test event will return
false as there is no state s such that s |= Φ.

Back to determining independence of events, we can now refine our definition of independence. We in-
troduce the binary relation DependentM ⊆ EventsM × EventsM which is intended to comprise all depen-
dent pairs of events of a given Event-B machine M . Two events e1 and e2 will be denoted as dependent if
(e1, e2) ∈ DependentM , otherwise they are considered to be independent. The dependency relation is defined
as follows:

DependentM := {(e, e′) | (e, e′) ∈ EventsM × EventsM ∧ dependent(e, e′)},
where M is the observed Event-B machine, EventsM is the set of events of M and dependent is the procedure
showed in Algorithm 2.

Algorithm 2: Determining Events’ Dependency

1 procedure boolean dependent(e1, e2)
2 if write(e1) ∩ write(e2) 6= ∅ then
3 return true /* events are race dependent */
4 else if (readS(e1) ∩ write(e2) 6= ∅ ∨ write(e1) ∩ readS(e2) 6= ∅) then
5 return true /* events interfere each others’ effect */
6 else
7 return

(
(readG(e1) ∩ write(e2) 6= ∅ ∧ test event(Ge1 ∧Ge2 , e2,¬Ge1))

8 ∨ (write(e1) ∩ readG(e2) 6= ∅ ∧ test event(Ge2 ∧Ge1 , e1,¬Ge2))
)

9 end if
10 end procedure

The procedure dependent presents a refined strategy for determining the dependency between two events.
On syntactical level we would say that two events are dependent if their write sets are not disjoint or if the
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write set of the one event has variables in common with the read set of the other one. As we already have
seen (in Example 3.2), the syntactic analysis is not precise enough to exactly determine how two events are
related to each other. Therefore, in lines 7-8 in Algorithm 2 we further check if the events can disable each
other by means of the test event procedure. In order to test whether two events are independent, we need
to check the two independence conditions enabledness and commutativity. Obviously, the commutativity
conditions for two events may not be satisfied if both events have write variables in common (line 2) or if
at least one of the events may write a variable that is read in the actions part of the other event (line 4). If
the tests in line 2 and in line 4 do not pass, then we just need to examine if some of the events can disable
the other one in order to show whether they are independent (the enabledness condition).

Once we have entered the else branch, we test the enabledness condition. The enabledness condition is
tested by the two disjunction arguments in lines 7 and 8. If at least one of the arguments is fulfilled, we have
deduced that e1 and e2 are indeed dependent. Otherwise, we have proven that e1 and e2 are independent.

Checking whether the events can disable one other is realised by means of the test event procedure. If,
for example, e2 assigns a variable that is read in the guard Ge1 of e1 (i.e. if readG(e1)∩write(e2) 6= ∅) then
we can further check whether e2 eventually can disable e1. This can be additionally examined by searching

for a possible transition s
e2→ s′ such that e1 and e2 are enabled in s (s |= Ge1 ∧ Ge2) and e1 disabled in

s′ (s′ |= ¬Ge1). The call for this case is then test event(Ge1 ∧ Ge2 , ·
e2→ ·,¬Ge1). If the result of the call is

true then we have found a case in which e2 can disable e1 and thus inferred that e1 and e2 are dependent.
Otherwise, we have shown that e1 cannot be disabled after the execution of e2.

Remark 3.1 (The Necessity for Clear Separation of read into readS and readG). If two events e1
and e2 are considered as independent by means of procedure dependent in Algorithm 2, then one of the
conditions that must be satisfied is the following one:

readS(e1) ∩ write(e2) = ∅ ∧ write(e1) ∩ readS(e2) = ∅.

The predicate implies that each two independent events should satisfy the requirement: no one of the events
should write variables that are read in the action part of the other event. A requirement for independent
events that may not be obvious at first glance. Let us observe, for example, the following two events:

event e1 =

when

x ≥ 1

then

x := x + 1

end

event e2 =

when

y ≥ 1

then

y := y + x

end

Both events are not race dependent as they write different variables and additionally, neither e1 nor e2
can disable the other one because no one can influence the guard of the other event. However, e1 and e2
do not satisfy the commutativity condition for independent events from Definition 3.2. This can be readily
sketched if we execute the event sequences 〈e1, e2〉 and 〈e2, e1〉 from some state in which the variables x
and y are both greater or equal to 1. In that case, the effect of executing 〈e1, e2〉 will be different from the
effect of executing 〈e2, e1〉, i.e. that 〈e1, e2〉 reaches a state different from the state reached by 〈e2, e1〉. This
behaviour clearly violates the commutativity condition for independence of events as one can see in Fig. 2.
In such a case we also say that e1 and e2 interfere each other.

In the next sections, we will often talk about events that are dependent or independent to a set of events.
The following definition defines what the relations dependency and independence of event with regard to a
set of events mean.

Definition 3.4 (Set Dependency/Independence). Let e be an event of some given Event-B machine
M and E ⊆ EventsM a non-empty set of events of M . We say that e is dependent on E if there is at least one
event e′ ∈ E such that dependent(e, e′) evaluates to true. Otherwise, if for all events e′ ∈ E the procedure
call dependent(e, e′) evaluates to false, then we say that e is independent to E, i.e. e is independent to each
e′ ∈ E.
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x = 1, y = 1

x = 2, y = 1 x = 1, y = 2

x = 2, y = 3 x = 2, y = 2

e1 e2

e2 e1

Fig. 2. Execution of dependent events.

3.3. The Enabling Relation

In addition to the independence of events, we are also interested in the particular way events may influence
each other. Concretely, if event e1 modifies some variables in the guard of event e2 we are asking in which
way the effect of e1 may affect the guard of e2. In that case, the possible direct influences of e1 to e2 can be
enabling and disabling. The enabling relation is the residual relation needed for applying the optimisation
technique in this work.

In the next section we are interested whether events can be enabled after the successively execution of a
number of certain events. We will retain the enabling information between events in terms of a directed edge
labelled graph, defined as follows:

Definition 3.5 (Enable Graph). An enable graph for an Event-B machine M is a directed edge graph
EnableGraphM = (V,E), where

• V = EventsM are the vertices, and

• E = {e1 7→ e2 | e1, e2 ∈ EventsM ∧ can enable(e1, e2)} the edges of EnableGraphM .

In Definition 3.5, e1 7→ e2 means that e1 can enable e2, while can enable constitutes a procedure which
returns false when write(e1)∩readG(e2) = ∅, otherwise tests if e1 can enable e2 by the test event procedure.

The call of test event for testing whether e1 can enable e2 is then test event(Ge1 ∧ ¬Ge2 , ·
e1→ ·, Ge2). The

procedure can enable is listed in Algorithm 3.

Algorithm 3: Determining Enabling Relations

1 procedure boolean can enable(e1, e2)
2 if (e1 = e2) ∨ (write(e1) ∩ readG(e2) = ∅) then
3 return false
4 else

5 return test event(Ge1 ∧ ¬Ge2 , ·
e1→ ·, Ge2)

6 end if
7 end procedure

4. Partial Order Reduction Algorithm based on Ample Sets

In this section we introduce the ample set theory and the algorithm for the expansion of states by using the
ample set method. The reduction of the original state space using ample sets is realised by choosing of a
subset of all enabled events in each state. In addition, the correctness of the reduction algorithm is presented.
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4.1. The Ample Set Requirements

An ample set is a subset of the enabled events, chose for expansion. All events not in the ample set will be
ignored (leading to a possible state space reduction). There are four requirements that should be satisfied
by each ample set to make the reduction of the state space sound:

(A 1) Emptiness Condition
ample(s) = ∅⇔ enabled(s) = ∅

(A 2) Dependency Condition
Along every finite execution in the original state space starting in s, an event dependent on ample(s)
cannot appear before some event e ∈ ample(s) is executed.

(A 3) Stutter Condition
If ample(s) ( enabled(s) then every e ∈ ample(s) has to be a stutter event.

(A 4) Cycle Condition
For any cycle C in the reduced state space, if a state in C contains an enabled event e, then there exists
a state s in C such that e ∈ ample(s).

The intuition behind the first requirement (A 1) is to guarantee that each state that has at least one
successor state in the original state space also has at least one successor state in the reduced state space.
At the same time, (A 1) states that each deadlock state in the full state space is preserved by the reduction
method. The most important condition for the correctness of the approach is the Dependency Condition
(A 2). It ensures that each path being excluded in the process of reduction can be reconstructed from a path
in the reduced state space using the properties of independent events, making sure in this way that no paths
that may be crucial for the verification of the system are omitted. Guaranteeing both ample set conditions
(A 1) and (A 2) suffices to use ample set reduction for checking models for deadlock freedom [GW91], [V89a].

To check linear-time properties expressed in LTL−X by means of partial order reduction additionally the
conditions (A 3) and (A 4) must be satisfied in order to guarantee the correctness of the approach. Condition
(A 3) ensures the exclusion only of paths that are stutter equivalent to the paths being added to the reduced
state space. The last ample set condition (A 4) makes sure that events are not ignored in the reduced state
space. In this way, the Cycle Condition (A 4) guarantees that the full and the reduced transition systems
are stutter-equivalent.

4.2. The Need of Local Criteria for (A 2)

We are interested in how efficiently each of the requirements can be checked. For a state s, the conditions
(A 1) and (A 3) can be checked by examining the events in ample(s). In contrast to conditions (A 1) and
(A 3), condition (A 2) is a global property which requires for ample(s) the examination of all possible
executions (in the original state space) starting at s. A straightforward checking of (A 2) will demand the
exploration of the original state space. Local criteria thus need to be given for (A 2) that facilitate an efficient
computation of the condition.

For our implementation, we define the following two local conditions (which will replace (A 2)), where M
is the observed Event-B machine, EventsM the set of events in M , and s a state in the original state space:

(A 2.1) Direct Dependency Condition
Any event e ∈ enabled(s) \ ample(s) is independent of ample(s).

(A 2.2) Enabling Dependency Condition
Any event e ∈ EventsM \ enabled(s) that depends on ample(s) may not become enabled through the
activities of events e′ /∈ ample(s).

The following theorem states that (A 2.1) and (A 2.2) are sufficient local criteria for (A 2).

Theorem 4.1 (Sufficient Local Criteria for (A 2)). Let s be a state in the original state space. If
ample(s) is computed with respect to the local criteria (A 2.1) and (A 2.2), then ample(s) satisfies the
Dependency Condition (A 2) for all execution fragments in the original state space starting at s.

Proof. By contradiction. Let conditions (A 2.1) and (A 2.2) hold for ample(s). Assume that (A 2) does not
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hold. Then, there exists an execution fragment

σ = s
e1→ s1

e2→ . . .
en→ sn

en+1→ . . .

where e1, e2, . . . , en /∈ ample(s) and en+1 is dependent on ample(s).
Since e1 /∈ ample(s), by (A 2.1), we have that e1 is independent of ample(s). As next, we ask whether

e2 can be dependent on ample(s). Suppose that e2 depends on ample(s). Then, there are two cases to be
considered:

(i) e1 enables e2, and

(ii) e1 does not enable e2, i.e. e2 is already enabled in s.

For case (i), by (A 2.2), it follows that e2 must be independent of ample(s) since e1 /∈ ample(s). Thus, we
have a contradiction to the assumption that e2 depends on ample(s). For case (ii), as e2 is enabled in s and
e2 /∈ ample(s), then we can conclude, by (A 2.1), that e2 is independent of ample(s), which also contradicts
the assumption that e2 depends on ample(s). Consequently, we have that e2 does not depend on ample(s).

Continuing applying the same procedure inductively for the residual states si and events ei with 2 ≤ i ≤ n
on ample(s) one can conclude that en+1 is not dependent on ample(s). The independence of en+1 to ample(s)
contradicts the assumption that there exists a fragment execution σ for which (A 2) is violated. Hence, (A 2)
is satisfied by any ample(s) fulfilling conditions (A 2.1) and (A 2.2).

Remark 4.1 ((A 2.1) and (A 2.2) are Sufficient, but not Necessary Criteria for (A 2)). The lo-
cal conditions (A 2.1) and (A 2.2) are sufficient local criteria for (A 2), but not necessary. Note that (A 2.1)
and (A 2.2) together set a stronger condition on the ample sets than (A 2) as there could be sound ample
sets that indeed fulfil the Dependency Condition (A 2), but not the local dependency conditions. This can
be demonstrated by means of the following example. Consider the Event-B machine Example and its state
space graph, both depicted in Fig. 3. Both events e1 and e2 are enabled at s0 and obviously both events
are independent to each other (e1 and e2 are syntactically independent). Looking at the transition system
of the Event-B machine Example we can easily conclude that both sets {e1} and {e2} are valid ample sets
satisfying the Dependency Condition (A 2). However, neither {e1} nor {e2} fulfil the local condition (A 2.2)
since both events e1 and e2 can enable e3 which in turn depends on both sets of events {e1} and {e2}.

4.3. Computing ample(s)

We can now present our algorithm for computing an ample set satisfying (A 1) through (A 3). The procedure
ComputeAmpleSet in Algorithm 4 gets as argument a set of events. DependentM and EnableGraphM
are the dependent relation and the enable graph computed for the corresponding Event-B machine M ,
respectively (see Algorithm 2 and Definition 3.5). The procedure ComputeAmpleSet uses theDependencySet
procedure for computing a set S satisfying the local dependency condition (A 2.1). In the body of procedure
DependencySet the set G is regarded as a directed graph where the vertices are represented by the events
of T and the edges by tuples α 7→ β. The tuple α 7→ β, for example, represents an edge from vertex α to
vertex β. By reachable(α,G) we denote the set of vertices that are reachable from vertex α in G. The set T
is meant to be enabled(s), where s is the currently processed state. Accordingly, the set S in Algorithm 4
is intended to be ample(s). The output of the ComputeAmpleSet is an ample set satisfying the first three
conditions of the ample set constraints.

The first step of computing ample(s), in case that T is a non-empty set, is choosing randomly an event α
from T . After that, a subset S of all enabled events in s with regard to α is computed such that condition
(A 2.1) is satisfied (line 4). The set of events S is determined by means of the DependencySet procedure
(lines 18-24). Once the set S with respect to the randomly chosen event α is computed, we test whether
there may be an event β that is not from S and from which a finite execution fragment

σ = s
β→ s1

γ2→ . . .
γn→ sn

γ→ sn+1

can start such that an event γ dependent on S may be enabled before executing some event from S (i.e.
γ1, . . . , γn /∈ ample(s)). This we do by searching for paths in EnableGraphM having as a starting point the
event β and reaching an event γ /∈ S which is dependent on S. In other words, in lines 6-11 of procedure
ComputeAmpleSet we further test if S violates the second local dependency condition (A 2.2). If there is
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MACHINE Example

VARIABLES
x, y
. . .

EVENTS

Initialisation

begin

act1 : x, y := 0, 0

end

Event e1 =̂

when

grd1 : x = 0

then

act1 : x := x+ 1

end

Event e2 =̂

when

grd1 : y = 0

then

act1 : y := y + 1

end

Event e3 =̂

when

grd1 : x+ y = 2

then

act1 : x := 2

act2 : y := 2

end

END

x = 0, y = 0

x = 1, y = 0x = 0, y = 1

x = 1, y = 1

x = 2, y = 2

e1e2

e2e1

e3

s0

s3

Fig. 3. (A 2.1) and (A 2.2) are sufficient, but not necessary conditions for (A 2)

some event β ∈ I for which condition (A 2.2) is violated, then we choose randomly the next event from T in
order to compute a new potential ample set. Otherwise, if for all β ∈ I there is no path in EnableGraphM
that presumptively represents an execution in TSM violating (A 2.2), we check whether S fulfils the stutter
condition (line 12). The procedure ComputeAmpleSet in Algorithm 4 runs until a valid ample set has been
found or all potential ample sets fail to satisfy conditions (A 2) and (A 3) (then we return T ).

In the following, we will present our proof of correctness for computing an ample set satisfying condition
(A 1) to (A 3) by means of Algorithm 4. The main statement, the procedure ComputeAmpleSet returns a set
satisfying (A 1) to (A 3), will be given by means of a theorem (see Theorem 4.2). We will prove Theorem 4.2
with the aid of three lemmas where each of them states that the result returned by ComputeAmpleSet
satisfies respectively the ample set conditions (A 1), (A 2.1), and (A 2.2). The stutter condition (A 3) will
not be handled specifically for theorem’s proof as we assume at this point that the procedure for checking
whether S is a stutter set is correct.

Lemma 4.1. Let A be a set computed by means of the procedure ComputeAmpleSet for some set of events
T . Then, it is satisfied that A is an empty set if and only if T is an empty set.

Proof. Let T = ∅. In this case the outer foreach-loop will not be entered and the argument T of the
procedure ComputeAmpleSet will be returned as a result (line 16). This infers that A is also an empty set.

Let T 6= ∅. Then, there are two ways of computing A. The first one is when for no one of the events α ∈ T
a set S can be computed that is returned as a result in line 13. In this case ComputeAmpleSet will return
the set T , which by assumption is a non-empty set. The second possibility for computing A by means of
ComputeAmpleSet is when there exists an event α ∈ T such that a set S is determined which is returned in
line 13. In that case S is determined by the DependencySet procedure and accordingly we can conclude that
it has at least one element, the event α, since α ∈ reachable(α,G). Thus, S is a non-empty set also in the
second case. Note that the currently computed set S is returned as a result if for all β ∈ I the if -condition
in line 7 does not hold and all events in S should be stutter events.
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Algorithm 4: Computation of ample(s)

Data: EnableGraphM , DependentM
Input: The set of events T enabled in the currently processed state s (T = enabled(s))
Output: A subset of T satisfying (A 1) - (A 3)

1 procedure set ComputeAmpleSet(set T )
2 foreach α ∈ T such that α randomly chosen do
3 boolean b := true;
4 set S := DependencySet(α, T ); /* (A 2.1) holds */
5 set I := T \ S ;
6 foreach β ∈ I do /* checking whether S fulfils (A 2.2) */
7 if there is a path β → γ1 → . . .→ γn → γ in EnableGraphM such that

γ1 , . . . , γn , γ /∈ S ∧ γ depends on S then
8 b := false;
9 break

10 end if
11 end foreach
12 if b ∧ (S is a stutter set) then /* checking (A 3) */
13 return S
14 end if
15 end foreach
16 return T
17 end procedure

18 procedure set DependencySet(event α, set T )
19 set G := ∅;
20 foreach (β, γ) ∈ DependentM ∩ (T × T ) do
21 G := {β 7→ γ} ∪G
22 end foreach
23 return reachable(α,G)
24 end procedure

Lemma 4.1 states that ComputeAmpleSet(T ) = ∅ if and only if T = ∅. Hence, (A 1) is satisfied by the
procedure ComputeAmpleSet in Algorithm 4. As next, we want to show that each set A computed by the
procedure ComputeAmpleSet fulfils condition (A 2). This statement is shown by proving that A satisfies
both local dependency conditions (A 2.1) and (A 2.2). We already have shown in Theorem 4.1 that (A 2.1)
and (A 2.2) are sufficient criteria for (A 2). Thus, proving that A satisfies (A 2.1) and (A 2.2) will infer that
A also fulfils the Dependency Condition (A 2).

Lemma 4.2. Let A be a set of events computed by means of the procedure ComputeAmpleSet for some
set of events T . Then, any β ∈ T \A is independent of A, i.e. (A 2.1) is fulfilled by A.

Proof. First, if the procedure ComputeAmpleSet returns T as a result, it is clear that A (= T ) satisfies
condition (A 2.1). If A ( T , then A is a set computed by the procedure DependencySet for some event
α ∈ T . Thus, showing that all events β ∈ T \A are independent of A, it is equivalent to showing the following
claim:

Let S be a set of events computed by means of the procedure DependencySet in regard to a set of
events T and an event α ∈ T . Then, any β ∈ T \ S is independent of S.

We prove the claim by contradiction. Assume there is an event γ ∈ T \S such that γ depends on S. That is,
γ is dependent on some event β which is an element of S. Recall that the set G in procedure DependencySet
is regarded as a directed graph where the vertices are the elements of T . The procedure spans a directed
graph G by adding an edge β 7→ γ for each tuple of events (β, γ) in DependentM for which both events β
and γ are elements of T (see lines 20-22 in Algorithm 4).

Remark that reachable(α,G) denotes the set S that is returned in line 4 in procedure ComputeAmpleSet.
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By assumption, there is an event γ ∈ T \reachable(α,G) such that there exists an event β ∈ reachable(α,G)
with (β, γ) ∈ DependentM . As β ∈ reachable(α,G) there is a path α 7→ α1 7→ . . . 7→ αn 7→ β in G where
(α, α1), (αn, β) ∈ DependentM and (αi, αi+1) ∈ DependentM for all 1 ≤ i ≤ n − 1. The foreach-block in
procedure DependencySet guarantees that each pair (α′, β) ∈ DependentM is added as an edge to G if α′

and β are elements of T . Since γ and β are elements of T , and β is dependent on γ (by assumption) it follows
that there is also an edge β 7→ γ in G. This implies that γ is also reachable from α which is a contradiction
to the assumption γ ∈ T \ reachable(α,G).

Since for each set computed by the DependencySet procedure Lemma 4.2 is satisfied, we can deduce that
the Local Dependency Condition (A 2.1) is fulfilled for each set returned by the procedure ComputeAmpleSet.
It remains to show that the sets computed by Algorithm 4 fulfil also condition (A 2.2). This we will demon-
strate by means of the following lemma.

Lemma 4.3. Let A be an ample set computed by the procedure ComputeAmpleSet in Algorithm 4 at some
state s and let T denotes the set enabled(s). For each β ∈ T \ A and for all n ≥ 0 there is no execution
fragment

σ = s
β→ s1

γ1→ s2
γ2→ . . .

γn→ sn+1
γ→ s′

in TSM such that γ1, . . . , γn, γ /∈ A and γ depends on A.

Proof. By Lemma 4.2 we know that A fulfils the local dependency condition (A 2.1). In other words, for
each β ∈ T \A we know that β is independent of all events in A. Without loss of generality we assume that
A ( T . Let β be some event from T \A. As next, we show that for all n ≥ 0 the execution fragment

σ = s
β→ s1

γ1→ s2
γ2→ . . .

γn→ sn+1
γ→ s′

with γ1, . . . , γn, γ /∈ A and γ depends on A does not exist in TSM .
We carry out the proof of the claim by induction on n. In the following we will denote by σi, where i ≥ 0,

the execution fragment s
β→ s1

γ1→ s2
γ2→ . . .

γi→ si+1
γ→ s′, and by Paths(EnableGraphM ) all paths in the

enable graph EnableGraphM of the currently checked machine Event-B M .

Basis Step: Let n = 0. Suppose the execution fragment σ0 = s
β→ s1

γ→ s′ where β, γ /∈ A and γ depends
on A exists in TSM . Then, there are two cases to consider.

(1) β 7→ γ /∈ Paths(EnableGraphM ): If β cannot enable γ, then γ must be enabled in s. By assumption
γ /∈ A. We also know that A satisfies condition (A 2.1) and thus by Lemma 4.2 γ is independent of A. This,
however, is a contradiction to the assumption that γ depends on A. It follows that σ0 does not exist for this
case.

(2) β 7→ γ ∈ Paths(EnableGraphM ): If there is a path β 7→ γ in EnableGraphM such that β, γ /∈ A
and γ depends on A, then the set A will be refused as an ample set in procedure ComputeAmpleSet as the
if -condition in line 7 holds for this case. Since A is returned as an ample set by ComputeAmpleSet we can
infer that σ0 with β, γ /∈ A and γ dependent on A does not exist in TSM for this case.

Inductive Step: Assume, for n = k, that there is no execution fragment s
β→ s1

γ1→ s2
γ2→ . . .

γk→ sk+1
γ→ s′

in TSM such that γ1, . . . , γk, γ /∈ A and γ depends on A. We show that there is no execution

σk+1 = s
β→ s1

γ1→ s2
γ2→ . . .

γk→ sk+1
γk+1→ sk+2

γ→ s′

in TSM such that γ1, . . . , γk+1, γ /∈ A and γ is dependent on A.
Suppose that there is such an execution fragment σk+1 in TSM . Then, we need to consider again two

cases.
(1) γk+1 7→ γ /∈ Paths(EnableGraphM ): The absence of such an edge γk+1 → γ in EnableGraphM infers

that γ cannot become enabled after the execution of the event γk+1 and as a consequence we can deduce
that γ must already be enabled in sk+1. This, however, contradicts with the induction hypothesis for σk.
Hence, in this case there is no sequence σk+1 such that γ1, . . . , γk+1, γ /∈ A and γ is dependent on A.

(2) γk+1 7→ γ ∈ Paths(EnableGraphM ): In the following we intend to construct an enabling path πk+1 ∈
Paths(EnablingGraphm) from the execution fragment σk+1 by means of the following procedure: Beginning
with π0 = γk+1 7→ γ and starting with γk+1 we examine whether γk may enable γk+1. If γk 7→ γk+1 ∈
Paths(EnableGraphM ), then we create a new enabling path as follows π1 = γk 7→ π0. Otherwise, if γk cannot
enable γk+1, we set π1 to be equal to π0. Continuing this procedure inductively until s is reached at the end we
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have constructed as a result from σk+1 an enabling path πk+1 that is an element of Paths(EnableGraphM ).
Then, we consider two cases for the enabling path πk+1.

(2.1) In the first case the enabling path starts with β, i.e. πk+1 = β 7→ γ̂1 7→ . . . 7→ γ̂j 7→ γk+1 7→ γ,
where each γ̂i corresponds to some event γl in σk+1 with 1 ≤ i ≤ j and 1 ≤ l ≤ k. Note that j ≤ k as there
may be events in σk+1 that cannot be enabled by its preceding events in the execution fragment σk+1. The
path πk+1 is an enabling path in EnableGraphM , which means that in this case the if -condition in line 7 in
Algorithm 4 holds and as a consequence A will be refused as an ample set in procedure ComputeAmpleSet.
Owing to the fact that A was returned as a result by ComputeAmpleSet it follows that there is no execution
fragment σk+1 such that γ1, . . . , γk+1, γ /∈ A and γ is dependent on A.

(2.2) The second case we need to observe is when πk+1 = γ̂1 7→ . . . 7→ γ̂j 7→ γk+1 7→ γ, where each γ̂i
corresponds to some event γl in σk+1 with 1 ≤ i ≤ j and 1 ≤ l ≤ k. In this case, we know that γ̂1 is enabled
in state s since all preceding events of γ̂1 in σk+1 cannot enable γ̂1. By assumption of σk+1 we know that
γ̂1 /∈ A. Thus, it follows that there exists a path γ̂1 7→ . . . 7→ γ̂j 7→ γk+1 7→ γ in EnableGraphM such that
γ̂1, . . . , γ̂j , γk+1, γ /∈ A and γ dependent on A for some event γ̂1 ∈ T \ A. This, however, contradicts with
the choice of the set A since no such a set can be returned by the procedure ComputeAmpleSet when the
variable b is set to false (the inner foreach-loop (lines 7-11) considers all enabled events at s in T \A).

Thus, we can conclude from the induction proof that for β ∈ T \A and for all n ≥ 0 there is no execution
fragment σn in TSM such that γ1, . . . , γn, γ /∈ A and γ is dependent on A. It is readily to see that the
proposition is fulfilled for all β ∈ T \A.

Now using the results from Lemma 4.1, 4.2, and 4.3 we can state the following theorem.

Theorem 4.2. Every set A computed by means of the procedure ComputeAmpleSet in Algorithm 4 satisfies
the ample set conditions (A 1) to (A 3).

The way of computing an ample set in Algorithm 4 reveals that more than one ample set can exist per
state. Randomly choosing an event from T for building an ample set for the particular state s is equivalent
to computing all possible ample sets for s and then randomly choosing one of them. Another heuristic for
choosing which subset of enabled events in the currently expanded state to be chosen would be always to
choose the ample set with the least number of elements in order to achieve maximal state space reduction.
Always choosing the ample set with the least number of events is, however, not a premise for achieving
maximal state space reduction as discussed in [V89a]. Therefore, we believe that randomly choosing an
ample set should result in an approximatively good state space reduction. Note also that model checking
with partial order reduction using randomised choosing of an ample set in each state sometimes can result
in checking different number of states every time the model checker has been run on the same model.

Condition (A 3) guarantees the exclusion of paths that are stutter-equivalent to the paths in the reduced
model. Computing the set of stutter events in an Event-B machine depends on the property being checked.
In general, one says that an event is a stutter event if it cannot influence the value of the checked property.
For instance, if we check an Event-B machine for consistency, i.e. whether the events of the machine preserve
its invariant, then the stutter events of the machine are all events that trivially preserve the invariant. On the
other hand, all events that cannot be trivially proven to satisfy the invariant are considered as non-stutter.
Similarly, one can determine the non-stutter events of an Event-B machine with respect to an LTL[e] formulae
φ. An event e is considered to be non-stutter with respect to φ when e modifies a variable that is used in
some B predicate constituting an atomic proposition in φ being checked or if φ contains [e] as a transition
proposition. All events that are not non-stutter with respect to φ are considered as stutter events.

4.4. The Ignoring Problem

Condition (A 3), which requires adding only of stutter events to the ample sets of each state (assuming
that (A 1) and (A 2) are also satisfied), can sometimes cause ignoring of certain (non-stutter) events in
the reduced state space. Ignoring of non-stutter events may happen when the reduction results in a cycle of
stutter events only. If some events are ignored in the reduced state space of the model, then computing ample
sets wit respect to (A 1) through (A 3) may not be sufficient to preserve some of the LTL−X properties.
The issue is also known as the ignoring problem [V89a].

To ensure that no events in the reduced state space are ignored, the cycle condition (A 4) should be
guaranteed by the reduced state space. We establish (A 4) by means of the following condition:



Optimising the ProB Model Checker for B using Partial Order Reduction 17

(A 4’) Strong Cycle Condition
Any cycle in the reduced state space has at least one fully expanded state.

Using the strong cycle condition (A 4’) is a sufficient criterion for (A 4) (Lemma 8.23 in [BK08]) and
easier to implement. Since at least one of the states should be fully expanded in any cycle, we expand fully
each state s with an outgoing transition reaching an expanded state generated before s, as well as each state
with a self loop. Note that this method of implementing the strong cycle condition (A 4’) is approximative
because sometimes it expands fully states unnecessarily. We have chosen this way of realising (A 4’) in order
to generalise our algorithm of calculating ample sets for different exploration strategies. This technique of
implementing (A 4) has been also proposed in [BBR10] and [BLL09]. Furthermore, the implementation of
condition (A 4) in this way is also a design decision as we want easily to reuse the reduction algorithm for
LTL model checking in ProB (see Section 5).

4.5. Expanding a State by Applying the Ample Events Only

To apply the ample set approach for the consistency checking algorithm, we change the way each state is
expanded. Thus, the respective changes in Algorithm 1 take place in lines 7-13 of the algorithm. Basically, we
can replace the code in the else branch of Algorithm 1 by calling the procedure compute ample transitions
in Algorithm 5 with the currently processed state s as an argument.

Algorithm 5: Computation of the Ample Transitions

1 procedure compute ample transitions(state s)
2 set T := compute all enabled events in s;
3 set S := ComputeAmpleSet(T );
4 foreach evt ∈ S do
5 state s′ := execute event(s,evt);
6 T := T \ {evt}
7 if (id(s) ≥ id(s ′)) ∧ s ′ /∈ Queue then /* check (A 4) */
8 foreach e ∈ T do
9 execute event(s,e)

10 end foreach
11 break /* state s was fully explored */

12 end if
13 end foreach
14 end procedure

15 procedure execute event(state s, event evt)
16 compute successor state s ′ by executing evt from s;

17 Graph := Graph ∪ {s evt→ s ′};
18 if s ′ 6∈ Visited then
19 push to front(s′, Queue);
20 Visited := Visited ∪ {s ′}
21 end if
22 return s ′

23 end procedure

Algorithm 5 summarises the computation of the ample events in each state and the execution of those in
the reduced state space. The presented procedure compute ample transitions gets as an argument the state
being currently processed. The computation of the successor states and the insertion of the new determined
transitions are realised by the procedure execute event in lines 15-23.

In Algorithm 5 all enabled events in the currently processed state s will be assigned to T (line 2). After that,
an ample set S satisfying (A 1) through (A 3) is computed by means of the procedure ComputeAmpleSet.
If the test of the cycle condition in line 7 fails for each loop-iteration, then only the events from S will be
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executed in s. Otherwise, the full expansion of s will be forced (lines 8-10), if a transition from S reaches an
already expanded state s′ (s′ /∈ Queue) generated before s or it is s itself (id(s) ≥ id(s′)).

5. Adapting the Reduction Algorithm for the ProB LTL[e] Model Checker

Since ProB also supports LTL[e] model checking for Event-B (as well as B, Z, CSP, and CSP‖B), we are
also interested in elaborating the reduction algorithm for the ProB LTL[e] model checker [PL10] for checking
temporal properties on models written in B and Event-B. In this subsection we discuss the adaptation of the
reduction algorithm above for reducing the state space in the process of model checking LTL−X formulae.
In particular, we consider which ample set conditions should be regarded more carefully in order to adapt
the reduction algorithm to also effectively check LTL−X formulae by means of the LTL[e] model checker
algorithm in ProB.

5.1. LTL[e] Model Checking in ProB

The ProB LTL[e] model checker follows the tableau approach from [LP85] and can check properties specified
in LTL[e]. The algorithm presented in [PL10] additionally allows checking of properties stated in Past-LTL[e]

and can cope with deadlock states as well as partially explored state spaces.
Given a model M and an LTL[e] formula φ, the ProB LTL[e] model checker checks M � φ by searching for

bad paths satisfying ¬φ, i.e. strongly connected components (SCCs) that can be reached from some initial
state of M and that satisfy ¬φ. If such a path has been found, it will be reported as a counterexample (failure
behaviour of M) for φ. Otherwise, if no path satisfying ¬φ was discovered, we have proven that M � φ. The
search for SCCs in the ProB LTL[e] model checker is based on the Tarjan’s algorithm [T72].

We can distinguish two approaches of checking an LTL[e] formula φ on an Event-B model M with the
LTL[e] model checker:

• Static approach: exploring the entire state space of M and then checking φ by means of the tableau
search algorithm, or

• Dynamic approach: expanding the state space of M while applying the tableau search algorithm.

Both approaches have their advantages and disadvantages. On the one hand, using the static approach one
can benefit from the fact that the state space of the model M has already been explored fully and thus various
LTL[e] formulae may be checked without re-exploring the state space every time. On the other hand, by
dynamically checking models one may profit from the fact that the state space may not be required to be fully
explored. The full state space exploration is usually avoided when a bad path is found in the tableau search
graph explored so far. The dynamic approach can be very effective especially when the model being checked
has a very large state space. Checking LTL properties statically and dynamically by means of the definitions
above are also known as off-line and on-the-fly LTL model checking in the literature [P94], [CEGP99],
respectively.

The tableau algorithm from [PL10] is implemented in C using a callback mechanism for evaluating the
atomic propositions and the outgoing transitions in SICStus Prolog. While constructing the search graph
A(TSM ), the tableau algorithm expands the state space of M using the same procedure for expanding each
state as the consistency checking algorithm do (see Algorithm 1). The reduction presented in the previous
subsection is based on computing just a subset ample(s) of the set of enabled events enabled(s) in each state.
Intuitively, what has changed is just the way of expanding each state in the state space of the model being
checked. Since the LTL[e] model checker algorithm uses the same procedure to expand each state we will use
this fact to adapt the reduction algorithms for using these for reduced search in LTL[e] model checking in
ProB. Basically, we need to consider which ample set conditions have to be adapted and how the algorithms
Algorithm 4 and Algorithm 5 can be re-used in order to make the reduction of the search graph A(TSM )
sound and effective for off-line and on-the-fly LTL[e] model checking.
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MACHINE Example

VARIABLES
x, y

INVARIANTS
. . .

EVENTS

Initialisation

begin

act1 : x, y := 0, 0

end

Event e1 =̂

when

grd1 : x = 0

then

act1 : x := x+ 1

end

Event e2 =̂

when

grd1 : y = 0

then

act1 : y := y + 1

end

Event e3 =̂

when

grd1 : x = 1

grd2 : y = 1

end

END

Fig. 4. LTL[e] Model Checking for Event-B.

5.2. LTL[e] Formulae Preserved by Partial Order Reduction

Before discussing how the reduction algorithm can be adapted for LTL[e] model checking with partial order
reduction for Event-B, we need to determine first which set of LTL[e] formulae is invariant under reduction
by partial order reduction. Formally, we study for which subset C of LTL[e] formulae the equivalence

∀φ ∈ C · (TSM |= φ⇔ T̂SM |= φ) (1)

is satisfied, where T̂SM denotes the reduced transition system of TSM using the ample set theory. The
equivalence is not satisfied for formulae with the next-operator X since, in general, such formulae are not
invariant under stuttering [PW97]. The extended version of LTL, LTL[e], defines a new operator [·] that
allows one to make assertions about the executions of events along the paths in TSM . For example, the
formula “[e1] ⇒ F {x = 2}” encodes the property ”the execution of e1 in the current state implies that
the variable x will eventually be equal to 2”. What we need to examine is whether formulae with the
executed -operator [·] violate equivalence (1).

Example 5.1 (LTL[e] Formulae with Execute Operator). Consider, for example, the LTL[e] formula
“φ = ([e1]⇒ F {x = 2})” and the Event-B machine depicted in Fig. 4. The transition system TSM on the
left side of Fig. 5 illustrates the full state space of the machine in Fig. 4.. As we can easily see, the events
e1 and e2 defined in the Event-B machine are syntactically independent. Further, e3 is independent to both
events e1 and e2. To apply the ample set approach for checking φ on Example we also need to determine
the stutter events with respect to φ. Event e1 is considered as a non-stutter event since φ comprises e1 as a
transition proposition. Further, neither e2 nor e3 modifies x and thus we can safely assume that both events
e2 and e3 are stutter events with respect to φ.

Consider the two transition systems TSM and T̂SM in Fig. 5. The transition graph TSM illustrates the

full state space of the Event-B machine from Fig. 4, while T̂SM represents the reduced transition system
by applying the ample set approach with respect to φ. The reduction takes place in the initial state s0 of
the machine. In s0 it suffices to choose only one of the enabled events e1 and e2 in order to guarantee (A 2)
since e1 and e2 are independent and the execution of each will not enable an event which is dependent on
the other one. However, the only valid ample sets in s0 are {e2} and {e1, e2} since {e1} is excluded as a valid
ample set because of (A 3). Hence, ample(s0) = {e2} is sufficient in regard to the ample set approach.
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x = 0, y = 0

x = 1, y = 0 x = 0, y = 1

x = 1, y = 1

e1 e2

e2 e1

e3

s0

s1 s2

s3

TSM :

x = 0, y = 0

x = 0, y = 1

x = 1, y = 1

e2

e1

e3

s0

s2

s3

T̂SM :

Fig. 5. Ample set reduction does not preserve the truth value for the formula [e1]⇒ F {x = 2}.

Checking φ on TSM and T̂SM yields different results. Obviously, TSM 2 φ as the path ρ = s0
e1→ s1

e2→
s3

e3→ s3 . . . in TSM is a counter example for φ and T̂SM |= φ since no path in T̂SM does execute e1 from
the initial state. The example shows that, in general, LTL[e] formulae with the execute-operator do not fulfil

the equivalence TSM |= φ⇔ T̂SM |= φ. Thus, the set of LTL[e] formulae that is preserved by partial order
reduction is the set of all LTL[e] formulae without the next-operator X and without the execute-operator
[·]. This subset of LTL[e] formulae we denote with LTL−X .

5.3. The Static Approach

The static approach of LTL[e] model checking in ProB may be explained as a two-phase process: expanding
the state space of the model M and in the subsequent step checking a set of LTL[e] formulae by means of
the tableau approach. The main advantage of the approach is that various formulae may be checked once
the entire state space of the model has been explored. On the contrary, the static approach demands the
exploration of the entire state space which in many cases may be very large.

Applying partial order reduction for the static approach has some subtle differences from the static ap-
proach without reduction. The static approach with reduction will be completed in two steps: constructing
the reduced state space and then using the LTL[e] model checking algorithm to check the respective LTL−X
formula in the reduced state space. However, for each new formula φ the reduced state space in regard to
φ should be constructed. This requirement is necessary because of the Stutter condition (A 3) of the ample
set method. For a given model M , the set of stutter events in M will be determined in regard to the for-
mula being checked. Thus, every time a new formula is checked the set of stutter events changes and as a
consequence the corresponding reduced state space should be constructed.

To adapt the reduction algorithm for the static approach we construct the state space by using a graph
traversal algorithm that uses the procedure compute ample transitions in Algorithm 5 for expanding each
reachable state. Basically, we can use the consistency checking algorithm (Algorithm 1) to compute the
reduced state space of an Event-B model by adapting it as follows: removing the if -statement in lines 8-9
and replacing the pseudo code in lines 11-18 by the call compute ample transitions(state), where state is the
currently processed state. Note that the procedure compute ample transitions is not sensitive with respect
to the exploration strategy. That is, whatever exploration strategy we choose the reduction of the state
space graph by means of compute ample transitions remains sound. However, using the implementation in
Algorithm 5 for fulfilling (A 4’) is not optimal because it may cause the fully expansion of more states than
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necessary. As a result, one could consider a more efficient implementation for satisfying (A 4’) by using the
fact that, for depth-first search, every cycle has an edge that goes back to a state in the queue.

5.4. The Dynamic Approach

In contrast to the static approach, in the dynamic approach the transition system TSM of the model is
created while constructing the tableau graph A(TSM ) for the negation of the checked LTL[e] property. One
can consider to use the compute ample transitions procedure from Algorithm 5 for the expansion of the

states of the reduced transition system T̂SM . However, we should look closely at the way the Cycle condition
(A 4’) can be ensured in the dynamic approach. In the first place, a cycle in the transition system TSM does
not necessarily correspond to a cycle in the search graph A(TSM ). This means that having a cycle

π = si → si+1 → . . .→ si+k → si

in TSM does not imply that we have a path in A(TSM ) of the form

ρπ = (si, Fi)→ (si+1, Fi+1)→ . . .→ (si+k, Fi+k)→ (si, Fi+k+1)

with Fi = Fi+k+1. Moreover, the path ρπ may not exist in A(TSM ) since the condition for existing of an edge
(sj , Fj) → (sj+1, Fj+1) in A(TSM ) additionally requires that for every formula X ψ ∈ Fj the sub-formula
ψ is an element of Fj+1.

Additionally, the LTL[e] model checker uses the Tarjan algorithm for finding self-fulfilling SCCs. The
Tarjan algorithm is based on a depth-first search for finding SCCs. One can profit from the depth-first
search using the fact that an atom having an outgoing edge to an atom on the search stack is closing a cycle

in A(TSM ). In this way, we can identify the cycles in the reduced tableau graph A(T̂SM ), and by changing
the implementation accordingly, we can check the Strong cycle condition (A 4’) without checking more than
the sufficient number of states. Recall that the procedure for checking (A 4’) in Algorithm 5 is necessary but
not sufficient as it may cause that states are unnecessarily fully expanded.

To make use of the observations above, one has to revise the way the Strong Cycle condition (A 4’) should
be checked for the dynamic approach of LTL[e] model checking. The idea is to expand fully a state s of the

reduced transition system T̂SM if it is certain that there is a back transition from an atom (s, F ) closing a

cycle in A(T̂SM ). Therefore, we replace the Strong cycle condition (A 4’) by the following condition:

(D 4) Dynamic Cycle Condition

Any cycle in the reduced search graph A(T̂SM ) has at least one atom (s, F ) such that state s is fully

expanded in T̂SM , i.e. ample(s) = enabled(s).

The next step would be to incorporate the ample set reduction method in the LTL[e] model checker
of ProB. The procedure for computing the ample sets for the LTL[e] model checker will be the same as
for the consistency checking algorithm up to the satisfaction of the Cycle Condition (A 4). For ensuring
(A 4) we will use condition (D 4) instead of (A 4’). Accordingly, the realisation of (D 4) should take place

during the construction of the tableau graph A(T̂SM ). From the technical point of view, this means that
we should extend the tableau algorithm in ProB, which is implemented in C, in regard to checking (D 4).
Apart from that, the procedure for expanding some state s will be changed to execute just the events from
ample(s) ⊆ enabled(s), where ample(s) is the set of events computed with respect to the ample set conditions

(A 1) through (A 3). A state s in T̂SM will be fully expanded if there is an atom (s, F ) in A(T̂SM ) such
that an edge from (s, F ) exists going back to an atom on the search stack.
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6. Discussion and Evaluation

6.1. Discussion

6.1.1. The Approach

In Section 4, we presented the background of the ample set theory and our implementation of partial order
reduction (Algorithms 4 and 5). Our algorithm reduces the original state space of an Event-B machine
M by using the dependency relation DependentM and the enable graph EnableGraphM . DependentM and
EnableGraphM are computed prior to model checking by using a static analysis on the events of M . We chose
to determine the dependency and enabling relations between the events in this way for performance reasons.
Computing the respective relations between events on-the-fly in each state can sometimes be expensive since
we use constraint based analyses in addition to the syntactic analyses. In fact, timeouts are set by default
in ProB for diminishing the possibility that the overhead caused by the static analysis and partial order
reduction outweighs the improvement achieved by the reduction of the state space. ProB can also apply
partial order reduction without using its constraint solving facilities. In this case, the determination of the
dependency and enabledness between events is provided by inspecting their syntactic structure only. This,
however, often results in less state space reduction.

The reduction of the state space by using partial order reduction cannot only be influenced by the inde-
pendence of the events of the model being verified, but also by the type of the checked property. For instance,
deadlock preservation is guaranteed by any ample set satisfying conditions (A 1) and (A 2) [GW91], [V89a].
We adapted the implementation to this fact to gain more state space reduction when a model is checked for
deadlock freedom only.

Another factor that can influence the effectiveness of the reduction is the number of the stutter events.
For example, if we check the full invariant I , then every event that trivially fully preserves I is a stutter
event. Systems specified in Event-B often have a very low number, if any, of events that trivially fulfil the
invariant. This means that partial order reduction will probably only yield minor state space reduction in
such cases. A possible way to detect more stutter events with respect to I is to use either proof information
(e.g., from the Rodin provers) or ProB for checking invariant preservation for operations: every event which
we can prove to preserve the invariant will be considered as a stutter event.

Explicit state model checking is a practical and convenient method for automatic verification of finite state
systems. On the other hand, verification of infinite state systems will be not possible by means of model
checking as not all possible states of the system can be explored. Thus, model checking is generally considered
as unsuitable for verification of infinite state systems. However, as discussed in earlier papers [L08], [LB08]
ProB can deal quite well with infinite state systems, in the sense that counterexamples can be discovered
by means of different state space exploration strategies: depth-first, breadth-first, and mixed breadth/depth-
first search. This was also one of the motivations to design the implementation of the ample set method to
guarantee sound state space reductions for different exploration strategies (see Section 4).

If the ProB model checker is ran on an Event-B model with infinite state space, then verification will
never be possible as one can keep running the model checker until it either finds a counterexample or it runs
out of memory. However, explicit state model checking in ProB with partial order reduction can sometimes
be used for verifying deadlock absence of infinite state Event-B machines. Recall that for checking a system
just for deadlocks using the ample set technique for state space reduction it suffices to require that only
the ample set conditions (A 1) and (A 2) are satisfied by each ample set of each state. Using this fact one
can infer that for certain infinite state systems the absence of deadlock can be verified when model checking
with partial order reduction. This relies on the fact that both conditions (A 1) and (A 2) together cannot
guarantee that events will be ignored in the reduced state space.

To make this more clear consider an Event-B machine M with one initial state s0 and with two events
e1 = skip and e2 = x := x+1, where x ∈ Z. Obviously, M has an infinite state space as e2 is enabled in each
state and increments the variable by 1. Choosing {e1} as an ample set in the initial state s0 can be considered
as a sound ample set at s0 if we look just for deadlock errors. As a consequence, the reduction method from
Section 4 will reduce the state space of M to one state with e1 as a self loop. In this case the reduced
search will terminate and exit with the result that M is deadlock-free. Thus, explicit state model checking
in ProB with partial order reduction can in some cases verify certain infinite state Event-B machines to be
deadlock-free.
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6.1.2. Correctness of the Approach

During the development we tested our reduction algorithm at first on different models that we constructed in
order to demonstrate its correctness. One way of demonstrating the correctness of the algorithm was to show
that the reduction technique preserves the relevant error states from the original (full) state space. With
relevant error states we mean the states that are intended to be found or not found in the state space of the
model. If, for example, we perform just deadlock-freedom check the relevant error states are the deadlocks.

The correctness of the reduction algorithm could be to some extent confirmed by testing whether errors
such as deadlock and invariant violation errors are also preserved in the reduces state space of the model
being checked. However, in case the model is error-free we needed to test the correctness of the reduction
by means of other heuristics. We could to some degree assure that the reductions in such cases were sound
by performing coverage analyses after the verification with the reduced search. We have used two types of
coverage analyses for ensuring the soundness of the reductions for the particular model: coverage of the
events presented in the model and domain coverage of the variables and constants in the model. The events
coverage analysis checks whether all events executed in the non-reduced system have been executed at least
once in the reduced system, while the domain coverage analysis examines whether the intervals in which the
single variables range match for the reduced and the non-reduced system.

Using both analyses for advocating the correctness of the reduction search for an error-free model makes
sense when invariant violation search is performed. Checking only for deadlock-freedom does not explicitly
require that all events executed in the original state space should be also executed in the reduced state
space. If, for example, the observed specification has a pure skip event evt := skip and only deadlock
absence checking is performed, then in each state the set {evt} is a valid ample set since evt does not read
or write any variables and only conditions (A 1) and (A 2) should be satisfied (both conditions are sufficient
to guarantee that deadlock states are preserved in the reduced state space). In that case, choosing for some
states only evt to be executed will lead to ignoring all other enabled events in those states and possibly to
ignorance of some of the events in the reduced state space of the model. However, in this case ignorance of
events is not relevant for proving the model for deadlock absence since an evt loop is always present in each
state of the state space.

In addition, we have formally proven the correctness of our reduction algorithm (see Section 4.3). Indeed,
in the course of providing a formal proof for Algorithm 4 in [DL14] we have found particular cases for which
the algorithm may calculate ample sets that do not satisfy the local dependency condition (A 2.1). As a result
of this, we revised the algorithm in [DL14] and replaced it by its corrected version in this work. Accordingly,
a proof of correctness of Algorithm 4 has been added to Section 4.3 and the implementation in ProB has
been adapted.

One could ask why not use a formal language to specify the reduction algorithms and then proving
whether the specification satisfies the desired properties, for example, by using a proof assistant tool such as
Rodin [ABHV06] or Isabelle [NWP02]. In the first place, proving the correctness of the reduction algorithm
presented in Section 4.3 appeared to be essential as in our experience with partial order reduction there had
been so many little details that were of importance to be regarded that one could easily lose track of the
correctness of the approach. Therefore, providing a proof of correctness is vital to convince ourself and the
readers that the method we have presented is sound. In the second place, giving the proof of correctness in a
fully mathematical way is in our opinion more concise and does not distract from the main contribution in this
work, namely tackling the state space explosion problem for Event-B by means of partial order reduction. We
think that providing a formal verification of our algorithms using a proof assistant tool is of practical interest
and such a work makes more sense to be elaborated in an article on its own. An interesting approach similar
to that presented in [ELN+13] could be to specify and verify our model checking algorithms from Section
2 and Section 4 using a theorem prover such as Isabelle. After proving the correctness of the algorithms
one could let the theorem prover to generate code that could be used as a reference implementation of the
implementation of partial order reduction introduced in this work.
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Table 1. Part of the Experimental Results (times in seconds)
Analysis Model Checking

Model Algorithm States Transitions Time Time
Counters Deadlock + Inv. 4,550 13,136 - 4.921∗

Deadlock + Inv. (POR) 944 1,769 < 0.152 1,227∗

Deadlock 110,813 325,004 - 81.950
Deadlock (POR) 152 154 0.154 0.158

Conc v1 Deadlock + Inv. 128,562 290,558 - 339.447
Deadlock + Inv. (POR) 128,562 267,669 6,549 487.733
Deadlock 128,562 290,558 - 244.356
Deadlock (POR) 91,312 143,382 0.327 248.714

BPEL v6 Deadlock + Inv. 2,248 4,960 - 6.946
Deadlock + Inv. (POR) 2,248 4,960 2.242 9,503
Deadlock 2,248 4,960 - 6.162
Deadlock (POR) 570 634 0.640 1.975

Token Ring Deadlock + Inv. 16,389 90,133 - 33.633
Deadlock + Inv. (POR) 16,218 67,516 0.087 39.028
Deadlock 16,389 90,133 - 33.416
Deadlock (POR) 14,287 36,292 0.081 31.144

Sieve Deadlock + Inv. 8,328 28,436 - 240.099
Deadlock + Inv. (POR) 8,109 24,374 14.757 250.680
Deadlock 8,328 28,436 - 250.398
Deadlock (POR) 5,106 11,378 7.145 180.843

Phil v2 Deadlock + Inv. 2,351 4,528 - 8.558
Deadlock + Inv. (POR) 2,338 4,257 0.721 11.912
Deadlock 2,351 4,528 - 8.954
Deadlock (POR) 2,332 4,149 0.592 11.146

(*) Invariant Violation

6.2. Evaluation

We have evaluated our implementation of partial order reduction on various models that we have received
from academia and industry.2 A part of those experiments are presented in Table 1 In particular, we wanted
to study the benefit of the optimisation on models with large state spaces.

Besides having sizeable state spaces, the particular models should also have a certain number of indepen-
dent concurrent events. Otherwise, the possibility of reducing the state space is very minor. If, for instance,
we have a system where there is no pair of independent events or a system where any two independent events
are never simultaneously enabled, then no reductions of the state space can be gained at all.

We have performed four different types of checks in order to measure the performance of our implemen-
tation of partial order reduction. By all types of tests we used the mixed depth-first/breadth-first search of
ProB for the exploration of the state space. The four types of checks are abbreviated in Table 1 as follows:

Deadlock+Inv.: Model checking for deadlocks and invariant violations.

Deadlock+Inv.(POR): Model checking for deadlocks and invariant violations with partial order reduction.

Deadlock: Model checking for deadlocks only.

Deadlock(POR): Model checking only for deadlocks with partial order reduction.

The consistency checking algorithm and the partial order reduction algorithm are respectively Algorithm
1 and Algorithm 5. For the evaluations we used model checking for searching for deadlocks and invariant
violations only.3 Due to the fact that checking for deadlock freedom only requires the satisfaction of the
ample set conditions (A 1) and (A 2) for the reduced search, we additionally observed experiments with
Deadlock(POR). For this type of checks, the results produced by Deadlock(POR) were compared with
the results of Deadlock.

All measurements were made on an Intel Xeon Server, 8 x 3.00 GHz Intel(R) Xeon(TM) CPU with 8 GB
RAM running Ubuntu 12.04.3 LTS. The Analysis times in Table 1 are the measured runtimes for the static

2 The models and their evaluations can be obtained from the following web page http://nightly.cobra.cs.uni-duesseldorf.de/por/
3 Another options like finding a goal or searching for assertion violations have not been checked while model checking the
particular model.
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analysis of each machine. If the POR option is not set in an experiment, no static analysis is performed.
Each experiment has been performed ten times and its respective geometric means (states, transitions and
times) are reported in the results of both tables.

One specification, Counters, in Table 1 is given that represents the best case for the reduced search in
ProB. Counters is a toy example aiming to show the benefit of partial order reduction when each event in
the model is independent from the executions of all other events. The worst case, when no reductions of the
state space are gained, is represented by checking BPEL v6 with Deadlock+Inv.(POR). BPEL [AA09] is
a case study of a business process for a purchase order. Phil [BDSW12] is an Event-B model representing a
solution of the dinning philosophers problem with four philosophers. Both BPEL and Phil are carried by a
stepwise development via refinement; their last refinement versions Phil v2 and BPEL v6 are presented in
Table 1. The test case Conc v1 is a case study from [A10] which is used to show how the development of
concurrent programs can be supported by using Event-B. The development of the system is conducted via
refinement and the test results of the first refinement of the model, Conc v1, are given in Table 1. It should
be noticed that the original machine Conc v1 from [A10] has an infinite state space. As a consequence, we
did some minor changes in the Event-B model in order to make the model finite state. At last, Token Ring
is a B model of a token ring protocol and Sieve an Event-B model formalising a parallel version (for four
processes) of the algorithm of Sieve of Eratosthenes for computing all prime numbers from 2 to 40.

In general, the most considerable reductions of the state space were gained with the reduced search when
only deadlock freedom checks were performed. We consider both the reductions of the number of states and
transitions. In one case (BPEL v6 ), no reductions of the state space were gained using the reduced search
Deadlock+Inv.(POR). However, the model checking runtime in this case is not significantly different from
the model checking runtime for the standard search Deadlock+Inv.. As expected, significant reduction of
the state space and thus the overall time for checking the Counters model were gained by both reduction
searches Deadlock+Inv.(POR) and Deadlock(POR). For the first two types of test cases of Counters
an invariant violation was found which led to a termination of the respective search. Interesting results were
obtained when applying any of the reduced searches on the Phil v2 model. Although the model has a great
magnitude of independence, the coupling between the events is so tight that no significant reductions could
be gained.

7. Related Work

7.1. Optimisations of the ProB Model Checker

A great deal of work has been devoted to optimising the ordinary ProB model checker for B and Event-B.
In this subsection, we refer to some of the techniques have been developed and analysed for the ProB model
checker.

Symmetry reduction is a technique successfully implemented in ProB for combating the state space explo-
sion problem. Using the fact that symmetry is induced by the deferred sets in B, two sorts of exhaustive sym-
metry reduction algorithms in ProB have been implemented: the graph canonicalisation method [TLSB07]
and the permutation flooding method [LBST07]. The general idea of both techniques is to check only a single
representative of each symmetry class of equivalent states during the consistency check of the model being
verified. An approximative symmetry reduction method [LM07] based on computing symmetry markers for
states of B machines has been also implemented in ProB. The idea of the method is that two states are con-
sidered to be symmetrically equivalent if they have the same symmetrical marker. All three methods showed
good performance results when model checking B or Event-B models with a certain degree of symmetry
induced by B’s deferred sets.

Another notion of optimising the ProB model checker has been presented in [BeL09]. The idea of this
work is to improve the efficiency of the model checker by using the already discharged proof information from
the front-end environment. The verification technique, known as proof assisted model checking, is used by
default in ProB and has shown a performance improvement up to factor two on various industrial models.

Other techniques, such as using mixed breadth-first/depth-first search strategy and heuristic functions
for performing directed model checking [LBe10], have been also suggested as optimisation methods for the
standard ProB model checker.

The notion of the enable graph for Event-B models has been first introduced in [BeL11]. In this work



26 I. Dobrikov and M. Leuschel

enable graphs are used to encode the information about independence4 and dependence of events by means
of enabling predicates. In addition, the authors suggest a method for optimising model checking using the
information from the enable graph. The idea is to speed up the state space exploration by omitting the
evaluation of the guards of events that are known to be disabled in states being currently explored. The
information of the disabledness of an event in some particular state is derived by means of evaluating the
enabling predicates in the enable graph. Additionally, an algorithm is proposed for constructing flow graphs
of Event-B models as well as possible applications of flow graphs are discussed.

7.2. Model Checking with Partial Order Reduction

Partial order reduction has been shown to be a very effective technique for optimising automatic verification
of concurrent systems by means of model checking. Many prominent model checkers make use of partial
order reduction for yielding smaller verification times. In this subsection, we will give a short overview of
the application of the method in various model checkers and its impact on verifying systems formalised in
low-level formalisms.

SPIN [H03] is a verification tool primarily used for the formal verification of multi-threaded software appli-
cations specified in Promela, the formalism supported by SPIN. Partial order reduction has been established
as an effective technique for optimising the verification runs of Promela models [HD94], [CGMP99]. The
strategy for reducing the state space in SPIN is similar to ours, which reduces the number of states by cal-
culating ample sets. The implementation of partial order reduction in SPIN looks for one process satisfying
the ample set conditions in the currently processed state. If such a process is found, then only the actions of
this process are executed in the particular state.

A similar idea for increasing the performance of partial order verification techniques by refining the de-
pendency relation was introduced in [GP93]. The authors of [GP93] practically demonstrate that verification
by partial order reduction can in some cases substantially profit from the refined dependencies and improve
the performance of both time and memory requirements. The partial order verification technique using
more refined dependency determination was implemented in SPIN. Evaluations of the algorithm have shown
that one can reduce the memory requirements of the verification of some real protocols up to factor of five
compared to the partial order verification algorithm using an unrefined dependency relation.

DIVINE [BBH+13] is another explicit state model checker which uses partial order reduction for better
runtime performance. In particular, DIVINE supports state space reduction by means of partial order re-
duction for parallel LTL model checking [BBR10]. The implementation of partial order reduction in DIVINE
uses a topological sort proviso for guaranteeing the correct construction of the reduced state space graph
with respect to the cycle condition (A 4) in order to be also compatible with parallel exploration strategies.
The reduced search in DIVINE is available for the DVE specification language, which is one of its input
languages. Similar to Promela the DVE specifications are composed of processes specifying the behaviour of
the system that are the basic modelling unit in DVE.

Partial order reduction has also been successively applied for efficient explicit state model checking in the
LTSmin model checker [KLM+15]. LTSmin is equipped with multi-core algorithms for on-the-fly LTL model
checking with partial order reduction, as well as multi-core symbolic model checking, and provides support
for the analysis and verification of systems specified in different modelling languages, such as Promela, DVE,
Upaal, and others. The link between the various modelling language front-ends and the verification algorithms
of LTSmin is established through a common interface called PINS (Partitioned Next-State Interface). By
means of PINS the modelling languages details are abstracted away utilizing a corresponding implicit state
space. The optimisation of the algorithms for explicit state model checking by means of partial order reduction
is realised through using read, write and guard/transition dependency matrices. The reduction of the state
space is accomplished by computing in each state a subset of enabled transitions fulfilling the conditions for
stubborn sets5 [V89a], [V89b]. Partial order reduction in LTSmin is available only for explicit state model

4 The definition of independence between events in [BeL11] is different from the definition of independence with respect to
partial order reduction. In [BeL11] two events are considered to be independent if each of the events cannot influence the guard
of the other one.
5 The stubborn set method from Valmari is another approach for reducing the state space by means of partial order reduc-
tion. [V89a], [V90]
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checking and the reduction method can be used in combination with parallel LTL model checking, where
the ignoring problem is solved by means of the parallel cycle proviso from [LW11].

Partial order reduction is used for improving LTL model checking and refinement checking in PAT [SLD08],
a framework which among others provides support for analysing and verifying concurrent systems formalised
in the process algebra CSP#. The reduction technique implemented in PAT exploits and extends the ideas
for applying partial order reduction for process algebras and refinement checking in [V96] and [W99].

The result in Section 5.2, which states that partial order reduction does not preserve LTL[e] formulae
with the execute operator, was also obtained in [BBC+09] for the state/event-LTL (SE-LTL) formalism
in [CCO+04]. To overcome this limitation the authors in [BBC+09] propose a new type of stutter-equivalence,
state/event stutter-equivalence, as well as a new logic fragment of SE-LTL, weak SE-LTL. Properties specified
in the weak SE-LTL fragment are preserved by state/event stutter-equivalence. Both, the state/event stutter-
equivalence and the weak SE-LTL fragment, enable one to apply partial order reduction to SE-LTL.

8. Conclusions and Future Work

Partial order reduction has been very successful for lower-level models such as Promela, but has had relatively
little impact for higher-level modelling languages such as B, Z or TLA+. Inspired by Event-B’s more simpler
event structures and more distributed nature, we have started a new attempt at getting partial order reduc-
tion to work for high-level formal models. We have presented an implementation of partial order reduction
for explicit state model checking in ProB for Event-B (and also classical B) models. The implementation
makes use of the ample set theory for reducing the state space and uses new constraint-based analyses to
obtain precise relations of influence between events. Our evaluation of the reduction method has shown that
considerable reductions of the state space can be gained for models with a high degree of independence and
concurrency. We also observed that checking only for deadlock freedom tends to provide more significant
reductions than checking simultaneously for invariant violations and deadlock freedom.

Next, we intend to integrate the reduction algorithm also in the ProB LTL[e] model checker. In this work
we discussed how to elaborate the reduction algorithm for the LTL model checker in ProB. We considered
two approaches (static and dynamic approach) for providing LTL model checking in ProB using partial order
reduction. We plan to implement both approaches, as well as to make a thorough evaluation of these .

In Remark 4.1 in Section 4.2 we considered an example of an Event-B machine in which we demonstrated
that the local dependency conditions (A 2.1) and (A 2.2) are sufficient, but not necessary criteria for (A 2).
We showed that no reduction at the initial state of the Event-B machine in Fig. 3 could be performed by
means of (A 2.2) although choosing to execute only one of the events at the initial state would have not lead
to a violation of (A 2). This example shows that there may be a potential to refine the reduction algorithm
in terms of (A 2.2) in order to achieve much more reductions. Future work will be concerned in studying
whether the reduction algorithm in Section 4 may be refined in terms of the local dependency condition
(A 2.2) in order to gain more state space reductions.

At last, we are planing to elaborate the reduction algorithm to be used also in combination with other
available optimisations of the ProB Model Checker such as symmetry reduction and directed model check-
ing. Additionally, we plan a thorough comparison of our implementation of partial order reduction with
implementations of partial order reduction in other model checkers.
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